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Abstract 

In this paper a highly modular adaptive lattice algorithm for multichannel least squares FIR filtering and multivariable 
system identification is presented. Multichannel filters with different number of delay elements per input channel are 
allowed. The main features of the proposed multichannel adaptive lattice least squares algorithm is the use of scalar only 
operations, multiplications/divisions and additions, and the local communication which enables the development of 
a fully pipelining architecture. The tracking capability and the numerical stability and accuracy of the proposed 
technique are illustrated by simulations. 

Ein weitgehend modularer adaptiver Lattice-Algorithmus zur mehrkanaligen Kleinste-Quadrate-FIR-Filterung und 
zur mehrdimensionalen Systemidentifikation wird vorgestellt. Mehrkanalige Filter mit unterschiedlichen Anzahlen von 
Verzijgerungs-elementen je Kanal sind erlaubt. Hauptmerkmale des vorgeschlagenen adaptiven Mehrkanal-Lattice- 
Algorithmus’ auf Kleinste-Quadrate-Basis sind die Verwendung rein skalarer Operationen, Multiplikationen/Divisionen 
und Additionen und die lokale Kommunikation, welche die Entwicklung einer vollsttindigen Pipelinestruktur ermiig- 
licht. Die Trackingfihigkeit sowie die numerische Stabilitlt und Genauigkeit der vorgeschlagenen Technik werden durch 
Simulationen illustriert. 

Cet article prksente un algorithme en treillis adaptatif hautement modulaire pour le filtrage RIF aux moindres car& 
multicanal. Les filtres multicanaux avec un nombre diffkrent d’Cltments de delai par entrte sont autoris&. Les 
caracttristiques principales de l’algorithme des moindres car& en treillis, adaptatif et multicanal est l’utilisation 
d’op&rations scalaires uniquement, multiplications/divisions et additions, et la communication locale qui permet le 
dkveloppement d’une architecture entihement en pipeline. La capacitC de suivi ainsi que la stabiliti: numCrique et la 
prCcision de la technique propo& sont illustrtes par des simulations. 

Keywords: Multichannel filtering and system identification; Least squares estimation; Adaptive lattice algorithms 

*Corresponding author. 

0165-1684/95/$9.50 0 1995 Elsevier Science B.V. All rights reserved 

SSDI 0165-1684(95)00071-2 



48 G.-O. Gleniis, N. Kalouptsidis J Signal Processing 46 (1995) 47-55 

1. Introduction 

In this paper a fast adaptive algorithm for an 
equivalent description of the filter parameters is 
developed, using lattice structures. Adaptive lattice 
realizations are popular due to a number of nice 
properties they share. They offer modular structure 
suitable for VLSI implementation, decoupling be- 
tween successive stages which allow for pipelining, 
and insensitivity to round-off noise [l-3,7-9]. The 
proposed adaptive lattice least squares algorithm 
for the multichannel filtering has an additional 
feature. Although it deals with the multichannel 
problem, it manages to get free of matrix opera- 
tions altogether, in contrast to known adaptive 
schemes that require matrix manipulations [lo]. 
The multichannel formulation is naturally decom- 
posed into k single channel subsystems and a single 
block step is replaced by a sequence of k successive 
phases allowing for full pipelining. Moreover, the 
proposed scheme is capable for handling multi- 
channel filters with different number of delay ele- 
ments assigned to each input channel. When the 
estimation of the filter coefficients is the desired 
task, supplementary two terms Levinson type re- 
cursions can be employed, for the efficient compu- 
tation of the filter coefficients in a purely order 
recursive way. 

