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Abstract 

Since maintenance jobs often require one or more set-up activities, joint execution or clustering of maintenance jobs is 
a powerful instrument to reduce shut-down costs. We consider a clustering problem for frequency-constrained maintenance 
jobs, i.e. maintenance jobs that must be carried out with a prescribed (or higher) frequency. For the clustering of maintenance 
jobs with identical, so-called common set-ups, several strong dominance rules are provided. These dominance rules are used 
in an efficient dynamic programming algorithm which solves the problem in polynomial time. For the clustering of 
maintenance jobs with partially identical, so-called shared set-ups, similar but less strong dominance rules are available. 
Nevertheless, a surprisingly well-performing greedy heuristic and a branch and bound procedure have been developed to 
solve this problem. For randomly generated test problems with 10 set-ups and 30 maintenance jobs, the heuristic was 
optimal in 47 out of 100 test problems, with an average deviation of 0.24% from the optimal solution. In addition, the 
branch and bound method found an optimal solution in only a few seconds computation time on average. © 1997 Elsevier 
Science B.V. 
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1. Introduction 

Many preventive maintenance jobs (inspections, re- 
placements) o f  production systems require shut-down 
of  the units involved. I f  these units are used continu- 
ously, as is the case in process industry, shut-downs 
can be very costly and management will try to mini- 
mize their duration and frequency. Since maintenance 
jobs often share one or more preparatory set-up activ- 
ities, joint execution or clustering of  maintenance jobs 
is generally seen as a powerful instrument to reduce 
shut-down costs. 

* Corresponding author. 
Email: g.c.vandijkhuizen @ sms.utwente.nl. 

The clustering of  maintenance jobs can be mod- 
elled on a long-term and on a short-term basis. In 
the long term, maintenance jobs are combined into 
so-called maintenance packages that are executed at 
fixed intervals (see Fig. 1). In the short term, typical 
circumstances such as maintenance opportunities and 
manpower requirements are taken into account. Typ- 
ically, short-term clustering is used in an operational 
planning phase, and long-term clustering is applied to 
strategical decision-making. In this paper, we focus on 
the long-term clustering possibilities. 

In literature, much attention has been paid to the 
planning of  preventive maintenance jobs, where cor- 
relation between various jobs is essential in view of  
set-up avoidance. For a literature review on matbemat- 
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Fig. 1. Long-term clustering of maintenance activities. 
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Fig. 2. Example of a production system tree consisting of four hierarchical levels. 

ical models applied to maintenance, we refer to the 
surveys of  Pierskalla and Voeller [8], Valdez-Flores 
and Veldman [10], and Cho and Parlar [2]. One of 
the problems encountered in practice, is that for large 
numbers of components, mathematical models are dif- 
ficult to analyse (cf. Vanneste [12] ). Besides, opti- 
mal policies are often much too complex to be imple- 
mented in decision support systems for maintenance 
planning. Therefore, a decomposition approach is to 
be preferred, in which the outcomes of mathematical 
models for individual components are used as inputs 
in a comprehensive model. 

The clustering of frequency-constrained mainte- 
nance jobs, as presented in this paper, can be seen 
as such a comprehensive model, since the frequency 
of each maintenance job must be known in advance. 
Typically, the frequency of a maintenance job is deter- 
mined with the use of  mathematical models, such as 
the age or block replacement model (cf. Barlow and 
Proschan [ 1 ] ), and the delay-time model (cf. Chris- 
ter and Waller [3] ). In many practical situations, 
however, the use of  mathematical models is not pos- 
sible owing to a lack of historical data. In these cases, 
frequencies are usually based on subjective data or ex- 
pert opinions. Finally, the frequency of a maintenance 
job might also be based on safety restrictions or legis- 
lation. The use of limitative frequencies, or so-called 
frequency constraints, enables us to integrate these 
frequencies, based on either objective or subjective 

data, in one and the same mathematical model. 
Pioneering work on this subject has been carried 

out by Gits [6,7], who considers the clustering of 
frequency-constrained maintenance jobs with identi- 
cal, so-called common set-ups. Dekker, Wildeman and 
Smit [ 4,13 ] recently considered an approach in which 
the frequency constraints are replaced by frequency- 
dependent costs. Although they focus on the cluster- 
ing of maintenance jobs in an operational planning 
phase, their methods are also applicable to long-term 
clustering problems. 

In our opinion, the assumption of common set-ups 
cannot be sustained, as production systems become 
more and more complicated. Nevertheless, many pro- 
duction systems can be decomposed into several sub- 
systems, which in turn can be decomposed into sev- 
eral assemblies, parts, components, and so on. This 
decomposition leads to a tree-like structure as rep- 
resented in Fig. 2, which will be referred to as the 
production system tree. In general, with each node of 
the production system tree we can associate a cer- 
tain set-up activity, and a number of maintenance jobs 
that could be performed if that particular set-up was 
carried out. Considering the tree-like structure of the 
production system, it is clear that some maintenance 
jobs may not share all setup-activities, as is the case 
with common set-ups, but only a subset of them. For 
this reason, we consider the clustering of frequency- 
constrained maintenance jobs with partially identical, 
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so-called shared set-ups. 
It is clear that this provides a richer and more 

realistic modelling framework in comparison with 
the requirement of  completely coinciding paths, as 
is the case with common set-ups. Practical examples 
of shared, but not common, set-ups can be found in 
various areas, for example in airline maintenance, 
maintenance of nuclear power plants, and off-shore 
maintenance. A real application of shared set-ups is 
presented in an article of Sculli and Suraweera [9], 
which deals with opportunistic tramcar maintenance. 

In the applications above, the hierarchical structure 
of  set-up activities and maintenance jobs is due to the 
tree-like structure of  the production system. This is, 
however, not strictly necessary, as the following exam- 
ple shows. Consider a melting furnace which is subject 
to several periodic preventive maintenance jobs. Due 
to safety restrictions, different maintenance jobs re- 
quire different furnace temperatures. The furnace has 
to be cooled down to the required temperature before 
any maintenance job can be carried out. If  we asso- 
ciate a set-up activity with each of the required tem- 
peratures, then the set of different temperatures also 
reflects a shared set-up structure. 

