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a b s t r a c t

The hp-Multigrid as Smoother algorithm (hp-MGS) for the solution of higher order accurate
space–time discontinuous Galerkin discretizations of advection dominated flows is pre-
sented. This algorithm combines p-multigrid with h-multigrid at all p-levels, where the
h-multigrid acts as smoother in the p-multigrid. The performance of the hp-MGS algorithm
is further improved using semi-coarsening in combination with a new semi-implicit Run-
ge–Kutta method as smoother. A detailed multilevel analysis of the hp-MGS algorithm is
presented to obtain more insight into the theoretical performance of the algorithm. As
model problem a fourth order accurate space–time discontinuous Galerkin discretization
of the advection–diffusion equation is considered. The multilevel analysis shows that the
hp-MGS algorithm has excellent convergence rates, both for steady state and time-depen-
dent problems, and low and high cell Reynolds numbers, including highly stretched
meshes.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Discontinuous Galerkin finite element methods are well suited to obtain higher order accurate discretizations on unstruc-
tured meshes. The use of basis functions which are only weakly coupled to neighboring elements results in a local discret-
ization which allows, in combination with hp-mesh adaptation, the efficient capturing of detailed structures in the solution,
and is also beneficial for parallel computing. During the past decade this has stimulated a large amount of research in both
the development and analysis of DG methods and resulted in a wide variety of applications. For an overview of various as-
pects of DG methods, see e.g. [6,12].

Space–time discontinuous Galerkin methods are a special class of DG methods in which space and time are simulta-
neously discretized using basis functions which are discontinuous, both in space and time. The resulting discretization be-
longs to the class of arbitrary Lagrangian Eulerian (ALE) methods, is implicit in time and fully conservative on moving and
deforming meshes as occur in fluid–structure interaction and free boundary problems, see e.g. [14,29,30,33].

For higher order accurate DG discretizations the efficient solution of the algebraic system resulting from an implicit time
discretization is, however, non-trivial, in particular for steady state solutions of advection dominated flows. For these
problems standard iterative techniques, such as multigrid and Krylov subspace methods, are generally suboptimal, especially
on highly stretched meshes in boundary layers. This lack of computational efficiency currently seriously hampers the
. All rights reserved.
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application of higher order accurate DG methods to large scale industrial applications. An important reason for this relatively
slow convergence rate is that the algebraic system resulting from a higher order accurate DG discretization has quite differ-
ent mathematical properties compared to lower order discretizations. The straightforward application of iterative tech-
niques originally developed for lower order methods is therefore generally not optimal and should be supported by a
more detailed mathematical analysis.

The need for improved convergence rates in the iterative solution of higher order accurate DG discretizations has moti-
vated the research presented in this and the companion article [32], to which we will refer as Part II. The objectives of this
research are to develop, analyze and optimize new multigrid algorithms for higher order accurate space–time DG discreti-
zations of advection dominated flows. For this purpose we introduce the hp-Multigrid as Smoother algorithm. This algorithm
combines p-multigrid with h-multigrid at all p-levels, where the h-multigrid acts as smoother in the p-multigrid. The the-
oretical tool to investigate the performance of the hp-MGS algorithm will be a detailed multilevel analysis, which is the main
topic of this article. In Part II we will use this analysis to optimize the semi-implicit Runge–Kutta smoother in the hp-MGS
algorithm in order to account for the special features of higher order accurate DG discretizations. In addition, numerical sim-
ulations will be presented which show the excellent performance of the hp-MGS algorithm on a number of test cases, includ-
ing thin boundary layers and non-constant coefficients. In this article we will focus on space–time DG discretizations, but the
results and techniques can be straightforwardly extended to other types of implicit DG discretizations, both for steady state
and time-accurate problems.

As background information we start with a brief overview of the main algorithms developed during the past decade for
the iterative solution of higher order accurate DG discretizations of the compressible Euler and Navier–Stokes equations,
which are important models for advection dominated flows. The main techniques to solve these equations have been mul-
tigrid and preconditioned Krylov methods, in particular flexible GMRES. In this article we will focus on multigrid methods.
For preconditioned Krylov methods we refer to [7,23,26]. Multigrid methods can, however, also be efficient preconditioners
for flexible GMRES, see e.g. [26].

Multigrid methods applied to higher order accurate DG discretizations can be classified as p-, h-, and hp-multigrid meth-
ods. In p-multigrid the coarser levels are obtained using a sequence of lower order discretizations, whereas in h-multigrid
coarser meshes are used. Here p refers to the polynomial order of the basis functions in the DG discretization and h to
the mesh size. Combinations of both methods result in hp-multigrid.