2. Problem formulation 

A multi-input single-output FIR filter is de- 
scribed by the following difference equation: 

YW = - i 2 x&l - 1+ l)cf, 
i=ll=l 

where k is the number of input channels, and se- 
quences x1(n), x2(n), . . . ,x&t), n > 0, are the input 
signals. Integer mi, named the order of the filter 
with respect to input i, is, in general, different for 
each input signal channel, mi # mj, i, j = 1,2, . . . , k 
[4-61. For each input i let us define the coeffi- 
cients vector cb, = [ci cl . . . c&IT and the corres- 
ponding data vector x&(n) = [xi(n)xi(n - 1) . . . 
xi(n - mi + l)]‘, of dimensions mix 1. We 
insert these vectors into the block vectors 

c = CCLt,]i=1,2, . . ..k and X,,(n) = @A:(@ d:(n) 
. rkx;;(n)lT, where the multi-index mk COnSiStS 

of the individual filter orders, i.e., mk = 

Cml,mz, . . . . mk]. x,,(n) and c,,,~ are block vectors 
of block order k, with entries vectors of dimensions 
mi x 1. They have dimension M x 1, where M is 
the sum of entries dimensions, M = CF=, mi. 
Then, Eq. (1) is readily expressed in a compact 
form as 

y(n) = - x;t;kc(n)c,L. 

The least squares design of a multichannel 
FIR filter if formulated as follows. Let e:,(n) = 
z(n) - y(n) = z(n) + xl,(n)c,, be the error between 
filter’s output y(n) and a desired response signal 
z(n) at time instant n. The optimum filter, in the LS 
sense, minimizes the total squared error over 
a finite data horizon, i.e., n E [0, N], weighted by an 
exponentially decay factor, 0 < ,? G 1, 

E&(N) = 5 LN-“(e&,(n))2. 
n=O 

The pertinent LS filter, ckt = c,,,&(N), satisfies the 
set of linear equations 

&,(N)GMk(N) = - &,(N), 

where 

R,,(N) = 5 ~N-%Jn)xl,(n), 
n=O 

(2) 

d,,(N) = % lN-“x,,(n)z(n). 
n=O 

A primary objective in adaptive filtering is the 
time update of the parameters vector and the es- 
timation of the output error on the basis of the 
newcoming information, i.e., 

cfn*(N + 1) 

= g(C,,(N),z(N + l),Cxi(N + l)li=~,. .,k)v 

e:,(N + 1) = z(N + 1) - y(N + 1). 

Both tasks can be accomplished by means of fast 
transversal and fast lattice adaptive algorithms, as 
is described in the following sections. 
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2. I. The transversal multichannel LS algorithm 

Eq. (2) determines the optimal FIR filter in the 
least squares sense. The pertinent filter is obtained 
as the solution of the linear system of equations (2). 
While a standard linear system solver can be uti- 
lized, the structure of matrix R,,(N) enables the 
development of efficient algorithms for the compu- 
tation of the optimal filter c,,,,(N). The derivation of 
such fast algorithms is based on the nesting proper- 
ties of matrix R,,(N) that permits the order re- 
cursive estimation of the optimal filter, starting 
from c,(N) up to the final filter c,,(N) [4-61. 
Two sets of auxiliary vectors are utilized, a’(N), 
v = 1,2, . ..) k, and V(N), p = 1,2, . . . , k, corres- 
ponding to multi-input single output forward and 
backward linear predictors, respectively [4,6]. 

Linear prediction can be viewed as a special case 
of filtering, where the desired response signal is 
a future value of the underline process. Consider 
the data vector 

xc:(n) = [xkT(n - 1) xiT(n - 1) . . . 

xiz(n - 1) ~$~Tf’*(n) . ..xkT(n)]*. 

P = 0,1,2, ... > k, (3) 

where the p first entry vectors are delayed by a 
unit shift. Clearly, .&(n) =x,,(n) and x&,(n) = 
~,,,~(n - 1). Then the following multi-input single- 
output type forward and backward predictors are 
defined: 
(a) The v-channel one step ahead forward predictor 
a;‘,(N), v = 1,2, . . . , k, is obtained by mini- 
mizing the total squared error 

E::‘(N) = 5 AN-“@,(n) + x~‘,‘(n)f~~‘,(N))~, 
n=O 

and hence satisfies the normal equations 

R:;(N)&;(N) = - r::‘(N), 

where 

R:!(N) = 5 AN-“x!$(n)xzLT(n), 
n=O 

r::‘(N) = 5 A”-‘xc’,(n)x,(n). 
n=o 

(4) 

(b) The p + l-channel one step backward predictor 
l&+ “(IV), /4 = 0, 1, . . . ) k - 1, minimizes the total 
squared error 