The outline of  this paper is as follows. In Section 
2, a mathematical formulation of the clustering prob- 
lem is given and the complexity of this problem is 
briefly discussed. In Section 3, the clustering prob- 
lem with common set-ups is considered. Several domi- 
nance rules are provided and an efficient dynamic pro- 
gramming algorithm is developed, which solves this 
problem in polynomial time. In Section 4, a greedy 
heuristic and a branch and bound algorithm are pre- 
sented for the clustering problem with shared set-ups, 
for which similar but less strong dominance rules are 
available. Computational results in Section 5 show that 
the heuristic generates near-optimal solutions, and that 
the branch and bound algorithm finds an optimal so- 
lution within acceptable computation time. Finally, in 
Section 6, some conclusions are summarized and pos- 
sibilities for further research are indicated. 

2. General approach 

In this section, a proper definition and a mathemat- 
ical formulation of the clustering problem are given, 
and the complexity of this problem is briefly discussed. 

2.1. Problem definition 

Within this context, a maintenance job is defined 
as a preventive maintenance activity on a single com- 
ponent or a set of preventive maintenance activities 
on a set of components. Furthermore, a frequency- 
constrained maintenance job is defined as a mainte- 
nance job that must be carried out at fixed intervals 
with a prescribed or higher frequency. Finally, a main- 
tenance package is defined as a set of maintenance 
jobs that are combined into a single maintenance job. 
Consequently, the frequency of a maintenance pack- 
age must be at least as high as the frequency of each 
corresponding maintenance job. 

It is assumed that fixed costs must be made for each 
set-up and for each maintenance job. These costs may 
consist of maintenance-related costs (e.g. salaries, 
spare parts, tools, materials) as well as production- 
related costs (e.g. production loss, productivity loss, 
delay penalties). Given a limitative frequency (fre- 
quency constraint) for each maintenance job, the 
clustering problem is concerned with the partitioning 
(clustering) of a set of maintenance jobs into subsets 
of maintenance packages (clusters), so that preven- 
tive maintenance costs per unit of time are minimized 
in the long run. Note that the reduction in corrective 
maintenance costs, as a positive side-effect of cluster- 
ing, is not contained in our analysis. If  so, clustering 
would become even more profitable. 

In our analysis, we assume that the costs of a cluster 
can be computed from the costs of the individual set- 
up activities and maintenance jobs, and that the costs 
of a clustering can be computed from the costs of the 
individual clusters. In other words, we use an overall 
additive cost structure, as will be explicitly stated in 
the following section. From a practical point of  view, 
this means that (i) parallel execution of maintenance 
jobs within a cluster, and (ii) simultaneous execution 
of clusters within a clustering (e.g. in an operational 
planning phase) are not allowed. Other assumptions 
would lead to other interesting versions of  the cluster- 
ing problem, but are left for future investigations. 

As a starting point of our analysis, the production 
system tree and the set of frequency-constrained main- 
tenance jobs are converted into a so-called mainte- 
nance tree. The root of this maintenance tree corre- 
sponds to the production system in operating condi- 
tion; maintenance jobs are represented by the leafs and 
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set-up activities by the remaining nodes of the tree 
(see Fig. 3). Each set-up node in the maintenance tree 
can be identified with one of the nodes of the pro- 
duction system tree. Furthermore, each maintenance 

job is represented as a leaf of its parental set-up node. 
This parental node can be identified with the lowest- 
level node in the production system tree containing 
all components involved in the maintenance job. The 

communality of set-ups is determined by the joint part 
of the paths connecting the nodes to the root of the 

tree. These are the basic rules for the conversion; fur- 
ther details are skipped since they are not so relevant 
for what follows. 

In our opinion, this transformation of a produc- 

tion system tree into a maintenance tree is justified in 
many real-life situations. There may be cases, how- 
ever, where a maintenance tree does not capture all 
possible set-up properties (e.g. consider a somewhat 
artificial situation where some high-level maintenance 
jobs require shut-down of the production system, and 

other low-level maintenance jobs do not). If a proper 
transformation of the production system tree into a 
maintenance tree is not possible, we suggest the use 
of other methods. However, our approach can still be 
used as an approximation. 

2.2. Mathematical formulation 

Consider a set of preparatory set-ups 1 = 

{l,..., m} and a set of frequency-constrained main- 

tenance jobs J = { 1,. . . , rz}. Let lj & I denote the 
collection of set-ups needed for maintenance job 
j E J, and si > 0 the costs of set-up i E I. Further- 

more, let fj > 0 denote the frequency, and t,i > 0 the 

costs of maintenance job j E J. 
A cluster of maintenance jobs is defined as a subset 

U C J. Similar to the definitions above, let f(U) > 0 
denote the frequency, s( (I) > 0 the set-up costs and 
t(U) > 0 the maintenance costs of a cluster U C_ J. 

Then the costs per unit time h(U) associated with U 

are defined as: 

A(U) =f(U)(s(U) +t(U)). (1) 

As mentioned before, the frequency f(U) of a clus- 
ter of maintenance jobs U 2 J must be at least as high 
as the frequency fj of each maintenance job j E U. 
From a cost-optimal point of view, we obtain: 

f(U) =Fafj. 
JEU 

(2) 

The set-up costs s(U) of a cluster U C J depend 

on the collection of set-ups needed for all maintenance 
jobs j E U. Hence, s(U) is given by: 

0 0 Machine 

cl 
Set-ups 

0 Maintenance jobs 80 

(a) 0 P 
80 

280 80 70 

(8) (4) (3) 

Fig. 3. Examples of a maintenance tree with (a) common set-ups 

and (b) shared set-ups. Set-up and maintenance costs are shown 

at the arcs, frequencies in brackets at the corresponding nodes. 

s(U) = c sj. 

