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Abstract

This paper summarizes our experimental research and software development activities in
designing robust, adaptable and reusable software architectures. Several years ago, basedur
previous experiences in object-oriented software development, we made the following
assumption: ‘A software architecture should be a composition of specializationsof knowledge
domains’. To verify this assumption we carried out three pilot projects. In addition to the
application of some popular domain analysis techniques such as use cases, we identified the
invariant compositional structures of the software architectures and the related knowledge
domains. Knowledge domains define the boundaries of the adaptability and reusability
capabilities of software systems.Next, knowledge domains were mapped to object-oriented
concepts. We experienced that some aspects of knowledge could not be diranibgdeledin terms
of object-oriented concepts.In this paper we describe our approach, the pilot projects, the
experiencedproblems and the adopted solutions for realizing the software architectures. We
conclude the paper with the lessons that we learned from this experience.

Paper category Experience paper
Keywords: Software architecture, software engineering practices

Correspondence address Mehmet Aksit, TRESE Project, Departmentof Computer Science,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.



1. Introduction

Object-oriented methods aim at providingturalwaysfor decomposingor composing)a systeminto

(from) objectsthat correspondo conceptsn the customer’'sproblemdomaint. For examplejin OMT

[Rumbaugh1] nounsin the requiremenspecificationwhich areassumedo representonceptsare
constered as candidateobjects. The identified objectsare the basic building blocks of the object-
orientedsystemto be constructedln order not to disregardrelevantobjects,most methodsadvise
software engineersto take dedicatedsteps such as reading books about the problem domain,
interviewingcustomersetc.[Coad91]. The methodObject-OrientedsoftwareEngineeringlJacobson
92] proposesise cases as a systematic means to understand the problem domain.

We considertwo importantconcernsn understandinghe problemdomain First, it is very important
to identify all the objectsthat are requiredfor defining a consistentsystem,at leastin its minimum

configuration. Seond, identified objects must serve as composable building blodastructrobust,
adaptable and reablearchitectures. In this paper, we use the tearchitectureo designateéhe gross
structureof a softwaresystemrepresente@dsa high level organizationof computationaklementsand
interactionsbetweenthoseelementsas definedin [Garlan 95]. It hasbeenshownin [Shaw 95] that
the choice of architectural style can have far-reaching consequences becasha iatine analysisof

the problemandthe expressiorof the design.Within the object-orienteccommunity,issuesrelatedto

domain analysis have been extensively discussedin various papers[Prieto-Diaz91], workshops
[OOPSLA_ Worksho®5] and panels [OOPSLA Pargd].

For severalyears,we have beencarrying out researchactivities to define guidelinesfor deriving
object-orientednodelsfor our customer'sproblemdomains.In particular,we wantedto find answers
to the following questionsFirst, would it be possibleto definerulesfor identifying an 'ideal’ software
architecturehe absencef a goodarchitecturegenerallypredictsdifficulties in realizinga software
systemin a robust,adaptableand reusablewvay. Secondwhat would be the obstacleghat one might
experencein mappingdomaininformationinto object-orientednodels?Third, whatkind of research
activities would be neededto addresshe identified problems,if any. Last but definitely not least,
would experiences gained from the pilot projezgflict with the theoreticalassumptionsThis paper
presents our findings in this experimentdaarch.

Basedon previousexperiencesn object-orientedsoftwaredevelopmenfAksit 92b], we startedwith
thefollowing assumption?A softwarearchitecturecanbe definedasa compositionof specializations
of knowledgedomains”. The compositionalstructuremust reflect the invariant compositionsof the
problemdomain For example the genericarchitectureof a simplemotorizedvehicleresultsfrom the
composition of the knowledge about engine, chassis, and steering and breaking systems.

To verify this assumption,we caried out 3 pilot projects, and implementedand tested them
extensively. We tried tdefinearchitecturedbasedon the ‘ideal architecturetonceptAt this stagewe
experiencedthree problems. First, we spent a considerableamount of time in searchingand
understandinghe relatedknowledgedomains Neverthelessin all the pilot projects,we could extract
satisfactoryinformation from the literature. Second,sometimesit was necessaryo extenddomain
knowledgeto makeit suitablefor architecturedefinition. Third, we realizedthat mappingknowledge
into object-orientecconceptsvassometimedifficult, becauseertainaspectof knowledgecould not
be represented directly in terms of object-oriented concepts.

The paperis organizedas follows: The following sectionsummarizesour objectivesin carrying out
this experimentalresearch.Section 3 outlines the method usedin our pilot projects. Section 4
describeghe initial requirementdor the pilot projects.Section5 explainshow the architectureof
frameworks are identified. Section 6 describesthe realization of the frameworks. Experienced
problemsin mappingdescriptionsof architecturego object-orientednodelsare explainedin section

1 The customer represents the person(s) who is interested in the solution of a software development problem.



6.1. Section6.2 givesinformation aboutthe implementationf the frameworks.Section7 presents
the lessondearnedandresearchissuesFinally, section8 concludeghis paper.The appendixgivesa
selected presentation of the developed object models.

2. The Objectives

From 1987 to 1993, wieavebeeninvolvedin the developmenof a large numberof pilot applications
using,whatwe consideredthe bestof the availablemethodgAksit 92b]. Oneof the conclusionsvas
thatarchitecturadefinitionsof softwaresystemsare crucial in achievinga high degreeof robustness,
adaptabilityand reusability. In 1993, we decidedto continuewith our experimentalactivity in the
direction of identifying and specifying software architectures.The intention of this work was to
achieve the following three objectives:

» To define an approachtowardsthe definition of object-orientedsoftware architectureswith an
emphasis on robustness, adaptability and reusability;

» To test this approach for realistic problems to see whether the approach met our expectations;

» From these practical experiencesto identify obstaclesthat may be experiencedin realizing
softwarearchitecturesising commerciallyavailableobject-orientednethodsand languagesThis
servestwo goals:firstly, to make softwareengineersawareof the potential pitfalls. Secondly,to
provide an input to research activities.

3. The Approach

3.1 The Architecture Concept

Figure 1 illustratesour architectureconcept.This architectureconsistsof 4 componentsvhich are
considerechecessaryn providing the expectedehaviorof the softwaresystem As anexample these
componentsnay representhe engine,chassisbreakingand steeringsystemsof a simple motorized
vehicle.

Diversity Knowledge Domains
—r
L]

Generalization

Specialization

system architecture

Figure 1. An example architecture as a composition of specialization of
knowledge domains D1 to D4.

The architecture is a particular compositmfrspecializationgrom the relatedknowledgedomainsD;
to D,;. Each knowledge domain is modeled as a matrix. Here, rows and columns represent
generalization/specializationand diversity relations among matrix elements, respectively. Each
elementin a matrix represents& conceptin the correspondingknowledgedomain.The granularity of
matrix elementsyows and columnsmustbe meaningfuland consistentwith respectto the available
knowledge.Thetop row represent& knowledgedomainin its mostgeneralform. Eachrow —except



the top row—is a specializatiorwith respectto its higheradjacentrow. Thereis no particularorder
amongthe elementsn a row. The shadedareasshowthe relevantknowledgein eachdomain.The
exactlinks betweerelementsarenot shownherebecauset is consideredrrelevantfor the purposeof
this illustration

This approach to representing knowledge fits in with the human way of thinking and reasoning. In the
areaof knowledgerepresentatiorand expert systems,the techniquesof frames [Minsky 75] and
semantic networks [Levesque 79] can be considered as formal matielscanbe usedto representhe
samekind of knowledgeorganization.We considerour aim to be different however,in two ways:

Firstly, our intention is to gather amstructureinformal knowledgeduring domainanalysis.Secondly,

we do not (yet) have intentions to prove hypotheses, as is the case for expert systems.