E$Y+ l’(N) = i: IN-“(x,+ I(n - m,+ 1) 
n=O 

+ x!$*(n)l&+ 1’(N))2 

and is obtained by the linear system 

R?:(N)b,~ (C+ 1) = _ r;y+ r’(N), 

where 

(5) 

R?:(N) = f' AN-“x!,!~(n)x$~*(n), 
n=O 

gm+l)(N) = c IN-"x$~(n)x,+ l(n - mp+ 1). 
rnk 

n=O 

The basic recursions of the efficient order updat- 
ing algorithm for the determination of the in- 
creased order optimal filter c,,+~(N) in terms of the 
lower dimensions counterpart c,,(N) are sum- 
marized in Table 1. The derivation of the algorithm 

Table 1 
The multichannel LS filter order recursions. The operator 
&’ denotes a shift with respect to N. It is activated by the 
supersrcipt hl,hl = 1 if v = k, otherwise hl = 0 

FORi=OTO(k-1)DO 

LET1 = right_rotate[12 kli+, 

FORp=OTO(k-I)DO 

LET Y = I(p + 1) 

T’“’ ,,+i+,b?;:!,(N) 

gP+ 1) r*+i+,&:+i+,(N) 

ENDFOR p 

ENDFOR i 
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as well as the detailed organization are presented in 
[4]. Each block step mk +rnk + k is decomposed 
into k successive single step iterations, i = 1,2, . . . , k, 
where the solution vector c,,,, + i + 1(N) is augmented 
by a new element. Thus, after the completion of 
a single block step, c,,(N) has been increased by 
k elements. A notable feature of the algorithm is 
the cyclic way in which the forward predictors, (I”, 
and the backward predictors, b”, are updated. 
The cyclic nature of the parameters coupling is 
nicely described by introducing the index sequence 
[l 2 . . . k] and the rotation operator 

I = right_rotate[1,2, ...) k]i+ 1, 

which rotates [l, 2, . . . , k] (i + 1) times to the right. 
In this way, the backward predictors b” associated 
with the forward predictors IL” at phase i are found 
if we set v = I@ + l), and Z(p + 1) means the 
(p + 1)th element of the index sequence I, 
p = 0,l 3 . . . . k. 

The shifted backward predictor bpk:i(N - l), 
i=O,l, . ..) k - 1, required by the order recursive 
algorithm of Table 1 when parameter hl = 1 can 
directly be estimated from b:: i(N) as 

b z:i(N - 1) = bz:i(N) - W,,+i(N)E~~+‘~‘(N)y 

(6) 

W,,+,(N) is the so-called dual Kalman gain and it 
is defined by the linear system ilR,,,,+i(N - 1) x 

wm,+i(N) = -Xmk+i (N). It is recursively updated 

as C41 

S!L~+!+:!+1Wm~+i+l(N) 

= (‘%ytN)) + (b”::i(; - l))k:,+i+l(N), 

(7) 

,!$+i+ r(N) = - e;;lf=“(N)/(1a::,‘,‘f!‘(N - 1)). (8) 

3. The lattice-ladder multichannel LS algorithm 

Adaptive lattice algorithms update the so-called 
error parameters, that is, the difference between 
system’s output and a desired response signal, for 
all intermediate filter orders [l-3,7-9]. The error 
variables are utilized for the computation of the 

rejkction coeficients which in turn are used for the 
update of the error parameters themselves. An effi- 
cient adaptive lattice algorithm for LS multichan- 
nel filtering was presented in [S], based on the 
so-called a posteriori error parameterization for the 
time update of /I variables and error power vari- 
ables, CC The reflection coefficients sought were 
estimated as the ratio jI/or. Following [S], an 
alternative adaptive lattice scheme is developed 
that explicitly update reflection coefficients them- 
selves, utilizing both a priori and a posteriori error 
variables. As is discussed in [8] the direct updating 
of the reflection coefficients offers better numerical 
accuracy and numerical stability. 

