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is further improved using semi-coarsening in combination with a new semi-implicit Run-
ge-Kutta method as smoother. A detailed multilevel analysis of the hp-MGS algorithm is
presented to obtain more insight into the theoretical performance of the algorithm. As
model problem a fourth order accurate space-time discontinuous Galerkin discretization
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of the advection-diffusion equation is considered. The multilevel analysis shows that the
hp-MGS algorithm has excellent convergence rates, both for steady state and time-depen-
dent problems, and low and high cell Reynolds numbers, including highly stretched
meshes.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Discontinuous Galerkin finite element methods are well suited to obtain higher order accurate discretizations on unstruc-
tured meshes. The use of basis functions which are only weakly coupled to neighboring elements results in a local discret-
ization which allows, in combination with hp-mesh adaptation, the efficient capturing of detailed structures in the solution,
and is also beneficial for parallel computing. During the past decade this has stimulated a large amount of research in both
the development and analysis of DG methods and resulted in a wide variety of applications. For an overview of various as-
pects of DG methods, see e.g. [6,12].

Space-time discontinuous Galerkin methods are a special class of DG methods in which space and time are simulta-
neously discretized using basis functions which are discontinuous, both in space and time. The resulting discretization be-
longs to the class of arbitrary Lagrangian Eulerian (ALE) methods, is implicit in time and fully conservative on moving and
deforming meshes as occur in fluid-structure interaction and free boundary problems, see e.g. [14,29,30,33].

For higher order accurate DG discretizations the efficient solution of the algebraic system resulting from an implicit time
discretization is, however, non-trivial, in particular for steady state solutions of advection dominated flows. For these
problems standard iterative techniques, such as multigrid and Krylov subspace methods, are generally suboptimal, especially
on highly stretched meshes in boundary layers. This lack of computational efficiency currently seriously hampers the
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application of higher order accurate DG methods to large scale industrial applications. An important reason for this relatively
slow convergence rate is that the algebraic system resulting from a higher order accurate DG discretization has quite differ-
ent mathematical properties compared to lower order discretizations. The straightforward application of iterative tech-
niques originally developed for lower order methods is therefore generally not optimal and should be supported by a
more detailed mathematical analysis.

The need for improved convergence rates in the iterative solution of higher order accurate DG discretizations has moti-
vated the research presented in this and the companion article [32], to which we will refer as Part II. The objectives of this
research are to develop, analyze and optimize new multigrid algorithms for higher order accurate space-time DG discreti-
zations of advection dominated flows. For this purpose we introduce the hp-Multigrid as Smoother algorithm. This algorithm
combines p-multigrid with h-multigrid at all p-levels, where the h-multigrid acts as smoother in the p-multigrid. The the-
oretical tool to investigate the performance of the hp-MGS algorithm will be a detailed multilevel analysis, which is the main
topic of this article. In Part Il we will use this analysis to optimize the semi-implicit Runge-Kutta smoother in the hp-MGS
algorithm in order to account for the special features of higher order accurate DG discretizations. In addition, numerical sim-
ulations will be presented which show the excellent performance of the hp-MGS algorithm on a number of test cases, includ-
ing thin boundary layers and non-constant coefficients. In this article we will focus on space-time DG discretizations, but the
results and techniques can be straightforwardly extended to other types of implicit DG discretizations, both for steady state
and time-accurate problems.

As background information we start with a brief overview of the main algorithms developed during the past decade for
the iterative solution of higher order accurate DG discretizations of the compressible Euler and Navier-Stokes equations,
which are important models for advection dominated flows. The main techniques to solve these equations have been mul-
tigrid and preconditioned Krylov methods, in particular flexible GMRES. In this article we will focus on multigrid methods.
For preconditioned Krylov methods we refer to [7,23,26]. Multigrid methods can, however, also be efficient preconditioners
for flexible GMRES, see e.g. [26].

Multigrid methods applied to higher order accurate DG discretizations can be classified as p-, h-, and hp-multigrid meth-
ods. In p-multigrid the coarser levels are obtained using a sequence of lower order discretizations, whereas in h-multigrid
coarser meshes are used. Here p refers to the polynomial order of the basis functions in the DG discretization and h to
the mesh size. Combinations of both methods result in hp-multigrid.

The main benefit of p-multigrid is its simplicity since at all levels the same mesh is used, which makes the implementa-
tion on unstructured meshes straightforward. Applications of p-multigrid to higher order accurate DG discretizations of
advection dominated flows can be found in [2,8,17-19,21]. The resulting algebraic system at the coarsest p-multigrid level
can, however, still be very large. For the Euler equations an implicit Euler time integration method at the p = 0 level, with
GMRES in combination with an ILU preconditioner or an LU-SGS algorithm to solve the resulting algebraic system, is suitable
[2,17]. For the compressible Navier-Stokes equations an hp-multigrid method is a better alternative [21,26]. In most studies
of the compressible Navier-Stokes equations a polynomial order p = 1 is used at the coarsest level, which gives significantly
better results than p = 0, see e.g. [26]. In this multigrid method the algebraic system at the coarsest p-level is solved with an
h-multigrid method. For nonlinear problems it was concluded in [26] that the linear or Newton h-multigrid method is sig-
nificantly more efficient as a coarse grid solver in hp-multigrid than the nonlinear Full Approximation Scheme.

A crucial element in both p- and hp-multigrid algorithms are the smoothers. Many different types of smoothers have been
tested for higher order accurate DG discretizations. A serious problem with many of these smoothers is their lack of robust-
ness. Often significant under-relaxation is necessary to ensure stability of the iterative method. Under-relaxation is, how-
ever, not necessary when block Jacobi and (symmetric) block Gauss-Seidel methods are used [8,18,21,26]. For problems
containing boundary layers line smoothers are generally necessary to deal with large aspect ratio meshes [8,26]. Explicit
and (semi)-implicit time integration methods have also been used as smoothers [2,3,16,25]. In particular, Runge-Kutta
methods can be developed into efficient multigrid smoothers when they are used as pseudo-time integrators, which was
originally proposed in [13], see also [20]. Since time-accuracy is not important in pseudo-time significant freedom is avail-
able to optimize Runge-Kutta smoothers for good multigrid performance [16,25,29].

The theoretical analysis of multigrid algorithms for DG discretizations of advection dominated flows has been quite lim-
ited. Many of these studies considered the advection-diffusion equation or linearized versions of the compressible Euler
equations. The main analysis tool to understand the performance of the multigrid algorithm has been single grid and
two-level Fourier analysis [8,9,16,18,24,25,33]. For a more general discussion of these techniques we refer to [11,28,35,37].

Despite this extensive research currently available multigrid algorithms for higher order DG discretizations do not yet
achieve optimal performance. In this article we present therefore a new approach, viz. the hp-Multigrid as Smoother (hp-
MGS) algorithm. The hp-MGS algorithm is an extension of the Multigrid as Smoother algorithm, which was originally pro-
posed in [22,34], to higher order accurate DG discretizations. The main focus in this article is on the multilevel analysis
of the hp-MGS algorithm, which is crucial to understand and optimize its performance. In the multilevel analysis three p-lev-
els and three uniformly and three semi-coarsened h-levels are used in order to obtain accurate estimates of the operator
norms and spectral radius of the hp-MGS multigrid error transformation operator. In Part II this analysis will be used to opti-
mize the coefficients in the semi-implicit Runge-Kutta smoother for a fourth order accurate space-time DG discretization of
the two-dimensional advection-diffusion equation.

The outline of this article is as follows. In Section 2 we briefly discuss the space-time DG discretization and in Section 3
we introduce the hp-MGS algorithm and the semi-implicit Runge-Kutta smoother. The multigrid error transformation
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operator of the hp-MGS algorithm is briefly discussed in Section 4 and a detailed description of the multilevel Fourier analysis
of the hp-MGS algorithm is given in Section 5. In Section 6 the multilevel analysis of the hp-MGS algorithm is used to inves-
tigate the performance of the hp-MGS algorithm for a fourth order accurate space-time DG discretization of the two-dimen-
sional advection-diffusion equation. Finally, conclusions are drawn in Section 7.

2. Space-time DG discretization of the advection-diffusion equation

In a space-time DG formulation, the space and time variables are discretized simultaneously. The space-time framework
is well suited for problems formulated on time dependent domains, but in this study we consider the advection-diffusion
equation on a fixed space-time domain as a model problem for the multigrid analysis. A point at time t = xo, with position
vector X = (X1,...,%4) € R%, has Cartesian coordinates x = (X, %) in the open domain £ = Q x (t,,T) c R%!, with to and T the
initial and final time of the solution and Q c R? the spatial domain with dimension d. For simplicity we assume here that Q is
a polyhedral domain. The 2D advection-diffusion equation for a scalar function u : £ — R can be written as

N4+ V- (au) =vau, oné€,
u(to,X) = Up(X), for x € Q,
u(t,x) = ub(t,x), for x € 0Q, t € (t,,T),

where v € R* is a constant diffusion coefficient, a € R? the advection velocity, and V = o) € R? the nabla operator.
Furthermore, the Laplacian operator is denoted as A, the initial flow field by uy and the boundary data by ub.

The space-time domain is subdivided into space-time slabs, which are defined as £" := {(t,X) € £ | t € (tn, tps1)}. In the
spatial domain Q we define a tessellation T} by subdividing the domain into non-overlapping quadrilateral (d = 2) or hexa-
hedral (d=3) spatial elements K c R?. In each space-time slab we introduce now the space-time tessellation
Th={K:=K x (tn,tay1) C E" | UK = £"}. Each of the space-time elements K € 7}, is connected to the reference element
K := (=1,1)? using the isoparametric mapping Gy. Within a space-time slab we distinguish faces connecting space-time
slabs, viz. K(t,) :== K x {t,} and K(t,,1), internal faces S={SCoK NoK"|K* €T}, K nK" =0} and boundary faces
Sp:={SCoKNOQ|K e Tp}. The outward space-time normal vector at the boundary 0K of a space-time element
K € T} is denoted by n = (n;, 1) € R%*!, with n, the temporal and 7 the spatial part of n. On an internal face S € Sj, the traces
from the left and right element are denoted by ()~ and ()", respectively. The average operator is defined as
{3} =1(()" + (") and the jump operator as [[-]] = (-) 7~ + (-)"n", where n* = —n".