Defining architecturesn this way hasat least3 advantagesFirst, it ensureghat architecturesare
basedon stable structures.The top-level decompositionof an architecturereflects the invariant
conceptsof that application. Each realization of these conceptsis a specializationof existing
knowledge.The higher-levelconceptsn a given knowledgedomaingenerallycorrespondo theories.
Most changesappearas a diversification and specializationof existing knowledge;theorieshardly
ever change For example,althoughthere have beenconsiderableachievementsn car industry, the
minimum compositionalarchitectureof motorizedvehicleshardly changedduring the last 50 years.
Thetheorieson combustiorenginesandphysicallaws are still valid. During the years,whatwe have
experienced is the specialization and diversification of knowledge in building vehicles.

Second, such architectures are highly adaptable. The shaded area in a knowledgendaragtisthe
adapability space;the architecturemustbe composedrom theseconceptsThis areais open-ended
since new specializations can be added at the bottom of the hierarchy.

The adaptability space for instantiations of the architecture is restricted in two ways however:

» To beselectedasan architecturalcomponenta conceptmustberealizable.lt shouldnot be too
abstractfor building softwarecomponents.For example,the conceptCombustion Engine in its
most general form can be too abstracthtdiude in building vehicles.

e Conceptsfrom different domainsmay restrict eachother. For example,a chassis may not be
strong enough to carry very powerful engines.

Last, sucharchitecturexanbe highly reusable Eachcomponenis derivedfrom existingknowledge.
If knowledgedomainscanbe mappedto softwarearchitecturesffectively, thenthe softwaresystem
will be as reusableas the availableknowledge.One may not expectsoftware engineersto design
software architectures ametterthantheir understandingf the conceptswithin thetheoryitself. The
rationalefor this statements that the availability of a certain amountof domain knowledgeand
theory is a strong indication that this knowledge is stable and applicable in many circumstances.

We should note that, although we consider these knowledge domaistiag knowledge, in a lot of
caseghe softwareengineerwill actually introducenew specializationsat the bottom that have not
beendescribecelsewherébefore.This represent&nowledgethatis specificto a particularapplication
or customer situation.

3.2 The Process

In our pilot projects,to identify architecturesye adoptedhe processhownin Figure2. This process
has 5 stepg. First we identify use cases[Jacobson92] basedon the problem description. We
experienced that this provides a better understanding of the requirements.

2 For simplicity, we omitted details such as interactions with the customer and iteration paths.



Second, after use case analysis, we identify the top-level
conceptual architecture.This requires searchingthe related
literatureandfinding similarities amongvariouspublications.
We alsotry to discoverconceptsthat are indispensabldor a
Use Case given problem. For example, we searchfor the minimum
analysis . . . . .

configurationby gradually excluding conceptsuntil essential
characteristics of the application are lost.

y
Identification of the top-level
architectural composition

Third, for eachcomponentin a composition,we searchfor
relatedknowledge.For eachknowledgedomain,we organize

v the gatheredinformation similar to the matrix structure,as
Finding knowledge domains shownby Figure 1. The matrix elementsare representeds a
related to the components piece of text or as mathematical formulas. The

generaliation/specializationand diversity discrimination is

’ realized by systematically comparing and orderingcepts.

Defining constraints and adaptability
space from domains

Fourth, for each domain, we identify which elementsin a
i matrix canbe includedinto the applicationbeing considered.

Focus on the relevant A set of semantically correct alternatives depict here the
concepts of knowledge domains adaptability space. In addition, we investigate whether

specializationdrom different domainsenforce constraintson
Architecture model

eachother, if they are includedwithin the samearchitecture.
Additional user-definectonstraintscan be added for example
. . to restrict the scope of the architecture.
Figure 2. A process for architecture
definition. The last step is to focus on the relevant portion of the
knowledge domains, since possibly not all the conceptual
elementdn the specializatiorhierarchyare relevantfor a given problem.We definea pathfrom the

selectedconceptgo the conceptsdefinedat the highestabstractionievel. All the conceptsalongthis
path are necessary in realizing the selected specializations.

The next stepis to map the architecturemodel into an object-orientedmodel. During this phase,
wheneverwe havedifficulties in effectively mappingarchitecturaldescriptionsinto object-oriented
models,we examineobject-orientedmethodsand design patterns|[Gamma95] to undestand how

theseproblemsare addressedby them.In casesvherewe cannotfind a solutionto our problem,we

refer to related research work.

4. Description of the Pilot Projects
In the following paragraphs we will describe the initial requirements for the pilot projects.

Transaction Framework

Ouir first pilot project aims at designiragn object-orientedatomictransactiorframeworkto be usedin
a distributed car dealer management sy3tddata and processing in a c¥alermanagemensystem
are largely distributed and therefore serializability and recoverability of executionsare required.
Using atomic transactiongBernstein87], serializability and recoverabilityfor a group of statements
can be ensured.Serializability meansthat the concurrentexecutionof a group of transactionsis
equivalentto someserial executionof the sameset of transactionsRecoverabilitymeansthat each
executionappeargo beall or nothing;eitherit executessuccessfulljto completionor it hasno effect
on data shared with other transactions.

A car dealermanagemensystemmay be constitutedof a large numberof applicationswith various
characteristicspperatesn heterogeneousnvironmentsand may incorporatedifferent dataformats.

3 This projec is carried outogethemwith Siemens-NixdorSoftwareCenterandsupportedby Dutch Ministry
of Economical affairs under the SENTER program.



To achieveoptimal behavior,eachof theseaspectanay requirea transactiorsystemwith a dedicated
serialization and recovery technigues.This requires transactionswith dynamic adaptation of

transactionsemanticspptimized with respectto the applicationand environmentalconditionsand
dataformats. The adaptationpolicy therefore,must be determinedby programmersthe operating
system or by the data objects.

A car dealer management system is laogpaplexandlong-lived. Reusabilityof softwareis therefore
considered as an important requirement to reduce maintenance costs.

Image Processing Framework

At the laboratoryfor Clinical and Experimentallmage Processinglocatedat the university hospital
Leiden, anmageprocessingystemis beingdevelopedor the analysisof the humanheart[Zwet 94].
Traditionally, image processing algorithms have been implemented at the laboratory using
procedures.For example, assumethat the application of three image processingalgorithms
algorithmy, algorithm, andalgorithmg on the input image would produce the output image:

outputimage = algorithms (algorithm; (algorithm; (inputimage)));
The output parameterof the first algorithmis the input parameterof the secondalgorithm and the
output parameterof the secondalgorithm is the input parameterof the third algorithm. Here, all
cascadednput-outputparameterof thesealgorithms must be compatible.Proceduresare largely
dependent on the representation of the input and output parameters [Wegner 84].

In object-orientedmodeling, algorithms can be defined as operationsof a class Image and the
structureof Image canbe encapsulatedithin its privatepart. By sendingcascadednessagesnecan
transform images subsequently:

outputimage = ((inputimage.algorithm;).algorithm,).algorithms;
Here, inputimage receivesthe messagelgorithm; which resultsin a new image that receivesthe
messagalgorithm,, andsoon. Providedthateachimageunderstandshesemessagesyne may apply
the algorithms to images in any order.