Let us consider the instantaneous a priori and 
a posteriori filter error associated with filter c,,,,(N) 
at time instant N, designated by latin e and greek 
E typesetting, respectively, 

e&(N) = z(N) + &(N)c,,(N - l), 

s:,(N) = z(N) + x:,(N)c,,(N). 
(9) 

We also define the a priori and the a posteriori 
prediction errors associated with the multi-input 
single output forward and backward predictors, 
Eqs. (4) and (5), 

eck(N) = x,(N) + x;:(N)aE,(N - l), 

a:&(N) = x,(N) +x;:(N)&,(N), 

v=l > . . . . k (10) 

eW+ “(N) 
m!, 

=x ,,+I(N - m,+l ) + x$;(N)b::‘(N - l), 

a:: + “(N) 

=x ,,+i(N - mP+r ) + x::(N)&,: ‘W), 

p = 0,l , . . ..k - 1; (11) 

where the data vectors x:,(n) and x&(n) are given 

by Eq. (3). 
A priori and a posteriori error variables for the 

filter as well as for the forward and backward 
predictors are estimated using a recursive lattice- 
ladder scheme. The passage from error variables of 
order mk to the successive mk + k is accomplished 
via a set of k single step recursions. The lattice- 
ladder equations are obtained using the increased 
order recursions for the filter and forward and 



Table 2 

G.-O. Gleniis, N. Kalouptsidis / Signal Processing 46 (1995) 47-55 51 

Order update recursions for the a priori and a posteriori errors 

A posteriori error updates A priori error updates 

FORi=OTO(k-1)DO For i = 0 TO (k - 1) DO 

l::,+,+,(N) = a:,+i(N) + s:‘;,‘,‘:!‘(N)kf,+,+,(N) e:,+i+I(N)=eZ,,+i(N) +e!$XN)k:,+,+,(N - 1) 

LET I = right_rotate[12 k&+ I LETI=right_rotate[12... klitl 

FORfi=OTO(k-1)DO FORp=OTO(k-1)DO 

LET v = I(p + 1) LET v = I(p + I) 

E$‘++~ :‘, (N) = z$’ E;‘$++~“(N) + a::)+,(N) k$‘++i:‘l (N) &1’:::‘,(N) = ~i’e$‘~“(N) + e$J+i(N)kq$Tii’,(N - 1) 

~z;l+~+ ,(A’) = E$$~(N) + zl’$‘!!.“(N)k$‘+,+ ,(N) f(V) e,,+i+l(N) = e$)+i(N) + z~e~‘;~C”(N)kf$$i+ I(N - 1) 

ENDFOR ji ENDFOR p 

ENDFOR i ENDFOR i 

backward predictors of Table 1 together with the 
lower and upper partitions of the increased order 
data vector (3) [S]. The lattice-ladder recursions for 
the a priori and the a posteriori errors are tabulated 
in Table 2. 

Forward and backward error variables, ef(“) and 
ebo’) are coupled together in a similar way as the 
transversal filter counterparts of Table 1. During 
the first iteration (i = 0) of a new step, the forward 
prediction errors are coupled together with the 
backward prediction errors in a particular way 
which is [e”,e”], [ef2,eb1], [ef3,eb2], [e”,ebtkm “1. 
When (i = 1) prediction errors are coupled together 
as [e”, ebCk- “1, [e”, ebk], [ef3,eb1], [efk,ebCk-‘)I. 
Finally (i = k - 1) the pairs are [e”,eb’], 

[e”, eb2], [ef3,eb3], [efk,ebk]. A similar scheme 
holds for the a posteriori error variables. 

The lattice-ladder recursions of Table 2 can be 
transformed to an adaptive algorithm once reflec- 
tion coefficients designated by the letter k are se- 
quentially updated. It is shown in [S] that the 
reflection coefficients of order mk+i+l, 
i=o 1 , , . . . , k - 1, are computed as 

K,+i+l(N) = - Bf,+i+l(N)l~~~Z’+‘!‘(N), (12) 

k~~+?ii:‘l(N) = - B~~~ii:‘1(N)/a~:‘+i(N), (13) 

k’(v) 
mk+i+ l(N) = - P~~~ii:‘l(N)/z~‘a~~~ii”(N), (14) 

where 

8:k+i+ 1 (N) = Afl:k+i+l(N) + &,+i(W$(,i=!)(N), 

(1% 

= A~~(f++i\‘l(N - 1) + ef;l:‘+i(N)(Z~l&~~++f’)(N)), 

(16) 

and 

f(r) 
Ch+i+i(N) 

=ACt~:‘+i+l(N- 1) +E~:?i+l(N)e~:)+i+l(N), 

(17) 

a$!++~?l(N) 

= L&(,J++ii:‘l(N - 1) + &~~++ii:‘l(N)e~~++i:‘1 (IV). 