The main benefit of p-multigrid is its simplicity since at all levels the same mesh is used, which makes the implementa-
tion on unstructured meshes straightforward. Applications of p-multigrid to higher order accurate DG discretizations of
advection dominated flows can be found in [2,8,17–19,21]. The resulting algebraic system at the coarsest p-multigrid level
can, however, still be very large. For the Euler equations an implicit Euler time integration method at the p ¼ 0 level, with
GMRES in combination with an ILU preconditioner or an LU-SGS algorithm to solve the resulting algebraic system, is suitable
[2,17]. For the compressible Navier–Stokes equations an hp-multigrid method is a better alternative [21,26]. In most studies
of the compressible Navier–Stokes equations a polynomial order p ¼ 1 is used at the coarsest level, which gives significantly
better results than p ¼ 0, see e.g. [26]. In this multigrid method the algebraic system at the coarsest p-level is solved with an
h-multigrid method. For nonlinear problems it was concluded in [26] that the linear or Newton h-multigrid method is sig-
nificantly more efficient as a coarse grid solver in hp-multigrid than the nonlinear Full Approximation Scheme.

A crucial element in both p- and hp-multigrid algorithms are the smoothers. Many different types of smoothers have been
tested for higher order accurate DG discretizations. A serious problem with many of these smoothers is their lack of robust-
ness. Often significant under-relaxation is necessary to ensure stability of the iterative method. Under-relaxation is, how-
ever, not necessary when block Jacobi and (symmetric) block Gauss–Seidel methods are used [8,18,21,26]. For problems
containing boundary layers line smoothers are generally necessary to deal with large aspect ratio meshes [8,26]. Explicit
and (semi)-implicit time integration methods have also been used as smoothers [2,3,16,25]. In particular, Runge–Kutta
methods can be developed into efficient multigrid smoothers when they are used as pseudo-time integrators, which was
originally proposed in [13], see also [20]. Since time-accuracy is not important in pseudo-time significant freedom is avail-
able to optimize Runge–Kutta smoothers for good multigrid performance [16,25,29].

The theoretical analysis of multigrid algorithms for DG discretizations of advection dominated flows has been quite lim-
ited. Many of these studies considered the advection–diffusion equation or linearized versions of the compressible Euler
equations. The main analysis tool to understand the performance of the multigrid algorithm has been single grid and
two-level Fourier analysis [8,9,16,18,24,25,33]. For a more general discussion of these techniques we refer to [11,28,35,37].

Despite this extensive research currently available multigrid algorithms for higher order DG discretizations do not yet
achieve optimal performance. In this article we present therefore a new approach, viz. the hp-Multigrid as Smoother (hp-
MGS) algorithm. The hp-MGS algorithm is an extension of the Multigrid as Smoother algorithm, which was originally pro-
posed in [22,34], to higher order accurate DG discretizations. The main focus in this article is on the multilevel analysis
of the hp-MGS algorithm, which is crucial to understand and optimize its performance. In the multilevel analysis three p-lev-
els and three uniformly and three semi-coarsened h-levels are used in order to obtain accurate estimates of the operator
norms and spectral radius of the hp-MGS multigrid error transformation operator. In Part II this analysis will be used to opti-
mize the coefficients in the semi-implicit Runge–Kutta smoother for a fourth order accurate space–time DG discretization of
the two-dimensional advection–diffusion equation.

The outline of this article is as follows. In Section 2 we briefly discuss the space–time DG discretization and in Section 3
we introduce the hp-MGS algorithm and the semi-implicit Runge–Kutta smoother. The multigrid error transformation
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operator of the hp-MGS algorithm is briefly discussed in Section 4 and a detailed description of the multilevel Fourier analysis
of the hp-MGS algorithm is given in Section 5. In Section 6 the multilevel analysis of the hp-MGS algorithm is used to inves-
tigate the performance of the hp-MGS algorithm for a fourth order accurate space–time DG discretization of the two-dimen-
sional advection–diffusion equation. Finally, conclusions are drawn in Section 7.

2. Space–time DG discretization of the advection–diffusion equation

In a space–time DG formulation, the space and time variables are discretized simultaneously. The space–time framework
is well suited for problems formulated on time dependent domains, but in this study we consider the advection–diffusion
equation on a fixed space–time domain as a model problem for the multigrid analysis. A point at time t ¼ x0, with position
vector �x ¼ ð�x1; . . . ; �xdÞ 2 Rd, has Cartesian coordinates x ¼ ðx0; �xÞ in the open domain E ¼ X� ðt0; TÞ � Rdþ1, with t0 and T the
initial and final time of the solution and X � Rd the spatial domain with dimension d. For simplicity we assume here that X is
a polyhedral domain. The 2D advection–diffusion equation for a scalar function u : E ! R can be written as
@u
@t þr � ðauÞ ¼ mMu; on E;
uðt0; �xÞ ¼ u0ð�xÞ; for �x 2 X;

uðt; �xÞ ¼ ubðt; �xÞ; for �x 2 @X; t 2 ðt0; TÞ;

8><>:

where m 2 Rþ is a constant diffusion coefficient, a 2 Rd the advection velocity, andr ¼ @

@�x1
; . . . ; @

@�xd

� �
2 Rd the nabla operator.