4JlEl, ‘1 

Obviously, the maintenance costs t(U) of a cluster 
U C: J are defined as: 

t(U) =Ctj. (4) 
iElJ 

A clustering of maintenance jobs is defined as a 

partitioning J2 of J. Since our objective is to mini- 
mize total costs per unit time, we are interested in the 
clustering 0* which minimizes: 

A(fa = c h(U) = c f(U)(s(U) + f(U)). (5) 
UER UER 

Remark 1. Note that si (i E I) and tj (j E J) might 
as well be defined as the expected values of some 
stochastic variables, since this would not affect the 
linearities in _4( 0). 
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Table 1 
Values of A(n) for increasing values of n 
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Table 2 
Possible clusters U and clusterings 12 of J for the example of Fig. 

n 2 6 12 20 30 

A(n) 2 203 4.21 • 106 5.17.1013 8.47. 1023 

Let A(n) denote the number of different cluster- 
ings of { 1 . . . . .  n} and define B(n, k) as the number 
of different clusterings of  { 1 . . . . .  n} into k clusters 
(1 ~< k ~< n). Then A(n) = ~ k B ( n , k ) ,  whereas 
B(n, 1) = B(n,n) = 1 and B(n,k)  = k B ( n -  l , k )  + 
B ( n -  1 , k -  1) for 1 < k < n (cf. Van Harten [11]) .  
Some values of A(n) for increasing values of n are 
presented in Table 1. Apparently, the search space of 
the clustering problem grows exponentially with the 
number of  maintenance jobs n. In the following sec- 
tions, it is shown that the complexity of the clustering 
problem can be reduced significantly, by exploiting its 
special structure. 

3(a),  with corresponding costs A(U) and A(/2) 

U f (U)  s(U) t(U) A(U) 

{1} 8 80 280 2880 
{2} 4 80 80 640 
{3} 3 80 70 450 

{1,2} 8 80 360 3520 
{1,3} 8 80 350 3440 
{2,3} 4 80 150 920 

{1,2,3} 8 80 430 4080 

12 A(U) I U E /2 A(.O) 

{{1},{2},{3}} {2880,640,450} 3970 
{{1,2},{3}} {3520,450} 3970 
{{1,3},{2}} {3440,640} 4080 
{{1},{2,3}} {2880,920} 3800 
{{1,2,3}} {4080} 4080 

3.2. Problem reduction 

3. The clustering problem with common set-ups 

In this section, the clustering problem for mainte- 
nance jobs with common set-ups is considered. First, 
an example is given and several strong dominance 
rules are provided. With these dominance rules, an ef- 
ficient dynamic programming algorithm is developed, 
which solves this problem in polynomial time. In the 
clustering problem with common set-ups, there is only 
one set-up (m = 1). Consequently, s(U) = S for all 
U C_ J, where S > 0 represents the common set-up 
cos t s .  

Let us now derive some dominance rules, with 
which optimal clusterings can be characterized. 

Theorem 2. Consider an optimal clustering/2* and 
let Qj E /2* denote the cluster corresponding to main- 
tenance job j E J. Then the following must be satis- 
fied: 

(i) Vi, j E J: f (Q i )  = f ( Q j )  --~ Qi = a j ,  

(ii) Vi, j E J: fi  >~ f j  ~ f (Q i )  >~ f ( Q j ) ,  
(iii) VjE  J: f ( Q j )  < ~ f j . ( S + t j ) / t j ,  
(iv) Vi, j E J: f i  = f j  ~ Qi = Qj, 
(v) Vi, j, k E J: f i  >~ f~ >~ f j  A Qi=Qj  

--~ ai = a j  = Ok. 

3.1. Example 

Consider the clustering problem with common set- 
ups, as shown in Fig. 3(a) ,  with I = {A}, J = {1, 
2, 3}, Ii = 12 = 13 = {A}, S = s A = 80, (tl t2 t3) = 
(280 80 70), and ( f l  f2 f3) = (8 4 3). The costs 
A(U) for all possible clusters U and the costs A(/2) 
for all possible clusterings /2 are as given in Table 
2. Apparently, the optimal clustering is determined 
by /2* = {{1},{2,3}}, with corresponding costs 
A(/2*) = 3800. 

Proof. I f /2* violates (i),  then f (Qi)  = f (Qj )  and 
Qi ~ aj for some i, j E J. In that case, combination 
of clusters Oi and Qj results in a clustering/2t with 
A( /2 ~) = A( /2*) - f(Qi) • S < A(/2*). Hence,/2* is 
not optimal. 

I f /2*  violates (ii), then fi  >~ f j  and f (Qi)  < 
f (Qj )  for some i , j  E J. In that case, moving job j 
from cluster Qj to a i  results in a clustering /2' with 
A ( / 2 ' )  <<, A ( / 2 * )  - f ( a j ) ,  tj + f ( Q i )  • tj < A ( / 2 * ) ,  

since f(Qi) ~ fi >/fj. Hence,/2* cannot be optimal. 
If/2* violates (iii),then f (Qj ) . t j  > f j.( S+tj ) for 

some j E J. In that case, removing job j from cluster 
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Table 3 
Values of A(n,p) versus A(n) for increasing values of  n and p 

n 2 6 12 20 30 
p 2 3 4 5 6 

A(n,p) 2 4 8 16 32 
A(n) 2 203 4 ,21 .  106 5 ,17 .  10 t3 8 , 47 .  1023 
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Note that the clustering problem may have alterna- 
tive optimal solutions. Obviously, this dynamic pro- 
gramming algorithm requires 1/2 n (n + 1 ) computa- 
tions in the worst case (i.e. f~ax /> f l  for all j E J) 
and is an O(n 2) algorithm. In other words, the clus- 
tering problem with common set-ups can be solved in 
polynomial time. 

