
Designing Software Architectures
as a Composition of Specializations of Knowledge Domains

Mehmet Aksit1, Francesco Marcelloni2,
Bedir Tekinerdogan1, Charles Vuijst1 and Lodewijk Bergmans1, 3

1TRESE Project, Department of Computer Science, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

email: {aksit | bergmans | bedir }@cs.utwente.nl
www server: http://wwwtrese.cs.utwente.nl

2Department of Information Engineering, University of Pisa,
Via Diotisalvi, 2-56126, Pisa, Italy.

email: france@iet.unipi.it
3 STEX bv, D.Dijkhuisstraat 248, 7558 GG, Hengelo, The Netherlands

Abstract

This paper summarizes our experimental research and software development activities in
designing robust, adaptable and reusable software architectures. Several years ago, based on our
previous experiences in object-oriented software development, we made the following
assumption: ‘A software architecture should be a composition of specializations of knowledge
domains’. To verify this assumption we carried out three pilot projects. In addition to the
application of some popular domain analysis techniques such as use cases, we identified the
invariant compositional structures of the software architectures and the related knowledge
domains. Knowledge domains define the boundaries of the adaptability and reusability
capabilities of software systems. Next, knowledge domains were mapped to object-oriented
concepts. We experienced that some aspects of knowledge could not be directly modeled in terms
of object-oriented concepts. In this paper we describe our approach, the pilot projects, the
experienced problems and the adopted solutions for realizing the software architectures. We
conclude the paper with the lessons that we learned from this experience.

Paper category: Experience paper

Keywords: Software architecture, software engineering practices

Correspondence address: Mehmet Aksit, TRESE Project, Department of Computer Science,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

1

1. Introduction

Object-oriented methods aim at providing natural ways for decomposing (or composing) a system into

(from) objects that correspond to concepts in the customer’s problem domain1. For example, in OMT
[Rumbaugh 91] nouns in the requirement specification, which are assumed to represent concepts, are
considered as candidate objects. The identified objects are the basic building blocks of the object-
oriented system to be constructed. In order not to disregard relevant objects, most methods advise
software engineers to take dedicated steps such as reading books about the problem domain,
interviewing customers, etc. [Coad 91]. The method Object-Oriented Software Engineering [Jacobson
92] proposes use cases as a systematic means to understand the problem domain.

We consider two important concerns in understanding the problem domain. First, it is very important
to identify all the objects that are required for defining a consistent system, at least in its minimum
configuration. Second, identified objects must serve as composable building blocks to construct robust,
adaptable and reusable architectures. In this paper, we use the term architecture to designate the gross
structure of a software system represented as a high level organization of computational elements and
interactions between those elements as defined in [Garlan 95]. It has been shown in [Shaw 95] that
the choice of architectural style can have far-reaching consequences because they shape the analysis of
the problem and the expression of the design. Within the object-oriented community, issues related to
domain analysis have been extensively discussed in various papers [Prieto-Diaz 91], workshops
[OOPSLA_Workshop 95] and panels [OOPSLA_Panel 95].

For several years, we have been carrying out research activities to define guidelines for deriving
object-oriented models for our customer’s problem domains. In particular, we wanted to find answers
to the following questions: First, would it be possible to define rules for identifying an 'ideal' software
architecture? The absence of a good architecture generally predicts difficulties in realizing a software
system in a robust, adaptable and reusable way. Second, what would be the obstacles that one might
experience in mapping domain information into object-oriented models? Third, what kind of research
activities would be needed to address the identified problems, if any. Last but definitely not least,
would experiences gained from the pilot projects conflict with the theoretical assumptions? This paper
presents our findings in this experimental research.

Based on previous experiences in object-oriented software development [Aksit 92b], we started with
the following assumption: “A software architecture can be defined as a composition of specializations
of knowledge domains”. The compositional structure must reflect the invariant compositions of the
problem domain. For example, the generic architecture of a simple motorized vehicle results from the
composition of the knowledge about engine, chassis, and steering and breaking systems.

To verify this assumption, we carried out 3 pilot projects, and implemented and tested them
extensively. We tried to define architectures based on the ‘ideal architecture' concept. At this stage we
experienced three problems. First, we spent a considerable amount of time in searching and
understanding the related knowledge domains. Nevertheless, in all the pilot projects, we could extract
satisfactory information from the literature. Second, sometimes it was necessary to extend domain
knowledge to make it suitable for architecture definition. Third, we realized that mapping knowledge
into object-oriented concepts was sometimes difficult, because certain aspects of knowledge could not
be represented directly in terms of object-oriented concepts.

The paper is organized as follows: The following section summarizes our objectives in carrying out
this experimental research. Section 3 outlines the method used in our pilot projects. Section 4
describes the initial requirements for the pilot projects. Section 5 explains how the architectures of
frameworks are identified. Section 6 describes the realization of the frameworks. Experienced
problems in mapping descriptions of architectures to object-oriented models are explained in section

1 The customer represents the person(s) who is interested in the solution of a software development problem.

2

6.1. Section 6.2 gives information about the implementations of the frameworks. Section 7 presents
the lessons learned and research issues. Finally, section 8 concludes this paper. The appendix gives a
selected presentation of the developed object models.

2. The Objectives

From 1987 to 1993, we have been involved in the development of a large number of pilot applications
using, what we considered, the best of the available methods [Aksit 92b]. One of the conclusions was
that architectural definitions of software systems are crucial in achieving a high degree of robustness,
adaptability and reusability. In 1993, we decided to continue with our experimental activity in the
direction of identifying and specifying software architectures. The intention of this work was to
achieve the following three objectives:

• To define an approach towards the definition of object-oriented software architectures, with an
emphasis on robustness, adaptability and reusability;

• To test this approach for realistic problems to see whether the approach met our expectations;

• From these practical experiences, to identify obstacles that may be experienced in realizing
software architectures using commercially available object-oriented methods and languages. This
serves two goals: firstly, to make software engineers aware of the potential pitfalls. Secondly, to
provide an input to research activities.

3. The Approach

3.1 The Architecture Concept

Figure 1 illustrates our architecture concept. This architecture consists of 4 components which are
considered necessary in providing the expected behavior of the software system. As an example, these
components may represent the engine, chassis, breaking and steering systems of a simple motorized
vehicle.

Figure 1. An example architecture as a composition of specialization of
knowledge domains D1 to D4.

The architecture is a particular composition of specializations from the related knowledge domains D1

to D4. Each knowledge domain is modeled as a matrix. Here, rows and columns represent
generalization/specialization and diversity relations among matrix elements, respectively. Each
element in a matrix represents a concept in the corresponding knowledge domain. The granularity of
matrix elements, rows and columns must be meaningful and consistent with respect to the available
knowledge. The top row represents a knowledge domain in its most general form. Each row –except

3

the top row– is a specialization with respect to its higher adjacent row. There is no particular order
among the elements in a row. The shaded areas show the relevant knowledge in each domain. The
exact links between elements are not shown here because it is considered irrelevant for the purpose of
this illustration.

This approach to representing knowledge fits in with the human way of thinking and reasoning. In the
area of knowledge representation and expert systems, the techniques of frames [Minsky 75] and
semantic networks [Levesque 79] can be considered as formal models that can be used to represent the
same kind of knowledge organization. We consider our aim to be different however, in two ways:
Firstly, our intention is to gather and structure informal knowledge during domain analysis. Secondly,
we do not (yet) have intentions to prove hypotheses, as is the case for expert systems.

Defining architectures in this way has at least 3 advantages. First, it ensures that architectures are
based on stable structures. The top-level decomposition of an architecture reflects the invariant
concepts of that application. Each realization of these concepts is a specialization of existing
knowledge. The higher-level concepts in a given knowledge domain generally correspond to theories.
Most changes appear as a diversification and specialization of existing knowledge; theories hardly
ever change. For example, although there have been considerable achievements in car industry, the
minimum compositional architecture of motorized vehicles hardly changed during the last 50 years.
The theories on combustion engines and physical laws are still valid. During the years, what we have
experienced is the specialization and diversification of knowledge in building vehicles.