Furthermore, the Laplacian operator is denoted as M, the initial flow field by u0 and the boundary data by ub.
The space–time domain is subdivided into space–time slabs, which are defined as En :¼ fðt; �xÞ 2 E j t 2 ðtn; tnþ1Þg. In the

spatial domain X we define a tessellation Th by subdividing the domain into non-overlapping quadrilateral (d ¼ 2) or hexa-
hedral (d ¼ 3) spatial elements K � Rd. In each space–time slab we introduce now the space–time tessellation
T n

h :¼ fK :¼ K � ðtn; tnþ1Þ � En j [K ¼ Eng. Each of the space–time elements K 2 T n
h is connected to the reference element

K̂ :¼ ð�1;1Þd using the isoparametric mapping Gn
K. Within a space–time slab we distinguish faces connecting space–time

slabs, viz. KðtnÞ :¼ K � ftng and Kðtnþ1Þ, internal faces Sn
I :¼ fS � @K� \ @Kþ j K� 2 T n

h; K
� \ Kþ ¼ ;g and boundary faces

Sn
B :¼ fS � @K \ @X j K 2 T n

hg. The outward space–time normal vector at the boundary @K of a space–time element
K 2 T n

h is denoted by n ¼ ðnt ; �nÞ � Rdþ1, with nt the temporal and �n the spatial part of n. On an internal face S 2 SI , the traces
from the left and right element are denoted by ð�Þ� and ð�Þþ, respectively. The average operator is defined as
ff�gg ¼ 1

2 ðð�Þ
� þ ð�ÞþÞ and the jump operator as ½½��� ¼ ð�Þ��n� þ ð�Þþ�nþ, where nþ ¼ �n�.

We consider approximations uh and test functions v in the finite element space Wh, defined as
Wh ¼ W 2 L2ðEnÞ jWjK � Gn
K 2 PpðK̂Þ; 8K 2 T h

n o
;

where L2ðEnÞ is the space of square integrable functions on En and PpðK̂Þ the space of polynomials of maximum degree p on
the reference element K̂ . Furthermore, we also need the following space
Vh ¼ V 2 ðL2ðEnÞÞd j V jK � Gn
K 2 ðP

pðK̂ÞÞd; 8K 2 T h

n o
:

The space–time DG weak formulation of the two-dimensional advection–diffusion equation can now be formulated as:
Find a uh 2Wh, such that for all v 2Wh
�
X
K2T n

h

Z
K

@v
@t

uh þrv � auh � mrv � ruh

� �
dKþ

X
S2Sn

I

Z
S
½½v�� � f̂ u�h ;u

þ
h

� �
dS þ

X
K2T n

h

Z
Kðtnþ1Þ

v�u�h dK �
Z

KðtnÞ
v�uþh dK

 !

þ
X
S2Sn

B

Z
S

v� f̂ u�h ;u
þ
h

� �
� �ndS �

X
S2Sn

I

Z
S
½½v �� � mffruh � gSRShggdS �

X
S2Sn

B

Z
S

v�m ru�h � gSRSh
� �

� �ndS

�
X
S2Sn

I

Z
S
mffrvgg � ½½uh��dS �

X
S2Sn

B

Z
S
rvL � m u�h � ub

� �
�ndS ¼ 0: ð1Þ
Here u�h ¼ lim�#0uhðx� �nKÞ, with nK the outward space–time normal vector at @K and f̂ u�h ;u
þ
h

� �
an upwind numerical flux.

The space–time formulation (1) uses a space–time generalization of the approaches by Bassi and Rebay [1] and Brezzi [5] for
the discretization of the viscous flux. The local lifting operator RSh is defined as in [14]: Find an RSh 2 Vh, such that for all
w 2 Vh
X
K2T n

h

Z
K

w � RSh dK ¼
R
Sffwgg � ½½uh��dS for S 2 Sn

I ;R
S wL � ðu�h � ubÞ�nLdS for S 2 Sn

B:

(
ð2Þ
The stabilization parameter gS is constant and should be chosen greater than or equal to the number of space-faces of an
element, see [27].
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The space–time DG discretization is obtained by approximating uh;v and RSh in each element with Legendre polynomials
of degree p. After introducing these polynomial approximations into (1) and (2) the resulting system of algebraic equations
in the space–time slab En can be represented as
LhUn
h ¼ fh; ð3Þ
with the discretization matrix Lh, the DG coefficients Un
h , and righthand side fh, which depends on the known DG coefficients

Un�1
h from the previous space–time slab. We refer to [27] for a detailed derivation and full error analysis of the space–time

DG algorithm for the advection–diffusion equation.
In order to simplify notation we define in the remainder of this article the product and division of vectors element-wise.