Qj and creating a new cluster {j} results in a clustering 
/2' with A(O') ~< a(/2*) - f ( Q j ) .  t j + f j .  (S+t j )  < 
A(J2*). Again, it follows that/2* is not optimal. 

Properties (iv) and (v) follow directly from prop- 
erties (i) and (ii). [] 

Now let A (n, p) denote the number of clusterings 
of { 1 . . . . .  n}, which satisfy dominance rules (i) and 
(ii) of Theorem 2, given that there are p different 
frequencies. Then it can easily be seen that A(n,p)  = 
2 p- l (cf. Van Harten [ 11 ] ). Some values of A (n, p) 
for increasing values of n and p are given in Table 
3. Clearly, the complexity of the clustering problem 
with common set-ups is reduced significantly, even if 
property (iii) of Theorem 2 is left out of consideration. 

3.3. A dynamic programming algorithm 

Using dominance rule (iv) of Theorem 2, we can 
assume -without loss of generality- that f l  > "'" > 
fn, since jobs with the same frequencies are always 
contained in the same cluster. Hence, jobs i and j with 
f i  = f j  can as well be replaced by a single job k --- 
{i} t_l {j} with fk = f i  = f j  and tk = ti -4- tj. Let fJax 
denote the maximal frequency of maintenance job j E 
J, according to dominance rule (iii) of Theorem 2: 

f~max = f J . ( s + t : )  / t j .  (6) 

3.4. Example (continued) 

Consider the example of Section 3.1 again, for 
which it can easily be verified that fIax = 102, 
f2ax = 8, and f3ma x = 63 . With this in mind, the 
dynamic programming algorithm results in: 

F(0)  =0, 

F(1) = F ( 0 )  -4- f l ( S +  tl) 

= 0 + 8.  (80 + 280) = 2880, 

F(2) =min{F(0)  + f j ( S  ,4, tj + t2), 

F ( l ) + f 2 ( S + t 2 ) }  

= min{0 + 8- (80 + 280 + 80), 

2880-4-4. (80-4-80)} 

= min{3520, 3520} = 3520, 

F(3)  =min{F( l )  

F(2)  

=min{2880 

3520 

4- f 2 ( S  -4- t2 -4- t 3 ) ,  

+ f 3 ( S + t 3 ) }  

4- 4.  (80 -4- 80 -4- 70), 

+ 3 .  ( 8 0 + 7 0 ) }  

=min{3800,3970} = 3800. 

Hence, the optimal solution is /2* = { { 1 }, {2, 3} } 
with corresponding costs A(/2*) = 3800, which was 
also found in Section 3.1. 

Furthermore, let F(k)  denote the minimal costs for 
clustering jobs 1 . . . . .  k (1 ~< k ~< n). For notational 
convenience, define F(0)  = 0. Using dominance rule 
(v) of Theorem 2, F(k)  can be determined by means 
of the following dynamic programming equation: 

F(k)  = 
k 

man ~ F ( i - 1 ) + f i . ( S + E o ) } .  
1 <~i<<.k:fi<<.fkmax [. J=l 

(7) 

4. The clustering problem with shared set-ups 

In this section, the clustering problem for mainte- 
nance jobs with shared set-ups is considered. First of 
all, an example is given and several dominance rules 
are provided. These dominance rules are used in an 
efficient branch and bound algorithm, which is devel- 
oped next. Finally, this branch and bound algorithm is 
illustrated by an example. 
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Table 4 
Possible clusters U and clusterings/~ of J for the example of Fig. 
3(b), with corresponding costs ,~(U) and A(S2) 

U f ( U )  s(U) t (U)  A(U) 

Lemma 3. Consider a clustering 12 and let Qj E 12 
denote the cluster corresponding to maintenance job  
j c J. Furthermore, for  all j, k E J, let Oj and 3ji be 
defined as: 

{1} 8 120 240 2880 
{2} 4 120 40 640 
{3} 3 80 70 450 

{1,2} 8 120 280 3200 
{1,3} 8 120 310 3440 
{2,3} 4 120 110 920 

{1,2,3} 8 120 350 3760 

12 A(U) I U E 12 A(O)  

{{1},{2},{3}} {2880,640,450} 3970 
{{1,2},{3}} {3200,450} 3650 
{{1,3},{2}} {3440,640} 4080 
{{I},{2,3}} {2880,920} 3800 
{{1,2,3}} {3760} 3760 

4.1. Example 

Consider the clustering problem with shared set- 
ups, as shown in Fig. 3(b) ,  with I = { A , B } ,  J = {1, 
2,3}, (s  A SB) = (80 40), I| = 12 = { A , B } ,  13 = {A}, 
(ti t2 t3) = (240 40 70), and ( f l  f2 f3) = (8 4 3). 
The costs A(U)  for all possible clusters U and the 
costs A(12) for all possible clusterings 12 are given 
in Table 4. Apparently, the optimal clustering is de- 
termined by 12" = {{1,2}, {3}}, with corresponding 
costs A(12") = 3650. 

4.2. Problem reduction 

As in Section 3.2, let us derive some dominance 
rules, with which optimal clusterings can be charac- 
terized. First of all, let sjk denote the shared set-up 
costs of jobs j, k E J: 

= ~ si. (8) Sjk 
i 

i6ljnlk 

First of all, note that sjk = 0 for some j, k E J im- 
plies that J can be partitioned into non-empty subsets 
Jl and ./2 (i.e. Jt M J2 = 0, Jl U J2 = J) ,  such that 
sjk = 0 for all j E Jl and k E J2. Hence, Jl and J2 can 
be treated separately and -without loss of generality- 
we can assume that sjk > 0 for all j, k E J. With this 
assumption in mind, Theorem 2 can be generalized as 
follows. But first, we need the following lemma. 

Oj = sjj + tj - max s O, (9)  
i=b j 

8/k-- Sjj + t  j - -  S i k (10 )  
0j 

Then: t3~ 1. f ( Q j )  > f ( Q k )  >~ f j  for  some j , k  E 
J --+ 12 is not optimal. 