Second, such architectures are highly adaptable. The shaded area in a knowledge domain indicates the
adaptability space; the architecture must be composed from these concepts. This area is open-ended
since new specializations can be added at the bottom of the hierarchy.

The adaptability space for instantiations of the architecture is restricted in two ways however:
• To be selected as an architectural component, a concept must be realizable. It should not be too

abstract for building software components. For example, the concept Combustion Engine in its
most general form can be too abstract to include in building vehicles.

• Concepts from different domains may restrict each other. For example, a chassis may not be
strong enough to carry very powerful engines.

Last, such architectures can be highly reusable. Each component is derived from existing knowledge.
If knowledge domains can be mapped to software architectures effectively, then the software system
will be as reusable as the available knowledge. One may not expect software engineers to design
software architectures any better than their understanding of the concepts within the theory itself. The
rationale for this statement is that the availability of a certain amount of domain knowledge and
theory is a strong indication that this knowledge is stable and applicable in many circumstances.

We should note that, although we consider these knowledge domains as existing knowledge, in a lot of
cases the software engineer will actually introduce new specializations at the bottom that have not
been described elsewhere before. This represents knowledge that is specific to a particular application
or customer situation.

3.2 The Process

In our pilot projects, to identify architectures, we adopted the process shown in Figure 2. This process

has 5 steps2. First we identify use cases [Jacobson 92] based on the problem description. We
experienced that this provides a better understanding of the requirements.

2 For simplicity, we omitted details such as interactions with the customer and iteration paths.

4

Second, after use case analysis, we identify the top-level
conceptual architecture. This requires searching the related
literature and finding similarities among various publications.
We also try to discover concepts that are indispensable for a
given problem. For example, we search for the minimum
configuration by gradually excluding concepts until essential
characteristics of the application are lost.

Third, for each component in a composition, we search for
related knowledge. For each knowledge domain, we organize
the gathered information similar to the matrix structure, as
shown by Figure 1. The matrix elements are represented as a
piece of text or as mathematical formulas. The
generalization/specialization and diversity discrimination is
realized by systematically comparing and ordering concepts.

Fourth, for each domain, we identify which elements in a
matrix can be included into the application being considered.
A set of semantically correct alternatives depict here the
adaptability space. In addition, we investigate whether
specializations from different domains enforce constraints on
each other, if they are included within the same architecture.
Additional user-defined constraints can be added, for example
to restrict the scope of the architecture.

The last step is to focus on the relevant portion of the
knowledge domains, since possibly not all the conceptual

elements in the specialization hierarchy are relevant for a given problem. We define a path from the
selected concepts to the concepts defined at the highest abstraction level. All the concepts along this
path are necessary in realizing the selected specializations.

The next step is to map the architecture model into an object-oriented model. During this phase,
whenever we have difficulties in effectively mapping architectural descriptions into object-oriented
models, we examine object-oriented methods and design patterns [Gamma 95] to understand how
these problems are addressed by them. In cases where we cannot find a solution to our problem, we
refer to related research work.

4. Description of the Pilot Projects

In the following paragraphs we will describe the initial requirements for the pilot projects.

Transaction Framework
Our first pilot project aims at designing an object-oriented atomic transaction framework to be used in

a distributed car dealer management system3. Data and processing in a car dealer management system
are largely distributed and therefore serializability and recoverability of executions are required.
Using atomic transactions [Bernstein 87], serializability and recoverability for a group of statements
can be ensured. Serializability means that the concurrent execution of a group of transactions is
equivalent to some serial execution of the same set of transactions. Recoverability means that each
execution appears to be all or nothing; either it executes successfully to completion or it has no effect
on data shared with other transactions.

A car dealer management system may be constituted of a large number of applications with various
characteristics, operates in heterogeneous environments, and may incorporate different data formats.

3 This project is carried out together with Siemens-Nixdorf Software Center and supported by Dutch Ministry

of Economical affairs under the SENTER program.

Figure 2. A process for architecture
definition.

5

To achieve optimal behavior, each of these aspects may require a transaction system with a dedicated
serialization and recovery techniques. This requires transactions with dynamic adaptation of
transaction semantics, optimized with respect to the application and environmental conditions and
data formats. The adaptation policy therefore, must be determined by programmers, the operating
system or by the data objects.

A car dealer management system is large, complex and long-lived. Reusability of software is therefore
considered as an important requirement to reduce maintenance costs.

Image Processing Framework
At the laboratory for Clinical and Experimental Image Processing, located at the university hospital
Leiden, an image processing system is being developed for the analysis of the human heart [Zwet 94].
Traditionally, image processing algorithms have been implemented at the laboratory using
procedures. For example, assume that the application of three image processing algorithms
algorithm1, algorithm2 and algorithm3 on the input image would produce the output image:

outputImage = algorithm3 (algorithm2 (algorithm1 (inputImage)));
The output parameter of the first algorithm is the input parameter of the second algorithm and the
output parameter of the second algorithm is the input parameter of the third algorithm. Here, all
cascaded input-output parameters of these algorithms must be compatible. Procedures are largely
dependent on the representation of the input and output parameters [Wegner 84].

In object-oriented modeling, algorithms can be defined as operations of a class Image and the
structure of Image can be encapsulated within its private part. By sending cascaded messages one can
transform images subsequently:

outputImage = ((inputImage.algorithm1).algorithm2).algorithm3;
Here, inputImage receives the message algorithm1 which results in a new image that receives the
message algorithm2, and so on. Provided that each image understands these messages, one may apply
the algorithms to images in any order.

The object-oriented approach looks promising because image formats can be encapsulated and
abstracted by image processing algorithms. This means, however, that each image must define all the
required image processing algorithms, which may demand a large number of method definitions. The
second concern is to define an object-oriented image processing framework which is expressive
enough to construct virtually any image processing algorithm that can be used for medical imaging.
Last, effective code reuse can simplify implementation of image processing algorithms and decrease
the maintenance costs.

Fuzzy-Logic Reasoning Framework
For several years, we have been carrying out research activities in formalizing the object-oriented
software development process [Aksit 96]. One of the problems in modeling a software development
process is to represent design uncertainties. As a result of our research, we concluded that fuzzy-logic
theory [Dubois 80] might be useful for this purpose. For the practical implementation of our ideas, we
decided to build a fuzzy reasoning framework [Marcelloni 95a].

A fuzzy reasoning system is characterized by two basic features. First, a fuzzy reasoning process has
the ability of deducing a possibly imprecise but meaningful conclusion from a collection of fuzzy rules
and a partially true fact. Second, such a reasoning process is executed by using rules and facts codified
in a natural language.

Consider, for example, the following rule: “If an entity is relevant within the problem domain then
select it as a class”. Two-valued logic forces the software engineer to take abrupt decisions, such as,
“the entity is relevant” or “not relevant”. Therefore, expressing uncertain information using two-
valued logic can be quite tedious. A fuzzy reasoning system, however, can accept input values such as
“the entity is weakly relevant”. A fuzzy-rule can be expressed using linguistic expressions. For
example, the fuzzy-rule “If an entity is weakly relevant then it is weakly likely to correspond to a
class” can reason about the entities that are qualified as weakly relevant.

6

The design of a fuzzy-logic reasoning framework for our purpose requires a number of considerations.
First, fuzzy-logic may be based on different implication operators. Second, in fuzzy reasoning, the
semantics of the connectives AND and ALSO can be interpreted in various ways. Third, the framework
must also process linguistic values, such as weakly relevant, instead of the Boolean variables true and
false only.

In addition to fuzzy-logic specific requirements, we think that the framework must provide both goal-
driven and data-driven activation modalities. Since contextual information plays a significant role in a
software development process, the rules must be dynamically adapted to the changing context. Finally,
the framework must be able to execute two-valued logic based reasoning as well.