We consider approximations u, and test functions v in the finite element space Wy, defined as

Wi = {W e L") |WlcoGLe P(K), VKeTy),

where L,(€") is the space of square integrable functions on £" and P?(K) the space of polynomials of maximum degree p on
the reference element K . Furthermore, we also need the following space

Vi = {v € (La(E")! | V], 0 GL e (PP(K))!, VK e Th}.

The space-time DG weak formulation of the two-dimensional advection-diffusion equation can now be formulated as:
Find a u, € Wy, such that for all v ¢ W,

ov
—E uy+Vo-au, —vWo-Vu >d1C+ E / fluy,uf)ds + E / zfu*dK—/ v updK
,CET,-/ <8t h ! " (2] hoTh <K(tn+1) " Kitn) "

Ses} KeT}

/vf (up,uy) ﬁdS—Z/[ [V - v{{Vuy, — 1°R;}1dS — Z/U’V(Vu,;fnsRﬁ)ﬂdS

565" Ses} Sesy
/v{{Vv}} [ullds — 3" [ Vot v(uy — u?)nds = 0, (1)
Sest Sesp VS

Here uj = lime oup(x + €n), with ng the outward space-time normal vector at 9K andf(u,;, u;) an upwind numerical flux.
The space-time formulation (1) uses a space-time generalization of the approaches by Bassi and Rebay [1] and Brezzi [5] for
the discretization of the viscous flux. The local lifting operator R; is defined as in [14]: Find an R} € Vj, such that for all
weV,

(W) -mds forscs].
/ W Ry = { fs wh. (uy — Ub)ﬁLdS for S € S. (2)

)\eT"

The stabilization parameter #° is constant and should be chosen greater than or equal to the number of space-faces of an
element, see [27].
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The space-time DG discretization is obtained by approximating uy, » and R; in each element with Legendre polynomials
of degree p. After introducing these polynomial approximations into (1) and (2) the resulting system of algebraic equations
in the space-time slab £" can be represented as

LU} = fp, 3)
with the discretization matrix Ly, the DG coefficients Uy, and righthand side f;,, which depends on the known DG coefficients
Ur! from the previous space-time slab. We refer to [27] for a detailed derivation and full error analysis of the space-time
DG algorithm for the advection-diffusion equation.

In order to simplify notation we define in the remainder of this article the product and division of vectors element-wise.
Hence for a,b € R? we have

ab := (a1by,...,a4by) € R and a/b:= (a1/by,...,aq/bs) € R%.

This notation will be particularly useful in the discrete Fourier analysis, but also to indicate the various (semi)-coarsened
meshes.

3. Multigrid algorithm
3.1. hp-Multigrid as Smoother algorithm

In this section we present the hp-Multigrid as Smoother algorithm for the solution of higher order accurate discontinuous
Galerkin discretizations. This algorithm combines a V-cycle p-multigrid algorithm with h-multigrid, which acts as smoother
at each polynomial level. For a schematic overview, see Fig. 1. The h-multigrid smoother is provided by a semi-coarsening
multigrid algorithm, see Fig. 2, in combination with a semi-implicit pseudo-time Runge-Kutta method, which will be dis-
cussed in Section 3.2. The Runge-Kutta method is semi-implicit in order to obtain also good multigrid performance in
boundary layers.

Algorithm 1. hp-MGS Algorithm (HP,, ,)

Vahp = HPunp(Lnnps fahps Unhps T D5 V15 V25 V15 V2, Hys Hy, 1)
{
if polynomial level p == 1 then
Unhp = HUnh,p(th,pvfnh,pv Unhp, T, P, V1, V2, Uy, Uy, ,u3);

return
end if
/| pre-smoothing with h-MGS algorithm
forit=1,...,y, do

Unhp := HUppp (th‘psfnh.pv Unhps M, D, V1, V2, [y, Uy, H3);
end for
/| lower order polynomial solution
Thhp 3:fnh‘p - th,p Unhps
ntLp—l = Qﬁ’;] Thhps
Unhp-1 = 0;
Unhp-1 = HPnh,p(th.p—] 7fnh.p—l » Unhp-1,1,P — ]7’))1 y V2, V1, V2, Uy, Uy, ,U3);
/| lower order polynomial correction
Unhp = Unpp + Tﬁh,p_1 Unhp-1s
/| post-smoothing with h-MGS algorithm
forit=1,...,y, do

Unhp = HUnh.p (th‘pvfnh.m Unhp,1,P, V1, V2, Uy, Uy, /13);
end for

}

This new multigrid algorithm combines various techniques, viz. the hp-multigrid method, see e.g. [21,26], and the Mul-
tigrid as Smoother algorithm proposed in [22,34]. There are, however, a number of crucial differences. The h-multigrid
algorithm is used at each polynomial level, instead of only at the coarsest polynomial level. This was motivated by the fact
that after extensive multilevel computations only limited improvement in the multigrid convergence rate was obtained if at
the coarsest polynomial level an exact solution was used instead of an h-multigrid algorithm. Hence, even an optimal
h-multigrid at the coarsest polynomial level would only provide a limited improvement in multigrid performance. The sec-
ond difference with hp-multigrid is that semi-coarsening multigrid is used as smoother in the h-multigrid. Finally, the coef-
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Fig. 1. hp-MGS algorithm combining p-multigrid and the h-Multigrid as Smoother algorithm at each polynomial level. The h-Multigrid as Smoother
algorithm uses semi-coarsening in the local x;- and x,-directions and a semi-implicit Runge-Kutta method.

Fig. 2. h-Multigrid as Smoother algorithm used at each polynomial level p as smoother in the hp-MGS algorithm. The indices refer to grid coarsening. Mesh
(1,1) is the fine mesh and e.g. Mesh (4, 1) has mesh size (4h;, h;).

ficients of the pseudo-time Runge-Kutta smoother in the semi-coarsening multigrid are optimized using multilevel analysis.
This optimization process will be discussed in detail in Part Il and makes it possible to account for the specific properties of
the DG discretization and local flow conditions, such as the cell Reynolds number.

The hp-MGS-multigrid algorithm for the solution of the linear system (3) is described in Algorithms 1-3, with
n=(ny,ny) € N? and h = (hi,hy) € (IR*)Z. We also use the notation nh := (nyhy,n2h;). The computational meshes are indi-
cated with M,,. The first part of the hp-MGS algorithm is defined recursively in Algorithm 1 and consists of the V-cycle
p-multigrid algorithm HP,, ,, with the h-MGS algorithm HU,;;, , defined in Algorithm 2, as smoother. In Algorithm 1 the linear
system is denoted as Ly, ,. The multigrid solution of the linear system is v,;,, and the known righthand side f;,. The linear
system originates from a numerical discretization with polynomial order p and mesh sizes h; and h, in the different local
coordinate directions. The mesh coarsening is indicated by the integer n = (n;,n;). The parameters y,, 7, V1, V2, l;, Uy,
and ; are used to control the multigrid algorithm, such as the number of pre- and post-relations at each grid level and poly-

nomial order. The HP,;,-multigrid algorithm uses the prolongation operators Tﬁh.p—l and the restriction operators Qﬁ,;llj. The

prolongation operators Tﬁh,pfl interpolate data from a discretization with polynomial order p — 1 to a discretization with
polynomial order p using an L, projection. The restriction operators Qn,j; project data from a discretization with polynomial

order p to a discretization with polynomial order p — 1. The restriction operators are the transpose of the prolongation oper-

T

ators, viz. Q7 = (Tﬁh_pf]) .
In the HU,;,-multigrid algorithm, defined recursively in Algorithm 2, the semi-coarsening multigrid algorithm HSfm_p,
with i = 1,2, is used as smoother in the local i-direction of each element. The restriction of the data from the mesh M,

to the mesh M,,,, with m; > n; and m, > n,, is indicated by the restriction operators Rl?h’fp. The prolongation of the data from

the mesh M, to the mesh M, is given by the prolongation operators P’,'nhh‘p. The prolongation operators anhh,p are defined as

the L, projection from the coarse grid element onto the fine grid elements which are a subset of the coarse grid element. The

T
restriction operators are defined as anh'fp = < ',;hh_p> /(niny).

The semi-coarsening h-multigrid smoothers HSﬁ,,w, with i = 1,2, are defined recursively in Algorithm 3. Here, i denotes
the direction of the semi-coarsening, e.g. a coordinate direction or local face index in an unstructured mesh. The smoother
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in the direction i is indicated with S;,, , and will be discussed in detail in Section 3.2. At the coarsest levels in the semi-coars-
ened meshes we use (1, smoother iterations. Using the inverse of L,;,, at the coarsest semi-coarsened meshes is not practical
since these meshes are still much larger than the coarsest uniformly coarsened mesh.

Various multigrid algorithms can be obtained by simplifying the hp-MGS algorithm given by Algorithms 1-3. The first
simplification is obtained by replacing in the HP,,, algorithm for polynomial levels p > 1 the h-MGS-multigrid smoother
HU,;,, with the smoothers S%, pS,lmp in the pre-smoothing step and thp anp 1D the post-smoothing step. We denote this algo-
rithm as the hp-MGS(1) algorithm, since the h-MGS algorithm is now only used at the p = 1 level. The second simplification is
to use only uniformly coarsened meshes in the hp-MGS(1) algorithm instead of semi-coarsened meshes. In addition, the
semi-coarsening smoothers HS,, » in the HUy , algorithm are replaced by the smoothers S , fori=1,2. We denote this algo-
rithm as hp-multigrid.

