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Abstract—Heterogeneous networks using a mix of macrocells
and small cells are foreseen as one of the solutions to meet the
ever increasing mobile traffic demand. Nevertheless, a massive
deployment of small cell access points (SAPs) leads also to
a considerable increase in energy consumption. Spurred by
growing environmental awareness and the high price of energy,
it is crucial to design energy efficient wireless systems for both
macrocells and small cells. In this work, we evaluate a distributed
sleep-mode strategy for cognitive SAPs and we analyze the
trade-off between traffic offloading from the macrocell and the
energy consumption of the small cells. Using tools from stochastic
geometry, we define the user discovery performance of the SAP
and derive the uplink capacity of the small cells located in
the Voronoi cell of a macrocell base station, accounting for
the uncertainties associated with random position, density, user
activity, propagation channel, network interference generated by
uncoordinated activity, and the sensing scheme. In addition, we
define a fundamental limit on the interference density that allows
robust detection and we elucidate the relation between energy
efficiency and sensing time using large deviations theory. Through
the formulation of several optimization problems, we propose a
framework that yields design guidelines for energy efficient small
cell networks.

Index Terms—Small cell, cognitive radio, green communica-
tions, stochastic geometry, energy efficiency.

I. INTRODUCTION

OVER the last years mobile data traffic has risen expo-
nentially and along with this accruing mobile data de-

mand, energy consumption has increased considerably [1]–[3].
Driven by growing environmental awareness and increasing
electrical cost relative to the operation of mobile base stations
(MBSs), green wireless communications has become an active
field of research that tries to unite the opposing needs of
growing mobile data activity and energy efficiency [4]–[6].
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Conventional cellular networks based on the careful deploy-
ment of MBSs suffer from poor signal quality for indoor and
cell edge users. Furthermore, the explosive surge in mobile
data traffic accelerates the need for novel cellular architectures
to meet such demands [3]. The LTE-Advanced or beyond
standards propose heterogeneous networks (HetNet’s) that
consist of a macrocell network overlayed by small cells. The
macro-tier guarantees the coverage, while the overlay network
is a means to offload the data traffic from the macrocell
network and to satisfy the local capacity demand. The small
cells in this two-tier architecture can be micro-cells, pico-
cells or femto-cells, where the distinction between the different
types of small cells can be found in the size of the cells and the
capability of auto-configuration and auto-optimization. Small
cells can extend the network coverage and the reduced cell size
leads to higher spatial frequency reuse and increased network
capacity.

Although the introduction of heterogeneous networks can
resolve the capacity demand issue [7], [8], the overall energy
consumption is significantly increased by the installation of
these additional base stations. Motivated by the high traffic
demand fluctuations over space, time, and frequency, sleep
mode techniques are a promising strategy to overcome this
problem. For wireless sensor networks, the energy conserva-
tion by sleeping techniques for wireless devices running on
battery power has been studied in [9]. The IEEE 802.16e
and LTE standards support sleep mode strategies for mobile
terminals and the trade-off between energy efficiency and
response delay has been analyzed in [10]. Only some recent
work is dedicated to sleep mode techniques for small cell
access points (SAPs). In [11], the authors conclude that sleep
mode operation is effective when the cell size is small and
for light traffic conditions. Different sleep mode strategies
for SAPs are introduced in [12], such that the wake-up
mechanism can be driven by the SAP, the core network or the
user equipment (UE). For WiFi access points, the UE driven
approach has been studied in [13], but the reverse beaconing
adds complexity to the hardware and assumes knowledge
about the signal structure. In [14], the overall HetNet energy
consumption is minimized based on sleep mode techniques
for network-operated femtocells. This centralized sleep and
wake-up mechanism assumes traffic load and user localization
awareness, and increases the signaling overhead. Therefore,
it is attractive to investigate distributed sleep mode strategies,
which do not involve an augmented UE complexity and require
neither signaling nor user localization awareness.
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To allow a distributed decision approach, the SAP needs
cognitive capabilities to sense when a small cell user is
active within the SAP coverage [12]. In future heterogeneous
networks, cognitive capabilities will become essential not only
for the energy efficient operation of the small cell tier, but
also to overcome coexistence issues in multi-tier networks.
Specifically, spectrum or carrier sensing by the cognitive SAPs
enable interference avoidance and efficient spectrum allocation
[15]. Hence, cognitive small cells allow the deployment of
energy efficient and spectral efficient heterogeneous networks.
Many ideas can be borrowed from the field of cognitive radio
(CR). For cognitive radio networks (CRN), the trade-off be-
tween protection of the primary users (PU) and the throughput
of the secondary users (SU) has been addressed in [16]–
[18]. For SAP sleep mode techniques, this corresponds to the
trade-off between traffic offload by means of a high detection
probability and energy consumption, proportional to the false
alarm rate. Although spectrum sensing and cognitive radio are
intensely studied, there are still many issues that need to be ad-
dressed [19]–[22]. For instance, the cognitive capabilities are
usually assessed for a deterministic (worst case) user location,
while a random position of the user is of interest to determine
energy consumption. The capacity and energy efficiency of
base stations in heterogeneous networks has been studied in
[23], but the impact of aggregate interference in dense network
deployments has typically been neglected. Recent results show
that it is fundamental to consider aggregate interference to
accurately define the network performance [24]–[26].

In this work, we investigate how SAPs can be used to
offload the traffic from the macrocell network and how they
can exploit their sensing capabilities to enhance the energy
efficiency. Specifically, these energy efficient SAPs can save
power by entering into sleep mode when they are not serving
any active small cell users. Considering open access control,
the SAPs need to sense the transmissions from a macrocell
user to an MBS, and switch on the pilot transmissions when
user activity is detected within the SAP coverage. Due to the
simplicity of passive sensing, we assume that all SAPs perform
energy detection at the expense of being sensitive to noise
and interference uncertainties. Furthermore, the transmissions
from the macrocell user can be bursty, making the duty cycle
of the sleeping mode at each SAP difficult to design to ensure
a low probability of miss detection. Since the analysis of a
deterministic (e.g. worst case) user location does not provide
guidance for the definition of the SAP energy consumption,
it is crucial to evaluate the typical user case, that is, to
consider a user with random location within the SAP coverage.
Specifically, the main contributions of this work are listed as
follows:

• We formulate an average network energy consumption
model for the cognitive SAPs that are located within the
Voronoi cell of an MBS accounting for the base station
and user densities, detection performance, the sensing
strategy, bursty macrocell user activity, and uncoordinated
network interference uncertainties.

• We present a unified analytical framework that models the
performance of passive sensing for a typical user within
the SAP coverage, including the effects of propagation
channel and aggregate network interference.