The object-orientedapproachlooks promising becauseimage formats can be encapsulatecand
abstractedby imageprocessinglgorithms.This meanshowever that eachimagemustdefineall the
requiredimageprocessinglgorithms,which may demanda large numberof methoddefinitions. The
secondconcernis to define an object-orientedimage processingframework which is expressive
enoughto constructvirtually any imageprocessingalgorithmthat can be usedfor medicalimaging.
Last, effective codereusecan simplify implementationof imageprocessingalgorithmsand decrease
the maintenance costs.

Fuzzy-Logic Reasoning Framework

For severalyears,we have beencarrying out researchactivities in formalizing the object-oriented
softwaredevelopmenprocesgAksit 96]. One of the problemsin modelinga softwaredevelopment
processs to representesignuncertaintiesAs a resultof our researchye concludedthat fuzzy-logic
theory [Dubois80] might be usefulfor this purposeFor the practicalimplementatiorof our ideas,we
decided to build a fuzzy reasoning framework [Marcel@ba].

A fuzzy reasoningsystemis characterizedy two basicfeaturesFirst, a fuzzy reasoningprocesshas
the ability of deducing a possibly imprecise but meaningdualclusionfrom a collectionof fuzzy rules
and a patrtially true fact. Second, such a reasoning process is executed by usaydfalets codified
in a natural language.

Consider,for example,the following rule: “If an entity is relevantwithin the problemdomainthen
selectit asa class”. Two-valuedlogic forcesthe softwareengineerto take abruptdecisions suchas,
“the entity is relevant” or “not relevant”. Therefore,expressinguncertaininformation using two-
valued logiccanbe quite tedious.A fuzzy reasoningsystemhowever,canacceptinput valuessuchas
“the entity is weakly relevant”. A fuzzy-rule can be expressedusing linguistic expressionsFor
example,the fuzzy-rule “If an entity is weakly relevantthenit is weakly likely to correspondo a
class” can reason about the entities that are qualifiegady relevant.



The design of a fuzzy-logic reasoning frameworkdar purposerequiresa numberof considerations.
First, fuzzy-logic may be basedon different implication operators.Second,in fuzzy reasoningthe
semantics ofthe connectiveAND andALsO canbeinterpretedn variousways. Third, the framework
mustalsoprocesdinguistic values,suchasweakly relevant, insteadof the Booleanvariablestrue and
false only.

In additionto fuzzy-logic specificrequirementswe think thatthe frameworkmustprovide both goal-
driven and data-driven activation modalities. Since contextual information plays a signifiesinta
software development process, the rules must be dynamically adapted to the changing-ioaligxt.
the framework must be able to execute two-valued logic based reasoning as well.

Comparison of the Pilot Projects

Table 1 summarizeghe initial requirementdor the pilot projects.All the projectsaim at defining
object-orientedirameworks[JohnsorB8] rather than developinga dedicatedsoftware systemfor a
given problem. The requiredfeaturesof theseframeworksare quite different becausehey relate to
differentapplicationdomains.The key requirementof theseframeworks however,are quite similar.
They all must supportdifferent kinds of implementationsFor example,the transactionframework
must provide different serializationtechniquesthe image processingframework must be able to
expressany image processingalgorithm and the fuzzy-logic reasoningframework must be able to
implementdifferentimplication rules.In addition,for all frameworksadaptabilityandreusabilityare
major requirements.

Pilot project Features Key requirements Application area
transaction serializability, programmer/system/object defined car dealer
framework recoverability policies, dynamic adaptability, reuse management system
image many possible no restrictions on image medical imaging
processing algorithms and representations and algorithms, system
framework representations reuse
fuzzy-logic different support different implications, representing
reasoning implementations of | different implementations of the uncertainty in object-
framework generalized modus | connectives AND and ALSO, goal- oriented methods

ponens, easy driven and data-driven activation, and CASE
definition of dynamic adaptation to context, both environments
linguistic variables deterministic and fuzzy reasoning,

reuse

Table 1. Summary of the requirements.

5. Architecture Definition

5.1 Identification of the Top-Level Decomposition of Architectures

Transaction Framework

A considerablenumber of text books and articles have been written on atomic transactions
[Bernstein87] [Moss85]. After searchingand comparing the literature, we noticed that most

publicationsadopta similar architecture Figure 3 showsa representativerchitecturefor illustrating

the essential components of transaction systems.

The arrowsin the figure indicatethe interactionpatternsbetweenthe componentsThe component
Transaction represents transactiorblock as definedby the programmer.The TransactionManager
providesmechanismdor initiating, starting and terminatingthe transaction.It keepsa list of the
objectsthat are affectedby the transactionIf a transactionreachedts final statesuccessfullythen
TransactionManager sendsa commit messageto the correspondingobjects to terminate the
transactionOtherwise,an abort messagés sentto all the participatingobjectsto undothe effectsof
the transaction.



The PolicyManager determinesthe strategiesfor adaptationto

¢ different transaction semantics. In most publications, the
‘Transaction Manager‘ PolicyManager is included in the TransactionManager. We
considerediefiningtransactiomoliciesasa different concernand

Policy Manager therefore defined it as a separatecgmponent.Thg component
DataManager controlsthe accessto its object and includesthe

Data M componentsScheduler and RecoveryManager. The component
Scheduler ordersthe incoming messageso its objectto achieve

serializability. Scheduler may include deadlockavoidanceand/or
‘SChedmerHReCOVGW Manager\ detectionmechanismsThe componentRecoveryManager keeps
track of changes to its object to recover from failures.

Figure 3. Essential components
of a transaction system.

Image Processing Framework

As statedin sectiond, the architectureof the imageprocessingystemmustbe capableof expressing
virtually any imageprocessingalgorithm suitablefor medicalimaging. Therefore,we hadto search
for techniquesvhich could coverthe areaof imageprocessingAfter a thoroughliteraturesurvey,we
came across the theoryiofage algebra which is capable of expressiagmost all theimage-to-image
transformationg[Ritter 87a, 87b, 90]. The decompositionof the image processingframework is
derived from this theory as depicted in Figure 4.

Coordinate Set | | Vvalue Set The image processingframework consistsof
|—+ +—| coordinate and value sets. Images can be
' composition expressedis a compositionof thesetwo sets.
S S : In the theory of imagealgebrathe conceptof
| Image | image templatesis introduced. An image
TN NRY processing algorithm, in general, can be
composmonJ defined as
v
| Template | anOutputimage =

anlnputimage.anAlgebraicOp(aTemplate)
Here, anOutputimageepresentghe resulting
image, anlnputlmage is the image to be
processedanAlgebraicOp is one of the basic
operationsdefined by image algebra,and the argumentaTemplate representgshe algorithm to be
appliedon anlnputimage. If templatescanbe generatedrom requirementspecificationseasily, this
approachovercomeshe problemof defining a large numberof operationgor eachimage,asonly a
few algebraic operations are required.

Figure 4. Decomposition of the image processing
framework.

Fuzzy-Logic Reasoning Framework

A large amountof publicationshave beenwritten on fuzzy-logic reasoning(for example[Lee 90],
[Turksen93], [Dubois80], [Zimmermann9l]). After investigating the available literature, we
concludedthat the architectureshown in Figure 5 conformsto the conceptsin most of these
publications.