Comparison of the Pilot Projects
Table 1 summarizes the initial requirements for the pilot projects. All the projects aim at defining
object-oriented frameworks [Johnson 88] rather than developing a dedicated software system for a
given problem. The required features of these frameworks are quite different because they relate to
different application domains. The key requirements of these frameworks, however, are quite similar.
They all must support different kinds of implementations. For example, the transaction framework
must provide different serialization techniques, the image processing framework must be able to
express any image processing algorithm and the fuzzy-logic reasoning framework must be able to
implement different implication rules. In addition, for all frameworks adaptability and reusability are
major requirements.

Pilot project Features Key requirements Application area
transaction
framework

serializability,
recoverability

programmer/system/object defined
policies, dynamic adaptability, reuse

car dealer
management system

image
processing
framework

many possible
algorithms and
representations

no restrictions on image
representations and algorithms,
reuse

medical imaging
system

fuzzy-logic
reasoning
framework

different
implementations of
generalized modus
ponens, easy
definition of
linguistic variables

support different implications,
different implementations of the
connectives AND and ALSO, goal-
driven and data-driven activation,
dynamic adaptation to context, both
deterministic and fuzzy reasoning,
reuse

representing
uncertainty in object-
oriented methods
and CASE
environments

Table 1. Summary of the requirements.

5. Architecture Definition

5.1 Identification of the Top-Level Decomposition of Architectures

Transaction Framework
A considerable number of text books and articles have been written on atomic transactions
[Bernstein 87] [Moss 85]. After searching and comparing the literature, we noticed that most
publications adopt a similar architecture. Figure 3 shows a representative architecture for illustrating
the essential components of transaction systems.

The arrows in the figure indicate the interaction patterns between the components. The component
Transaction represents a transaction block as defined by the programmer. The TransactionManager
provides mechanisms for initiating, starting and terminating the transaction. It keeps a list of the
objects that are affected by the transaction. If a transaction reaches its final state successfully, then
TransactionManager sends a commit message to the corresponding objects to terminate the
transaction. Otherwise, an abort message is sent to all the participating objects to undo the effects of
the transaction.

7

The PolicyManager determines the strategies for adaptation to
different transaction semantics. In most publications, the
PolicyManager is included in the TransactionManager. We
considered defining transaction policies as a different concern and
therefore defined it as a separate component. The component
DataManager controls the access to its object and includes the
components Scheduler and RecoveryManager. The component
Scheduler orders the incoming messages to its object to achieve
serializability. Scheduler may include deadlock avoidance and/or
detection mechanisms. The component RecoveryManager keeps
track of changes to its object to recover from failures.

Image Processing Framework
As stated in section 4, the architecture of the image processing system must be capable of expressing
virtually any image processing algorithm suitable for medical imaging. Therefore, we had to search
for techniques which could cover the area of image processing. After a thorough literature survey, we
came across the theory of image algebra which is capable of expressing almost all the image-to-image
transformations [Ritter 87a, 87b, 90]. The decomposition of the image processing framework is
derived from this theory as depicted in Figure 4.

The image processing framework consists of
coordinate and value sets. Images can be
expressed as a composition of these two sets.
In the theory of image algebra, the concept of
image templates is introduced. An image
processing algorithm, in general, can be
defined as

anOutputImage =
anInputImage.anAlgebraicOp(aTemplate)
Here, anOutputImage represents the resulting
image, anInputImage is the image to be
processed, anAlgebraicOp is one of the basic

operations defined by image algebra, and the argument aTemplate represents the algorithm to be
applied on anInputImage. If templates can be generated from requirements specifications easily, this
approach overcomes the problem of defining a large number of operations for each image, as only a
few algebraic operations are required.

Fuzzy-Logic Reasoning Framework
A large amount of publications have been written on fuzzy-logic reasoning (for example [Lee 90],
[Turksen 93], [Dubois 80], [Zimmermann 91]). After investigating the available literature, we
concluded that the architecture shown in Figure 5 conforms to the concepts in most of these
publications.

We selected the so-called generalized modus ponens (G.M.P.) as the basic inferencing technique
because of its common usage in the literature. In the most general form, the generalized modus
ponens may be expressed in the following way:

For a given rule R = “If A Then B”, and a fact A’, the conclusion B’ inferred by A’ is equal to A’ o R,
where o is a composition relation between the fuzzy sets corresponding to A’ and R.

Figure 3. Essential components
of a transaction system.

Value Set

Image

Template

Coordinate Set

composition

composition

Figure 4. Decomposition of the image processing
framework.

8

In this figure, the component
Fuzzy Inference Element
implements the inference
mechanism. This element
contains Rule, Fact, G.M.P.
and Result. The components
Rule and Fact represent the
rules and facts as defined in
generalized modus ponens.
During the initialization
phase, Rule and Fact
communicate with the

component Linguistic Variable to create a representation of themselves in terms of fuzzy sets. For
each proposition involved in the Rule and Fact, the corresponding fuzzy set is created. The output
values of Rule and Fact, again expressed in terms of fuzzy sets, are provided to the component
Generalized Modus Ponens (G.M.P.). This component carries out the inference process and generates
a result. The component Result combines all the outputs of the related generalized modus ponens
components using the connective ALSO. The result of this combination is also expressed in terms of
fuzzy-sets. The component Linguistic Variable is used to 'defuzzify' the fuzzy set produced by Result.
In case of a goal-driven inference, the component Linguistic Variable asks from Result to provide the
resulting value. In case of a data-driven inference, however, the request comes from the component
Result. The defuzzification operation executed by the component Linguistic Variable converts the
fuzzy set into a crisp value or approximates it as a linguistic value.

Particular to our framework is the component Context. As specified in the initial requirement
specification, the validity of rules used in a software development process largely depends on changes
in the context, and therefore, an explicit formulation of the effects of context is mandatory. The
component Context is an instance of the whole fuzzy reasoning framework shown in Figure 5.
Context reasons about the context information and may ask the component Linguistic Variable to
modify the related semantic rule within the linguistic variable. Notice that the component Context
may also include a sub-component Context, thereby allowing specification of the effects of the context
on a context, etc. If the component Context is omitted, then the interpretation of linguistic values is
fixed and cannot be changed dynamically.

5.2 Finding Knowledge Domains

Transaction Framework
To detail the transaction architecture shown in Figure 3, we investigated publications related to each
component. We organized the available information for each component as a matrix structure.

The knowledge domain TransactionManager includes a variety of commit and abort protocols.

The knowledge domain PolicyManager is related to software/hardware performance, reliability
modeling techniques [Carey 86][Agrawal 87] and decision making. Basically, application usage,
transaction semantics and software/hardware architecture are the three major factors that determine
the characteristics of a transaction. PolicyManager, therefore, may include models for these factors.
Decisions can be made based on these models.

The knowledge domain DataManager is responsible for the coordination of Scheduler and
RecoveryManager. DataManager deals with semantic interdependencies between these components.
The knowledge domain Scheduler relates to scheduling, serialization and deadlock detection
techniques. Finally, the knowledge domain RecoveryManager includes information from simple
recovery algorithms to sophisticated stable storage recovery techniques.

Image Processing Framework
The architecture of our image processing framework is derived from the theory of image algebra.

Fact Rule

G.M.P.

Rule

Result

Linguistic
Variable Context

Fuzzy Inference Element
Figure 5. Decomposition of the fuzzy reasoning framework.

9

The knowledge domains Coordinate and Value Sets are specializations of the set theory. These are
homogeneous sets, meaning that all the set elements belong to the same type. By defining a small
number of algebraic operations on sets as the primitive functions, one can conveniently construct
different image processing algorithms. The knowledge domain is composed of coordinate and value
sets because an image defines functional dependencies between these sets. Similarly, the knowledge
domain Template defines functional dependencies among images and includes knowledge about
image processing algorithms.