• We derive tractable expressions of the aggregate through-
put and capacity that can be offloaded by the small
cells within an the MBS Voronoi cell. This allows us to
formulate the trade-off between energy consumption and
throughput/capacity as a set of optimization problems.

• We define the interference wall, beyond which the target
probability of detection and false alarm can not be
obtained no matter how long the sensing time. This is
a fundamental limit of the detection robustness, which
confines the region of interferer densities enabling an
energy efficient SAP design.

• Using techniques from large deviations theory, we deter-
mine how fast the false alarm rate converges to a sta-
tionary value as a function of the interferer density. The
obtained rate function gives insight into how the detection
performance affects the small cell energy consumption
and traffic offload.

The remainder of the paper is structured as follows. In
Section II, the system model is introduced. In Section III, the
energy consumption model and the sensing performance of
the SAP are discussed. The traffic that can be offloaded from
the macrocell is characterized in Section IV. In Section V,
the trade-off between traffic offload and energy consumption
is discussed by means of several optimization problems. The
limits of detection robustness and the implications on the
energy efficiency are discussed in Section VI. Numerical
results are shown in Section VII and conclusions are drawn
in Section VIII.

II. SYSTEM MODEL

A. Network topology

We consider a cellular network model that consists of a
first tier of MBSs distributed according to a homogeneous
Poisson point process (PPP) Θ with density λm, overlayed
with a network of SAPs distributed according to a PPP Φ
with density λs, where usually λs > λm. Modeling the
locations of SAPs and the more regular MBSs by means
of homogeneous PPPs is extensively discussed in literature
and has been validated by numerical analysis and compared
with actual base station deployments [27]. Moreover, recently
theoretical evidence has been given for the accuracy of the PPP
model [28]. The set of macrocells is known as the Poisson-
Voronoi tessellation of R2 with respect to Θ. The Voronoi cell
Cj corresponding to an MBS xj,m consists of those points in
R

2 which are closer to xj,m than to any other MBS and is
defined as Cj = {y ∈ R

2 | ‖y− xj,m‖ ≤ ‖y− xi,m‖, xi,m ∈
Θ\{xj,m}}. The SAPs that belong to Cj form the aggregate
Aj = ∪{xi,s | xi,s ∈ Φ ∩ Cj}, and applying Campbell’s
theorem the mean number of SAPs within an MBS Voronoi
cell is given by λs/λm [29]. The mobile users are scattered
over R2 according to a PPP Ψ with density λu.1 We consider
universal spectrum allocation where both tiers can access
the full spectrum and orthogonal frequency-division multiple
access (OFDMA) or time-division multiple access (TDMA) as
multiple access technique.2 The SAPs operate in open access

1Note that Θ, Φ, and Ψ are independent point processes.
2The analysis can be extended to orthogonal spectrum allocation and affects

the interferer densities, which is important for the performance detection and
the offload analysis discussed in Section III-B and IV, respectively.
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(OA) mode and are accessible for all users registered with
the operator of the SAP. In order to enable a distributed
sleep/wake-up scheme, the SAPs are foreseen of cognitive
capabilities. When an SAP does not serve an active user call,
it goes into sleep mode and senses periodically the macrocell
uplink channel to detect user activity. The SAP applies passive
sensing by means of an energy detector (ED) for reasons of
low complexity and low power consumption [30]. The ED
detection performance compared with other detection schemes
has been studied exhaustively in literature [31], [32]. We
limit our analysis to the ED since this scheme provides
a lower detection bound. Once the SAP detects an active
user in the macrocell uplink band within its coverage, the
SAP switches on and starts the transmission of pilot signals.
Subsequently, the UE reports the presence of the SAP to the
MBS and the UE is handed over to the SAP. We assume that
the uplink transmission power of the UE during the sensing
period is constant and that after handover to the SAP, the
UE adopts a lower and constant transmission power. It is well
known that the ED has no capabilities to differentiate between
the signal of interest (SoI) and interference or noise [30].
The measurements of the SAP under realistic conditions are
corrupted by network interference, which can originate from
macrocell users outside the SAP coverage, macrocell users
within the SAP coverage that are not registered with the SAP
operator, small cell users, cognitive devices using the same
uplink band, and spurious emissions. As a result, we consider
the case of the interfering nodes spatially distributed over the
entire plane according to a homogeneous PPP Ω with density
λ.3 For a homogeneous PPP, the probability that k nodes reside
within a region R depends on the density λ and the area AR
of the region R, and can be expressed as [33]

P[k ∈ R] = (λAR)k

k!
e−λAR , k = 0, 1, 2, ... (1)

The spatial model consisting of a macrocell network overlayed
with multiple small cells is illustrated in Fig. 1.

B. Activity model

We define the activity of the UEs and SAPs using a time-
slotted model as depicted in Fig. 2. Assuming a fixed slot
duration T , the SAP senses the channel over a sensing time τs
and is in active mode over T−τs when an active mobile user is
detected4. Both the UE and the interfering nodes are assumed
to have a bursty traffic mainly due to the mobility of the nodes,
the switching between on and off states, and the switching
between carriers in a multi-carrier system. Thus, the activity
of an SAP, a UE and the interfering nodes in a given slot can
be modeled as mutually independent Bernouilli processes with
success probabilities ps, pu, and pI, respectively. Moreover,
the activity of the SAP, the UE, and the interfering nodes

3Note that the model allows to include the presence of groups of interferers
with different transmission power. The superposition of PPP’s with densities
λ1, λ2, ... results in a PPP with density equal to a weighted sum of the
densities, where the weighting factor depends on the transmission power Pi

of the different PPPs and is given by λ =
∑

i λi(Pi/Pu)2/ν , with Pu the
transmit power of the UE, and ν the path loss exponent.

4Active mode consists of transmitting pilot signals, receiving signals, and
signal processing. Note that we neglect the time related to the handover
process for simplicity.

Fig. 1. Spatial distribution of the MBSs, SAPs, and the UEs.

transmission/sleep

UE

SAP

sensing

sTs

T

Fig. 2. Time slotted model, representing the activity of UE and the SAP
over time.

is assured to be independent across different slots. By the
colouring theorem of PPPs, the active nodes that contribute to
the interference form a PPP with density pIλ [33]. We will
further refer to ps as the sensing probability.

III. COGNITIVE SAP

In the following, we provide the average network energy
consumption model for the SAPs and we characterize the
relationship between the energy consumption and the detection
performance of the cognitive SAP. The presented analysis is
generic and accommodates for random locations of both the
UE and the interfering nodes.