We selectedthe so-calledgeneralized modus ponens (G.M.P.) as the basic inferencing technique
becauseof its commonusagein the literature. In the most generalform, the generalizedmodus
ponens may be expressed in the following way:

For a given rule R “If A ThenB”, andafactA’, theconclusionB’ inferredby A’ is equalto A’ ° R,
wheree is acomposition relation between the fuzzy sets corresponding to A’ and R.



. In this figure, the component
Fuzzy Inference  Element

l implements the inference

o mechanism. This element
L\'/”a%“a'i}: contains Rule, Fact, G.M.P.
and Result. The components
Rule and Fact representthe
rules and facts as defined in
generalized modus ponens.

During the initialization
Figure 5. Decomposition of the fuzzy reasoning framework. phase, Rule and Fact

communicate  with the
componentLinguistic Variable to createa representatiorof themselvesn terms of fuzzy sets.For
eachpropositioninvolved in the Rule and Fact, the correspondinduzzy setis created.The output
valuesof Rule and Fact, again expressedn terms of fuzzy sets,are provided to the component
Generalized Modus Ponens (G.M.P.). This componentarriesout the inferenceprocessandgenerates
a result. The componentResult combinesall the outputsof the relatedgeneralizedmodusponens
componentaisingthe connectiveALSO. Theresultof this combinationis alsoexpressedn termsof
fuzzy-setsThe component.inguistic Variable is usedto 'defuzzify'the fuzzy setproducedby Result.
In caseof a goal-driveninference the componentinguistic Variable asksfrom Result to providethe
resultingvalue.In caseof a data-driveninference,however,the requestcomesfrom the component
Result. The defuzzificationoperationexecutedby the componentLinguistic Variable convertsthe
fuzzy set into a crisp value or approximates it as a linguistic value.

Particular to our framework is the componentContext. As specified in the initial requirement
specification the validity of rulesusedin a softwaredevelopmenprocesdargely dependsn changes
in the context, and therefore,an explicit formulation of the effects of contextis mandatory.The
componentContext is an instanceof the whole fuzzy reasoningframework shown in Figure 5.
Context reasonsaboutthe contextinformation and may ask the componentLinguistic Variable to
modify the relatedsemanticrule within the linguistic variable. Notice that the componentContext
may also include sub-componentontext, therebyallowing specificationof the effectsof the context
on a context,etc. If the componentContext is omitted,thenthe interpretationof linguistic valuesis
fixed and cannot be changed dynamically.

5.2 Finding Knowledge Domains

Transaction Framework
To detailthe transactiorarchitectureshownin Figure 3, we investigatedoublicationsrelatedto each
component. We organized the available information for each component as a matrix structure

The knowledge domaifransactionManager includes a variety of commit and abort protocols.

The knowledge domain PolicyManager is related to software/hardwareperformance,reliability

modeling techniques[Carey86][Agrawal87] and decision making. Basically, application usage,
transactionsemanticsand software/hardwararchitectureare the three major factorsthat determine
the characteristicof a transactionPolicyManager, therefore,may include modelsfor thesefactors.
Decisions can be made based on these models.

The knowledge domain DataManager is responsiblefor the coordination of Scheduler and
RecoveryManager. DataManager dealswith semanticinterdependenciesetweenthesecomponents.
The knowledge domain Scheduler relates to scheduling, serialization and deadlock detection
techniques.Finally, the knowledge domain RecoveryManager includes information from simple
recovery algorithms to sophisticated stable storage recovery techniques.

Image Processing Framework
The architecture of our image processing framework is derived from the theory of image algebra.



The knowledgedomainsCoordinate and Value Sets are specializationf the settheory. Theseare
homogeneousets,meaningthat all the setelementsbelongto the sametype. By defining a small
number of algebraicoperationson setsas the primitive functions, one can convenientlyconstruct
differentimageprocessingalgorithms.The knowledgedomainis composedf coordinateand value
setshecausean imagedefinesfunctional dependenciebetweenthesesets.Similarly, the knowledge
domain Template defines functional dependencieamongimagesand includes knowledge about
image processing algorithms.

Fuzzy-Logic Reasoning Framework
For eachcomponentn Figure5, we investigatedhe relatedknowledgedomains We summarizeour
findings in the following paragraphs:

The componentLinguistic Variable representsa specializationof a languagetheory. A linguistic
variable is characterizday a quintuple (x, T(x), U, G, M) whereis the nameof the variable, T(x) is
thetermsetof x, thatis, the setof namesof linguistic valuesof x with eachvaluebeinga fuzzy set
definedon U. Here,U is the universeof discourseG is a syntacticrule for generatingthe namesof
valuesof x, andM is a semanticrule for associatingvith eachvalue its meaning.A meaningis a
fuzzy setdefinedin the universeof discourseof the linguistic variable. So, the knowledgedomain
Linguistic Variable mustincludeknowledgeaboutthe definition of a (small) languagewith its syntax
and semantics.

The component-uzzy Inference Element reflectstwo theories:logic theory and fuzzy settheory. As
explainedin section5.1, during a reasoningprocessthe componentsg-act, Rule, Generalized Modus
Ponens andResult interactwith eachother.All thesecomponentadoptfuzzy setsasa commondata
structure to exchange information. The component Rule dedings. Here,the connectiveAND and
the implication are implementedby a fuzzy conjunction and a fuzzy relation, respectively.The
componentGeneralized Modus Ponens implementsthe compositional rule of inference as a
composition betweentwo relations. The componentResult implementsthe aggregationoperation
which is anintersectionor union betweerfuzzy sets.In the literature,manyimplementation®f fuzzy
conjunctions, implications, compositions, intersections and unions have been proposed.

Overview of the Related Knowledge

Table 2 shows the related knowledge domaitthe pilot projects.It hasbeenan extensiveamountof
work to find out the related knowledge domains from the literature. Neverthelesactmomain,we
could extract the information necessaryto define stable architecturesFor each componentin an
architecture, we could find plenty of useful information.

Pilot Project Component Related Knowledge Domains References
transaction scheduler scheduling/serialization and deadlock [Bernstein 87]
framework detection/avoidance techniques

recovery manager recovery technigues
transaction manager | commit and abort protocols
policy manager transaction/architecture/application

performance and reliability models,
decision making

image value and coordinate | set theory, mathematical domains, [Ritter 87a,b]
processing sets algebra
framework images templates function theory, image representation

techniques, algebra, image processing
fuzzy-logic fuzzy inference fuzzy set theory, logic theory [Dubois 80]
reasoning elements [Klir 88]
framework linguistic variables language theory, fuzzy set theory [Zadeh 73]

Table 2. Summary of the related knowledge domains.



5.3 Defining Constraints and Adaptability Space

Transaction Framework

Obviously,the interactionprotocolsamongthe component®of a transactiormustbe compatible.For

example, the commit and abort protocols of TransactionManager must be understoodby the

correspondingDataManagers. If the protocols of TransactionManager are changed,then the

protocolsof the DataManagers must changeaccordingly.Similarly, adaptingtransactionsemantics
must be carefully managed.In section 4, one of the important requirementsof our transaction
frameworkwas defined as a needto adapttransactionsemanticsdeterminedby programmersthe

operatingsystemor by the dataobjects.If the transactiorsystemis dynamicallychangedfor instance
by the operatingsystem,then the componentsSerializer and RecoveryManager must be adapted
accordingly.