Fuzzy-Logic Reasoning Framework
For each component in Figure 5, we investigated the related knowledge domains. We summarize our
findings in the following paragraphs:

The component Linguistic Variable represents a specialization of a language theory. A linguistic
variable is characterized by a quintuple (x, T(x), U, G, M) where x is the name of the variable, T(x) is
the term set of x, that is, the set of names of linguistic values of x with each value being a fuzzy set
defined on U. Here, U is the universe of discourse, G is a syntactic rule for generating the names of
values of x, and M is a semantic rule for associating with each value its meaning. A meaning is a
fuzzy set defined in the universe of discourse of the linguistic variable. So, the knowledge domain
Linguistic Variable must include knowledge about the definition of a (small) language with its syntax
and semantics.

The component Fuzzy Inference Element reflects two theories: logic theory and fuzzy set theory. As
explained in section 5.1, during a reasoning process, the components Fact, Rule, Generalized Modus
Ponens and Result interact with each other. All these components adopt fuzzy sets as a common data
structure to exchange information. The component Rule defines a rule. Here, the connective AND and
the implication are implemented by a fuzzy conjunction and a fuzzy relation, respectively. The
component Generalized Modus Ponens implements the compositional rule of inference as a
composition between two relations. The component Result implements the aggregation operation
which is an intersection or union between fuzzy sets. In the literature, many implementations of fuzzy
conjunctions, implications, compositions, intersections and unions have been proposed.

Overview of the Related Knowledge
Table 2 shows the related knowledge domains of the pilot projects. It has been an extensive amount of
work to find out the related knowledge domains from the literature. Nevertheless, for each domain, we
could extract the information necessary to define stable architectures. For each component in an
architecture, we could find plenty of useful information.

Pilot Project Component Related Knowledge Domains References
transaction
framework

scheduler scheduling/serialization and deadlock
detection/avoidance techniques

[Bernstein 87]
recovery manager recovery techniques
transaction manager commit and abort protocols
policy manager transaction/architecture/application

performance and reliability models,
decision making

image
processing

value and coordinate
sets

set theory, mathematical domains,
algebra

[Ritter 87a,b]

framework images templates function theory, image representation
techniques, algebra, image processing

fuzzy-logic
reasoning

fuzzy inference
elements

fuzzy set theory, logic theory [Dubois 80]
[Klir 88]

framework linguistic variables language theory, fuzzy set theory [Zadeh 73]
Table 2. Summary of the related knowledge domains.

10

5.3 Defining Constraints and Adaptability Space

Transaction Framework
Obviously, the interaction protocols among the components of a transaction must be compatible. For
example, the commit and abort protocols of TransactionManager must be understood by the
corresponding DataManagers. If the protocols of TransactionManager are changed, then the
protocols of the DataManagers must change accordingly. Similarly, adapting transaction semantics
must be carefully managed. In section 4, one of the important requirements of our transaction
framework was defined as a need to adapt transaction semantics determined by programmers, the
operating system or by the data objects. If the transaction system is dynamically changed, for instance
by the operating system, then the components Serializer and RecoveryManager must be adapted
accordingly.

In addition to interaction compatibility requirements, there may be restrictions on the composability of
components. For example, we found out that the components Scheduler and Recovery are in some
cases dependent on each other [Weihl 89]. Therefore, it is not always possible to combine every
concept from the knowledge domain Scheduler with any concept from the knowledge domain
RecoveryManager. In addition, we identified that the different serialization protocols adopted by the
scheduler components may be incompatible with each other [Guerraoui 94]. Therefore, special care
has to be taken to enforce composability constraints.

Image Processing Framework
There are 2 important constraints for the elements of coordinate and value sets. First, the elements of
a set must be of the same type. For example, a coordinate set must only contain coordinates of a
specific dimension type such as the frequency domain. Similarly, a value set must only contain values
of a given type such as Boolean values for black-and-white images. Second, there may be some
ordering relations among the elements of sets. In particular, the elements of a coordinate set must be
ordered with respect to the semantics of the coordinate set. For example, in a two-dimensional spatial
representation, the adjacent coordinates correspond to the image samples that are also physically
adjacent to each other.

There are some restrictions imposed by the algebraic operations. An algebraic operation between two
images may only be performed if both images have exactly the same coordinate set. In addition, the
types of elements of value sets must be compatible.

Templates represent the functional dependencies between original and resulting images. We found
that it is possible to categorize these dependencies into 8 different types. Namely, there are 7 variant
and 1 invariant types of templates. A variant property is defined on certain aspects of coordinate and
value sets. For example, a template may particularly consider whether a coordinate is at the boundary
of an image or not. The categorization of templates helped us in defining a method to construct
different kinds of templates in a systematic way. In our approach, the software engineer is asked to
provide the variant and invariant properties of the templates. This information is sufficient enough to
build templates in a straightforward way [Vuijst 94].

Fuzzy-Logic Reasoning Framework
The components of the fuzzy-logic reasoning architecture, as defined by Figure 5, can be seen as
specializations of some aspects of the fuzzy-set theory. Theoretically, we can select each combination
of specializations for implementing the reasoning process. For instance, in the component Rule, we
can interpret the connective AND and the implication as a fuzzy conjunction which uses the minimum,
and as the Mandami’s implication, respectively [Mandami 77]. The component Generalized Modus
Ponens may be implemented by the max-min compositional rule of inference defined by Zadeh
[Zadeh 73]. The component Result may implement the connective ALSO as a union among fuzzy sets
which uses the maximum. Not all the possible combinations, however, can produce meaningful results
from a logical view point [Turksen 93] [Marcelloni 95b]. This means that fuzzy set theory is
constrained by the logic theory in the fuzzy logic domain.

11

Overview of the Constraints and the Adaptability Space
As illustrated by Table 3, all the three frameworks require interaction and composability constraints to
guarantee correct behavior. These constraints are the boundaries of the adaptability space of each
framework.

Pilot Project Adaptability Space Inter-component constraints
transaction
framework

scheduling and recovery
concepts

intra-data manager (scheduler and recovery) and
inter-data managers

image
processing
framework

different coordinate and value
types, a large possible number
of templates in 8 categories

sets must be homogeneous, ordering of elements
in sets, type compatibility restrictions imposed by
algebraic operations, 8 categories of templates

fuzzy-logic
reasoning
framework

several implementations of
fuzzy reasoning, language
used in the rules

rule, generalized modus ponens and result are
constrained each other by logical soundness,
rules and facts constrained by the linguistic
variable

Table 3. Adaptability space and inter-component constraints.

6. Realization of the Frameworks

6.1 Experienced Problems in Mapping Architectures into Object-Oriented Models

During mapping architectures to object-oriented frameworks, we experienced a number of problems
because the architectural concepts could not be directly mapped to the object-oriented concepts. As a
consequence, we were forced to represent some architectural concepts in the implementation of
operations of objects instead of explicit representations. This reduces adaptability and reusability of
programs. The following sections explain some significant problems that we experienced during the
development of the frameworks.

6.1.1 Dynamically Changing Implementations
This means that the implementation of an object is not fixed but can change at object initialization or
execution time. There are two basic reasons why an object may dynamically change its
implementation: improving the implementation, or evolution of the behavior. Improving the
implementation can be necessary for example, for improving the speed and space performance of the
implementation of objects, dealing with heterogeneous systems, etc. Evolution of the behavior of an
object can be necessary for objects that represent evolutionary concepts.

In all the pilot projects dynamically changing implementations are required. For example, in the
transaction framework shown in Figure 3, the components Scheduler and RecoveryManager have to
be adapted dynamically with respect to changing application or system conditions.

Most transaction systems are distributed and long-lived. During the life-cycle of a transaction system,
new commit and abort protocols, serialization and recovery algorithms may be introduced to cope with
the changing demands of applications and system architectures. Suspending the transaction system
and recompiling it with the new improvements may not be always preferable.

In the image processing framework, dynamically changing implementations are required mainly for
improving the speed and space performance of algorithms. For example, implementing a spatial
image as a matrix may not be space efficient if the matrix is sparse. On the other hand, matrix
representation can be very time efficient for certain algorithms since each image element can then be
directly accessible.