(18) 

Following [B] we seek to determine direct time 
updating recursions that sequentially estimate the 
reflection coefficients, Eqs. (12)-(14). A simple 
glance at Eqs. (12)-(18) reveals that the reflection 
coefficients can be obtained by the solution of 
a modified equation using the matrix inversion 
lemma as 

(La + &e)k = - (Q + EC?), 

k = - P/a + (2 + e( - jl/a))k”, 

(19) 

k” = - q/(,la + ce). (20) 

Applying identity (20) to Eqs. (12)-(14) we get the 
lattice-ladder algorithm of Table 3. The basic pro- 
cessor units implementing the Iattice and the ladder 
part of the propose adaptive algorithm are depicted 
in Fig. 1. 
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ec eb 

I . . i 
MAC-4 DIV-2 

k”= 
0 

II 

MAC-5 

kc 

Fig. 1. The basic lattice and ladder cells utilized by the multichannel adaptive lattice algorithm. Two types of processor units are needed. 
The first, denoted by MAC, performs multiply and accumulate operations. The second, denoted by DIV, performs divisions. Operator 
Z represents a unit delay shift. A detailed description of each processor is given below. 

MAC-l e’=e’+eb*kf,eb=eb+e’*kb 

MAC-2 kf=k’+e’*k”‘,kb=kb+eb*kwb 

MAC-3 a’=J.*a’+e‘*ef,ab=l*ab+eb*eb 
MAC-4 ec=ec+ebskc 

MAC-5 kc = kc + eb*kwc 

DIV-1 k”r = _ @jab, kwb = - e’/a’ 

DIV-2 k”” = - eC/ab 

Gl,+d”) 

Fig. 2. The basic lattice/ladder cells of the multichannel lattice 
algorithm, for the special case k = 3. 

3. I. Algorithm organization 

The basic lattice stage of the proposed multi- 
channel adaptive lattice algorithm updates the 
error variables from order ink to the following 
IfZk + k, through a sequence of k intermediate steps. 
The basic lattice stage and the corresponding signal 
flow graph illustrating the circulation of the a priori 
error variables are depicted in Fig. 2 (the remaining 
parameters are circulated in a similar way). It is 
built on kZ + k locally interconnected processing 
units that process single channel signals. Two types 
of lattice units are used, named LAT I and LAT II. 
The internal organization of LAT I is described in 
Fig. 1. LAT II is identical to LAT I, apart from 
a unit delay assigned to the backward errors and 
powers. In addition, a ladder unit, named LAD, is 
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Table 3 
A posteriori/a priori adaptive lattice multichannel algorithm 

FORi= OTO(k-l)DO 

e:,+i+I(N) = e:,+i(N) + e$Zi”(N)K,+i+I(N - 1) 

k:+,(N) = - E;~‘+~(N)/u.&(N) 

k:,+i+, (NJ = ki,+i+t(N - 1) - e:,+i+l(W~:+iW) 

&k+i+I(N) = Gax+i(f+‘) + ~~‘~~!‘(~)k~k+i+~(N) 
LET I = right-rotateLl 2 . . . k];, , 

FORp=OTO(k-1)DO 

LET Y = I(/J + 1) 

e$!‘+\i)l (N) = ~f,‘e$!+‘~“(N) + ez:‘+i(N)k$:i:‘,(N - 1) 

eZ:‘+,+ ,(N) = c$;)+~(N) + z~leg’*‘;:.‘)(N)k~:?i+,(N - 1) 

k::‘J’i+,(N) = - E:;$~(N)/u:;‘+~(N), 

k:;‘+$+“(N) = - (z”,’ E~~~~“(N))/(z~N’~~~~~(N)) 

k::+::‘,(N) = ki!h+::‘,(N - 1) + eiyii+ ,(N)k$yJi+,(N) 
k”“’ 

rrr+i+~(N)= k!!:‘+i+l(N- l)+e~::i+,(~)k~~~h=:)(N) 