3.2. Pseudo-time multigrid smoothers

As multigrid smoothers we use in Algorithm 3 a pseudo-time integration method. In a pseudo-time integration method
the linear system

th‘p Unhp = fnh.p (4)
is solved by adding a pseudo-time derivative. This results in a system of ordinary differential equations
OV, 1
oL (Lot o), 5

Algorithm 2. h-MGS Algorithm (HU,, )

Unhp = HUnh,p(th.p7fnh.p7 Unhp,1, P, V1, V2, Uy, Uy, ,u3)
{

if coarsest uniformly coarsened mesh then

11 .
Unhp = th.pfnh,pv

return
end if
/| pre-smoothing using semi-coarsening multigrid
forit=1,...,v; do

1 .
Unhp = Hsnhtp(l‘nh,pvfnh,pv Unhps 1,n,p, My Uy, ,U,3),
2 .
Unhp = Hsnh,p(th,psfnh,pv ”nh<p72,n7p7/117/127ﬂ3)v
end for
|| coarse grid solution
Tnhp 5:fnh‘p - th,p Unhps
2nh .
f2nh,p = Rnh.prnh,p‘
vZnh,p = 0;
Z/2nlLLp = HUnILp(LZnh.pvanh,pv Z/Znh‘pa 2'77177 V1, V2, Hy, Uy, :u3);
/| coarse grid correction
nh .
Unhp = Unnp + PZnh‘p Vonhps
|| post-smoothing using semi-coarsening multigrid
forit=1,...,v, do
2 .
Unhp = Hsnh_p (th.p7fnh.pa Unhp, 27 n,p, Uy, Uy, ,ll3),
1 .
Unhp == Hsnh_p (th.pafnh.pa Unhp> 1,n,p, Uy, ty, tz);
end for

}

which is integrated to steady-state in pseudo-time. At steady state, vy, = v}, . Note, for nonlinear problems this system is
obtained after linearization. The matrix L, is then the Jacobian of the nonlinear algebraic system. The hp-MGS algorithm
therefore naturally combines with a Newton multigrid method for nonlinear problems.

Since the goal of the pseudo-time integration is to reach steady state as efficiently as possible, time accuracy is not impor-
tant. This allows the use of low order time integration methods, which can be optimized to improve multigrid convergence
to steady state. In [15,29] optimized explicit pseudo-time Runge-Kutta methods are presented, which are used for the solu-
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tion of second order accurate space-time DG discretizations of the compressible Euler and Navier-Stokes equations [14,29].
An important benefit of these explicit pseudo-time smoothers is that they can be directly applied to nonlinear problems
without linearization. For higher order accurate DG discretizations, in particular for problems with thin boundary layers,
the performance of these smoothers is, however, insufficient. This motivated the development of a semi-implicit Runge-Kut-
ta pseudo-time integration method, which will be discussed in the next section.

Algorithm 3. Semi-coarsening multigrid algorithm (HSi,h_p)

Unhp = Hsilh.p (th,pvfnh,pv Unhps i) n,p, iy, Uy, HB)
{
if (i == 1 and coarsest mesh in local i;-direction) or (i == 2 and coarsest mesh in local i,-direction) then
forit=1,...,u; do
Unhp = Silh,p(th.pvfnhpv ynh,p):
end for
return
end if
/| pre-smoothing
forit=1,...,u, do
Unhp = quh,p(thAp-,fnh,pv ”nh,p):
end for
|| coarse grid solution on semi-coarsened meshes
Tnhp 3:fnh‘p - th.p Unhps
if (i==1) then
/| semi-coarsening in local i;-direction
2n;.my)h .
fonimynp = R;h'?;a'nﬂ Tnhps
V2n, ny)hp ‘= 0;
1 : .
Z)(Zm,nz)h,p = Hsnh‘p(L(an,nz)h,p:f(Zrzl‘nz)h,pv v(Znan)h‘pv 1 (211] 3 n2)7p, s Ky, ,u3)|

L nh .
Unhp = Unhp + Pn, n))hp Y20y ny)hps

else if (i == 2) then
/| semi-coarsening in local i-direction
ny,2ny)h .
f("ll"z)hp = R1(1h{p ? Tnhp;

Yy 2np)hp = 03
2 : .
Viny 2np)hp = HSah o (Liny 20)0ps fon 2ny)hps Vi 2mp)hp» 1 (M1, 212), P, fy, My, Us);
h .
Unhp ‘= Unhp + Pr(‘lnl‘an)h.p U(ny 2ny)hps
end if
|| post-smoothing
forit=1,...,u, do
Unhp = quh,p(th,pvfnh,pv Vnh,p);
end for

}

3.2.1. Semi-implicit Runge-Kutta smoother

The system of ordinary differential Eq. (5) will be solved using a five-stage semi-implicit Runge-Kutta method. In the
semi-implicit Runge-Kutta method we use the fact that the hp-MGS algorithm uses semi-coarsening in the local i;- and
ip-directions of each element. This makes it a natural choice to use a Runge-Kutta pseudo-time integrator which is implicit
in the local directions used for the semi-coarsening. Also, the space-time DG discretization uses, next to data on the element
itself, only data from elements connected to each of its faces. This results in a linear system with a block matrix structure. It is
therefore straightforward to use a Runge-Kutta pseudo-time integrator which is alternating implicit in the local i; and i>-
direction. The linear system then consists of uncoupled systems of block tridiagonal matrices, which can be efficiently solved
with a direct method. The semi-implicit pseudo-time integration method then can efficiently deal with highly stretched
meshes in boundary layers. For this purpose we split the matrix L,,,, when sweeping in the i;-direction, as

_ i i
th,p - th,p + th,p

and for sweeps in the i,-direction as

_ qin iz
Lﬂh,P - th,p + th,p'
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The matrices L’11 and L'21 p contain the contribution from the element itself and the elements connected to each face in the i;-
direction, respectlvely, i,-direction, which are treated implicitly. The matrices L"Z ipand L’22 contain the contribution from each
face in the i,-direction, respectively, i,-direction, which are treated explicitly. Slnce the DG dlscretlzatlon only uses information
from nearest neighboring elements this provides a very natural way to define the lines along which the discretization is impli-
cit. The semi-implicit Runge-Kutta method for sweeps in the i;-direction then can be defined for the [ + 1 pseudo-time step as

ol
Vo = ynh.p
k-1
.o -
U = <Inh.p + ﬁk/“ﬂ'Lnl}—ll_p> (UO - Aazakj nhpy] fnhp)) k=1,...,5, (6)
j=0
l+1 _
nhp Sn)’1p nhp — = Vs,

with a similar relation for sweeps in the i,-direction, where iy, is replaced by i,; and i;, with i,. Here, o are the Runge-Kutta
coefficients, B, = Z}:& o for k=1,...5,.; = Aa/at, with Ao the pseudo-time step. At steady state of the g-pseudo-time
integration we obtain the solution of the linear system (4). The coefficients g, ensure that the semi-implicit Runge-Kutta
operator is the identity operator if ynhp is the exact steady state solution of (5). Without this condition the pseudo-time inte-
gration method would not converge to a steady state. The only requirement we impose on the Runge-Kutta coefficients oy is
that the algorithm is first order accurate in pseudo-time, which implies the consistency condition

4
ZOCSJ' =1.
=0

For each polynomial level all other Runge-Kutta coefficients can be optimized to improve the pseudo-time convergence in
combination with the hp-MGS algorithm For the computation of the multigrid error transformation operator we define the
semi-implicit Runge-Kutta operator Q.. = recursively for sweeps in the i;-direction as

nh.,p
Qozlnh.p
Qe = (np + Bidolly,) <nhpﬂ Zak,L:;;p ) k=1,...5, (7)
Ql;hp:Q57

with a similar expression for Q2 in the i,-direction, only with i;; and iy, replaced by, respectively, i»; and iy;.

nh.p
4. hp-MGS error transformation operator

The performance of the hp-MGS algorithm defined in Algorithms 1-3 is determined by the multigrid error transformation
operator. This operator determines the change in the error after one application of the full hp-MGS algorithm. We assume
that the linear system (4) is obtained from a space-time DG discretization using polynomial basis functions of order p.
The initial error in the solution of the algebraic system on the grid M, is defined as

0
= Unh‘p i

0
enh‘p nhp-

Here, Uy is the exact solution of the algebraic system
th‘pUnh.p :fnh.p

and 29, , the initial guess used in the multigrid algorithm. Similarly, the error after one application of the multigrid algorithm

is defined as

1 _ 1
enh‘p = U"hl’ — Unnps

with v}, = HPuy, %, . The operator HPy,, denotes the action of the hp-MGS algorithm defined in Algorithm 1. The initial

and multigrid error are related through the hp-MGS error transformation operator My p, viz.

el

_ 0
nhp — Mﬂhvpenh,p :

The detailed formulation of the error transformation operator of the hp-MGS algorithm can now be obtained by computing
the error transformation operators of Algorithms 1-3, defined in Section 3.1, and the pseudo-time smoother, defined in Sec-
tion 3.2. For more details on the computation of the error transformation operator, see e.g. [10,28].

The hp-MGS error transformation operator My, for the HP,,, multigrid algorithm can be defined recursively as

Mnh‘p = (I-IUnh,p)y2 (Inh‘p - Tﬁ},‘p,l (Inh.p—l - I\/Inh,p—l)(th.p—l)71 thp nh p) (HUnh p)y] if p> 17
=HUpyy if p=1
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In the h-MGS step we first compute the error reduction using the HU,;,,, algorithm, defined in Algorithm 2. The h-MGS error
transformation operator HU,;,, is equal to

v, v
HU”hIJ = (HS Hsnh p) ( nhp — P;?lh,p (1211’14’ - Huznhvp)(LZnh.P)_lRﬁf’:sznh-,P) (Hsnhp nh p) ]1 if n<m,
=0,ifn=m

9)

The HU,,, error transformation operator (9) can also be used to obtain the semi-coarsening multigrid error transformation

operators HS, »and Hthp, defined in Algorithm 3, which are equal to

Hsnhp (th p) ( nhp — P?zhn] U @ny ng) 1'1512:11 nhp) (Lnymnp)” 1R;(12hn1; Ty p) (Szlm,p)ulv if n<m,
=lnp — (thp) 3, ifn=m

Hsnhp (th p) ( nhp — P'(T, 2myhp iy 20y HS (ny 2n)hp) (Lony 20y p) 1Rnr;11p2n2 "Lon p) (Sﬁh,pylv if n<m,
=lnp — (thp) 13, ifn=m

Next, we discuss the error transformation operator of the semi-implicit Runge-Kutta pseudo-time smoother, defined in Sec-
tion 3.2. The error after the Ist and I + 1th semi-implicit Runge-Kutta pseudo-time integration step is
50
enh,p

1
enh‘D = Unnp — 7,

— !
= Unhp = Unnyp

l-+1

nh,p

and the error in each Runge-Kutta stage as
€k = Unnp — Uk,

with ey = éghp. The error after one semi-implicit Runge-Kutta step can now be defined recursively as

6 _ 30
€y = enhlp
-1 k-1 .
5 g gl 5 5 in 5
ec= (I + Bialil,) (€= 2oy cailifye ). k=1,....5,
j=0
-1 0 o _
enhp - th penhp - th penhp €s.