As explained in section 5.3, the components of the fuzzy-logic reasoning framework can be
implemented in many different ways. The choice of a particular implementation affects the results of
the reasoning. Such a choice is generally determined by the type of application and the input values.
Therefore, only at run-time it is possible to determine which implementation allows to deduce the
desired results. For most fuzzy-logic reasoning systems, instantiation of implementations during

12

object creation time would be satisfactory. For reasoning systems with learning behavior, however, the
implementation of concepts may change dynamically.

The Strategy pattern [Gamma 95] can be used to define objects with dynamically changing
implementations. In the Strategy pattern, different implementations are termed as strategies and are
represented as objects. An object with changing implementations is termed as context and it
aggregates one or more of the concrete strategies.

Now let us assume that Cc is the context class that requires a dynamic implementation and therefore it
encapsulates its strategy object Os. Here, Os implements the methods m1 to mn. Cc declares these
methods at its interface, but redirects the requests for these methods to Os by invoking the
corresponding methods on Os. For example, the method m1 is implemented by Cc in the following
way:

Cc::m1(arguments)
return Os.m1(arguments);

Provided that all the strategy objects implement the methods m1 to mn, by assigning a new strategy
object Onew to Os, one can change the implementations of the context object.

Os := Onew ;
Here, the implementation of the context object is changed to Onew. Notice that the strategy object Os

behaves like a superclass because all its methods are visible at the interface of the context class Cc.
Changing the implementation is equivalent to changing the super class of the object.

There are, however, a number of problems with this approach. First of all, the context class Cc must
declare all the methods m1 to mn explicitly. If n is large, then this can be a tedious and error-prone
task (Os could have many methods defined in its superclasses). Second, the Strategy pattern cannot be
used for evolving systems. The precise set of methods and their arguments has to be fixed when class
Cc is defined since Cc has to declare all the dynamically changing methods explicitly. Third, although
the strategy object behaves like the superclass, it cannot polymorphically refer to the context object
through self calls. This is similar to the self-problem as defined by Lieberman [Lieberman 86].

An alternative to the Strategy pattern is to use the delegation mechanism [Lieberman 86]. Delegation
is a mechanism that allows objects to share behavior. If a server object cannot respond to a particular
request of its client, then it delegates the request to one or more designated objects. If one of the
designated objects can execute the request, then it executes it on behalf of the server object. If needed,
the designated object can refer to the server object by calling on the pseudo variable self. The
delegation mechanism is similar to inheritance; the designated object behaves like the superclass of
the server. Delegation can express dynamic implementations if the context object delegates to its
strategy object. In case of delegation, the context object delegates all the requests that it cannot
respond to, thereby eliminating the need for declaring the dynamically changing methods explicitly.
This also supports the evolution of the context object. In addition, the pseudo variable self is provided
by the underlying delegation mechanism.

6.1.2 Difficulties in Expressing Knowledge Specializations Using Class Inheritance
In our approach, the related knowledge domains are identified and represented using generalization,
specialization and diversification relations, as described before. This process is performed from the
perspective of modeling knowledge domains and solutions. It appears that the generalization-
specialization hierarchies from the knowledge domains cannot always be mapped directly to the
object-oriented inheritance hierarchies.

The reason for this is that generally object-oriented inheritance semantics are defined as inheritance of
methods and instance variables from one or more superclasses by one or more subclasses. A subclass
may add new methods and instance variables, and override existing methods. These semantics cannot
always represent complex generalization, specialization and diversification relations among
knowledge domain concepts.

13

For example in the transaction framework, the choice for a particular policy as made by the
PolicyManager is the result of the application of many different rules and constraints. In a
generalization-specialization hierarchy of PolicyManagers, gradually more rules and constraints are

added. Mapping this hierarchy to a class-inheritance structure is far from trivial4.

In the fuzzy-logic reasoning framework, the language-based specifications of linguistic variables
require a grammar specification for scanning and parsing. In the generalization-specification
hierarchy of the knowledge domain, new linguistic variables are added in specialization classes. This
corresponds to the extension of the grammar rules. It is not possible to map this grammar-based
hierarchy directly onto a class-inheritance hierarchy.

6.1.3 Architectural Constraints
We previously discussed (e.g. in sections 3 and 5.3) that a number of constraints must be enforced
upon an architectural model. For example, architectural components cannot be mixed arbitrarily. We
consider the enforcement of such constraints as fully distinct and independent from the application
behavior: it is essentially a meta-level issue.

As an example, we refer to discussion in section 5.3 about the transaction framework, where many
different specializations are available for both the components Scheduler and Recovery. One of the
attractions of separating the Scheduler and Recovery components is that these are largely orthogonal,
which allows for choosing independent concrete specializations. However, in a number of cases, these
choices are not orthogonal: adopting a particular type of Scheduler excludes certain types of Recovery.
This implies that whenever the composition is changed, the consistency of the new composition must
be checked. This verification may involve interactions with multiple objects, and the verification
specification must be modular so that both verification and application classes can be adapted and
reused separately.

The enforcement of constraints on composition is currently typically achieved through type-checking
mechanisms: by specifying a particular type for each of the components, we can ensure that only
specializations of that type will be used as components and therefore these will satisfy some basic
constraints. However, we already indicated that this is not always sufficient; a more powerful type
checking mechanism than subclassing or signatures would be needed because several components
and complex rules can determine the type correctness of programs.

In the more general case of constraints, the main difficulty is that we want the constraint
specifications to be modular, but at the same time the enforcement of constraints may be required at
many different locations and circumstances, which imposes maintainability problems.

6.1.4 Other Difficulties
Apart from the three problems that were just described, we briefly mention two other relevant issues
that we had to deal with in realizing the architectures. We refer to the first issue as the multiple views
problem. In the transaction framework, for example, the application objects that are involved in a
transaction are accessed in two distinct ways: the application-specific functionality is invoked by other
application objects (the user view). But the data management functionality that is specific for the
transaction framework, such as locking or recovery methods are available as well, but should only be
used by the transaction framework (the system view). The enforcement of such distinct views, which
is important for retaining consistency, cannot be expressed in a convenient way by the conventional
object model. The multiple views problem has been addressed in more detail in [Aksit 92a,b].

The second issue has been named as the sharing behavior with state problem. This problem is
encountered whenever the behavior that is shared by multiple objects is affected by a particular state

4 Note that it is usually possible to implement an object-oriented application that provides correspondence to

a domain knowledge hierarchy. However, this may well require the creation of additional structures and

interactions because a one-to-one mapping is impossible.

14

that is shared by those objects as well. Sharing of behavior is usually achieved by a code reuse
mechanism such as inheritance. If a shared behavior is affected by a shared data, however, class
inheritance may not adequately model this situation. This is because, classes do not provide a means
for sharing the state of instance variables; the instances of a class can share behavior through the class
inheritance mechanism, but they cannot share the state which is encapsulated under the shared
behavior because each instance will have its own instantiation of its state. Using an external server
object for retrieving the state information weakens encapsulation. In addition, the polymorphic
variable self then refer to the server object but not to the object that provides the shared behavior (the
self problem [Lieberman 86]). For a more detailed analysis of the problem, the reader can refer to
[Aksit 92b].

For example in the transaction framework, the behavior of the PolicyManager is shared by all
TransactionManager objects. The method chooseScheduler is implemented by PolicyManager and
reused by TransactionManager. A PolicyManager object collects all kinds of relevant system
parameters and stores them in its instance variables. Here, the shared method chooseScheduler is
affected by the shared state system parameters. The delegation mechanism can be used to solve this
issue, as has been described in more detail in [Aksit 92b].

6.1.5 Overview
Table 4 provides an overview of the pilot projects, showing where certain difficulties were
encountered, with a brief description of the area.