$,y+::‘,(N) = z~N’E$‘+:~)(N) + E$$i(N)k;y+;$‘,(N) 

E::)+~+~(N) = E!$+:(N) + z”,‘&l~~“(N)k~:?i+l(N) 

aLy++i”(N) = laiy,!ili”(N - 1) + s~~~~ii’)(N)e~t;‘i”(N) 

~$y:‘:!i(N) = n~$“\i(N - 1) + &b(:)+i(N)ez;)+i(N) 

ENDFOR /I 

ENDFOR i 

utilized. It is depicted in Fig. 1. In the case of 
a multichannel filter having equal filter orders for 
all channels, i.e., pk = [pp.. . p], p such devices 
must be interconnected. Then, the overall hardware 
required is p(k2 - k) LAT I units, pk LAT II units 
and pk LAD units. 

When the multi index of the final filter 

cp* = CP1 Pz ... pk], where pi # pi, in general, a dif- 
ferent updating scheme has to be adopted. The 
order update procedure starting from el (N) to the 
final e;,(N) consists of k phases. During each phase 
s, error variables e&(N), e::‘::‘(N) and ezf’(N), 
i=l , . . . , s, are updated from stage m, to m,+, via 
s scalar iterations using the basic lattice cell. The 
remaining error variables e?:‘(N) and e:!:)(N), 
j=s+ 1, . ..) k, are updated using the ladder type 
recursions 

d!j!-i+l(JV 

=e z,!ii(N) + e~~~‘,+i”(N - l)kzs+,+,(N), (21) 

e~‘f’!i+l(N)=e~f!i+l(N), 

&ZjLi+ l(N) 

=& ~,~~i(N) + E~!~~~~)(N - l)kf;jv+s+.l(N), 

F~~!i+l(N)=E~f!i+l(N), 

k =f!‘j(N) = - &~~~i,(N)/cr~!~‘:i,(N - l), 

k?(‘li+ i(N) 

= k z,:ii+r(N - 1) + e~~~i+l(N)k~f’:‘j(N). 

53 

(22) 

(23) 

Let P’[s] represent a lattice cell of s-channels. 
Let Z’[s] denote the ladder part that corresponds 
to the joint process and Z’j[s], j = s + 1, . . . , k, 
denote the ladder parts that correspond to the 
forward predictors of order bigger than s. During 
phase s, the error variables sc are updated using 
ladder Z’[s]. The forward and backward prediction 
errors ebj and et j j = 1 
lattice _Y[cs] ‘while 

, . . . , s, are updated using the 
prediction errors ,fj 

j=s+l , . . . , k, are updated using the ladder; 
Zf’[s], j = s + 1, *.. ) k, respectively. The whole 
procedure consists of Ii= 1 P~,~+ 1 = p1 steps. The 
lattice algorithm of Table 3 is depicted in Fig. 3, for 
a special case of a three channel problem, k = 3, 
and final mutli indexp = [pl pz p3] = [7 4 23. 

In the special case when the channel lengths are 
equal, i.e., pi = pj, pk = [pp . . . p], the last phase, 
_Y[k], I’[k], is only utilized. 

The computational complexity of the proposed 
highly modular adaptive lattice LS algorithm of 
Table 3 is O(kP) MADS for a k-channel filter of 
order pk = [pi p2 . . . pk], P = c:= 1 pie When the 
filter coefficients are requested, additional O(kP’) 
MADS are needed as dictated by Table 1. The time 
and order recursions of Table 1 can be transformed 
to a static memoryless system once Eqs. (6) and (8) 
that compensate for the time shift in the backward 
prediction are taken into account. In the latter case, 
at each time, pure order recursions are performed 
for the computation of filter parameters. 