A similar expression is obtained for Sn,”,, when the Runge-Kutta method is implicit in the i,-direction. Only i;; and i;, are
replaced by, respectively, i>; and i,;. Combining all contributions gives the hp-MGS error transformation operator My, p.

5. Fourier analysis of hp-MGS Algorithm

The analysis of the hp-MGS error transformation operator can be performed using discrete Fourier analysis. This allows
the efficient computation of the operator norm and spectral radius of the multigrid error transformation operator, which will
be used in Part II to optimize the pseudo-time Runge-Kutta smoother. The analysis of the hp-MGS algorithm will consider
three polynomial levels and three semi-coarsened and uniformly coarsened mesh levels. The large number of multigrid lev-
els in combination with the different types of mesh coarsening make the multilevel analysis intricate. We start in Sections
5.1 and 5.2 with some important definitions and discuss the aliasing of modes, which depends on the type of mesh coars-
ening. Next, we describe in Section 5.3 the Fourier symbols of the discrete operators, viz. the spatial discretization operators
and smoothers, and the restriction and prolongation operators for all types of meshes considered in this study. The Fourier
symbols of the discrete operators will then be used in Section 5.4 to give a unified description of three-level analysis, suitable
for both uniformly and semi-coarsened meshes. Finally, in Section 5.5 the different parts are combined into the Fourier sym-
bol of the hp-MGS error transformation operator. More details on the discrete Fourier multilevel analysis of the hp-MGS error
transformation operator can be found in [31]. General information on discrete Fourier analysis of multigrid algorithms is
available in [4,10,11,28,35-37].

5.1. Definitions

In this section we will introduce some definitions which will be used throughout the multilevel analysis. Assume a finite
mesh G, ¢ R?, with n,N e N? and h € (R*)?, which is defined as

G’I;Ih = {X = (X],Xz) = (k]nlhhkznzhz) ‘ k S Q’:},

with index set G given by

;\]: {k c7? | =N;i/n; < ki < (Ni/ni) = 1,N;/n; € N, i= 1,2} (10)
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We also use the set ¢ to enumerate the elements used in the space-time discretization. On Gy, we define for
Unh, Wap - G’,}’h — C the scaled Euclidian inner product

(O W), = gn o > (X)W (%) (11)

v " 4NN,

XeGyp
and norm
%
H”nh”c” = (Z/nhv 7/nh)GN .
nh nh
Here an overbar denotes the complex conjugate. We will also consider an infinite mesh G, which is defined as

Gnh = {)2 = (5(1,)22) = (l<1n1h1,k2n2h2) | ke ZZ}.

Similarly, on G,, we define for v,,, w,, : Gy, — C the scaled Euclidian inner product as

> v (R Wan (), (12)

secN
XeGyy

(ynhath)G,lh = ’!ILH;%
with associated norm || ||, - In R? a uniform mesh with mesh sizes (hi, h;) can now be represented as G, = G, 1,) and a
uniformly coarsened mesh as Gy, = Gpn, 21,)- A mesh with semi-coarsening in the x;-, respectively, x,-direction is repre-
sented as Gp, hy) and G, on,). Based on the mesh points it is straightforward to construct the finite element mesh consisting
of rectangular elements.

The linear system (3) on the mesh G,;, using periodic boundary conditions and polynomials of order p in the space-time
DG discretization is described in stencil notation as

Lonp Unnp(®) = > lennp Vanp (X + knh), X € Gy, (13)
keJy

where the stencil coefficients I, are m, x m, matrices, with m, > 1 depending on the polynomial order p used in the
space-time DG discretization. Note, in matrix notation the linear system can be represented by a block Toeplitz matrix.
The space-time DG coefficients are denoted v, and are associated in the Fourier analysis with the center of each element.
The finite index sets J, ¢ Z* describe the space-time DG stencil. In two dimensions the space-time DG discretization has a
5-point stencil. The stencil of L., is then given by

0 l(—l‘O).nh,p 0
[th.p] = l(O.—l)‘nh.p l(OD).nh.p l(O.l).nh,p
0 l(l,O)‘nh,p 0

On the infinite mesh G, ¢ R?, we define for X € G,;, the continuous Fourier modes with frequency 0 = (01, 0,) € II,, with

= [ ) < ) 38
bun(0,X) = €00, (14)

where n0 -x/(nh) = 01X /h1 + 02X, /hy, h € (IR*)2 and 1 = v/—1. Note, the Fourier modes are orthonormal with respect to the
scaled Euclidian inner product on Gpy.
We define the space of bounded grid functions on the infinite mesh G, as

F(Guy) = {ynh | Van : Guy — € With || 2]l < oo}.
For each v, € F(G,,), there exists a Fourier transform, which is defined as

nmny

T (n0) =

Z Vpn(X)e MOX ) g e T, (15)

XeGpp

The inverse Fourier transform is given by
Van(R) = / T (n0)e™ Mg X € G, (16)
0elly,

Hence v,, can be written as a linear combination of Fourier components.
Due to aliasing, Fourier components with | 0 |:== max{n; | 6 |,ny | 02 |} > 7 are not visible on G,;,. These modes therefore
coincide with e™* @ where 6§ = §(mod27/n). Hence, the Fourier space

Fn(Gnp) :=span{¢(0,X) | 0 € I1y,X € Gy}
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contains any bounded infinite grid function on Gy.
On a finite domain with mesh G},, where at the domain boundaries periodic boundary conditions are imposed, only a
finite number of frequencies can be represented. Hence, for every v,, € F, ,,(Gﬁ',,) the discrete Fourier transform is defined as

— nn — %
T (Tl@k) _ 112 Z vnh(x)e—m()k-x/(nh),

with 0, = (0k,,0k,), 0k = Tk/N, k € g{j, N e N¢. The inverse discrete Fourier transform is given by

Unh(X) = D Vo (N0 )™ XM X € Gl
keg

The results of the discrete Fourier analysis on the infinite mesh G,;, and the finite mesh Gﬁh are equal for a periodic field at
the frequencies 0 = 0y, with 0, = k/N, k € G, N e N2. This equivalence will be used to find approximate results for the dis-
crete Fourier analysis on the infinite mesh G,;, which generally results in eigenvalue problems which can not be solved
analytically.

5.2. Aliasing of Fourier modes
In three-level analysis with uniform mesh coarsening 16 modes on the fine mesh G, 5, alias to four independent modes
on the mesh G, 21, and to one mode on the coarsest mesh Gp, 4r,), see Fig. 3. We therefore introduce the Fourier harmonics

_7:2(9), with 0 e H(4_4), as

Fr0) = span{¢y(0}.%) | o€ o, p e o },

with
0 =030 € I4a) := [-7/4,7/4)*,
03° = 000 — (B1sign(01), B2sign(02)),
0% == 07 — (ausign((6)°),), dasign((6)°),)) 7, (17)

o ={(0h,0)| & €{0,1}, i=1,2},
B = {(Bl,BZ) | Bi € {0.%}, i= 1,2}.

Next to uniform coarsening, the hp-MGS algorithm also uses semi-coarsening multigrid. In this case the grid is coarsened
in only one direction, which implies that four modes on the fine mesh alias to two modes on the medium mesh, and to one
mode on the coarsest mesh, see Figs. 4 and 5.

The aliasing relations for the Fourier modes on the different coarse meshes can be straightforwardly computed using the
representation of the modes 0; given by (17). First, assume the following mesh coarsenings Gy — G, with

A0
™
v A v A
T/2 L
/4 | e
[ | o Lo °
» 01
-r/4 | L
v A \v A
—m/2 |
|| o | °
- | | I I
-7 /2 —7/4 /4 w/2 T

Fig. 3. Aliasing of Fourier modes for uniform-coarsening. Modes with a black symbol alias on the mesh G, to the mode with equivalent open symbol in the
domain [-7/2,/2)?. Modes in the domain [—7/2,7t/2)* \ [-7/4, /4)* alias on the mesh G, to the mode in [—7t/4, 7r/4).
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A 02
™ T
* 0 * ’
w/2 |
v A \% A
/4 L
» 0
—7m/4 |
> < > |
—7/2 | ‘ ‘
] i o i O .
—a i i
-7 —m/2 —7/4 /4 /2 T

Fig. 4. Aliasing of Fourier modes for semi-coarsening in the x;-direction. Modes with a black symbol alias on the mesh G, 1,) to the mode with an
equivalent open symbol in the domain [-7/2,7/2) x [-7, 7). Modes in the domain 0 € ([-7/2, —7/4) U [n/4,7/2)) x [-7, ) alias on the mesh Gy, 5, tO
the mode in [-n/4, t/4) x [-7, ) with the same value of 6,.

I
™
|| > v *
T2 ol
L S N A
o < JAN o
> 01
- /A ol
O > v *
—m/2
° < A ¢
—T | | | |
—7 —n/2 —7/4 w/4 /2 ™

Fig. 5. Aliasing of Fourier modes for semi-coarsening in the X,-direction. Modes with a black symbol alias on the mesh G, 2x,) to the mode with an
equivalent open symbol in the domain [-7, 7r) x [-7/2,7/2). Modes in the domain 0 € [-7, ) x ([-7/2,—7/4) U [/4,7/2)) alias on the mesh G, 41, to
the mode in [, ) x [-7t/4, 7w/4) with the same value of 0;.

ne{(2,2),(2,1),(1,2)}, which includes both uniform and semi-coarsening. For x € G,, Fourier modes with frequency
0y € 11y, with o € 0, § € f,, alias on the mesh G, to modes with frequency 92," € IT, with
$n(07,%) = dn (05 ,X) = dun(n05 %), 0F € [In, X € Gy

and

0
o =¢ (0,a) ifn=(2,1), (18)



JJ.W. van der Vegt, S. Rhebergen/Journal of Computational Physics 231 (2012) 7537-7563 7549

Analogously, for the mesh coarsening G,,h — G, With m € {(4,4), (4,1),(1,4)}, modes with frequency 0;}’ € I, alias on the
mesh G, to modes with frequency 6/, e Il as

b (N0} %) = dy(0%,X) = G(M05.X), 0% € I, X € Gpup,
with o/ and p’ given by

o =(0,0), B =(0,0),if m=(4,4),

o =(0,0), B =(04p)ifm=(41),

o =(01,0), f = (p;,0)if m=(1,4).
In order to unify the analysis of uniform and semi-coarsening multigrid we use the sixteen modes 0} defined in (17) for uni-
form coarsening also in the semi-coarsening analysis. These modes are, however, subdivided into four independent groups.