Pilot
 project

Dynamic
implemen-

tations
Inheritance vs.

knowledge
Specializations

Constraints Multiple
views

Sharing
behavior &

state
transaction
framework

scheduling,
recovery

policy
manager

data
manager

user-system
views

system
parameters

image
processing
framework

alternative
implemen-
tations

no value &
coordinate
sets

no no

fuzzy-logic
reasoning

fuzzy-logic
concepts

linguistic variables implications linguistic
variables

no

Table 4. Pilot projects versus problems.

6.2 Implementation of the Frameworks

Transaction Framework
The transaction framework is implemented using the Smalltalk language. To change the
implementations of Scheduler and RecoveryManager, we built a delegation mechanism upon the
Smalltalk language. To implement this mechanism, each delegated message is reified and represented
as an object. In the literature, this concept is known as message reflection [Ferber 89]. By changing
the attributes of a message object and re-activating it again, one can realize a delegation mechanism.

In the implementation, constraints on object interactions and compositions are defined in separate
classes. To enforce a constraint, the messages that may violate the constraints of objects are reified
and redirected to the constraint classes. After verifying the validity of message invocations, the
messages are re-activated again. If the constraints are violated, an exception is raised.

The prototype is currently running on a single machine. To implement the framework we mapped
each architectural concept to a class. The implementation consists of 43 classes. Each knowledge
domain is represented by inheritance hierarchies. The framework consists of 3 major inheritance
hierarchies. Table 5 gives the number of classes defined within each inheritance hierarchy. The
column Time Spent consists of two parts. Here, the design time indicates the total time spent in
defining the architecture and analyzing and designing the framework. The implementation time shows
the time spent for coding and testing. Detailed information about the transaction framework can be
found in [Tekinerdogan 94].

15

In the current prototype, class TransactionManager implements a single commit/abort protocol. Class
PolicyManager adopts a simple policy management strategy. We are currently implementing different
protocols and an expert-system based PolicyManager. In addition, the transaction system will be
ported to a distributed system platform so that it can be used within the implementation of the car
dealer management system.

Image Processing Framework
The image processing framework is implemented using the C++ language. Each architectural concept
is mapped to a C++ class. Similar to the transaction framework, interaction and composability
constraints are enforced by defining constraints as meta-level classes and by reifying and redirecting
the messages that may violate the constraints to these classes.

Currently, classes Coordinate and Value Sets, Image and Constraint enforcing classes are fully
implemented. As an example, we implemented three templates: a low-pass filter, a fourier transform
and image histogram templates. We also defined a method to guide the software engineer in creating
templates conveniently [Vuijst 94].

Fuzzy-Logic Reasoning Framework
The fuzzy reasoning framework has been implemented using the Smalltalk language.

In the framework, class LinguisticVariable has two major methods for the fuzzification and
defuzzification process. Class LinguisticVariable is the root of the inheritance hierarchy in which each
subclass implements a different defuzzification strategy. At the moment, we have implemented only
the most common defuzzification strategies.

Rules are organized in an inheritance hierarchy as shown in the appendix. Class Fact is composed by
one or more Propositions. Proposition and Rule inherit from class FuzzySet which aggregates class
MembershipFunction. We defined eight types of membership functions. The component Generalized-
ModusPonens is implemented as a method of class Rule as it can be considered as an operation
executed by the rule when a fact is provided to the rule. Currently, we considered only the generalized
modus ponens as a fuzzy reasoning mechanism. We are now investigating other possibilities such as
the syllogisms proposed by Zadeh [Zadeh 85]. Further, we are implementing more defuzzification
strategies and membership functions. Alternatives implementations of the generalized modus ponens
which can be used with particular implications and fuzzy sets are being analyzed. Such
implementations enable considerable performances improvements.

Pilot
Project

Language Inheritance & # of Classes Time Spent Reference

transaction
framework

Smalltalk serialization hierarchy: 13
dead-lock hierarchy: 7
recovery hierarchy: 9
other: 15

design = 5
impl. = 2 months

[Tekinerdogan 94]

image
processing
framework

C++ single inheritance hierarchy: 20 design = 6
impl. = 2 months

[Vuijst 94]

fuzzy-logic
reasoning
framework

Smalltalk rule hierarchy: 8
linguistic variable hierarchy: 4
membership functions hier.: 8
linguistic value hierarchy: 10
other classes: 29

design = 6
impl. =1 months

[Marcelloni 95a]

Table 5. Implementation aspects of the frameworks.

Comparison of Implementations
All the three implementations are directly derived from their architectural specifications. In addition
to adopting 'standard' object-oriented models and design patterns, delegation and message reflection
techniques are implemented to make software more adaptable and reusable. In all pilot projects, the
designers were not experienced in the corresponding domains. Therefore, they spent a considerable
amount of their time in understanding the related knowledge domains.

16

7. Lessons Learned and Research Issues

Our findings are summarized in the following items:

• For certain knowledge domains specific inheritance semantics are necessary: The method and
attribute inheritance mechanism as defined by most object-oriented models are not always able to
model generalization/specialization relations of the knowledge domains. In this case, the extension
of the object-oriented model with some dedicated 'specification inheritance' mechanism is required
to solve this in a modular and maintainable way.

• Delegation based object-model is needed: As discussed in section 6.1.1, we found the delegation
mechanism quite necessary in defining adaptable software systems. For example, delegation can
help in improving several design patterns such as Strategy and Bridge because it supports
evolution of interfaces. In addition, delegation techniques can help dealing with the ‘shared
behavior affected by shared state’ problem (see section 6.1.4). We do not consider, however,
delegation as an alternative to inheritance or class concepts. Both delegation, inheritance and class
concepts can co-exist together.

 We found some difficulties in explaining our delegation-based models to the software engineers
working at the organizations where the pilot projects were carried out. These engineers were
knowledgeable about the most popular object-oriented methods and programming languages, but
the concept of delegation was unknown to them.

• Enforcing constraints is essential, but not fully supported yet: To instantiate and manage a
dynamically evolving application while preserving its robustness requires high-level mechanisms
to enforce the semantical constraints of that application. Strongly typed languages aim at detecting
semantic errors as early as possible. We experienced, however, that type checking mechanisms of
current strongly-typed object-oriented languages are not sufficient; type checking rules, in general,
fail in detecting the complex interaction and composability constraints of objects.

• Reflection techniques are useful: Message reflection techniques are useful in implementing the
delegation concept. In addition, by using message reflection, it is possible to modularly separate
but 'functionally' integrate constraining classes and 'application classes'. This is particularly useful
in enforcing interaction and composability constraints on objects in a modular way. However, in
our implemetation, adopting reflection techniques to enforce constraints only offered run-time
verification. Compile-time reflection techniques could be useful in improving the performance of
our implementations. Similar to the concept of delegation, reflective modeling techniques were
unknown to the most practical software engineers that we worked with.

• Further research is needed in object-composition techniques: In an architectural description,
knowledge domains may model different aspects such as real-time, synchronization, coordinated
behavior, etc. It has been shown by a number of publications that although separation of concerns
is an essential concept for improving robustness, adaptability and reusability, composing separated
concerns such as real-time and synchronization is far from trivial [Nierstrasz 95][Mullet 95]
[Aksit 92a, 93, 94] [Bergmans 95]. Since software architectures can be defined as compositions of
specializations of knowledge domains, we think that research activities for enhancing the
composability capabilities of object-oriented models can be of great help; highly composable object
models would improve the adaptability and reusability factors of software architectures.

• New object-oriented process and product metrics are needed: Defining software architectures first
and then instantiate frameworks and object-oriented programs was uncommon to the organizations
that we were dealing with. We were asked, right from the beginning, to start implementing object-
oriented programs. We spent a considerable amount of time in explaining the necessity of
designing software architectures. We could not however, justify our claims by using software
metrics. Although recently there have been a number of publications [Abreu 94][Chidamber 94]
on object-oriented metrics, we could not find them directly usable for the following reasons.
Firstly, most metrics were applicable for final object models only. We needed process and product
metrics for every design rule that we applied. Secondly, we found using threshold values, like most

17

metrics propose, quite meaningless. It is, in general, very hard to define ideal threshold values.
Thirdly, most metrics do not explicitly model the effect of context, which we experienced as an
essential parameter.