A. Energy consumption model

Three main contributions to the power consumption of
cognitive SAPs can be identified: the power related to the
circuit synchronization Ξc, the sensing power Ξs, and the
processing power Ξt during active mode [34]. We consider the
circuit synchronization is active over the entire time slot. The
SAP senses the uplink channel according to a sensing scheme
and the corresponding energy consumption is proportional
to the sensing time. The UE signal detection is a binary
hypothesis test problem. In the presence of a UE signal
(hypothesis H1), the SAP starts the pilot transmissions when
it senses the uplink channel and correctly detects the user
activity. In the absence of the UE signal (hypothesis H0), the
SAP starts the pilot transmissions when it incorrectly detects
the presence of a user. The probability that there resides at
least one active UE within the coverage of a typical SAP is
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ψVED|H1
(jω) =

1

(1− 2jωσ2
W )

N/2

[
1−2F1

(
1,

2

ν
; 1 +

2

ν
;
Rν(1− 2jωσ2

W )

jωPu

)]

× exp

{
−22/νγ cos(π/ν)

∣∣∣∣ jω

1− 2jωσ2
W

∣∣∣∣2/ν
[
1− sign

(
jω

1− 2jωσ2
W

)
tan(π/ν)

]}
(10)

given by pUE = 1−exp(−puλuπR2). Therefore, the expected
SAP energy consumption per cell can be modeled as

Etot =
λs
λm

[ΞcT + pUE {ps [Ξsτs + PdΞt(T − τs)]}
+ (1− pUE) {ps [Ξsτs + PfaΞt(T − τs)]}] (2)

where Pd and Pfa are the probability of user activity detection
and false alarm, respectively.

B. Non-coherent detection performance

Since the presence of multiple simultaneous UE transmis-
sions in the macrocell uplink band eases the detection process,
we consider the more challenging scenario with a single
UE within the coverage of an SAP to define the detection
performance. At the cognitive SAP, the received signal can be
written as

H0 : r(t) = n(t) + i(t)

H1 : r(t) =
h(t)

r
ν/2
f

s(t) + n(t) + i(t) (3)

where s(t), n(t), and i(t) represent the SoI, the additive
white Gaussian noise and the aggregate network interference,
respectively. The impulse response of the flat fading channel
between the UE and SAP is represented by h(t), rf is the
distance between the UE and the SAP, and ν is the power
path loss exponent. To facilitate the analysis, we consider that
the typical SAP is at the origin of the Euclidean plane and the
coverage of the SAP is a circular area around the origin with
radius R. The energy of the SoI at the SAP can be written
as Pur

−ν
f h2, where Pu is the transmit power of the UE. We

assume there is no power control in the macrocell network,
and therefore, Pu is independent of the distance between the
UE and the MBS.5 The noise term has a zero-mean Gaussian
distribution n(t) ∼ N (0, σ2

n). The interfering nodes consist
of macrocell users, small cell users belonging to other SAPs,
or (cognitive) devices which are active on the same band.
Therefore, the aggregate network interference measured at the
SAP can be written as

i(t) = Re

{ ∞∑
l=1

il(t)

}
= Re

{ ∞∑
l=1

hlX
i
l

r
ν/2
f,l

}
(4)

where we model the lth interferer amplitude Xi
l = X i

l,1 +

jX i
l,2 as a zero-mean complex random variable (r.v.). Note

that the r.v.’s Xi
l are circular symmetric, and independent and

identically distributed (i.i.d.) in l since the interferers transmit
independently. Therefore, with the interfering nodes scattered

5Since the users that benefit most from the deployment of small cells are
located far away from the MBS, our model holds for the cell edge users who
transmit at maximum power.

over R2 according to a PPP, the aggregate network interference
follows a symmetric stable distribution [35], [36]

i ∼ S(α = 4/ν, β = 0, γ = πλC−1
4/νE[|hlX i

l,p|4/ν ]) (5)

with Cx defined as

Cx �
{

(1−x)
Γ(2−x) cos(πx/2) , x �= 1,
2
π , x = 1.

(6)

The decision variable V determines the presence or absence
of the SoI. For the ED, V is defined as

V =
1

τs

∫ τs

0

(
h(t)

r
ν/2
f

s(t) + n(t) + i(t)

)2

dt. (7)

After sampling and considering block fading, the decision
variable can be expressed as

VED =
1

N

N∑
k=1

r2[k] =
1

N

N∑
k=1

(
h

r
ν/2
f

s[k] + i[k] + n[k]

)2

(8)
where N = 	τsfs
 with fs the sampling frequency equal
to the Nyquist rate6. The probability of detection is defined
as the probability that VED surpasses the threshold ζ in the
presence of the SoI and is given by Pd = P[VED > ζ|H1].
The probability of false alarm is defined as the probability
that VED surpasses the threshold in absence of the SoI and
is given by Pfa = P[VED > ζ|H0]. To calculate Pd and Pfa,
we propose a generic approach based on the characteristic
function (CF) of the decision variable. Using the inversion
theorem, the probability that the decision variable surpasses
the threshold can be found as

P[VED > ζ] =

1

2
− 1

2π

∫ ∞

0

Re

{
ψVED(−jω)ejωζ − ψVED(jω)e

−jωζ

jω

}
dω

(9)

where ψVED represents the CF of VED. Under H1, ψVED is
provided in the following theorem for a typical user, i.e. a
user with random location within the small cell coverage.

Theorem 1: In the presence of Rayleigh block fading, the
CF of the ED decision variable for a typical user in the
presence of interference uncertainties is given by (10) where
2F1(.) is the Gaussian hypergeometric function.

Proof: See Appendix A.
For the calculation of Pfa in the presence of aggregate

interference, we apply the same methodology as in Appendix
A, yet in absence of the SoI. The CF of the decision variable
under H0 can be expressed as (11) at the top of the next page,
and Pfa can be obtained applying the inversion theorem.

6For simplicity, we assume N = τsfs
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ψVED|H0
(jω) =

1

(1− 2jωσ2
W )

N/2

× exp

{
−22/νγ cos(π/ν)

∣∣∣∣ jω

1− 2jωσ2
W

∣∣∣∣2/ν
[
1− sign

(
jω

1− 2jωσ2
W

)
tan(π/ν)

]}
(11)

C̄(λ,R, ν) =
1

R2

∫ R

0

∫ ∞

0

exp

(
−σ

2
n

Pu
(ex − 1)rνf

)
exp

(
−2π2

ν
csc

(
2π

ν

)
λ

(
Pi

Pu
(ex − 1)

)2/ν

r2f

)
dx2rfdrf (13)

IV. TRAFFIC OFFLOAD

In order to evaluate the trade-off between the energy con-
sumption and the achievable traffic offload, we define the
small cell aggregate offload capacity and aggregate offload
throughput which reflect the traffic that can be accommodated
by the SAPs in a macrocell and also account for the sensing
probability, the sensing time, and the sensing performance.
We consider a saturated resource model, intending that each
user always has a non-empty queue of data to be transmitted.
The small cell capacity assumes adaptive modulation while
the small cell throughput assumes a fixed transmission rate.
Note that an exact analysis of the aggregate offload capacity
and throughput requires an exact distribution of the area of
the small cells which constitute a multiplicatively weighted
Voronoi tessellation. The area distribution of a Voronoi tessel-
lation is an open research problem for which an approximation
has been proposed in [37]. Yet, in order to present a tractable
analysis, we consider a distance based association policy with
respect to the small cells. This relaxation of the original
problem yields a unified framework that allows us to obtain
both the detection performance and aggregate offload capacity
and throughput.