On the coarser meshes there is no aliasing between modes in different groups, only between modes in the same group.
For the three-level Fourier analysis of semi-coarsening in the X;-direction we subdivide the Fourier harmonics with fre-

quenc1es 0}, «€ o, e B, onthe mesh Gy, 4, into the groups
(2.1) ={(0,0),(1,0)} - V(lz.l) =(0,0),
oty = {(1,1),(0,1)} - Yy =(01),

Bin = {(00) (2 o>} — 80 = (0,0),
- {3 (0} ~ - (03)

where the index of the mode to which each group of modes aliases on the next coarser mesh level is indicated with an arrow,

1

see also Fig. 4. For example, the modes on the mesh G, with frequency 603, o € ol (.1, alias foreach § € Bl 2.1) to the frequency 0 T
on the mesh Gpp, 1,). Similarly, on the mesh Gy, 1,y the modes eﬂ(z»w , B € Bly.1), alias to the frequency 0)(;;: on the mesh Gp, hy)-
Next, for three-level Fourier analysis of semi-coarsening in the X,-direction we define the groups
%12 =1{(0,0),(0,1)} — V42 =1(0,0),
“(21.2):{(17])7(1:0)} - V1,2 =(1,0),

o fon e}~ d-o
(090 - 409

see Fig. 5. Finally, for uniform mesh coarsening the modes in the three-level Fourier analysis are ordered as

O‘gz.z) = {(00)7 (17 1) (1/0)7 (07 1)} - VZZ,Z) = (Ov 0)‘

= {00, (33).(10) (03] ~ =00

see Fig. 3. In principle the ordering of modes in the different groups can be changed, but it is important that the same order-
ing is used in all steps of the multilevel analysis.

1

5.3. Fourier symbols of discrete operators

In this section we will summarize the Fourier symbols of the multigrid operators, namely the fine and coarse grid oper-
ators, the smoothing operators, and the restriction and prolongation operators. We will present the Fourier symbols in a uni-
fied way, suitable for both uniform and semi-coarsening multigrid.

5.3.1. Discrete Fourier transform of space-time DG operator
On the mesh G, we can express (13) in terms of its discrete Fourier transform through the relation

Lponp)®) = 32 3 / Lup (0) Thp (07 ) 5" do, (19)
acoly, BeBlyy 0l q)
with 0} = 03(0) given by (17). The Fourier symbol L/h;(()f;) is defined as

th( > Z Ikhpem -k c CMpxmp.

kE]le
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On the mesh G, with n € {(2,2),(2,1),(1,2)}, we obtain the relation

(a9 = S5 [ oy () iy (0 )7 0,
i€sn jesn ﬁeﬂj Ocllisg
where the sets, = {1,2} ifn=(2,1), (1,2), (4,1), (1,4) and s, = {1} if n = (2,2), (4,4). The Fourier symbol L/nh\,p (HG?) is
defined as
@(n();;n) _ Z II(,nhpemo‘/;mk c CMmpxmp
kE]th.p
Finally, on the mesh G, with m € {(4,4),(4,1),(1,4)}, we can express (13) as

i
. i im0’ -x/(mh)
(Lmh p Z/mhp Z / mh D ( > Umhp (m@;,") e "I" dev
0l 4 4 n

iesmjesm

with the Fourier symbol Lmh,p (mOl";) defined as

ml
_ 1mo’" -k
Linnp (mﬁ" ) 3 lkmnpe € €M™,

ke]L mhp

5.3.2. Discrete Fourier transform of pseudo-time smoother

Using the relations for the space-time discretization operators Ln;, we obtain the Fourier symbols of the Runge-Kutta
pseudo-time integration operator discussed in Section 3.2.1. The Fourier symbol of S; .1=1,2, on the mesh G, given by
(6), is equal to

@ (1) =1
@ (15) = (i (7)) (oSl ()0 (1)) -

s’ (9“):65(9;‘), Yo € o, VB € By

hp»

On the coarse meshes G,;, the Fourier symbol of the semi-implicit pseudo-time Runge-Kutta operator thw I=1,2,isequal to

Shoy(M0F) = Qs (M0F), VB, 15 € 50,

5.3.3. Restriction operators for h-multigrid
Define the restriction operator R”h : F(Gp) — F(Gm), with n € {(2,2),(2,1),(1,2)}, as

(R Vhp) (%) = > TinnpUnp(X + kh), X € Gy, X+ kh € Gy,

keJRnh
hp

with J R the stencil of the restriction operator and 1, € R™*™ the matrices defining the restriction operator. On the mesh
Gnn the Testriction operator can be related to its discrete Fourier transform through the relation

CHOLEIDDD /n R (07 (07 e, (20)

iesy jesn pe [}!

with the Fourier symbol th ( Z) given by
Rnh( ) Z Tenhp ek
ke gnn
hp

Note, in (20) we used the subdivision of modes with frequency 0 € IT, into different groups as discussed in Section 5.2.
Next, we define the restriction operator Rnhp F(Gnn) — F(Gmp), with m € {(4,4),(4,1),(1,4)}, as

(Rnhp Unh p) Z Tk.mh, pl/nhp(X + knh) X e Gmp, X+ knh € Gup-

ke ymn
nhp
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On the mesh G,,;, the restriction operator can be related to its discrete Fourier transform through the relation

o i lm(lA’j;ﬁx/(mh)
(Rn'"h’jp ynhp = / ,,hp néﬁ )vnh,p (no;;)e Ao de, (21)
iesn jesn
with the Fourier symbol Rnhp( 9;;') given by
Rl:hhp( 0};") = Z rk,mh.pemﬂ/fn.ky vﬂ € ﬁjnv 17] € Sp.

kel gmh
nh.p

5.3.4. Prolongation operators for h-multigrid
The definition of the prolongation operator Pnhp F(Gun) — F(Gp), withn € {(2,2),(2,1),(1,2)}, requires the introduction
of subsets of the mesh G;, which each have a different prolongation operator. Define the meshes G, as
G;; = {(X],Xz) € Rz | (X1,X2) = ((n1j1 + k])hh (n;jz + f(fz)hz), je 22}7
with K € K, == {K = (K1,K>) | K; € {0,n; — 1},i = 1,2}. The prolongation operator related to the mesh G} then is equal to

(Ph V) (%) = > DinpVm(X+kh), X eGy, X+khe G,

kej
nhp

where the index set ],’;}, c 7% and matrices Piipp € R™>™ are used to define the prolongation operator on each mesh. We
F(Gnn) — F(Gp), with n e {(2,2),(2,1),(1,2)}. The prolongation operator
is related to its discrete Fourier transform through the relation

EIDEEDD B / Pl (02) Ty (m0}F )0l (22)

iesn jesn aeol /1€/fl

consider now the prolongatlon operator P!

h
Pnhp

nhp

with the Fourier symbol Pnh » (0%) given by
ph

o 1() ik
nhp (9/f) = Z > P :
mn; K€Ky kel*,

thp

Next, we consider the prolongation operator thp F(Gmn) — F(Gny), withm € {(4,4), (4,1),(1,4)}. The definition of the pro-
longation operator requires the introduction of subsets of the mesh Gy,. Define the meshes G, as

Gy = {(X1,X2) € R? | (X1,X2) = ((Myjy + K1)hy, (Mafy + K2)2), j € 2%},

with K € Kkn := {K = (K1,K2) | K; € {0,(2m; — 2)/3}, i = 1,2}. The prolongation operator related to the mesh G}, then is
equal to

(anhpvmhp) Z Dk nhp Vmnp(X + knh), X € Gy X+ knh € Gy

ke] pnh
mh.p

The prolongation operator P’,;hh P

<Prr;1hh,p th,p) ®) = /0 ) P;hh p 110} ) Umiy (m():’j‘)e‘”"}f” x/(nh) g (23)
€114 4) n

l€5n jESn [je/f«’

is related to its discrete Fourier transform through the relation

with the Fourier symbol thp (nH’") given by

Pnh v‘ _im Z Z m()
mh,p m m pk nhp
112 e I<Ej",
mhp

5.3.5. Restriction and prolongation operators for p-multigrid
Define the p-multigrid prolongation operators T? F(Gp) — F(Gp) in stencil notation as

(Th‘p—l yh,p—l) (5() = th,p Uh'p (X), X e Gh,

where t;, € R™*™ is the matrix defining the p-multigrid prolongation operator in a space-time element. Since this is a
purely element based operator it immediately follows that its Fourier symbol is equal to

hpl:

Thp1 = thp. (24)
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The p-multigrid restriction operator Qh » : F(Gn) — F(Gy) is equal to the transpose of the p-multigrid prolongation operator.
The Fourier symbol of the p-restriction operator then is equal to

Q, = (1,.)" (25)

5.4. Three-level Fourier analysis

In this section we will describe the discrete Fourier analysis of the three-level h-multigrid error transformation operator.
A unified formulation for both uniform and semi-coarsening multigrid will be presented. This unified formulation makes the
construction of the complete hp-MGS error transformation operator, which is discussed in Section 5.5, much easier. In order
to simplify notation we omit in this section the subscript p in the discrete operators. It should be kept in mind, however, that
all discrete operators depend on the polynomial order p of the space-time DG discretization.