In addition to interaction compatibility requirements, there may be restrictiotte@omposabilityof
componentsFor example,we found out that the componentsScheduler and Recovery are in some
casesdependenbn eachother [Weihl 89]. Therefore,it is not always possibleto combine every
conceptfrom the knowledge domain Scheduler with any conceptfrom the knowledge domain
RecoveryManager. In addition,we identified that the different serializationprotocolsadoptedby the
schedulercomponentsnay be incompatiblewith eachother[Guerraoui94]. Therefore,specialcare
has to be taken to enforce composability constraints.

Image Processing Framework

Thereare2 importantconstraintdor the elementsof coordinateand value sets.First, the elementsof
a set must be of the sametype. For example,a coordinateset must only contain coordinatesof a
specificdimensiontype suchasthe frequencydomain.Similarly, a valuesetmustonly containvalues
of a given type such as Booleanvaluesfor black-and-whiteimages.Second,there may be some
orderingrelationsamongthe elementf sets.In particular,the elementof a coordinatesetmustbe
orderedwith respecto the semanticof the coordinateset.For example,n a two-dimensionakpatial
representationthe adjacentcoordinatescorrespondto the image samplesthat are also physically
adjacent to each other.

Thereare somerestrictionsimposedby the algebraicoperationsAn algebraicoperationbetweentwo
imagesmay only be performedif bothimageshaveexactlythe samecoordinateset.In addition, the
types of elements of value sets must be compatible.

Templatesrepresenthe functional dependenciebetweenoriginal and resultingimages.We found

thatit is possibleto categorizehesedependenciemto 8 different types.Namely,thereare 7 variant
and1 invarianttypesof templatesA variantpropertyis definedon certainaspectf coordinateand
valuesets.For example a templatemay particularly considerwhethera coordinateis at the boundary
of an image or not. The categorizationof templateshelpedus in defining a methodto construct
different kinds of templatesn a systematiovay. In our approachthe softwareengineeris askedto

providethevariantandinvariantpropertiesof the templatesThis informationis sufficientenoughto

build templates in a straightforward way [Vuift].

Fuzzy-Logic Reasoning Framework

The componentf the fuzzy-logic reasoningarchitecture as defined by Figure 5, can be seenas
specialization®f someaspectof the fuzzy-settheory. Theoretically,we canselecteachcombination
of specializationdor implementingthe reasoningprocessFor instancejn the componentRule, we
can interpret the connectiveiD and the implication aafuzzy conjunctionwhich usesthe minimum,
and as the Mandami’'simplication, respectivelyfMandami77]. The componentGeneralized Modus
Ponens may be implementedby the max-min compositionalrule of inferencedefined by Zadeh
[Zadeh73]. The componenResult may implementthe connectiveaLso asa union amongfuzzy sets
which uses the maximum. Not all the possible combinations, however, can progaigfulresults
from a logical view point [Turksen93] [Marcelloni 95b]. This meansthat fuzzy set theory is
constrained by the logic theory in the fuzzy logic domain.
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Overview of the Constraints and the Adaptability Space

As illustrated by Table 3, all the three frameworks require interactior@mgosabilityconstraintgo
guaranteecorrect behavior. Theseconstraintsare the boundariesof the adaptability spaceof each
framework.

Pilot Project Adaptability Space Inter-component constraints
transaction scheduling and recovery intra-data manager (scheduler and recovery) and
framework concepts inter-data managers
image different coordinate and value sets must be homogeneous, ordering of elements
processing types, a large possible number | in sets, type compatibility restrictions imposed by
framework of templates in 8 categories algebraic operations, 8 categories of templates
fuzzy-logic several implementations of rule, generalized modus ponens and result are
reasoning fuzzy reasoning, language constrained each other by logical soundness,
framework used in the rules rules and facts constrained by the linguistic
variable

Table 3. Adaptability space and inter-component constraints.

6. Realization of the Frameworks

6.1 Experienced Problems in Mapping Architectures into Object-Oriented Models

During mappingarchitecturego object-orientedrameworks,we experienceda numberof problems
becausehe architecturalconceptscould not be directly mappedto the object-orientecconceptsAs a
consequencewe were forced to representsome architecturalconceptsin the implementationof

operationsof objectsinsteadof explicit representationsThis reducesadaptabilityand reusability of

programs.The following sectionsexplain somesignificant problemsthat we experiencedluring the
development of the frameworks.

6.1.1 Dynamically Changing Implementations

This meanghattheimplementatiorof an objectis not fixed but canchangeat objectinitialization or
execution time. There are two basic reasonswhy an object may dynamically change its
implementation: improving the implementation, or evolution of the behavior. Improving the
implementatiorcanbe necessaryor example for improving the speedand spaceperformanceof the
implementationof objects,dealingwith heterogeneousystemsgtc. Evolution of the behaviorof an
object can be necessary for objects that represent evolutionary concepts.

In all the pilot projectsdynamically changingimplementationsare required. For example,in the
transactionframeworkshownin Figure 3, the componentsScheduler and RecoveryManager haveto
be adapted dynamically with respect to changing application or system conditions.

Mosttransactiorsystemsaredistributedandlong-lived. During the life-cycle of a transactiorsystem,

new commit and abort protocols, serialization and recovery algorithms may be introduced to cope with
the changingdemandsof applicationsand systemarchitecturesSuspendinghe transactionsystem

and recompiling it with the new improvements may not be always preferable.

In the imageprocessingramework,dynamicallychangingimplementationsare requiredmainly for
improving the speedand spaceperformanceof algorithms. For example,implementinga spatial
image as a matrix may not be spaceefficient if the matrix is sparse.On the other hand, matrix
representatiocanbe very time efficient for certainalgorithmssinceeachimageelementcanthenbe
directly accessible.

As explainedin section 5.3, the componentsof the fuzzy-logic reasoningframework can be
implementedn manydifferentways. The choiceof a particularimplementatioraffectsthe resultsof
the reasoningSucha choiceis generallydeterminedby the type of applicationandthe input values.
Therefore,only at run-time it is possibleto determinewhich implementationallows to deducethe
desiredresults. For most fuzzy-logic reasoningsystems,instantiationof implementationsduring
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object creation time would be satisfactory. For reasoning systéiméearningbehavior however the
implementation of concepts may change dynamically.

The Strategy pattern [Gamma95] can be used to define objects with dynamically changing
implementationsln the Strategypattern,differentimplementationsare termedas strategies and are
representedas objects. An object with changing implementationsis termed as context and it
aggregates one or more of the concrete strategies.

Now let us assume that & thecontext class that requires a@ynamicimplementatiorandthereforeit
encapsulatefts strategy object O,. Here, Os implementsthe methodsm; to m,. C; declaresthese
methodsat its interface, but redirects the requestsfor these methodsto Os by invoking the
correspondingnethodson O, For example,the methodm; is implementedby C. in the following
way:

Cc::ml(arguments)

return Os.m1(arguments);

Providedthat all the strategy objectsimplementthe methodsm; to m,, by assigninga new strategy
object Qewto Q;, one can change the implementations ofctireext object.

Os = Onew;
Here,the implementatiorof the context objectis changedo O, Notice thatthe strategy object Os
behavedike a superclasdecauseall its methodsare visible at the interfaceof the context classC..
Changing the implementation is equivalent to changing the super class of the object.

Thereare,however,a numberof problemswith this approachFirst of all, the context classC. must
declareall the methodsm; to m, explicitly. If n is large,thenthis canbe a tediousand error-prone
task(Os could havemanymethodsdefinedin its superclassespecondthe Strategypatterncannotbe
usedfor evolving systemsThe precisesetof methodsandtheir argumentsasto be fixed whenclass
C. is definedsinceC, hasto declareall the dynamicallychangingmethodsexplicitly. Third, although
the strategy objectbehavedike the superclassit cannotpolymorphicallyrefer to the context object
throughself calls. This is similar to theelf-problem as defined by Lieberman [Lieberman 86].