A. Aggregate Offload Capacity

The aggregate capacity that can be offloaded per macrocell
is given by the typical user uplink capacity in an SAP
multiplied with the number of loaded and active SAPs within
the macrocell coverage. Assuming OFDMA or TDMA, the
typical user uplink capacity in an SAP equals the sum-capacity
of N users sharing the same resource block. The expected
number of SAPs per macrocell is given by λs/λm [29]. We
assume a distance based access policy with respect to the
SAPs, where access can be granted when the mobile user is
within the coverage R of the SAP. For this access policy, the
probability that an SAP has at least one active user within
the SAP coverage can be found by the complement of the
null probability of a Poisson r.v. in (1) and is given by
pl = 1 − exp(−puλuπR2). Let N (l)

s = plλs/λm be the
expected number of SAPs in a macrocell with active users,
then we define the capacity that can be offloaded from an
MBS that accounts for the sensing procedure as follows:

ξc(τs) = N (l)
s psPd

T − τs
T

C̄(λ,R, ν) (12)

where C̄ = E[ln(1 + η)] is the average channel capacity in
uplink for a typical UE7 and η is the signal-to-interference-
and-noise ratio (SINR). The aggregate offload capacity is a
function of the densities of MBSs, SAPs, and mobile users,
where λu affects the offload capacity by changing the number
of loaded small cells.8 When the SoI and all the interfering
signals are affected by Rayleigh fading, we can derive the
average channel capacity in the next theorem as a special case
of [38].

Theorem 2: A typical user is uniformly distributed over
the coverage of the SAP, i.e. a circular area with radius R,
while the interfering nodes are spatially scattered over the two-
dimensional plane R

2 according to a homogeneous PPP. The
average channel capacity in the uplink of a typical user within
the coverage of the associated SAP for a Rayleigh fading
channel is given by (13) where Pu and Pi are the transmission
power of the UE and of each interferer.

Proof: See Appendix B.
Using Theorem 2, we formulate the following corollary for a
special case.

Corollary 1: For ν = 4, the average channel capacity of a
typical user can be expressed as

C̄(λ,R, 4) =

∫ ∞

0

1

2R2

√
π

b(x)
exp

(
a2(x)

4b(x)

)

×
[
erfc

(
a(x)

2
√
b(x)

)
− erfc

(
a(x) + 2b(x)R2

2
√
b(x)

)]
dx (14)

where a(x) = (π2/2)λ
√
(ex − 1)Pi/Pu and b(x) =

(σ2
n/Pu)(e

x − 1).
Proof: The proof of the corollary follows straightfor-

wardly from [27] with some simple mathematical manipula-
tions.
The expression of the average channel capacity when ν =
4 can be bounded using the bounds of the Q func-
tion exp(−x2/2)/√π(x/√2 +

√
x2/2 + 2) < Q(x) <

exp(−x2/2)/√π(x/√2 +√x2/2 + 8/π).

B. Aggregate Offload Throughput

Assuming a constant transmission rate, the throughput that
the small cell tier can accommodate and that accounts for the

7Note that we consider Xi,l complex Gaussian and the interferers quasi-
static.

8Note that we assume here that the coverage areas of different SAPs do
not overlap, which is realistic considering a reduction of the coverage range
with increasing small cell density.
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Ps(ηt) =
1

R2

∫ R2

0

exp

(
−σ

2
n

Pu
ηtx

ν/2

)
exp

(
−2π2

ν
λ

(
Piηt
Pu

)2/ν

csc

(
2π

ν

)
x

)
dx (16)

sensing strategy can be expressed as

ξt(τs, ηt) = N (l)
s psPd

T − τs
T

ρ (15)

where ρ = ln(1 + ηt)Ps(ηt) is the throughput in uplink for
a typical UE, ηt is the target SINR, and where the success
probability is defined as Ps(ηt) = P[η > ηt].

Theorem 3: The success probability for a typical user in
the coverage of an SAP and in the presence of network
interference is given by (16).

Proof: See Appendix C.
For the interference limited case, (16) becomes

Ps(ηt) =
exp(−ϑR2)− 1

ϑ
(17)

where ϑ = πλ(2π/ν) csc(2π/ν)(Piηt/Pu)
2/ν . For the special

case of ν = 4, we formulate the following corollary.
Corollary 2: For ν = 4, the success probability of a typical

user can be expressed as

Ps(ηt) =
1

2R2

√
π

d
exp

(
c2

4d

)

×
[
erfc

(
c

2
√
d

)
− erfc

(
c+ 2dR2

2
√
d

)]
(18)

where c = π2

2 λ csc
(
π
2

)
(ηtPi/Pu)

1/2 and d = σ2
nηt/Pu.

Proof: Similar to proof in [27].

V. TRAFFIC OFFLOAD VERSUS ENERGY CONSUMPTION

TRADE-OFF

In this section, we show how the framework developed in
Sections III and IV can be useful for the design of energy
efficient small cell networks by means of several optimization
problems.

A. Optimization of energy consumption constrained by traffic
offload

In the following, we first investigate the energy minimiza-
tion with regard to the sensing time, and then optimize the
energy consumption with respect to sensing time and sensing
probability.

1) Optimization of sensing time: In this problem, the objec-
tive of the system design is to offload the traffic whenever there
is an active user within the coverage of an SAP. Therefore, a
constraint on Pd is imposed and the problem can be formulated
as

min
τs

Etot

s.t. Pd(τs, ζ) ≥ P
∗
d (19)

where 0 ≤ τs ≤ T and P
∗
d is the target probability of detection.