Proof. Suppose that f ( Q k )  >f f j  for some j, k c 
J. Then removing job j from cluster Qj results in a 
cost decrement of at least A- = f ( Q j )  . (sjj + tj - 
maxi , j  sij) = f ( Q j )  • Oj. Similarly, moving job j to 
cluster Qk results in a cost increment of at most A+ = 
f ( Q k )  (sjj -~- tj -- S jk ) ,  since f ( Q k )  >~ f j  and k E 
Qk by assumption. Since 6~-~ l • f ( Q j )  > f ( Q ~ )  is 

equivalent to A- > A +, this completes the proof. [] 

Lemma 3 should be interpreted as follows. Firstly, 
Oj = sjj -k- tj - maxi÷j s o represents the minimal de- 
crease in t (U)  if job j is removed from an arbitrary 
cluster U _C J with j C U. Secondly, sjj + t j  -- Sjk rep- 
resents the maximal increase in t(U) if job j is added 
to an arbitrary cluster U C_ J with j ¢ U and k E U. 
Hence, ~jk reflects the ratio of these cost components. 
Clearly, 8jk ~> 1 for all j, k C J. Furthermore, 6jk = 1 
if sjj = sjk = Skk for some j, k E J, i.e. if jobs j and k 
require identical (common) set-ups. In general terms, 
Lemma 3 provides conditions for the cluster frequen- 
cies { f ( Q j ) , f ( a k ) }  of each pair {j, k} of mainte- 
nance jobs. 

Theorem 4. Consider an optimal clustering 12" and 
let Qj c 12" denote the cluster corresponding to main- 
tenance job  j E J. Then the following must be satis- 
fied: 

(i) Vi, j E J: f (Q i )  = f ( Q j )  ~ Qi = Qj, 
(ii) Vi, j E J: f i  >1 f j  ~ f ( Q i )  >1 8~-~l . f ( Q j ) ,  

(iii) V j E J :  f ( Q j )  < ~ f j . ( s j j + t j ) / O / ,  
f ( Q j )  

(iv) Vi , j  E J: f i  = f j  --~ tSq I <<. f(Qi----~ <~ 8ji, 
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(v) Vi, j, k E J: f i  >~ fk >~ f j  A Qi=Qj 
f ( a t )  = f (Qk)  

f (Qi )  f ( Q j )  
~< min{tSki, 8kj}. 

Proof. If  O* violates (i),  then f (Qi )  = f ( Q j )  and 
ai --/= aj for some i, j E J. In that case, combination 
of clusters Qi and Qi results in a clustering ~ with 
A(12/) < A(O*),  since Sjk > 0 for all j , k  E J by 
assumption. Hence, /2* is not optimal. 

If O* violates (ii),  then f i  >~ f j  and ~ f l f ( Q j )  > 
f (Qi )  for some i , j  E J. Since f (Qi )  >/fi  >1 f j ,  this 
yields t~ftl f ( Q j )  > f (Qi )  >>- f j, and it follows from 
Lemma 3 that/2* is not optimal. 

If12" violates (iii), then f ( Q j )  .Oj > f j .  ( s j j+t j )  
for some j E J. In that case, removing job j from 
cluster Qj and creating a new cluster {j} results in a 
clustering O' with A(O ' )  ~< A(12") - f ( Q j )  • Oj + 
f i "  (sjj + tj) < A(12"). Again, it follows that 12" is 
not optimal. 

Properties (iv) and (v) follow directly from prop- 
erties (i) and (ii). [] 

R e m a r k  5. In the case of common set-ups, Oj = tj for 
all j E J and 8jk = 1 for all j, k E J. Using dominance 
rule (i),  which coincides for Theorem 2 and Theorem 
4, it can easily be verified that Theorem 4 is indeed a 
generalization of Theorem 2. 

4.3. A branch and bound algorithm 

In this section, a branch and bound algorithm (cf. 
Winston [ 14] ) is presented, which uses the domi- 
nance rules provided by Theorem 4. The branch and 
bound tree is designed in such a way, that a node at 
depth m (0 ~< m ~< n) contains a partial clustering 
12m of jobs { 1 . . . . .  m}. Consequently, a branch from 
a node (m, 12m) corresponds to the assignment of job 
m + l to an already existing cluster U E On, or the 
creation of a new cluster {m + 1}. Without loss of 
generality, we can assume that f l  /> " '" /> fn, as 
a result of which the frequency of a cluster remains 
unchanged after it has been created. The branch and 
bound procedure can be described by the following 
steps: 
• Use an heuristic method to determine an initial so- 

lution 12" and start with an empty clustering (0, 0) 
in the root of the branch and bound tree. 

• Select one of the open nodes (m, Ore) according to 
a certain selection rule. If  the clustering 12,, con- 
tained in this node is final (m = n), update the best 
clustering found so far (i.e. 12" ,--- 12n) if necessary 
(i.e A(On) < A(O*)) .  Otherwise, if this node is 
not in conflict with any dominance rules, calculate 
a lower bound LB(m, Ore) for the best clustering 
that can still be obtained, given the partial cluster- 
ing 12m contained in the selected node. If  this lower 
bound exceeds the best clustering found so far (i.e. 
LB(m, 12,,) >~ A(12")), close the selected node. 
Otherwise, create a new node for each extension of 
the partial clustering 12m contained in the selected 
node. Repeat this procedure until no open nodes are 
left. 

• The final clustering 12" is optimal. 

4.3.1. Initial solution 
The heuristic starts with each job in a separate clus- 

ter and proceeds with greedy improvements. In each 
iteration of the heuristic, the two clusters U* and V* 
whose union leads to the highest decrease in A(.) are 
combined into a new cluster U* U V*. This procedure is 
repeated until no improvements can be obtained any- 
more. 