An alternativeto the Strategypatternis to usethe delegatiormechanisniLieberman86]. Delegation
is a mechanisnthatallows objectsto sharebehavior.If a server objectcannotrespondto a particular
requestof its client, thenit delegategshe requestto one or more designated objects.If one of the

designateabjectscanexecutethe requestthenit executest on behalfof the serverobject.If needed,
the designatedobject can refer to the server object by calling on the pseudovariable self. The

delegationmechanismis similar to inheritance;the designatedbjectbehavedike the superclasof

the server.Delegationcan expressdynamic implementationdf the context object delegatego its

strategy object. In caseof delegation,the context object delegatesall the requeststhat it cannot
respondto, therebyeliminatingthe needfor declaringthe dynamicallychangingmethodsexplicitly.

This alsosupportghe evolutionof the context object.In addition,the pseudovariableself is provided
by the underlying delegation mechanism.

6.1.2 Difficulties in Expressing Knowledge Specializations Using Class Inheritance

In our approachthe relatedknowledgedomainsare identified and representedising generalization,
specializationand diversificationrelations,as describedbefore. This processis performedfrom the
perspectiveof modeling knowledge domains and solutions. It appearsthat the generalization-
specializationhierarchiesfrom the knowledge domainscannot always be mappeddirectly to the
object-oriented inheritance hierarchies.

The reason for this is that generally object-oriented inheritance semantics are defined as inbéritance
methodsandinstancevariablesfrom oneor more superclasseBy oneor more subclassesA subclass

may addnew methodsandinstancevariables,andoverrideexistingmethods Thesesemanticcannot
always represent complex generalization, specialization and diversification relations among
knowledge domain concepts.
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For examplein the transactionframework, the choice for a particular policy as made by the
PolicyManager is the result of the application of many different rules and constraints.In a
generalization-specializatidmerarchyof PolicyManagers, graduallymore rules and constraintsare
added. Mapping this hierarchy to a class-inheritance structure is far fronftrivial

In the fuzzy-logic reasoningframework, the language-basedpecificationsof linguistic variables
require a grammar specification for scanning and parsing. In the generalization-specification
hierarchyof the knowledgedomain,new linguistic variablesare addedin specializatiorclassesThis
correspondgo the extensionof the grammarrules. It is not possibleto map this grammar-based
hierarchy directly onto a class-inheritance hierarchy.

6.1.3 Architectural Constraints

We previouslydiscussede.g.in sections3 and 5.3) that a numberof constraintsmust be enforced
uponan architecturalmodel.For example architecturalcomponentannotbe mixed arbitrarily. We
considerthe enforcemenbf suchconstraintsas fully distinct and independenfrom the application
behavior: it is essentially a meta-level issue.

As an example we refer to discussionin section5.3 aboutthe transactionframework, where many
different specializationsare availablefor both the componentsScheduler and Recovery. One of the
attractionsof separatinghe Scheduler and Recovery componentss that thesearelargely orthogonal,
which allowsfor choosingindependentoncretespecializationsHowever,in a numberof casesthese
choices araot orthogonal: adopting a particular typeStheduler excludes certain types Becovery.

This impliesthatwheneveithe compositionis changedthe consistencyof the new compositionmust
be checked.This verification may involve interactionswith multiple objects,and the verification
specificationmust be modular so that both verification and applicationclassescan be adaptedand
reused separately.

The enforcementf constraintson compositionis currently typically achievedthroughtype-checking
mechanismsby specifyinga particular type for eachof the componentswe can ensurethat only

specializationsof that type will be usedas componentsand thereforethesewill satisfy somebasic
constraints However,we alreadyindicatedthat this is not always sufficient; a more powerful type

checkingmechanismhan subclassingr signatureswould be neededbecauseseveralcomponents
and complex rules can determine the type correctness of programs.

In the more general case of constraints,the main difficulty is that we want the constraint
specificationgo be modular,but at the sametime the enforcemenbf constraintsmay be requiredat
many different locations and circumstances, which imposes maintainability problems.

6.1.4 Other Difficulties

Apart from the threeproblemsthat were just describedwe briefly mentiontwo otherrelevantissues
thatwe hadto dealwith in realizingthe architecturesWe referto thefirst issueasthe multiple views
problem.In the transactionframework, for example,the applicationobjectsthat are involved in a
transaction are accessed in two distinct wiysapplication-specifidunctionality is invokedby other
applicationobjects(the userview). But the datamanagemenfunctionality that is specific for the
transactioframework,suchaslocking or recoverymethodsare availableaswell, but shouldonly be
usedby the transactiorframework (the systemview). The enforcemenof suchdistinct views, which
is importantfor retainingconsistencycannotbe expressedn a convenientway by the conventional
object model. The multiple views problem has been addressed in more detail irbpZekbit.

The secondissue has been namedas the sharing behavior with state problem. This problemis
encountereavheneverthe behaviorthatis sharedby multiple objectsis affectedby a particularstate

4 Notethatit is usually possible to implementan object-orientedapplicationthat providescorrespondenct
a domainknowledgehierarchy.However,this may well requirethe creationof additional structuresand
interactions because a one-to-one mapping is impossible.
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that is sharedby those objectsas well. Sharing of behavioris usually achievedby a code reuse
mechanismsuch as inheritance.If a sharedbehavioris affectedby a shareddata, however,class
inheritancemay not adequatelymodelthis situation.This is because¢lasseglo not providea means
for sharing the state of instance variables; the instances of a clastsacamehaviorthroughthe class
inheritancemechanism,but they cannotsharethe state which is encapsulatedinder the shared
behaviorbecauseeachinstancewill haveits own instantiationof its state.Using an externalserver

object for retrieving the state information weakensencapsulationln addition, the polymorphic
variableself thenreferto the serverobjectbut not to the objectthat providesthe sharedoehavior(the
self problem [Lieberman86]). For a more detailedanalysisof the problem,the readercan refer to

[Aksit 92b].

For examplein the transactionframework, the behavior of the PolicyManager is sharedby all
TransactionManager objects.The method chooseScheduler is implementedby PolicyManager and
reused by TransactionManager. A PolicyManager object collects all kinds of relevant system
parametersand storesthem in its instancevariables.Here, the sharedmethod chooseScheduler is
affectedby the sharedstatesystem parameters. The delegationmechanisncan be usedto solve this
issue, as has been described in more detail in [Aksit 92b].

6.1.5 Overview
Table 4 provides an overview of the pilot projects, showing where certain difficulties were

encountered, with a brief description of the area.

Pilot Dynamic Inheritance vs. Constraints Multiple Sharing
project implemen- knowledge views behavior &
tations Specializations state

transaction | scheduling, policy data user-system system
framework recovery manager manager views parameters
image alternative no value & no no
processing | implemen- coordinate
framework tations sets
fuzzy-logic fuzzy-logic linguistic variables implications linguistic no
reasoning concepts variables

Table 4. Pilot projects versus problems.

6.2 Implementation of the Frameworks

Transaction Framework

The transaction framework is implemented using the Smalltalk language. To change the
implementationsof Scheduler and RecoveryManager, we built a delegationmechanismupon the
Smalltalk language. To implement this mechanisathdelegatednessagés reified andrepresented

asan object.In the literature,this conceptis known as message reflection [Ferber89]. By changing

the attributes of a message object and re-activating it again, one can realize a delegation mechanism.