For a given sensing time, a threshold ζ∗ can be chosen as to
satisfy the constraint Pd(τs, ζ

∗) = P
∗
d. Let E2(Pd, τs) and

E3(Pfa, τs) denote the second and the third term of Etot in

(2), respectively. If we select a detection threshold ζ′ < ζ∗

such that Pd(τs, ζ
′) > Pd(τs, ζ

∗) and Pfa(τs, ζ
′) > Pfa(τs, ζ

∗),
then we also have E2(Pd(τs, ζ

′), τs) > E2(Pd(τs, ζ
∗), τs)

and E3(Pfa(τs, ζ
′), τs) > E3(Pfa(τs, ζ

∗), τs). Therefore, the
optimal solution is achieved under the equality constraint and
the optimization problem can be reformulated as

min
τs

λs/λm[ΞcT + psΞsτs + pUEpsP
∗
dΞt(T − τs)

+ (1 − pUE)psPfa(τs, ζ
∗)Ξt(T − τs)]. (20)

For the special case of a user with fixed position and using
the Gaussian approximation for the decision variable, the
threshold value corresponding with P

∗
d is given by [32]

ζ∗ = σ2
n(1 + η)[1 +Q−1(P∗

d)
√
2/(τsfs)] (21)

and Pfa under the constraint of Pd is given by

Q
(
(1 + η)[1 +Q−1(P∗

d)
√

2/(τsfs)]− 1√
2/(τsfs)

)
. (22)

Under this scenario, we formulate the following proposition.
Proposition 1: For a user with a fixed position and using

the Gaussian approximation, the optimization problem as
defined in (20) has a unique optimal solution τ∗s .

Proof: See Appendix D
2) Joint optimization of sensing time and sensing probabil-

ity: Since it is energetically inefficient to sense continuously,
to reduce idle listening we optimize the energy consumption
with respect to ps and τs subject to constraints on ξc and Pd.
The optimization problem can be formulated as

min
ps,τs

Etot

s.t. ξc ≥ ξ∗c , Pd ≥ P
∗
d (23)

which can be solved applying a two-step approach. For every
value of τs ∈ [0, T ], the optimal sensing probability can be
calculated reformulating the optimization problem as follows:

min
ps

Etot

s.t. ξc ≥ ξ∗c , Pd ≥ P
∗
d. (24)

For a fix value of τs, we follow the argumentation of Section
V-A to conclude that the optimal sensing probability can
be found under the equality constraint. The optimal sensing
probability is given by

p∗s =
ξ∗c

N
(l)
s P

∗
d
T−τs
T C̄

. (25)

To present a tractable analysis, we consider a user at a
fixed distance from the SAP and apply the Gaussian ap-
proximation for the decision variable. The minimal energy
consumption can be found by inserting (25) into (2). With
Pd = P

∗
d, Pfa = Q((ζ∗ − σ2

n)/(
√
2/(τsfs)σ

2
n)), and ζ∗ =
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Q−1(P∗
d)
√
2/(τsfs)σ

2
n(1 + η) + σ2

n(1 + η), (23) can be
rewritten as

min
τs
K(τs) = min

τs

ξ∗T

N
(l)
s P

∗
d(T − τs)C̄

Ξsτs

+
ξ∗TΞt

N
(l)
s P

∗
dC̄

(pUEP
∗
d + (1− pUE)Pfa(τs, ζ

∗)) (26)

where Pfa(τs, ζ
∗) = Q

(
Q−1(P∗

d)(1 + η) + η
√
τsfs/2

)
.

Since K(τs) is differentiable on [0, T ], and K′(τs) is increasing
on [0, T ], K(τs) is convex and there exists an optimal τ∗s
for (26). For the limits of the sensing time interval, the first
derivative of K is given by

lim
τs→T

K′(τs) = ∞
lim
τs→0

K′(τs) = ξ∗Ξs

P
∗
dC̄

+ ξ∗TΞt

P
∗
dC̄

(1 − pUE)P
′
fa(τs, ζ

∗) (27)

where the last expression is negative if P
′
fa(0, ζ

∗) <
−Ξs/(ΞtT (1 − pUE)). Under this condition, the optimal
sensing time can be found in the range [0, T ] by applying
the bisection algorithm with tolerable sensing time error ε. The
two-step optimization is illustrated in the following algorithm.

Algorithm 1 Joint optimization of the sensing time and
sensing probability

Initialise τmin ← 0, τmax ← T
while τmax − τmin > ε do
τs ← (τmin + τmax)/2
p∗s ← ξ∗T/(P∗

d(T − τs)C̄)
if ∂Etot(p

∗
s , τs)/∂τs < 0 then

τmin ← τs
else
τmax ← τs

end if
end while

B. Optimization of QoS under energy constraint

The system designer can decide to limit the energy con-
sumption of a small cell. In this scenario, the optimization
problem can be cast as

max
τs

ξc(τs)

s.t. Pfa ≤ P
∗
fa. (28)

Following a similar reasoning as in Section V-A, we can show
that the optimal solution can be found under the equality
constraint. If we consider network interference, the detection
threshold ζ can be found numerically using (9) and (11).
In the case when we apply the Gaussian approximation for
the decision variable, the threshold satisfying the constraint is
given by ζ∗ = σ2

n(1+
√
2/(τsfs)Q−1(P∗

fa)). The optimization
problem can now be reformulated as

max
τs

Q
(

ζ∗ − σ2
n(1 + η)√

2/(τsfs)σ2
n(1 + η)

)
(T − τs). (29)

With a change of variable (ζ∗−σ2
n(1+η))/(

√
2/(τsfs)σ

2
n(1+

η))→ u, it can be shown that there exists an optimal sensing
time that yields the optimal capacity. Specifically, the optimal
sensing time can be found as follows

∂ξc(τs)

∂τs
= N (l)

s psC̄

[
−Q(u) + (T − τs)e

−u2/2

√
2π

du

dτs

]
= 0

(30)
where the optimal solution can be found numerically.

VI. SAP PERFORMANCE LIMITS

In the former section, we illustrated how the proposed
framework can be used to design energy efficient SAPs. In
this section, we focus on the limits of the energy detector and
obtain an expression of the Pfa decay rate as a function of
the aggregate network interference. As such, in the context
of green communications, this analysis confines a region of
interferer densities where the cognitive SAP can be used
advantageously in order to reduce the network wide energy
consumption.

A. Interference wall

In [32], [39], environment-dependent uncertainties are
shown to be the cause of the so-called SNR wall, below which
the detector is not robust regardless the sensing time. Noise
uncertainty caused by the noise estimation has been discussed
in [40]. An SAP with a UE within its coverage finds itself
in a high-SNR environment, and therefore, the SNR-wall due
to noise estimation is not relevant in this scenario. However,
another source of uncertainty is the network interference. In
the following, we derive an expression of the noise uncertainty
due to the network interference.