4. Simulation 

The performance of the proposed adaptive 
least squares lattice algorithm is illustrated by 
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ef’(n) 

ebl(n) 

tqn) 

eb2(n) 

Fig. 3. The complete lattice structure for a three channel filter of order pa = [7 4 21. 

simulations. A three channel FIR filter of order 
p3 = [7 4 2] was used as a test system. To investi- 
gate the tracking capabilities of the algorithm, the 
coefficients of the FIR filter were changed in the 
middle of the observation interval. The input sig- 
nals xi(n), x2(n) and x3(n) were generated by 
a three-channel AR model driven by independent 
white noise signals. A white noise signal of zero 
mean and unit variance is added at the output of 
the system, thus resulting to a signal to noise ratio 
(SNR) of 20 dB. Four different values of the forget- 
ting factor A have been investigated, i.e., Izr = 0.99, 
& = 0.975, A3 = 0.95 and A, = 0.9. The condition 

103, 
A =0.99 24.bits 

I I 

samfdes 

A =0.95 24-bits 

samples 

A =0.9 24-bits 

l"~'OW 6ooo 
samples 

Fig. 4(a). A comparison between the fast lattice LS adaptive 

algorithm and the NLMS, when full precision (24 bits of man- 

dissa) is used. 

number of the autocorrelation matrix associated 
with Eq. (2) was within the range of [200,400], 
depending on the value of the forgetting factor 1. 

The lattice algorithm of Table 3 was imple- 
mented in FORTRAN using single precision IEEE 
floating arithmetic (24-bits of mandissa). In addi- 
tion, to investigate the effects of finite arithmetic, 
the experiments were repeated using reduced pre- 
cision arithmetic. The performance of the algo- 
rithm was monitored by the ensemble averaged, 
squared, a priori prediction error, e:,(N). The en- 
semble average was taken over 1000 independent 
realizations of the experiments. 

103, 
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0 2000 4ccQ 6000 
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Fig. 4(b). A comparison between the fast lattice LS adaptive 

algorithm and the NLMS, when reduced precision (12 bits of 

mandissa) is used. 
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The proposed algorithm was tested against the 
multichannel fast RLS stabilized schemes [S], and 
the normalized LMS algorithm (read as the projec- 
tion algorithm in [7]). The F-RLS and the pro- 
posed fast lattice algorithm were both performed 
better than the NLMS algorithm, with respect to 
the convergence speed, the tracking capabilities 
and the minimum error attained. In fact, when no 
divergence effect occurred to the fast RLS, both LS 
algorithm followed the same trajectory. However, 
the fast lattice scheme were noticed to be more 
robust compared the fast RLS counterpart, when 
reduced precision is used and when the forgetting 
factor takes values not very close to one. The pro- 
posed fast lattice LS algorithm performed satis- 
factory in all experiments, for all A E {0.9,0.95, 
0.97X0.99) and for mandissa length up to 8 bits. 
On the contrary, the ‘stabilized’ fast RLS was no- 
ticed to be sensitive in cases when the forgetting 
factor was not kept very close to one, i.e, 
1 E {0.9,0.95} and when less than 16 bits of man- 
dissa were utilized. In these cases, re-initialization 
of the F-RLS was very often necessary. The perfor- 
mance of the proposed fast lattice LS algorithm 
compared to the NLMS algorithm is illustrated in 
Figs. 4(a) and 4(b), for 24 bits and 12 bits of man- 
dissa precision, respectively. The simulation results 
indicate that the proposed fast lattice LS adaptive 
algorithm has a good tracking capability and, in 
addition, has a nice numerical behavior in reduced 
arithmetic precision. 

5. Conclusion 

A highly efficient adaptive lattice algorithm for 
least squares multichannel FIR filtering has been 
developed. The proposed algorithm is explicitly 
update reflection coefficients, based on a priori and 
a posteriori error parametrization. It handles filters 

with different number of delay elements per input 
channel. Scalar only operations (addition, multipli- 
cation and division) are utilized and communica- 
tions is kept at a local level, allowing for full 
pipelining. The tracking capability, as well as the 
numerical stability and accuracy of the method, 
were experimentally demonstrated. FORTRAN 
code implementation of the algorithm can be pro- 
vided by authors. 
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