In the implementationconstraintson object interactionsand compositionsare definedin separate
classesTo enforcea constraint,the messageshat may violate the constraintsof objectsare reified
and redirectedto the constraintclasses.After verifying the validity of messagenvocations,the
messages are re-activated again. If the constraints are violated, an exception is raised.

The prototypeis currently running on a single machine.To implementthe framework we mapped
eacharchitecturalconceptto a class. The implementationconsistsof 43 classesEach knowledge
domainis representedy inheritancehierarchies.The framework consistsof 3 major inheritance
hierarchies.Table 5 gives the number of classesdefined within each inheritancehierarchy. The
column Time Spent consistsof two parts. Here, the design time indicatesthe total time spentin

defining the architecture and analyzing and designing the frameworkmiptementation time shows
the time spentfor coding andtesting.Detailedinformation aboutthe transactionframework can be
found in [Tekinerdogan 94].
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In the currentprototype,classTransactionManager implementsa singlecommit/abortprotocol.Class
PolicyManager adopts a simple policy managemstrategy We arecurrentlyimplementingdifferent
protocolsand an expert-systenbasedPolicyManager. In addition, the transactionsystemwill be
portedto a distributedsystemplatform so that it can be usedwithin the implementationof the car
dealer management system.

Image Processing Framework

The image processirfgameworkis implementedusingthe C++ languageEacharchitecturakconcept
is mappedto a C++ class. Similar to the transactionframework, interaction and composability
constraintsare enforcedby defining constraintsas meta-levelclassesand by reifying andredirecting
the messages that may violate the constraints to these classes.

Currently, classesCoordinate and Value Sets, Image and Constraint enforcing classesare fully

implementedAs an example we implementedhreetemplatesa low-passfilter, a fourier transform
andimagehistogramtemplatesWe alsodefineda methodto guidethe softwareengineelin creating
templates conveniently [Vuij€4].

Fuzzy-Logic Reasoning Framework
The fuzzy reasoning framework has been implemented using the Smalltalk language.

In the framework, class LinguisticVariable has two major methods for the fuzzification and
defuzzification process. ClaksguisticVariable is the root of the inheritance hierarchy in which each
subclassmplementsa different defuzzificationstrategy.At the moment,we haveimplementedonly

the most common defuzzification strategies.

Rulesareorganizedn aninheritancehierarchyasshownin the appendix.ClassFact is composedy
one or more Propositions. Proposition and Rule inherit from classFuzzySet which aggregateglass
Member shipFunction. We definedeighttypesof membershigunctions.The componentGeneralized-
ModusPonens is implementedas a methodof classRule as it can be consideredas an operation
executed by the rule when a fa&providedto the rule. Currently,we considerednly the generalized
modusponensasa fuzzy reasoningnechanismWe are now investigatingother possibilitiessuchas
the syllogisms proposedby Zadeh[Zadeh85]. Further, we are implementingmore defuzzification
strategiesand membershigunctions.Alternativesimplementation®f the generalizednodusponens
which can be used with particular implications and fuzzy sets are being analyzed. Such
implementations enable considerable performances improvements.

Pilot Language Inheritance & # of Classes Time Spent Reference
Project
transaction | Smalltalk serialization hierarchy: 13 design =5 [Tekinerdogan 94]
framework dead-lock hierarchy: 7 impl. = 2 months
recovery hierarchy: 9
other: 15
image C++ single inheritance hierarchy: 20| desigh =6 [Vuijst 94]
processing impl. =2 months
framework
fuzzy-logic Smalltalk rule hierarchy: 8 desigh =6 [Marcelloni 95a]
reasoning linguistic variable hierarchy: 4 | impl. =1 months
framework membership functions hier.: 8
linguistic value hierarchy: 10
other classes: 29

Table 5. Implementation aspects of the frameworks.

Comparison of Implementations

All the threeimplementationsare directly derivedfrom their architecturalspecificationsin addition
to adopting'standardobject-orientednodelsand designpatterns,delegationand messageeflection
techniguesare implementedo make softwaremore adaptableand reusableln all pilot projects,the
designerswvere not experiencedn the correspondingdomains.Therefore,they spenta considerable
amount of their time in understanding the related knowledge domains.
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7. Lessons Learned and Research Issues

Our findings are summarized in the following items:

For certain knowledge domains specific inheritance semantics are necessary: The methodand
attributeinheritancemechanisnasdefinedby mostobject-orientedmodelsare not alwaysableto
model generalization/specialization relations of the knowledge domains. bai@ghe extension
of the object-orientechodelwith somededicatedspecificationinheritancemechanisms required
to solve this in a modular and maintainable way.

Delegation based object-model is needed: As discussedn section6.1.1,we found the delegation
mechanismuite necessaryn defining adaptablesoftwaresystemsFor example,delegationcan
help in improving several design patternssuch as Srategy and Bridge becauseit supports
evolution of interfaces.In addition, delegationtechniquescan help dealing with the ‘shared
behavior affected by sharedstate’ problem (seesection6.1.4). We do not consider,however,
delegation as an alternative to inheritance or atasseptsBoth delegationjnheritanceandclass
concepts can co-exist together.

We found somedifficulties in explainingour delegation-basedhodelsto the softwareengineers
working at the organizationswhere the pilot projectswere carried out. Theseengineerswere
knowledgeableaboutthe most popularobject-orientedmethodsand programminglanguagesbut
the concept of delegation was unknown to them.

Enforcing constraints is essential, but not fully supported yet: To instantiateand managea
dynamicallyevolving applicationwhile preservingits robustnessequireshigh-levelmechanisms
to enforce the semantical constraints of #ygtlication.Stronglytypedlanguagesim at detecting
semanticerrorsasearly aspossible We experiencedhowever that type checkingmechanism®f
current strongly-typed object-orienté&ahguagesre not sufficient; type checkingrules,in general,
fail in detecting the complex interaction and composability constraints of objects.

Reflection techniques are useful: Messagereflection techniquesare usefulin implementingthe
delegationconcept.In addition, by using messageeflection,it is possibleto modularly separate
but 'functionally'integrateconstrainingclassesind ‘applicationclasses'This is particularly useful
in enforcinginteractionand composabilityconstraintson objectsin a modularway. However,in
our implemetation,adoptingreflection techniquesto enforce constraintsonly offered run-time
verification. Compile-timereflectiontechniquescould be usefulin improving the performanceof
our implementationsSimilar to the conceptof delegation,reflective modeling techniqueswere
unknown to the most practical software engineers that we worked with.

Further research is needed in object-composition techniques. In an architecturaldescription,
knowledgedomainsmay model different aspectsuchas real-time, synchronizationcoordinated
behavioretc. It hasbeenshownby a numberof publicationsthat althoughseparatiorof concerns
is an essentialonceptfor improving robustnessadaptabilityandreusability,composingseparated
concernssuch as real-time and synchronizationis far from trivial [Nierstrasz 95][Mullet 95]
[Aksit 92a,93, 94] [Bergmans95]. Sincesoftwarearchitecturexanbe definedas compositionsof
specializationsof knowledge domains, we think that researchactivities for enhancingthe
composability capabilities of object-oriented modwds be of greathelp; highly composabl@bject
models would improve the adaptability and reusability factors of software architectures.