In the three-level analysis the Fourier symbols L, (0), Lo (nf) and Lon (mo), with ne{(2,2),(2,1),(1,2)},me
{(4,4),(4,1),(1,4)} can be zero for certain values of 0. The frequencies of these Fourier harmonics are removed from
F3(0) through the definition of

]-'ﬁg = {]—'ﬁ(@?j(@)) |0 € s\ Pom, Yo e of, VB e [3{1, i,jesn, Yne{(2,2),(2,1),(1,2)}, vm € {(4,4), (4,1),(1,4)}},
with

Yom = {HGH(474) | det (E(@;‘(@))) =0or det (m (n()’"( ))) Oor det< < 9’"( )>> =0, Voceoc;, V/}eﬂ’;, i,jesn}

(26)
and 67 = 67(6) given by (17). The error ef after a three-level multigrid cycle is equal to
= Mfef, (27)
with ef the initial error. The three-level multigrid error transformation operator Mig can be obtained from (9) and is equal to
M3 = 32 (In = Pl (o — M) (L) 'R L1 ) ;' (28)
with the coarse grid correction defined as
M, = i (I = Py (L)~ Ry Lo ) i (29)

Here L;, L, and L, denote the matrices of the DG discretization (4) on the meshes Gy, G, and G, respectively, S,, Sy, the

multigrid smoothers, which can be either the semi-coarsening smoothers HS%, pHS,l]h P HS), pHS,,h p» Or the semi-implicit Run-
ge-Kutta smoother Sn,,p, i =1,2. Furthermore, R", R™ are the restriction operators, P, P™ the prolongation operators,

and Iy, I, the identity operators on the meshes G, and G,;, respectively. The parameters v;, v, denote the number of
pre- and post-smoothing iterations.
We start the three-level analysis with the coarse grid contribution (29) on the mesh G,;, which can be expressed as

eb,(X) = / nUy") " XM g,
165,. Jes,. pep, /0

with
et (1) = (5 ()" )~ (5 1)) P () (o () )

ot (o B (S (o)) oA (e i i
x >R (n0j ) Lon (072 ) (San (n072)) el (n0), VB € B, ij s (30)
2Bl
using the expressions for the Fourier symbols of the discrete operators given in Section 5.3. Define now the coarse grid cor-
rection operator
M, = Iy — M. (31)

If we introduce the matrices (1\7,%) € C"™" with e B}, i,j € sp, q =m, the size of the blocks in the space-time DG dis-
B

cretization, and r = Car(a,) = Car(f#), then we can write the discrete Fourier transform of Mmeh as

nh*nh
Mnmhe/r?h <n9;;n) = Z (MTh)
B

ﬁZE n /;

(n@/”)e" (né) ) VB e B, i,j€Sn, (32)



JJ.W. van der Vegt, S. Rhebergen/Journal of Computational Physics 231 (2012) 7537-7563 7553

where an explicit expression of <1\7Inmh> (n()}?’) can be obtained using (30)

B2

(), () =1 (5 )™ (5 o))" () (5 () )R ) s 0 5 )=
2
= (5 (7)) 10 (o () ) 5 (1) (5 (1)) 0022

Next, we compute the Fourier symbol of the error transformation operator Mﬁg on the mesh G;. Using (28) and the Fourier
symbols of the individual discrete operators discussed in Section 5.3 the error in the three-level multigrid algorithm can now
be expressed as

_ 0* 1()’x/hd0
=SS [ M (o)

i€sn jesn oeor /36/}/
with

M (5) = (5 ()" (0) - (S (05)) "7 (1) X (Mm ), () (B ()" 32 000 (1)

ol e,
x (Su(032)) e (032), Vo o, VB E B i sn

The expressions for the discrete Fourier transform of the error transformation operator can be simplified using a matrix rep-
resentation. On the mesh G,, we introduce the matrices

i () w5 ). . s ) < &
1 (07 ) = bdag (S (n6}). ... 5o (06 )) < €, (34)
ﬁg,jl(ne;'n) <R ! (noit)... R (o} Q)e@W, (35)
P (n ﬂ) (p (). (n(;;;g))Te@qrxq, (36)

; T . . .
with 0"” — (o0 0’” ,...,Br€p, r=_Car(al) = Car(p,), i,j € sn, and bdiag refers to a block diagonal matrix consisting
B1° 1 T n n n

ofgxq blocks with g > 1. For each group of modes f#,,j € s,, the discrete Fourier transform of the coarse grid multigrid error
transformation operator M”h can be directly obtained from (30) resulting in

—~ i V2 i — i -1 RPN i ~ i n
30 (o) (o) (o) ) ).

with [ € R the identity matrix. The matrices representing the discrete Fourier transform of the coarse grid operator (31)
then are equal to

Mmm (neﬁj) =M (n@ﬁ,) ecI I jjes,.

Next, we introduce for each group of modes o, #,, with i,j € s,, the matrices

L (é)ﬂk) bdlag<Lh< > Ly (%)) e c (37)
I (e/ﬂ> — bdiag(L;(071)..... Lp(071) ) e c " (38)
Si(03) = bdiag(Su (071).. Su(07;)) e cm (39)
s (%) — bdiag($; (671)..... Sp(071)) e ", (40)
=9 (€00 () @
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CACAE ( W (607). .,F’,;I(e;;))TecW, (43)
"”(7;3>:"dlag i (05) > Pha (7)) € €, (44)
( /ﬂ) (bdiag (L (ne; ) L (no))) e oo, (45

i i i\T . .
with 6 = (oj;; 0;;) O = (ojj;, 0;) Oy, o €0 B B P
The discrete Fourier transform of the error transformation operator for a three-level multigrid cycle can now be expressed
for each group of Fourier modes as

~ ] - i\ "2 — i\ =~ i — A\ \ " ..
w3 0) = (5:(7E)) (7o) o (v o (o JR s () ) (8 (15)) e e e
(46)

The discrete Fourier transform of the three-level error transformation operator for different types of mesh coarsening can
now be obtained by combining the contributions from the different groups of Fourier modes. For uniform coarsening the
multigrid error transformation operator is equal to

~ —~ 1
Ml(12,2> (0;> _ M;}z,z) (0%1)) c q:qulﬁq7 (47)

1
Bz

1
with 65 = 0:;“’ . The discrete Fourier transform of the error after one three-level multigrid cycle with uniform coarsening can
(2.2)

now be expressed as

2(05) - 2 ()7E (7).

with
Z;‘-\D@,f):(@(e;;;)7...7e/’,35(0;j)7e/;‘\0<9;g) e (o), e (0n).. ﬁ’”(eﬁj))T, O, 0 € 0y,
ﬁl?"'!ﬁ4eﬁ(]2.2)'

The discrete Fourier transform of the multigrid error transformation operator for semi-coarsening in the x;-direction is

ol N o2 N 1
21 ( <21)) bdl&g( <0;§2‘]">,M1(12'1> (0ﬁ21)>’M;2,1) (02‘&2.1))71\/1 <0 @1 >> c (I:Iqulﬁq7
(2.1) 2.1 2.1) (2 1)

o2 ol o2 T
with 0;‘2” =(0 5“ 0 (2”,0 “”,0 @V ) . The frequencies 0 . i,j € sy, are defined as
@n B2y /fm / /5‘21 ﬂm)

§>

(21) _ 00 /10 [2.1) _ 11 501
9 - (000790079‘07 ) , 07 = (600160(),910,910) s
(21 3(21) 2 2
2 T
21 00 1 01
0< >:(n, i, 080 03 ) c 0 = (o} 05,03 0)
ﬁrzu 0 2

Note, however, that the Fourier modes in the error vectors for semi-coarsening in the X; and x,-direction have a different

ordering than for uniform coarsening e/” (92‘) The ordering of the Fourier modes in the error vectors is not important for

the computation of the operator norms and the spectral radius of the error transformation operator when one particular type
of mesh coarsening is used. For the coupling of multigrid algorithms with different types of mesh coarsening, which is re-
quired for the multilevel analysis of the hp-MGS algorithm, it is, however, essential that the same ordering of the Fourier

modes in the error vectors is used. This can be easily accomplished using the permutation matrix P(z'” € R'%9<18¢ which reor-
ders the Fourier modes in the error vector for semi-coarsening in the X;-direction to that of eAD (0, ““‘ ) to the error vector for
uniform coarsening e"‘ (0%) The permutation matrix consists of blocks of size q x q. All blocks in the permutation matrix
P>" are zero, except the blocks with indices

(1,1),(2,3),(3,9),(4,11),(5,2),(6,4),(7,10),(8,12),(9,5),(10,7), (11,13), (12,15),(13,6), (14, 8), (15,14), (16, 16),

which are equal to the identity matrix I?. The error after one three-level multigrid cycle with semi-coarsening in the x;-direc-
tion can now be expressed as

& (07) = (") W (20 )Py (7).
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Finally, the discrete Fourier transform of the multigrid error transformation operator for semi-coarsening in the
X,-direction is
N N ol N o2 N ol N o2
M(l,Z)( 06[1.2)) — i M(1.2) (12) M(LZ) 12) M(].Z) (12) .M(I‘Z) (1.2) 16gx16q
h elfu.z) bd ag h 0/:(‘12) »h 0/;(111) »h 9/;(212> > h 9/1(212) eC ’
T

) ol o2 ol o2 . ol
with 6502 = (0/};”) 01,0370 <‘2‘> . The frequencies Gﬁ;“” are defined as
(

1 2 2

Ba2) 2 Bh’ Fay Bha 1,2)
ol T o2 T

;| 00 501 H00 A01 (1.2) 11 10 pl11 10
9“”:(0 0 0191) 0 :(9 0 0191).
B 00+ Y00+ Yo+ Yo ) Upt 00> Y00+ Yol Yol |
ol T o2 T

b 00 /01 00 01 (1,2) 11 10 pl11 10
9“2‘:(9 0%, 0 .9) 0 :(6 010 ¢ )
) BRI 000) 0 T 50800750

The permutation matrix P\'? € R'%*1%, which reorders the Fourier modes in the error vector for semi-coarsening in the X,-

direction to that of e/ for uniform coarsening consists of blocks of size q x g. All blocks in the permutation matrix P\'* are
zero, except blocks with the indices

(1,1),(2,4),(3,13),(4,16),(5,2),(6,3),(7,14),(8,15),(9,5),(10,8),(11,9),(12,12),(13,6), (14, 7),(15,10), (16,11),

which are equal to the identity matrix I’. The discrete Fourier transform of the error after one three-level multigrid cycle
with semi-coarsening in the x,-direction can now be expressed as

EE(%) _ (Pﬁll.z))ﬂMl(:‘z) <0;((:_‘2>P;11'2)E";(02).