1) Unbounded path-loss model: Under H0, the decision
variable can be written as

VED =
1

N

N∑
k=1

(i[k] + n[k])2. (31)

As discussed in Appendix A, the network interference
can be decomposed as i[k] =

√
UG, where U is a

skewed stable distribution and G follows a normal dis-
tribution. Therefore, the received signal under H0 condi-
tioned on U can be expressed as a normal r.v. r[k]|H0,U ∼
N (0, σ2

n + 2γν/2U). With γ defined as in (5), the vari-
ance of r[k]|H0,U can be written as σ2

tot = σ2
n +

2γν/2U = σ2
n(1 + 2ηi(πC

−1
4/νE[|hlX i

l,p|4/ν ])ν/2λν/2U), such
that ηi is the interference-to-noise ratio (INR). Let G =
2ηi(πC

−1
4/νE[|hlX i

l,p|4/ν ])ν/2U , then the total variance takes

values in the interval σ2
tot ∈ [σ2

n, σ
2
n(1 + λν/2G)] since the

skewed stable distribution U only takes positive values. For
high values of the sensing time, the central limit theorem
can be applied and Pd and Pfa can be found in terms of Q-
functions. In order to be robust with respect to the network
interference, we get

Pfa = Q
(

ζ − (1 + λν/2G)σ2
n√

2/N(1 + λν/2G)σ2
n

)

Pd = Q
(

ζ − (1 + SNR)σ2
n√

2/N(1 + SNR)σ2
n

)
. (32)
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I =
2

ν/2− 1
(d2−ν

min − d2−ν
max)

(
(α− 3)(α− 2)(d2−ν

min − d2−ν
max)(ν − 1)

(d2−2ν
min − d2−2ν

max )(ν/2− 1)Piσ2
h

) 2−α
2 + 1

2 (α−2)

ηiπσ
2
h. (36)

We define the sample complexity N∗ as the sensing time
needed to obtain the target Pd and Pfa. Eliminating ζ from
the equations in (32) and solving to N , the sample complexity
can be written as

N∗ =
2(Q−1(Pfa)(1 +Gλ2)−Q−1(Pd)(1 + SNR))2

(SNR−Gλν/2)2 .

(33)
It follows that as λ → (SNR/G)2/ν , we have N∗ → ∞.
In other words, a target Pfa and Pd cannot be attained
within a finite sensing time for some interfering node density
approaching (SNR/G)2/ν . We call this limit the interference
wall λwall,s and note that λwall,s is a function of the SNR, INR,
the power path loss exponent, and the fading. However, to
calculate G, a percentile of the distribution has to be selected
that corresponds to a worst case, due to the heavy tails of the
stable distribution.

2) Bounded path-loss model: The heuristic approximation
based on the stable distribution is computationally intensive
and sensitive to the selection of the percentile. In order to
find a solution with higher accuracy, we consider that the
interferers are located in the annulus A, defined by the radii
dmin and dmax. Under such conditions, it can be shown that
i[k] in (31) follows a truncated stable distribution [41]

i[k] ∼ St(γ
′, α = 4/ν, g) (34)

where α corresponds to the characteristic exponent of the sta-
ble distribution, γ′ corresponds to the dispersion, and g reflects
the decaying of the tail of the truncated stable distribution.
The coefficients γ′ and g can be determined by the method
of the cumulants, by imposing the equality of the second and
fourth cumulant of the truncated stable distribution with the
respective cumulants of the network interference. Applying
the approach of Section VI-A1, we further approximate the
interference by a Gaussian r.v., such that the received signal
follows a normal distribution r[k]|H0

∼ N (0, σ2
n+σ

2
i ), where

σ2
i represents the second order moment of the truncated stable

distribution

σ2
i = E[i2[k]] =

∂2Mi(t, λ)

∂t2
|t=0 = σ2

nIλ (35)

where Mi(t, λ) is the moment generating function (MGF) of
the truncated stable distribution. After some manipulations,
I can be expressed as (36). Note that the variance of the
network interference is linear in the interferer density λ and
the parameter I = f(dmin, dmax, ν, ηi, σ

2
h). For ν = 4,

the parameter I further simplifies to 2(d−2
min − d−2

max)Piπσ
2
h.

Eliminating ζ from the expressions of Pd and Pfa, the sample
complexity can now be expressed as

N∗ =
2(Q−1(Pfa)(1 + Iλ)−Q−1(Pd)(1 + SNR))2

(SNR− Iλ)2 (37)

and the interference wall is given by λwall,t = SNR/I.

B. False alarm decay

To express the relationship between energy consumption
and interfering node density, we determine how fast Pfa

converges to its target value. As such, we provide a tool to
evaluate how increasing the sensing time affects the energy
efficiency. A direct method to obtain the PDF of VED as
a function of the sensing time is cumbersome9. Instead, we
will use tools from large deviations theory to determine how
fast the target Pfa can be reached. According to the Cramer
theorem, we have for interference-limited networks

Pfa(ζ) = P[1/N
∑
N

i2[k] > ζ] ≤ e−NI(ζ) (38)

which decays exponentially with the sensing time and the
decay rate is determined by the rate function I(x). In order
to have finite moments, we model the aggregate interference
power IΩ =

∑
i2[k] according to a truncated stable distribu-

tion. The CF of the truncated stable distribution is given by
[42]

ψIΩ(jω) = exp
(
γ′Γ(−α′)

[
(g − jω)α′ − gα′])

(39)

where α′ is chosen equal to the characteristic exponent of
the stable distribution in the unbounded path loss model. The
parameters of the truncated stable distribution can be found
using the method of the cumulants. From (39), the cumulants
of the truncated stable distribution can be expressed as

κI(n) =
1

jn
dn

dωn
lnψIΩ(jω)

∣∣∣
ω=0

= (−1)nγ′Γ(−α′)gα
′−nΠn−1

i=0 (α
′ − i). (40)

Building on Cambell’s theorem [41], the cumulants of the
aggregate interference can be expressed as

κ(n) = Pn
i

2πλ

2− nν (d
2−nν
max − d2−nν

min )μh2(n). (41)

Using (40) and (41), the parameters γ′ and g can be written
as a function of the first two cumulants as follows

γ′ =
−κ(1)

Γ(−α′)α′
(

κ(1)(1−α′)
κ(2)

)α′−1

g =
κ(1)(1− α′)

κ(2)
. (42)

Since i2[k] are assumed to be i.i.d., the Cramer theorem can be
applied and we can express the rate function as the Legendre-
Fenchel transform of the logarithmic MGF

I(x) = sup
θ

(
θx− γ′Γ(−α′)[(g − θ)α′ − gα′

]
)
. (43)

For θ < g, let the first derivative be equal to zero and solving
to θ for ν = 4, we have

θ = g −
(−γ′Γ(−α′)

2x

)2

. (44)

9Note that we expressed the CF of VED in Section III-B
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Fig. 3. The success probability in the presence of sparse and dense interferers.