New object-oriented process and product metrics are needed: Defining softwarearchitecturedirst
and then instantiate frameworks and object-oriented programs was uncomtienorganizations
that we were dealing withWe wereasked right from the beginning,to startimplementingobject-
oriented programs.We spenta considerableamount of time in explaining the necessityof
designingsoftware architecturesWe could not however, justify our claims by using software
metrics. Although recentlythere havebeena numberof publications[Abreu 94][Chidamber94]
on object-orientedmetrics, we could not find them directly usablefor the following reasons.
Firstly, mostmetricswereapplicablefor final objectmodelsonly. We neededorocessand product
metrics for every design rule that we applied. Secondly, we found Usiegholdvalues like most
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metrics propose,quite meaninglessilt is, in general,very hard to define ideal thresholdvalues.
Thirdly, mostmetricsdo not explicitly modelthe effect of context,which we experiencedas an
essential parameter.

» Software artifacts must be recorded, related and integrated: During the software development
process,from domain analysisto coding, lots of information were generated processedand
differentkinds of modelswerebuilt. These so-calledsoftware artifacts, wererecordedin various
formats, from informal textualinformation to executableobject-orientedorogrammingconcepts.
We found it extremely difficult to record, trace and relate all the artifatitipughwe usedobject-
oriented CASE environments hypertext-liketools and modernprogrammingenvironments We
neededa more semanticintegration of the artifacts and an ‘active’ object-oriented CASE
environment which monitors all the decisions made and warns us, if necessary.

8. Conclusions

The contributions of this papés twofold: the architectureconceptandthe experienceghatwe gained
in building three object-orientedframeworks. We extensively tested these frameworks from the
perspectiveof robustnessand adaptability.For example,we testedthe transactionframework with
dynamically changing serialization and recovery semantics. In addition, to test our implemetdations
somewhatunforeseen’changeswe askedstudentso apply and extendthe frameworksby using, if
possible, other techniques than that were implemented. For example, in PA§studentextended
the knowledgedomainScheduleiby a hierarchicallocking schemewhich wasnot considerednitially
in the transaction framework [Tekinerdogan 94]. Our conclusion ighlearchitectureconcepts the
right choice.Most of the experiencedbstaclesvererelatedto the problemspresentedn the previous
section.We believethat theseproblems,in general,are not inherentto the object-orientedconcepts
but ratherthey relateto the way how conceptsare definedand implementedn the currentmethods
andprogramminglanguagesWe are, therefore optimistic in that mostof the presentegroblemsin
this paper can be solved, at least partially.
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Appendix: Object Models

A. Transaction Framework

In this section, for illustration purposese will explainthe inheritancehierarchyof schedulersMore
detailed information can be found in [Tekinerdogan 94].

‘ UniversalScheduler ‘

A

Agressive2PL AgressiveSerial TimestampOrdering Optimistic
Scheduler Scheduler Scheduler Scheduler

A A

Conservative2PL ConservativeSerial AgressiveTO ConservativeTO Optimistic2PL OptimisticTO
Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler

TWRAgressiveTO|| TWRConservativeTO
Scheduler Scheduler

Figure 6. The inheritance hierarchy of the scheduler.

Class UniversalScheduler defines the common attributes and behavior for all schedulers.Class
AgressiveSerial Scheduler allows only one transactionat a time to accessthe object. If another
transactiortries to accesghe sameobjectthe schedulemwill immediatelyabortthe latter transaction.
Class ConservativeSerialScheduler is a specializationof AgressiveSerialScheduler but it delaysa

conflicting transactionuntil the other transactionhas finished. Class Agressive2PLScheduler is a

locking schedulerwhich doesnot delay messagesn caseof conflicts. Conservative2PLScheduler

delaysconflicting operationslf operationof two different transactionsare mutually waiting for each
othera deadlockmay occurin the system.n orderto resolvethe occurreddeadlock the conservative
locking schedulersmay use deadlock avoidanceand detection techniques[Bernstein 87]. The

timestampordering schedulergnay also be classifiedas aggressiveand conservativeschedulersin

both caseghe Schedulercan usethe Thomas-Writerule to omit a late write operationwhich would

not have any effect at all. Optimistic schedulerseither use timestampsor locks which are only

controlled at commit time. In this hierarchy, classesUniversalScheduler, TimestampOrdering-

Scheduler andOptimisticScheduler are abstract classes.
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B. Image Processing Framework
The implementationof the image processingrameworkis shownin Figure 7. ClassSet is the root
classof the hierarchy.ClassHomogeneous ensureshat eachelementof Set is of a commontype.
ClassOrdered enforces the ordering as defined in the semantics of an image Cotasnate is a set
of indexingfunctions.ClassCoordinateSet is a coordinate-type homogeneous set. ClassValueSet is a
homogeneous set of values. ClasslimageSpace consistsof one of the following classesCoordinate,
CoordinateSet, Value, ValueSet or Image. Image is a function from an ImageSpace into another
ImageSpace. In orderto expresstemplatesasimages,we hadto introducea new classlmageSpace.
This classprovidesmappingsnot only betweencoordinatesetsand value sets,but also betweenany
combination of coordinates, coordinate sets, values, value sets and images. Class Template
implementghe imagealgorithms.I TOperations are the possiblealgebraicoperationsbetween mage

andTemplate. ClassesnvariantTemplate andVariantTemplate classify the possible templates.

Homogeneous | | Ordered |

constraint

constraint

Set |

A

| Coordinate |

contains

| CoordinateSet |

| Value |
contains

| ValueSet |
[

Condition:Selection of
one of the
superclasses

ITOperations | | ImageSpace

| | |
— P mege ]
| |
| Template |
| | | |
| InvariantTemplate | | VariantTemplate

Figure 7. The object diagram of the image processing framework.
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C. Fuzzy-Logic Reasoning Framework

For simplicity, we will only showthe inheritancehierarchyfor rules.ClassRule definesthe common
attributesand behaviorsfor all the possibletypesof rules. ClassRule aggregateslassesAntecedent,
Consequent, ImplicationParameter and CompositionalParameter. Classes Antecedent and
Consequent implement the antecedent and the consequent part of a rule, respectively.

After examiningthe relatedliterature,we relied that the typesof implication canbe groupedin three
categoriesFuzzyConjunction, FuzzyDigjunction and Fuzzyl mplication implications[Lee 91]. The last
is in its turn divided in five families: PropositionalCalculus, ExtendedPropositionalCalculus,

Material, GeneralizationModusPonens and GeneralizationModusTollens implications.The hierarchy
in figure 8 reflects this organization. Implicatiotiffer from oneanotherin the triangular norm used
in theimplementationTypical triangularnormsare minimum, product, bounded product anddrastic

product. ClassimplicationParameter identifiesa triangularnorm. Triangularnormsare alsousedas
parametergo define different possiblecompositionalrules. During the designphase we decidedto

implementthe generalizedmodusponensasa methodof classRule. ClassCompositional Parameter

identifies the triangular norm which selects the desired compositional rule. The use of

parameterization reduces the hierarchy of rules.

CompositionalParameter |

Antecedent

ImplicationParameter |

Conjunction —— Disjunction
Implication Implication Implication
Rule Rule Rule
Propositional Extended Material Generalization Generalization
Calculus Propositional Implication Modus Modus
Implication Calculus Rule Ponens Tollens
Rule Implication Implication Implication
Rule Rule Rule

Figure 8. Rule inheritance and aggregation relations.
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