• Software artifacts must be recorded, related and integrated: During the software development
process, from domain analysis to coding, lots of information were generated, processed and
different kinds of models were built. These, so-called software artifacts, were recorded in various
formats, from informal textual information to executable object-oriented programming concepts.
We found it extremely difficult to record, trace and relate all the artifacts, although we used object-
oriented CASE environments, hypertext-like tools and modern programming environments. We
needed a more semantic integration of the artifacts and an ‘active’ object-oriented CASE
environment which monitors all the decisions made and warns us, if necessary.

8. Conclusions

The contributions of this paper is twofold: the architecture concept, and the experience that we gained
in building three object-oriented frameworks. We extensively tested these frameworks from the
perspective of robustness and adaptability. For example, we tested the transaction framework with
dynamically changing serialization and recovery semantics. In addition, to test our implementations to
somewhat ‘unforeseen’ changes, we asked students to apply and extend the frameworks by using, if
possible, other techniques than that were implemented. For example, in [Visser 94], students extended
the knowledge domain Scheduler by a hierarchical locking scheme which was not considered initially
in the transaction framework [Tekinerdogan 94]. Our conclusion is that the architecture concept is the
right choice. Most of the experienced obstacles were related to the problems presented in the previous
section. We believe that these problems, in general, are not inherent to the object-oriented concepts
but rather they relate to the way how concepts are defined and implemented in the current methods
and programming languages. We are, therefore, optimistic in that most of the presented problems in
this paper can be solved, at least partially.

References
[Abreu 94] F. Brito e Abreu, Object-Oriented Software Design Metrics, OOPSLA’ 94 Metrics

Workshop, 1994.

[Agrawal 87] R. Agrawal, M. Carey, & M. Livney. Concurrency control performance modelling:
Alternatives and implications, ACM Transactions on Database Systems, Vol. 12,
No. 4, December 1987, pp. 609-654.

[Aksit 92a] M. Aksit, L. Bergmans & S. Vural, An Object-Oriented Language-Database
Integration Model: The Composition-Filters Approach, ECOOP '92 Conference
Proceedings, LNCS 615, Springer-Verlag, 1992, pp. 372-395.

[Aksit 92b] M. Aksit & L. Bergmans, Obstacles in Object-Oriented Software Development,
Proceedings OOPSLA '92 Conference Proceedings, ACM SIGPLAN Notices,
Vol. 27, No. 10, October 1992, pp. 341-358.

[Aksit 93] M. Aksit, K. Wakita, J. Bosch, L. Bergmans and A. Yonezawa, Abstracting
Object Interactions Using Composition-Filters, in ECOOP’93 Workshop Object-
Based Distributed Programming, (eds) R. Guerraoui et al, LNCS 791, Springer-
Verlag, July 1993, pp. 152-184.

[Aksit 94] M. Aksit, J. Bosch, W. van der Sterren, L. Bergmans, Real-Time Specification
Inheritance Anomalies and real-Time Filters, ECOOP’94 Conference
Proceedings, LNCS 821, Springer-Verlag, 1994, pp. 386-407.

[Aksit 96] M. Aksit & F. Marcelloni, Minimizing Quantization Error and Contextual Bias
Problems of Object-Oriented Methods by Applying Fuzzy-Logic Techniques,
Draft paper, University of Twente, 1996.

18

[Bergmans 95] L. Bergmans & M. Aksit, Composing Real-Time and Synchronization Constraints,
accepted for publication for the Journal of Parallel and Distributed Computing,
Memoranda Informatica 95-41, University Of Twente, November 1995.

[Bernstein 87] P.A. Bernstein, V. Hadzilacos, & N. Goodman. Concurrency control and
recovery in Database Systems. Addison-Wesley, 1987.

[Booch 91] G. Booch, Object-Oriented Design with Applications, The Benjamin/Cummings
Publishing Company, Inc, 1991.

[Carey 86] M. Carey, & W. Muhanna. The performance of multiversion concurrency control
algorithms, ACM Transactions on Computer Systems, Vol. 4. No. 4, November
1986, pp. 338-378.

[Chidamber 94] S. R. Chidamber & C. F. Kemerer, A Metrics Suite for Object-Oriented Design,
IEEE Transactions on Software Engineering, Vol. 20, N. 6, 1994, pp. 476-492.

[Coad 91] P. Coad & E. Yourdon, Object-Oriented Analysis, 2nd edition, Yourdon Press
Computing Series, Prentice-Hall, 1991.

[Dubois 80] D. Dubois & H. Prade, Fuzzy Sets and Systems, Academic Press, 1980.

[Ferber 89] J. Ferber, Computational Reflection in Class-Based Object-Oriented Languages,
OOPSLA '89 Conference Proceedings, ACM SIGPLAN Notices, Vol. 24, No. 10,
October 1989, pp. 317-326.

[Gamma 95] E. Gamma, R. Helm, R. Johnson & J. Vlissides, Design patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Garlan 95] D. Garlan & D. E. Perry, Introduction to the Special Issue on Software
Architecture, IEEE Transasctions on Software Engineering, Vol. 21, No. 4, April
1995, pp. 269-274.

[Guerraoui 94] R. Guerraoui, Atomic Object Composition, ECOOP '94 Conference Proceedings,
LNCS 821, Springer-Verlag, 1994, pp. 118-138.

[Jacobson 92] I. Jacobson, M. Christerson, P. Jonsson & G. Overgaard, Object-Oriented
Software Engineering -- A Use Case Driven Approach, Addison-Wesley/ACM
Press, 1992.

[Johnson 88] R. Johnson & B. Foote, Designing Reusable Classes, Journal of Object-Oriented
Programming, June/July 1988, pp. 23-35.

[Klir 88] G.J. Klir & T.A. Folger, Fuzzy Sets, Uncertainty and Information, Prentice Hall,
Canada Inc., Toronto, 1988.

[Lee 90] C.C. Lee, Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part I-II, IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 20, No. 2, March/April,
1990, pp. 404-435.

[Levesque 79] H. Levesque & J. Mylopoulos, A Procedural Semantics for Semantic Networks,
in Associative Networks, (eds) Findler, 1979, pp. 93-119.

[Lieberman 86] H. Lieberman, Using Prototypical Objects to Implement Shared Behavior,
OOPSLA '86 Conference Proceedings, ACM Sigplan Notices, Vol. 21, No. 11,
November 1996, pp. 214-223.

[Mandami 77] E.H. Mandami, Application of Fuzzy Logic to Approximate Reasoning using
Linguistic Synthesis, IEEE Transactions on Computer, Vol. C-26, No. 12, 1977,
pp. 1182-1191.

[Marcelloni 95a] F. Marcelloni & M. Aksit, The Design and Application of an Object-Oriented
Fuzzy-Logic Reasoning Framework, Draft paper, University of Twente, 1995.

[Marcelloni 95b] F. Marcelloni, On Inferring Reasonable Conclusions for Fuzzy Reasoning with
Multiple Rules, Draft paper, University of Twente, 1995.

[Minsky 75] M. Minsky, A Framework for representing Knowledge, In the Psychology of
Computer Vision, (eds) P. Winston, McGraw-Hill, 1975, pp 211-277.

[Moss 85] J.E.B. Moss, Nested Transactions: An Approach to Reliable Computing, MIT
Press, 1985.

19

[Mullet 95] P. Mullet, J. Malenfant and P. Cointe, Towards a Methology for Explicit
Composition of MetaObjects, OOPSLA’95 Conference Proceedings, ACM
Sigplan Notices, Vol. 30, No. 10, October 1995, pp. 316-330.

[Nierstrasz 95] O. Nierstrasz & D. Tsichritzis (eds), Object-Oriented Software Composition,
Prentice Hall, 1995.