Substituting θ in (43), the expression of the rate function is
given by

I(x) = gx+
√
gγ′Γ(−α) + (γ′Γ(−α′))2

4x
. (45)

VII. NUMERICAL RESULS

In this section, we present some numerical results that
provide insight into the trade-off between energy consumption
and traffic offload of the SAPs within a MBS Voronoi cell.

A. Traffic offload

Figure 3 depicts the success probability for a typical user
within the coverage of an SAP. With the interferers distributed
according to a PPP, this figure illustrates that the success
probability decreases drastically with increasing interfering
node density. Figure 4 shows PdC̄ (the uplink capacity of
a typical user in the SAP coverage corrected for the detection
probability) as a function of the interferer density. The figure
illustrates the combined effect of the increasing detection
performance and the decreasing average channel capacity with
λ.

B. SAP energy efficiency

Since this work focuses on the trade-off between the energy
consumption and the aggregate offload throughput and capac-
ity, it is meaningful to analyze how the energy consumption
depends on the interferer density. In the following numerical
examples, we consider that SNR = 3 dB defined for the UE
at the edge of the SAP coverage R = 20, while the INR =
10 dB defined at a distance of 1 meter (far-field assumption).
We consider the densities of MBSs, SAPs, and users to be
λm = 10−6 m−2 , λs = 10−5 m−2, and λu = 10−4 m−2.
From (2), we observe that the power consumption consists
of three components Ξc, Ξs, and Ξt, which we assume to be
constant and given by Ξc = 6W , Ξs = 4W , and Ξt = 5W
[43]. Unless otherwise specified, we set the probabilities
pI = 0.1, ps = 1, and pUE = 0.1. Furthermore, we let the
frame length T = 400/fs and the maximum duty cycle (DC)
is 25 %.
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Figure 5 shows the total energy consumption considering
a constant target Pd and a constant threshold, respectively.
We observe that for all scenarios the energy consumption
grows with increasing interfering node density. This can be
ascribed to the fact that the energy consumption is linear
in Pd and Pfa. As more energy is provided to the ED
with increasing interferer density, Pd and Pfa increase for
the constant threshold scenario. In this numerical example,
pUE = 0.1 and therefore, the increase of energy consumption
is dominated by Pfa. If information is available about the
interference environment, the threshold can be altered such
that Pd = P

∗
d. Raising the threshold with the interferer density,

moderates the increase of Pfa and the energy consumption,
which is reflected in the figure. This means that the knowledge
of the interference environment allows to improve the energy
efficiency of small cell networks.

Figure 6 illustrates the effect of the SAP coverage range
and the interferer node density on the energy consumption.
The energy consumption increases with almost 50 % when R
varies from 15 to 50 m. The sensing time is fixed to N = 15
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samples and Pd = P
∗
d = 0.9 for all values of the coverage. To

satisfy the constraint on Pd, the detection threshold decreases
for a larger coverage, and as a consequence Pfa increases.
This is reflected in the total energy consumption. From the
numerical results presented in Fig. 6, we can conclude that
the energy consumption is affected considerably by changing
the SAP coverage due to the strong relation between the user
detection performance and the coverage range.

In Section V-A2, we defined an optimization problem that
minimizes the energy consumption subject to constraints on
both the traffic offload and the detection probability. Figure 7
depicts the objective function (23) of the energy consumption
optimization problem for different interferer densities. We
ascertain the convexity of the energy consumption of all SAPs
belonging to a macrocell Voronoi cell subject to constraints
on Pd and ξc. The initial decrease of the energy consumption
is due to the decrease of Pfa with the sensing time until
Pfa reaches a stationary value. Any further increase of the
energy consumption is related to the sensing energy accruing
with the sensing time. Furthermore, this example reveals that
for increasing interferer density, the optimal sensing time
decreases, which can be ascribed to a higher stationary Pfa

with increasing λ. The impact of λ on the optimal sensing
time is however negligible. This result highlights that the
proposed framework can be used to find the optimal sensing
time and sensing probability. Moreover, we observe that the
energy consumption can be improved considerably and the
energy consumption gain by joint optimization of τs and ps
increases with larger interferer density.

To elucidate the trade-off between the energy consumption
and the traffic offload, we define the energy efficiency as ς =
ξc/Etot. Figure 8 shows the effect of the sensing time and
the interferer density on the energy efficiency. We observe that
there exists an optimal value of the sensing time balancing the
two opposing requirements. With respect to the optimization
of the energy consumption subject to a constraint on Pd, this
figure shows that with increasing interferer density the optimal
sensing time shifts to smaller values. This effect is related to
the linear decrease of the traffic offload with increasing sensing
time, as can be verified in (12) or (15).
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Defining the load of a typical base station (SAP or MBS) as
the number of active users within the coverage, we notice that
the small cell load is related to the density of the active users
and the small cell coverage. Owing to the major coverage
differences between the tiers, the load of a typical SAP
and MBS differ considerably such that the aggregate offload
capacity depends on λm, λs, and λu. Figure 9 illustrates how
the energy consumption and the traffic offload of the SAPs
within a macrocell vary as a function of λu and how they
relate. The numerical results illustrate the impact of the quality
of the cognitive capabilities on both the energy consumption
and traffic offload. In this scenario, we assume λu to vary as
10−6 < λu < 10−3 and that SIR = 0dB. For sensing DC =
0.05, the energy efficiency ς is clearly superior than for higher
values of the duty cycle. In case of perfect sensing and low
values of the load, the energy consumption is lower than the
curves with realistic detection performance due to Pfa = 0,
and this effect diminishes with increasing load.
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C. Performance limits

Figure 10 shows the sample complexity to satisfy a target
Pfa and Pd for increasing interferer density. This figure
illustrates the fundamental limit of the interfering node density
under which the SAP can robustly detect the macrocell user
presence. Beyond the interference wall, the noise uncer-
tainty becomes too big to distinguish between SoI or noise.
The curves are drawn using the 87 percentile of the stable
distribution, the truncated stable distribution and numerical
simulations. For dmin = 1 and dmax = 100, the approaches
with the stable and the truncated stable distribution are in
good agreement and correspond well with the numerical
simulation. Figure 11 shows the Pfa decay rate as expressed
in (45) as a function of the threshold x for different values
of the interference power and the interferer density. It can be
observed that with increasing density and interference power
the rate function decreases. Thus, the rate function can reveal
more insight into the effect of λ and Pi on the SAP power
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consumption and reflects the achievable energy efficiency.