5.5. Discrete Fourier transform of hp-MGS multigrid error transformation operator

The discrete Fourier transform of the error transformation operator My ; of the hp-MGS algorithm for a polynomial order
p = 3 and three (semi)-coarsened mesh levels can be obtained by combining the results from the previous sections. The first
part of the hp-MGS algorithm consists of p-multigrid. Since there is no coupling in p-multigrid between modes on different
meshes the discrete Fourier transform of the p-multigrid part of the hp-MGS algorithm can be computed straightforwardly
using the Fourier symbols discussed in Section 5.3, resulting in

W (05) = (s (07)) (150 T2 () (1~ W () (5 ()" ()55 () ) (O (7))
. (48)
with the contribution from the p = 2 level given by

0 (5) = (9 (2) ) (2, 5) (0, (0)) (2 ()0 ()02 () (0 (7)) <0

ol . . . . 1 . .
where 0} = Bﬂg: In this section we will use the shorthand notation o = af,, and = f8,,. The superscript g,, with

p =1,2,3, refers to the size of the blocks in the matrices of the space-time DG discretization using polynomial basis func-
tions of order p. Using (24) the p-multigrid prolongation matrices Tﬁf are defined as

Tp+1 _ H /1):1 o /p-+\1 o, /pjl o /1):1 o, 7;:1 4 7;?1 o, 16q, x 164
™ (0;) — bdiag (Th,p (eﬁ; ) LT (9/;), T (e/f; ) TR (0,;), I (9/,;), TR (@;)) c ©169,%164,
— . T
and the restriction matrices are equal to Q , , = (Tﬁ;l) . Note, frequently the p-multigrid restriction and prolongation oper-
ators are purely element based in which case their discrete Fourier transform is independent of 03. The discrete Fourier trans-

form of the hp-MGS error transformation operator depends on the three-level h-MGS smoothers @h_p (é)j}), pe{1,2,3}

These operators are obtained using the three-level analysis discussed in Section 5.4. In order to describe the discrete Fourier
transform we extend the matrices defined in (33)-(36) and (37)-(45) to include also the polynomial order p of the basis
functions used in the space-time discretization. Using the result for the three-level error transformation operator given
by (47) we obtain the discrete Fourier transform of the three-level h-MGS error transformation operator for each polynomial
order

o () = (57 () 3 (07))” (1 — Py (07 S (o) (s ) ) )

x (B (0x)HSiz" (07)) " e c1ow1om, (49)
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with HS}IZP] (0;‘) and I-/Itiﬁll_f) (()ﬁ) the discrete Fourier transform of the error transformation operator of the semi-coarsening

multigrid smoothers in, respectively, the local X;- and X,-direction. The coarse grid contribution 1\71/(2“:‘; ( 000) from the mesh
Gy, in (49) is given by
MY (200°) = ' — MG (200°) € cor<t,
with
Mg (207°) = (HS5) 2000 S 20)) (1‘*% — P, ) (Lanp (4080)) RS, 2052 (260"))
x (HSi 200 HSS) (2900)) € CHday

The discrete Fourier transform of the semi-coarsening smoother in the local x;-direction is given by

—~ ol ~ o2 ~ ol ~ o2
HS,(,Z'U (0;> _ (Pf'”) bdlag 0 ;2.1) ,M,(f‘]) 0 gz_n »M;IZ']) 0 ;2,1) 7M’(12,1) 0 ;2.1) P}(]Z,l) c Clﬁqpx16qp’
P p ﬁ(Z.l) P ﬁ(z.n P ﬂ(z 1) P ﬁ(z.l)

with the permutation matrix P € C'%%*1%% defined in Section 5.4 and

T
9(2” = (0(0)8792)8701079(())> ) 00{;21 = (6(1)(])708(1) 1079 )

/f<21 /f(21>

0% (21) — (g0 pio 000 010 T 0“(221) _ o1 0

ﬁ<21 = n, 117 %, 0% s ﬁ221>_ 117 117 0_7 .
) (

The discrete Fourier transform of the semi-coarsening smoother in the local x,-direction is

HS112 (97) = (P2 (1.2) t2\ a2 ( he G2 (12) _ ~16q,x16
Hsh‘p (0[}) - (Ph ) bdl&g(M (/f] ) MhP (9 >’Mh.p <9ﬁ%1‘2))> Mhp <9ﬁ(12)>>Ph € CP P,

with the permutation matrix P|'? e C'%%*'%% defined in Section 5.4 and
0 (12) _ 000 901 900 0 0”‘(21.27 _ 611 610 011 910 T
/;(112 00> V00> /;(11 5 — V00> Y00> Vol Yol )

(1 2) 01 _ 11 10 T
92 = 0]]7911,010,00 , 0 = 0117 11, 107910 .
B2 /f(lz, 2 2

Note, the permutation matrices are necessary in order to combine the error transformation operators for the different types
of mesh coarsening which use a different ordering of the Fourier modes. The contribution to the error transformation oper-

ators from the different groups of modes in the semi-coarsening smoothers 1?5}31;”(0;) and HS” (973‘) is now given for
i,j €saby

_ i H _ i Hy
) (5(0) ) o ) ) )

with the coarse grid contributions

Mnmhp<n0;j:) =% - nhp<"0;7> € C¥% %

~ i ~ i i _— i H3
B (107) = (3 ()" (=B (107)) (- (550 (me)) )
_— ) i i -~ i # 20 %2
X (Lmh_p (m%:)) Rnhp< no'’n ) nhp<”%:) ( nhp <n9;;>> € C¥%¥2%p

where n = (2,1), m= (4,1) for HS;;" and n = (1,2), m = (1,4) for HS},”. The smoother matrices S} ,, S,  are defined in
Section 5.4 and Smhp is the dlscrete Fourler symbol of the sem1 1mpllc1t Runge-Kutta smoother dlscussed 1n Section 5.3.2,
which is implicit in, respectively, the local x;-direction for HS p ) and in the local %,-direction for HS

The contribution of the semi-coarsening smoothers at the mesh level 2h is equal to

A3, (2020) = (Py) 'bdiag (M3, (2000), M3, , (2008) )Py, € i,

and
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with
sy (25) = (5o (@) (P P (202) (1 - (S 2n))”) (s 2))

<R ) (0) (5, (21" <0

where n = (2,1) for HS%) and n = (1,2) for HS',?). The permutation matrices are defined as

2h.p 2hp*
" 00 0 M 000
pen_ |0 0 "o piz_ [0 00 [
2 0" 00 2h 01 00
0 0 0 [ 001 0

6. Multilevel analysis of higher order space-time DG discretization

The multilevel Fourier analysis of the hp-MGS algorithm will be demonstrated for the advection-diffusion equation in two
space-dimensions. The optimization of the Runge-Kutta smoother, including details about the Runge-Kutta coefficients, and
the performance of the hp-MGS algorithm on a number of test cases is discussed in Part II [32].

The space-time discretization is made dimensionless by introducing the following dimensionless numbers, viz. the CFL
number and the cell Reynolds number, defined as
|a]at lallh]

Re, = 50
‘ h | b h V b ( )
with | h | the diameter of the element and time step At = t,1 — tp.

For the multigrid analysis we assume a uniform mesh with mesh sizes h; and h;, in the X;- and X,-direction, respectively.

CFL =

Furthermore, we introduce the mesh aspect ratio A, = Q—f which implies that | h |= hy1/1 + A2, and the flow angle o with re-

spect to the X;-axis, hence a; =| a | cos« and a, =| a | sino.. On meshes with h; # h, we use two cell Reynolds numbers, viz.
Rey,, and Rey,, with h replaced by h; and h; in (50). The space-time DG discretization for the advection-diffusion Eq. (3) on a
uniform mesh can be represented using the following dimensionless stencil notation:

Lyp = Lﬂ,] + Ly, + Lﬁ,l + Lg,z + 1L,
Fnp =L UM

The inviscid part of the stencil only depends on the CFL number and can be written as:

0
¢ =CFL\/1+A;coso|L{ D 0],
0
V1+AT 0
Lﬁ‘Z:CFLT sino|0 D O
h Lg

Note, we assume here that both components of the advection velocity a are positive. In case one or both coefficients are neg-
ative then the upwind direction in the stencil has to be adjusted accordingly. The viscous part of the stencil depends on the
cell Reynolds and CFL numbers:

CFL 0 CFL s
Ly, = ke, i p! vt LgZ::R—eh 0 D;; 0
L

2

The stencils related to the time discretization are given by

0 0
L,:=|0 D" 0|, Ly":=|0 D" 0
0 0

The size m, of the blocks L‘f“g, D4, U‘f‘z, D"*~' € R™*™ depends on the order of the polynomial basis functions used in the
space-time DG discretization.

In the multilevel analysis we will first consider steady state problems. In general it is much harder to get good multigrid
performance for steady state problems than for time-accurate problems. At steady state the contribution of L; to the matrix
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Fig. 6. Spectra of the DG matrices Ly, for polynomial orders p = 1, 2 and 3, and spectra of the error transformation operator of the full hp-MGS algorithm,
and two simplifications, viz. the hp-MGS(1) and the hp-multigrid algorithms. Cell Reynolds numbers Re,, = Re;, = 10°, mesh aspect ratio A, = 1, flow angle
45°, steady state.