4.3.2. Selection rule 
We implemented a combination of the well-known 

depth-first and best-first selection rules (cf. Winston 
[ 14] ). In terms of the branch and bound tree, the node 
with the best ( = lowest) lower bound at the deepest 
level of the branch and bound tree is selected in each 
iteration of the branch and bound procedure. 

4.3.3. Dominance rules 
In addition to the dominance rules of Theorem 4, 

two other dominance rules were used in the branch and 
bound algorithm. Before presenting these dominance 
rules for partial clusterings, let us first consider another 
two dominance rules for final clusterings, which they 
are based upon. 

Theorem 6. Consider an optimal clustering 12" and 
let Qj E 12" denote the cluster corresponding to main- 
tenance job j E J. Furthermore, for all j E J and 
U C_ J, let O)(U) = t (UU {j}) - t ( U \  {j}) be de- 
fined as: 
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O ; ( U )  = s j j  + t j  - m a x  s~j. 
iEU\{j}  

(11) 

Then the following must be satisfied: 

(i) Vj E J: f ( Q j )  • Oj(Qj) <~ f j .  (sjj + tj), 
(ii) Vj E J: f ( Q j )  • Oj(Qj) 

~< min f ( U )  • Oj(U). 
UEO*: f ( U ) ~ f j  

Proof. If 12" violates (i) ,  then f ( Q j )  • Oj(Qj) > 
f j  • (sjj + t;) for some j E J. Similar to the proof 
of property (iii) of Theorem 4, removing job j from 
cluster Qj and creating a new cluster {j} results in a 
clustering 12' with A(12') < A(12"). Hence,/2* is not 
optimal. 

If/2* violates (ii), then f ( Q j )  • Oj(Qj) > f ( U )  • 
Oj(U) and f ( U )  >>. f j  for some j E J and U E s2*. 
Similar to the proof of Lemma 3, moving job j from 
cluster Qj to U results in a clustering 12' with A(12') < 
A(12"). Hence, O* is not optimal. [] 

Unfortunately, the dominance rules of Theorem 6 
are only applicable to final clusterings and thus, can- 
not be used in the branch and bound algorithm. Hence, 
a generalization of Theorem 6 for partial clusterings is 
desirable. Similar to the definition in Section 4.2, let 
fJmax denote the maximum frequency of maintenance 
job j E J, according to dominance rule (iii) of The- 
orem 4: 

From now on, these dominance rules will be re- 
ferred to as the global dominance rules, since they are 
evaluated for all jobs j E {1 . . . . .  m} in a given node 
(m, 12,,). During the implementation of the branch 
and bound algorithm, it was found that these global 
dominance rules required a relatively large amount of 
computation time. Therefore, we decided to introduce 
so-called local dominance rules, which only evaluate 
for job m in a given node (m,/2m). In Section 5, it 
is investigated which dominance rules are to be pre- 
ferred. 

4.3.4. Lower bounds 
We developed and implemented two lower bounds, 

which are based on the same general idea. Given a 
node (m,/2m) with a partial clustering 12m of jobs 
{1 . . . . .  m}, a lower bound Aj(m, 12,,) is calculated 
for the increase in A(.) due to each of the remaining 
jobs j (m < j ~< n), given that the clustering/2m of 
jobs {1 . . . . .  m} is known, but the clustering of jobs 
{m+ 1 . . . . .  j - 1} is not. A lower bound LB(m, 12,,) 
for a clustering of jobs { 1 . . . . .  n}, given the partial 
clustering ~2m of jobs {1 . . . . .  m}, is then constructed 
as: 

LB(m, 12m) = A(/'2m) + ~ Aj(m, flm). 
j=m+ 1 

(14) 

fJma x = f j . ( s j j  -}- t j  ) / O j .  (12) 

Let us now consider a partial clustering/2m of jobs 
{ 1 . . . . .  m}, and let Qmj E 12m denote the cluster cor- 
responding to maintenance job j E { 1 . . . . .  m}. Fur- 
thermore, let A a m , j  = {k E {m- t -  1 . . . . .  n} ] fkma x ~> 
f(Qm,j) } denote the collection of maintenance jobs 
k E {m + 1 . . . . .  n} that can still be included in clus- 
ter Q,,d without violation of dominance rule (iii) of 
Theorem 4. Then, with Theorem 6 in mind, a node 
(m, g2,,) can be skipped if for some maintenance job 
j c {1 . . . . .  m}: 

f j .  (sjj + tj) 
' 

f(Qm,j) > min min f ( U )  " O j ( U )  

(13) 

In this expression, Aj(m, 12m) gives a lower bound 
for each job j (m < j ~< n) separately. In the fol- 
lowing theorem, a so-called static lower bound is pre- 
sented. This lower bound is called static, because its 
value does not depend on /2m and consequently, can 
be calculated in advance of the branch and bound pro- 
cedure. 

Theorem 7. A static lower bound 4j ( m, 1-2m) is given 
by: 

Aj( m, 12m) 

f j .  (sjj + tj), 

= min min 
iE{ l,...,j--1 }: fi<~fJmax 

f i .  (sjj + tj 

--  m a x  
kE {i,... ,j -- 1 } 

s : ) .  

(15) 
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Proof.  Consider an arbitrary clustering of jobs 
{ 1 . . . . .  j - 1}, for which no further information is 
available. Let us now deal with job j ,  for which two 
decisions can be made: 
• Create a new cluster {j}. Then total costs increase 

with exactly f j  • (sjj + t j ) .  
• Add job  j to an already existing cluster U C_ 

{ 1 . . . . .  j - 1}. Then, according to dominance rule 
(iii) of  Theorem 4, we can restrict ourselves to 
clusters o f  the form {i . . . . .  j - 1} with i < j and 
f~ ~< /max, in which case total costs increase with 
f i"  (sjj + tj - max{sjk I k 6 {i . . . . .  j - 1}}). 
Given these possible decisions, Theorem 7 follows 

easily. [] 

The following theorem comprises a so-called dy- 
namic lower bound. This lower bound is called dy- 
namic, because its value depends on /2m and con- 
sequently, must be calculated during the branch and 
bound procedure. 