VIII. CONCLUSIONS

In this paper, we proposed an analytical framework that
allows to analyze the trade-off between the energy consump-
tion and the traffic offload of cognitive SAPs located in an
MBS Voronoi cell. In particular, we defined the detection
performance of an energy detector for a typical user, as
well as the aggregate capacity and throughput that can be
offloaded from an MBS. The model accounts for channel
fading, aggregate network interference, bursty activity, net-
work topology, and load. The proposed model allows to
quantify the effect of critical system parameters such as the
interferer density and the SAP coverage on the detection
performance, the aggregate offload capacity and throughput,
and the total energy consumption. Numerical results reveal
that the knowledge of the interference environment can lead
to a substantial reduction of the SAP energy consumption.
We defined several optimization problems and showed that
the proposed framework can be used both for the design of
the optimal sensing time and sensing probability, as for the
evaluation of the energy efficiency with respect to network
topology and load. Further, fundamental limits of the detection
robustness are defined by introducing the interference wall and
the speed of convergence of Pfa. In conclusion, the framework
can be used for the energy efficient design and operation of
cognitive SAPs in heterogeneous networks. Possible future
directions to extend this work are to consider the combined
energy consumption of multiple tiers, include constraints on
the user quality of service, and compare the effectiveness of
the distributed sleep mode scheme with strategies such as
random sleeping or centralized sleep mode schemes exploiting
user location awareness.
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APPENDIX A
PROOF OF THEOREM 1

Proof: Let S = s[k]/
√
N , I = i[k]/

√
N and W =

n[k]/
√
N with σ2

n/N = σ2
W , then the discrete decision

statistic in (8) can be rewritten as

VED|H1
=

N∑
k=1

( h

r
ν/2
f

S[k] + I[k]

︸ ︷︷ ︸
K

+W [k]
)2
.

Conditioning on K , VED follows a non-central chi-square
distribution and therefore, the CF of VED is given by

ψVED|H1,K(jω) =
1

(1− 2jωσ2
W )

N/2
exp

(
jωNK2

1− 2jωσ2
W

)
.

(46)
Since the network interference follows a symmetric stable
distribution, the decomposition property can be applied and
the interference can be represented as I =

√
UG, with

U ∼ S(2/ν, 1, cos(πν )) and G ∼ N (0, 2γν/2/N). If we
assume that the SoI has a normal distribution, then K2 in
(46) stands for the power of a normally distributed r.v. with
variance h2Pu/(r

ν
f N) + 2γν/2U/N . Let V = 2γν/2U , then

we can write

ψVED|H1,h,rf ,V (jω) =

1

(1− 2jωσ2
W )

N/2
exp

(
jωN(h2Pu/(r

ν
f N) + V/N)

1− 2jωσ2
W

)
.

The exponential can be expanded as the product of two
exponentials. Further deconditioning on h and V , we get

ψVED|H1,rf (jω) =
1

(1− 2jωσ2
W )

N/2−1

× 1

1− jω(Pu/(2rνf ) + σ2
W )

ψV

(
jω

1− 2jωσ2
W

)
.

Using the scaling property of a stable random variable, the CF
of the decision variable can be written as

ψVED|H1,rf (jω) =
1

(1− 2jωσ2
W )

N/2−1

× 1

1− jω(Pu/(2rνf ) + σ2
W )

× exp

{
−22/νγ cos(π/ν)

∣∣∣∣ jω

1− 2jωσ2
W

∣∣∣∣2/ν

×
[
1− sign

(
jω

1− 2jωσ2
W

)
tan(π/ν)

]}
.

We take the expectation with respect to rf bearing in mind
that the UE is within the range [0, R] and that the probability
density function (PDF) of rf is given by fX(rf) = 2rf/R

2.
Solving the expectation, the proof is concluded.

APPENDIX B
PROOF OF THEOREM 2

Proof: The average capacity of a typical user can be
written as

C̄ = Erf ,φ,h[ln(1 + η)]

where the expectation is taken over the distance rf between
the UE and the SAP, over the spatial PPP φ of the interferers
and over the fading distribution h. For a positive r.v. X ,
E[X ] =

∫∞
0

1− FX(x)dx with FX(x) the cumulative distri-
bution function. Following the approach of [27], the average
throughput can be expressed as

C̄ =

∫ R

0

∫ ∞

0

exp

(
−σ

2
n

Pu
(ex − 1)rνf

)
× LI

(
ex − 1

Pu
rνf

)
dx

2rf
R2

drf (47)

where LI(s) is the Laplace transform of the network inter-
ference I . Applying the probability generating functional of
the PPP and assuming that the interfering signal is affected
by Rayleigh fading, we can write

LI
(
ex − 1

Pu
rνf

)
=

exp

[
−2πλ

∫ ∞

0

(
1− 1

1 + Pi

Pu
(ex − 1)(rf/u)ν

)
udu

]

which by a change of variables can further be simplified to

LI
(
ex − 1

Pu
rνf

)
=

exp

(
−2π2

ν
csc

(
2π

ν

)
λ

(
Pi

Pu

)2/ν

(ex − 1)2/νr2f

)
. (48)

Inserting (48) in (47), the proof is concluded.

APPENDIX C
PROOF OF THEOREM 3

Proof: The success probability for a typical user in the
coverage of the SAP is given by

Ps(ηt) = Erf ,φ,h

{
P

[
h2Pur

−ν
f

σ2
n + I

> ηt

]}
.

For a typical user uniformly distributed over the coverage of
the SAP and considering Rayleigh fading, we can write

Ps(ηt) =

∫ R

0

exp

(
−r

ν
f ηtσ

2
n

Pu

)
Eφ

[
exp

(
−r

ν
f ηtI

Pu

)]
2rf
R2

drf

where Eφ [exp (−rνf ηtI/Pu)] = LI(rνf ηt/Pu). Evaluating the
Laplace transform of the network interference (48) at rνf ηt/Pu,
the proof is concluded.
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APPENDIX D
PROOF OF PROPOSITION 1

Proof: Let G(τs) be the objective function in (20). If
G(τs) is differentiable over [0, T ], then G(τs) is convex iff
G′(τs) is increasing over the considered interval. We write the
derivative of G(τs) with respect to τs as

G′(τs) = λs/λm[psΞs−pupsP∗
dΞt−(1−pu)psPfa(ζ

∗, τs)Ξt

+ (1− pu)psΞt(T − τs)P′
fa(ζ

∗, τs)]. (49)

For ζ∗ > σ2
n, Pfa is positive and decreasing with τs, while

P
′
fa is negative and increasing with τs. Therefore, the third

and fourth term in (49) are increasing over [0, T ]. Since the
first two terms in the expression of G′(τs) are constant, this
concludes the proof.
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