[OOPSLA_Panel 95] S. Gossain, M. Lubards, E. Seidewitz, H. Gomaa, D. Batory & C. Pidgeon
(panelists), OOPSLA '95 panel Objects and Domain Engineering, Reliable
Communications, tape 20, 1995.

[OOPSLA_Workshop 95] H. Segel, S. Fraser, J. Coplien, B. Castor & J. White (Org.), OOPSLA '95
workshop on Application of Domain Analysis Techniques to Object-Oriented
Systems, 1995.

[Prieto-Diaz 91] R. Prieto-Diaz & G. Arango, Domain Analysis and Software Systems Modeling,
IEEE Computer Society Press, 1991.

[Ritter 87a] G.X. Ritter & P.D. Gader, Image Algebra techniques for Parallel Image
Processing, Journal of Parallel and Distributed Computing, No. 4,1987, pp.7-44.

[Ritter 87b] G.X. Ritter, M.A. Shrader-Frechette & J.N. Wilson, Image Algebra: A Rigorous
and Translucent Way of Expressing All Image Processing Operations, in
Proceedings of the 1987 SPIE Tech. Symp. Southeast on Optics, Elec.Opt. and
Sensors, orlando, FL, May 1987.

[Ritter 90] G.X. Ritter, J.N. Wilson & J.L. Davidson, Image Algebra: An Overview,
Computer Vision, Graphics and Image Processing, 49, 3, 1990, pp. 297-331.

[Rumbaugh 91] J. Rumbaugh et al., Object-Oriented Modeling and Design, Prentice-Hall, 1991.

[Shaw 95] M.Shaw, Making Choices: A Comparison of Styles for Software Architecture,
IEEE Software, Vol 12, No 6, November 1995, pp. 27-41.

[Tekinerdogan 94] B. Tekinerdogan, The Design of an Object-Oriented Framework for Atomic
Transactions, Msc thesis, University of Twente, Dept. of Computer Science, The
Netherlands, 1994.

[Turksen 93] I.B. Turksen & Y. Tian, Combination of rules or their consequences in fuzzy
expert systems, Fuzzy Sets and Systems, Vol. 58, 1993, pp. 3-40.

[Visser 94] B.S. Visser, M. J. Evers and C.W. van den Ende, A Multi User Software
Development Environment Framework in Smalltalk, Design Project, University of
Twente, November 1994.

[Vuijst 94] C. Vuijst, Design of an Object-Oriented Framework for Image Algebra, Msc
thesis, University of Twente, Dept. of Computer Science, The Netherlands,
1994.

[Wegner 84] P. Wegner, Capital-Intensive Technology and Reusability, IEEE Software, July
1984, 1984, pp. 7-45.

[Weihl 89] W.E. Weihl. Local atomicity properties: Modular concurrency control for abstract
data types, ACM Transactions on Programming Languages and Systems, Vol.
11, No. 2, April 1989, pp. 249-282.

[Zadeh 73] L.A. Zadeh, Outline of a New Approach to the Analysis of Complex Systems and
Decision Processes, IEEE Transactions on Systems, Man, and Cybernetics, Vol.
SMC-3, No.1, January, 1973, pp. 28-44.

[Zadeh 85] L. A. Zadeh, Syllogistic Reasoning in Fuzzy Logic and its Application to Usuality
and Reasoning with Dispositions, IEEE Transactions on Systems, Man, and
Cybernetics, Vol.SMC-15, No.6, Novermber/December, 1985, pp. 754-763.

[Zimmermann 91] H.J. Zimmermann, Fuzzy Set Theory and its Applications, Second Edition,
Kluwer Academic Publishers, Boston/Dordrecht, London, 1991

[Zwet 94] P.M.J. van der Zwet, Work Breakdown Structure Knowledge Guided Image
Processing, Internal Memo, LKEB, University Hospital, Leiden, 1994.

20

Appendix: Object Models

A. Transaction Framework

In this section, for illustration purposes, we will explain the inheritance hierarchy of schedulers. More
detailed information can be found in [Tekinerdogan 94].

Figure 6. The inheritance hierarchy of the scheduler.

Class UniversalScheduler defines the common attributes and behavior for all schedulers. Class
AgressiveSerialScheduler allows only one transaction at a time to access the object. If another
transaction tries to access the same object the scheduler will immediately abort the latter transaction.
Class ConservativeSerialScheduler is a specialization of AgressiveSerialScheduler but it delays a
conflicting transaction until the other transaction has finished. Class Agressive2PLScheduler is a
locking scheduler which does not delay messages in case of conflicts. Conservative2PLScheduler
delays conflicting operations. If operations of two different transactions are mutually waiting for each
other a deadlock may occur in the system. In order to resolve the occurred deadlock, the conservative
locking schedulers may use deadlock avoidance and detection techniques [Bernstein 87]. The
timestamp ordering schedulers may also be classified as aggressive and conservative schedulers. In
both cases the Scheduler can use the Thomas-Write rule to omit a late write operation which would
not have any effect at all. Optimistic schedulers either use timestamps or locks which are only
controlled at commit time. In this hierarchy, classes UniversalScheduler, TimestampOrdering-
Scheduler and OptimisticScheduler are abstract classes.

21

B. Image Processing Framework
The implementation of the image processing framework is shown in Figure 7. Class Set is the root
class of the hierarchy. Class Homogeneous ensures that each element of Set is of a common type.
Class Ordered enforces the ordering as defined in the semantics of an image. Class Coordinate is a set
of indexing functions. Class CoordinateSet is a coordinate-type homogeneous set. Class ValueSet is a
homogeneous set of values. Class ImageSpace consists of one of the following classes: Coordinate,
CoordinateSet, Value, ValueSet or Image. Image is a function from an ImageSpace into another
ImageSpace. In order to express templates as images, we had to introduce a new class ImageSpace.
This class provides mappings not only between coordinate sets and value sets, but also between any
combination of coordinates, coordinate sets, values, value sets and images. Class Template
implements the image algorithms. ITOperations are the possible algebraic operations between Image
and Template. Classes InvariantTemplate and VariantTemplate classify the possible templates.

InvariantTemplate

Ordered

Condition:Selection of
one of the
superclasses

constraint constraint

containscontains

Homogeneous

VariantTemplate

Template

ITOperations

Image

ImageSpace

CoordinateSet ValueSet

ValueCoordinate

Set

Figure 7. The object diagram of the image processing framework.

22

C. Fuzzy-Logic Reasoning Framework
For simplicity, we will only show the inheritance hierarchy for rules. Class Rule defines the common
attributes and behaviors for all the possible types of rules. Class Rule aggregates classes Antecedent,
Consequent, ImplicationParameter and CompositionalParameter. Classes Antecedent and
Consequent implement the antecedent and the consequent part of a rule, respectively.

After examining the related literature, we relied that the types of implication can be grouped in three
categories: FuzzyConjunction, FuzzyDisjunction and FuzzyImplication implications [Lee 91]. The last
is in its turn divided in five families: PropositionalCalculus, ExtendedPropositionalCalculus,
Material, GeneralizationModusPonens and GeneralizationModusTollens implications. The hierarchy
in figure 8 reflects this organization. Implications differ from one another in the triangular norm used
in the implementation. Typical triangular norms are minimum, product, bounded product and drastic
product. Class ImplicationParameter identifies a triangular norm. Triangular norms are also used as
parameters to define different possible compositional rules. During the design phase, we decided to
implement the generalized modus ponens as a method of class Rule. Class CompositionalParameter
identifies the triangular norm which selects the desired compositional rule. The use of
parameterization reduces the hierarchy of rules.

Rule

Implication
Rule

Conjunction
Implication

Rule
Disjunction
Implication

Rule

Propositional
Calculus
Implication

Rule

Extended
Propositional
Calculus
Implication

Rule

Material
Implication

Rule
Generalization

Modus
Ponens

Implication
Rule

Generalization
Modus
Tollens

Implication
Rule

Antecedent CompositionalParameter

Consequent ImplicationParameter

Figure 8. Rule inheritance and aggregation relations.