Theorem 8. A dynamic lower bound Aj ( m, /2m) is 
given by: 

Ll j ( rn , /2m ) 

f i " (sj j  + t j ) ,  

min f ( U )  . (sjj + tj 
UEO.,: f(U)<<.fJmax 

= min 

min 
i6{m+l,...,j-1}: fi<~fYmax 

- max Sjk), 
kEUU{m+ l , . . . , j -  1 } 

f i .  (sj j  + ti 

- max Sjk). 
kE{i,...,j-I} 

(16) 

Proof.  In contrast with the proof  of  Theorem 7, con- 
sider an arbitrary clustering of  jobs { 1 . . . . .  j - 1 }, for 
which the partial clustering am of  jobs {1 . . . . .  m} is 
known, but for which no information is available on 
the partial clustering of  jobs  {m + 1 . . . . .  j - 1 }. With 
respect to job j ,  three decisions can be made: 
• Create a new cluster {j}. Then total costs increase 

with exactly f j  • (sjj + t j) .  
• Add job j to an already existing cluster V c_ 

{1 . . . . .  j - 1} with U C_ V for some U 6 /2m. 
Then, according to dominance rule (iii) of  The- 
orem 4, we can restrict ourselves to clusters of  

the form U U { m  + 1 . . . . .  j -  1} with U E /2,n 
and f ( U )  <<. fmax, in which case total costs in- 
crease with f ( U )  • (sjj + tj - max{sjk I k E 
U U { m +  1 . . . . .  j -  1}}) .  

• Add job j to an already existing cluster V C {m + 
1 . . . . .  j - 1 }. Then, for the same reasons as in ( i i ) ,  
we can restrict ourselves to clusters of  the form 
{i . . . . .  . j -  1} with i E { m +  1 . . . . .  j -  1} and 
f i  <, fJmax, in which case total costs increase with 
f i"  ( s j j + t j - - m a x { s j k  I k ~ {i . . . . .  j -  1}}). 
Given this set of  possible decisions, Theorem 8 fol- 

lows easily. [] 

It is to be expected that the static lower bound re- 
quires more nodes but less time per node than the 
dynamic lower bound. In Section 5, it is investigated 
which lower bound is to be preferred. 

4.4. Example (continued) 

Consider the example of  Section 4.1 again, for 
which it can easily be verified that flma x = 12, f2ma x = 
16 and f3ma x = 63/7. The branch and bound algorithm, 
in which we used the dominance rules of  Theorem 4 
and the dynamic lower bound, results in: 
• The heuristic starts with/2* = {{1}, {2}, {3}} and 

A(O*)  = 3970. With A ( { { 1 , 2 } , { 3 } } )  = 3650, 
a ( { { l ,  3}, {2}}) = 4080 and A({{2 ,3} ,  {1}}) = 
3800, the heuristic continues with ~2" = {{1,2},  
{3}} in the next iteration. With a ( { {  1,2, 3}}) = 
3760, the heuristic is terminated with/2* = {{ 1,2}, 
{3}} and A(/2*) = 3650. 

• The branch and bound procedure starts with a 
node A = (0, 0) with lower bound L B ( A )  = 3480 
in the root of  the branch and bound tree. Since 
L B ( A )  < a ( / 2 * ) , a n e w  nodeB  = (1, {{1}}) with 
LB( B) = 3480is created. Since LB(  B)  < A( /2* ), 
new nodes C = (2, {{1 ,2}})  with L B ( C )  = 3800 
and D = (2, {{1}, {2}}) with L B ( D )  = 3650 are 
created. Since L B ( C )  > L B ( D )  = A(O*) ,  the 
remaining nodes C and D are closed. 

• The optimal solution is given by f2* = {{1,2},  
{3}} with A(/2*) = 3650, which was also found in 
Section 4.1. 

R e m a r k  9. It can easily be shown that the heuris- 
tic always finds an optimal solution in problems with 
three or less maintenance jobs. 
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Table 5 
Performance of the heuristic for 100 randomly generated test problems with 10 set-ups and 1 ~< p ~< 6 maintenance jobs per set-up 

p = l  p = 2  p = 3  p = 4  p = 5  p = 6  

% optimal 92 % 80 % 46 % 38 % 21% 12 % 
% deviation 0.04 % 0.17 % 0.36 % 0.39 % 0.54 % 0.57 % 

Table 6 
Average computation time (in seconds) and total number of nodes needed by the branch and bound algorithm for 100 randomly generated 
test problems with 10 set-ups and 1 ~< p ~< 3 maintenance jobs per set-up: performance of local vs. global dominance rules, and static 
vs. dynamic lower bound 

p = l  p = 2  p = 3  

dominance rules lower bound time nodes time nodes time nodes 

local static 0.01 13.64 0.18 152.0 1.88 1424 
local dynamic 0.01 9.47 0.19 81.6 2.45 639 
global static 0.02 13.33 0.41 136.6 6.34 1069 
global dynamic 0.01 9.38 0.31 78.7 4.32 527 

5. Computational results 

We implemented the heuristic and the branch and 
bound procedure in Borland Pascal 7.0 on a personal 
computer with a 80486 microprocessor, operating at 
a clock speed of 40 MHz. To determine which dom- 
inance rules and which lower bounds are to be pre- 
ferred, we tested our algorithms on a number of artifi- 
cial maintenance trees with 10 set-ups (m = 10) and 
1 ~< p ~< 6jobs per set-up (n = 10,20,30,40,50,60) 
respectively, as represented in Fig. 4. For each tree 
structure, we randomly generated 100 test problems. 

Fig. 4. Maintenance tree for test problems (p = 2). 

In each test problem, values for s i ( i  E 1)  and t j  
( j  E J) were drawn from a uniform distribution on 
{1 .. . . .  100}, and values for f j  ( j  E J) from a uniform 
distribution on { 1 .. . . .  12}. 