L, drops out and the matrix L, does not depend on the CFL-number anymore. The parameters in the hp-MGS algorithm are
Y1 =7, =V1=V2= U =, = U3 = 1. The polynomial levels in the hp-MGS algorithm are p = 1, 2 and 3, and three uniformly



JJ.W. van der Vegt, S. Rhebergen/Journal of Computational Physics 231 (2012) 7537-7563

Real

(e) TLA-hpMGS(1)

7559

30 40
30F
20+ *
:
] 20F
0 L]
10F [ ] L
] L 10
g ] 3 g
£ - £
> o § ¢ S of
@ ' ®
E o E
N . -tof
-10f 1] -
[} .
[} L 20}
.
-20F .
_aof
20 . : : . . : : , » . . : : : ;
-400 -350 -300 -250 -200 -150 -100 -50 0 -1200 -1000 -800 -600 -400 -200 0
Real Real
(a) Eigenvalues Ly, 1 (b) Eigenvalues Ly, o
30
0.8F
20+
06
0.4F
10F
- > o02f
2 Fa
I 5]
c <
© o ) 2 7T
& I
£ €
£ £ 0t
_1of
—0.4}
-0.6F
oo
-0.8F
30 . . . . . . . . . 1 .
-2000 -1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 0 -1 -0.5 0 05 1
Real Real
(c) Eigenvalues Ly, 3 (d) TLA-hpMGS
1k
i+
08F
0.8k
o6k 0.6
0.4F 04k
> o2f > oz
IS 5]
£ o £
S oF 5 o Oor
I ®
E oo} £ .|
—04f _o4f
-0.6f —o6f
-0.8F
-0.8F
gk :
af
i

Real

(f) TLA-hp

Fig. 7. Spectra of the DG matrices Ly, for polynomial orders p = 1, 2 and 3, and spectra of the error transformation operator of the full hp-MGS algorithm,
and two simplifications, viz. the hp-MGS(1) and the hp-multigrid algorithms. Cell Reynolds numbers Re,, = 107", Rey, = 10%, mesh aspect ratio A, = 100,
flow angle 75°, steady state.
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Fig. 8. Spectra of the DG matrices L, for polynomial orders p = 1, 2 and 3, and spectra of the error transformation operator of the full hp-MGS algorithm.
Cell Reynolds numbers Re;,, = Re;, = 1, mesh aspect ratio A, = 1, flow angle 45°, steady state.

and three semi-coarsened meshes are used. In the multilevel analysis 64 x 64 Fourier modes are used. The Fourier code was
also verified with a matrix analysis and both methods agreed up to machine accuracy. The matrix analysis is, however, com-
putationally much more expensive.

The first test case we consider has cell Reynolds numbers Re;, = Rey, = 10° on a mesh with aspect ratio A, = 1. The flow
angle is 45° with respect to the x;-axis. In Fig. 6(a)-(c) the spectrum is shown of the matrices L, Ly> and L, ; representing,
respectively, DG discretizations with polynomial orders p = 1, 2 and 3. The blue color refers to low frequency eigenvalues
and the red color to high frequency eigenvalues relative to a uniformly coarsened mesh. The eigenvalues of the full
hp-MGS algorithm are shown in Fig. 6(d). The spectral radius of the error transformation operator Mj 3 is 0.4000 and the
operator norm ||[M 3| = 0.7379, which shows that the hp-MGS algorithm is an efficient algorithm for higher order accurate
DG discretizations of advection dominated flows. We also consider two simplifications of the hp-MGS algorithm. The first
simplification, denoted hp-MGS(1), is to use the semi-implicit Runge-Kutta smoother at the p =2 and 3 levels and only
use the h-MGS algorithm at the p = 1 level. The eigenvalues of this algorithm are shown in Fig. 6(e). The spectral radius
of the error transformation operator is 0.9781 and the operator norm 1.645. The second simplification is standard hp-
multigrid, with h-multigrid with uniform coarsening at the p =1 level and the semi-implicit Runge-Kutta method as
smoother. The eigenvalues of this algorithm are shown in Fig. 6(f). The spectral radius of the error transformation operator
is 0.9856 and the operator norm 1.645. The multigrid performance of the hp-MGS(1) and the hp-multigrid algorithm is very
poor and the algorithms are not suitable for higher order accurate DG discretizations, despite extensive optimization of the
semi-implicit Runge-Kutta smoother. A more detailed comparison of the different multigrid algorithms and their computa-
tional cost will be given in Part II [32].

Next, we consider the multigrid performance on stretched meshes, which are essential to deal with thin boundary layers.
We consider cell Reynolds numbers Rey,, = 107! and Rey, = 10° on a mesh with aspect ratio A, = 100. The same Runge-Kutta
coefficients as in the previous test case with Re, = 10° and A, = 1 were used. The flow angle is 75° with respect to the X;-axis.
In Fig. 7(a)-(c) the spectrum is shown of the DG matrices L,;, Ly, and L, 5. The spectra have a distinctly different pattern
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Fig. 9. Spectra of the DG matrices L, for polynomial orders p = 1, 2 and 3. Mesh aspect ratio A, = 1 and cell Reynolds numbers Re;, = Re;,, = 10° in (a)-(c).
Mesh aspect ratio A, = 100 and cell Reynolds numbers Rej,, = 1071, Rep, = 10% in (d)~(f). Flow angle 75°, CFL=1.

than the spectra in Fig. 6(a)-(c), which are for a mesh aspect ratio A, = 1. The spectra in Fig. 7(a)-(c) split into two or three
parts and the largest eigenvalue is close to —2000. These strongly negative eigenvalues are hard to deal with for explicit
smoothers. The multigrid performance of the hp-MGS algorithm, shown in Fig. 7(d), is excellent, with a spectral radius of
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the error transformation operator My 3 of 0.1021 and the operator norm 0.3093. Both the hp-MGS(1) and the hp-multigrid
algorithms are, however, unstable as can be seen in Fig. 7(e)-(f). The spectral radius of the error transformation operator
of the hp-MGS(1) algorithm is 1.224 and the operator norm 1.950. The spectral radius of the error transformation operator
of the hp-multigrid algorithm is 1.148 and the operator norm 1.950. This shows that the use of a semi-implicit Runge-Kutta
smoother is not sufficient to ensure good multigrid performance on highly stretched meshes and that the semi-coarsening
multigrid smoother is also important. Also, increasing the number of smoother iterations does not improve the convergence
rate for the hp-MGS(1) and hp-multigrid algorithms.

At low Reynolds numbers the difference between the different multigrid algorithms is small. We consider the cell Rey-
nolds numbers Re,, = Re,, =1 on a mesh with aspect ratio A, = 1. The flow angle is 45° with respect to the X;-axis. In
Fig. 8(a)-(c) the spectrum is shown of the matrices L, 1,Ls» and L, 3. Compared to the cell Reynolds number Re;, = 10°, shown
in Fig. 6(a)-(c), the spectra look very different. The multigrid performance of all three algorithms for this low cell Reynolds
number is, however, excellent. The spectral radius for the hp-MGS, hp-MGS(1) and hp-multigrid algorithms is, respectively,
2.537x 1077, 3.743 x 102 and 8.715 x 10~%. The operator norms are 2.976 x 1077, 9.469 x 1072 and 1.247 x 10"". The
excellent convergence rate at this low cell Reynolds number can be attributed to the use of the semi-implicit Runge-Kutta
smoother.

Finally, we consider time dependent problems. The space-time discretization now uses cubic polynomials, both in space
and time. We select a CFL number of 1 since this is a natural choice for time-accurate simulations. The first test case has cell
Reynolds numbers Re,, = Rep,, = 10° on a mesh with aspect ratio A, = 1. The spectra are shown in Fig. 9(a)-(c). The second
test case has cell Reynolds numbers Re,, = 10! and Rey, = 10° on a mesh with aspect ratio A, = 100. The flow angle for both
cases is 75°. In the computations the same Runge-Kutta coefficients are used as for the steady state problem with mesh as-
pect ratio A, = 1 and Re,, = Rey, = 10°. The spectra are shown in Fig. 9(d)—(f). The main feature of the spectra for time-accu-
rate problems is that the eigenvalues are in the left half of the complex plane, away from the imaginary axis. This makes it
much easier to get good multigrid performance, than when the eigenvalues are close to zero. The spectral radius and oper-
ator norm for the cell Reynolds numbers Re;,, = Re;,, = 10° are, respectively, 2.121 x 107'® and 2.268 x 107'®. For the cell
Reynolds numbers are Re, = 10' and Re;, = 10° the spectral radius is 2.950 x 107" and the operator norm
1.575 x 1075, Both cases show an extremely fast convergence, which is also confirmed by multigrid computations. This very
fasgt convergence for time-accurate problems is observed for a very large range of cell Reynolds numbers, ranging from 1 to
10°.

7. Conclusions and outlook

The hp-Multigrid as Smoother algorithm for the efficient solution of higher order accurate discretizations of advection
dominated flows was presented. This algorithm uses a V-cycle p-multigrid algorithm with h-multigrid as smoother at all
polynomial levels. The performance of the h-multigrid algorithm is further enhanced using semi-coarsening and a semi-im-
plicit Runge-Kutta smoother. The discrete Fourier multilevel analysis of the complete hp-MGS algorithm was discussed for
three p-levels and three uniformly and three semi-coarsened meshes. This analysis provides the operator norm and spectral
radius of the error transformation operator of the hp-MGS algorithm. This information is important both to obtain realistic
estimates of the multigrid performance and to optimize the multigrid algorithm, which will be discussed in Part II [32]. The
analysis of the hp-MGS algorithm is demonstrated for algebraic systems resulting from a fourth order accurate space-time
DG discretization of the two-dimensional advection-diffusion equation for various cell Reynolds numbers and mesh aspect
ratios. The multilevel analysis shows that the new hp-MGS algorithm has excellent convergence rates for a wide range of cell
Reynolds numbers, both on uniform and stretched meshes and for steady and time-dependent problems. The hp-MGS(1) and
the standard hp-multigrid algorithm do not perform well for high cell Reynolds numbers despite extensive optimization con-
ducted in Part II [32]. At low cell Reynolds numbers, the hp-MGS, hp-MGS(1) and the hp-multigrid algorithms converge well.

In Part II [32] the multilevel analysis discussed in this article will be used to optimize the semi-implicit Runge-Kutta
smoother and extensive tables with Runge-Kutta coefficients and multigrid convergence rates will be presented. In addition,
an analysis of the computational complexity of the hp-MGS algorithm and several simplifications will be discussed. Also, the
hp-MGS algorithm will be tested on a number of model problems, including thin boundary layers and highly stretched
meshes.
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