For the initial solutions found by the heuristic, we 
measured which percentage was already optimal. Fur- 
thermore, we calculated the average deviation from the 
optimal solution. For the branch and bound algorithm, 
we focussed on the total number of nodes that was 
branched upon and the amount of CPU time needed. 
The results are presented in Tables 5, 6 and 7. 

Table 5 shows that, somewhat surprisingly, the 
greedy heuristic performs very well. For problems 
with 10 maintenance jobs, the heuristic found an op- 
timal solution in 92 out of 100 test problems, with 
an average deviation of 0.04% from the optimal so- 
lution. As was expected, an increase in the number 
of maintenance jobs reduced the performance of the 
heuristic: for problems with 60 maintenance jobs, the 
heuristic found an optimal solution in 12 out of 100 
test problems, with a deviation of 0.57% from the 
optimal solution on average. Apparently, the perfor- 
mance of our heuristic reduces with the size of the 
problem, which is quite natural. 

Table 6 indicates that the local dominance rules 
and the static lower bound give the best overall per- 
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Table 7 
Average computation time (in minutes) and number of nodes needed by the branch and bound algorithm for 100 randomly generated test 
problems with 10 set-ups and 4 ~< p ~< 6 maintenance jobs per set-up 

p = 4  p=5  p = 6  

dominance rules lower bound time nodes time nodes time nodes 

local static 0:20 1.26. 104 2:43 1.57.105 26:40 1.01 • 1 0  6 

formance, at least for the test problems we consid- 
ered. We have no indications, however, that experi- 
ments with other test problems would lead to differ- 
ent conclusions. Although the dynamic lower bound 
and the global dominance rules strongly reduced the 
total number of nodes (both with about a factor 2), 
the branch and bound procedure still requires higher 
computation times. Apparently, the reduction in nodes 
is canceled out by an increase in the required compu- 
tation time per node. 

From the results in Table 7, in which the static lower 
bound and the local dominance rules were used, it can 
be concluded that the computation time of the branch 
and bound algorithm is exponential in the number 
of maintenance jobs n. While formulating the same 
test problems as Integer Linear Programs, and solving 
them with a standard ILP solver, different results were 
found. Although computation times for small values 
of n were significantly larger (e.g. 0.2 versus 35 sec- 
onds for n = 20), the computation times of the ILP 
solver seemed to increase quadratically with the num- 
ber of maintenance jobs n, indicating that the clus- 
tering problem might not be NP hard. Although this 
phenomenon may be caused by e.g. the limited choice 
of frequencies, a standard ILP solver will probably 
outperform our branch and bound procedure for large 
values of n. 

On the other hand, our branch and bound proce- 
dure can still be improved significantly. For example, 
it is possible to decompose the clustering problem into 
a number of smaller subproblems, corresponding to 
second-level subtrees of the maintenance tree, by con- 
ditioning on the 21El-l subsets of the set F of frequen- 
cies. It is to be expected that this decomposition will 
lead to significant reductions in computation times. 
For large problems, e.g. with 50 or more maintenance 
jobs, we suggest to use the heuristic, which finds near- 
optimal solutions in negligible computation times. 

6. Concluding remarks 

In this paper, we showed that the clustering prob- 
lem for frequency-constrained maintenance jobs with 
common set-ups can be solved in polynomial time 
by means of an efficient dynamic programming algo- 
rithm. Furthermore, we developed a greedy heuristic 
and a branch and bound algorithm to determine an op- 
timal clustering of frequency-constrained maintenance 
jobs with shared set-ups. We provided several domi- 
nance rules, inspired by the case of common set-ups, 
which strongly reduced the complexity of the clus- 
tering problem. Computational results indicated that 
the heuristic generates near-optimal solutions, and that 
the branch and bound algorithm requires acceptable 
computation times for many practical situations (n ~< 
50). 

Summarizing, we believe that our methods can be 
applied in many practical situations, and are a step 
forward into effective and efficient maintenance plan- 
ning. Although minor improvements might still be ob- 
tained in an operational planning phase (e.g. by means 
of opportunistic maintenance policies), the determi- 
nation of maintenance packages can as least serve as 
a basis for further optimization models. Our methods 
can be incorporated in an interactive decision support 
system with which strategical maintenance planning 
can be supported. For this reason, a number of gen- 
eralizations of our methods are still under considera- 
tion. 

For instance, the positive effect of clustering on the 
need for corrective maintenance was not taken into 
account. With the clustering of maintenance jobs, pre- 
ventive maintenance is carried out more frequently, 
and consequently, corrective maintenance jobs will 
be reduced. It is possible to introduce frequency- 
dependent costs instead of frequency constraints, so 
that clustering becomes even more profitable in com- 
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parison with our approach. Unfortunately, frequency- 
dependent costs are hard to obtain in practice owing 
to a lack of historical data; this in contrast to the 
frequency constraints that are required for our meth- 
ods. 

Another possibility is to allow parallel execution of 
maintenance jobs and simultaneous execution of main- 
tenance packages. In our model, it was assumed that 
no cost reductions can be obtained by carrying out 
maintenance jobs in parallel, or maintenance packages 
simultaneously. This lead to an overall additive cost 
structure. Other assumptions will lead to other inter- 
esting versions of the clustering problem. 

It might also be worthwhile to develop more 
advanced heuristics, and to investigate their per- 
formance. For instance, it is possible to start with 
a bottom-up approach, i.e. first combining at the 
lowest-level and then working upwards. This might 
especially be worthwhile if the set of frequencies is 
limited. Finally, it is also possible to generalize the 
dominance rules for identical jobs (i.e. jobs with iden- 
tical frequencies and identical set-ups) to dominance 
rules for identical subtrees. Since identical subtrees 
correspond to identical equipment at the same level of 
the production system tree, this might be an interest- 
ing generalization in many real-life applications. In 
future work, these suggestions will be studied more 
specifically. 
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