Hence for a; b 2 Rd we have
ab :¼ a1b1; . . . ; adbdð Þ 2 Rd and a=b :¼ a1=b1; . . . ; ad=bdð Þ 2 Rd:
This notation will be particularly useful in the discrete Fourier analysis, but also to indicate the various (semi)-coarsened
meshes.

3. Multigrid algorithm

3.1. hp-Multigrid as Smoother algorithm

In this section we present the hp-Multigrid as Smoother algorithm for the solution of higher order accurate discontinuous
Galerkin discretizations. This algorithm combines a V-cycle p-multigrid algorithm with h-multigrid, which acts as smoother
at each polynomial level. For a schematic overview, see Fig. 1. The h-multigrid smoother is provided by a semi-coarsening
multigrid algorithm, see Fig. 2, in combination with a semi-implicit pseudo-time Runge–Kutta method, which will be dis-
cussed in Section 3.2. The Runge–Kutta method is semi-implicit in order to obtain also good multigrid performance in
boundary layers.

Algorithm 1. hp-MGS Algorithm ðHPnh;pÞ

vnh;p :¼ HPnh;pðLnh;p; fnh;p;vnh;p;n; p; c1; c2; m1; m2;l1;l2;l3Þ
{
if polynomial level p ¼¼ 1 then

vnh;p :¼ HUnh;pðLnh;p; fnh;p;vnh;p; n; p; m1; m2;l1;l2;l3Þ;
return

end if
// pre-smoothing with h-MGS algorithm
for it ¼ 1; . . . ; c1 do

vnh;p :¼ HUnh;pðLnh;p; fnh;p;vnh;p;n; p; m1; m2;l1;l2;l3Þ;
end for
// lower order polynomial solution
rnh;p :¼ fnh;p � Lnh;pvnh;p;

fnh;p�1 :¼ Qp�1
nh;prnh;p;

vnh;p�1 :¼ 0;
vnh;p�1 :¼ HPnh;pðLnh;p�1; fnh;p�1;vnh;p�1;n; p� 1; c1; c2; m1; m2;l1;l2;l3Þ;
// lower order polynomial correction
vnh;p :¼ vnh;p þ Tp

nh;p�1vnh;p�1;

// post-smoothing with h-MGS algorithm
for it ¼ 1; . . . ; c2 do

vnh;p :¼ HUnh;pðLnh;p; fnh;p;vnh;p;n; p; m1; m2;l1;l2;l3Þ;
end for
}

This new multigrid algorithm combines various techniques, viz. the hp-multigrid method, see e.g. [21,26], and the Mul-
tigrid as Smoother algorithm proposed in [22,34]. There are, however, a number of crucial differences. The h-multigrid
algorithm is used at each polynomial level, instead of only at the coarsest polynomial level. This was motivated by the fact
that after extensive multilevel computations only limited improvement in the multigrid convergence rate was obtained if at
the coarsest polynomial level an exact solution was used instead of an h-multigrid algorithm. Hence, even an optimal
h-multigrid at the coarsest polynomial level would only provide a limited improvement in multigrid performance. The sec-
ond difference with hp-multigrid is that semi-coarsening multigrid is used as smoother in the h-multigrid. Finally, the coef-



Fig. 1. hp-MGS algorithm combining p-multigrid and the h-Multigrid as Smoother algorithm at each polynomial level. The h-Multigrid as Smoother
algorithm uses semi-coarsening in the local �x1- and �x2-directions and a semi-implicit Runge–Kutta method.

Fig. 2. h-Multigrid as Smoother algorithm used at each polynomial level p as smoother in the hp-MGS algorithm. The indices refer to grid coarsening. Mesh
ð1;1Þ is the fine mesh and e.g. Mesh ð4;1Þ has mesh size ð4h1;h2Þ.
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ficients of the pseudo-time Runge–Kutta smoother in the semi-coarsening multigrid are optimized using multilevel analysis.
This optimization process will be discussed in detail in Part II and makes it possible to account for the specific properties of
the DG discretization and local flow conditions, such as the cell Reynolds number.

The hp-MGS-multigrid algorithm for the solution of the linear system (3) is described in Algorithms 1–3, with

n ¼ ðn1;n2Þ 2 N2 and h ¼ ðh1;h2Þ 2 ðRþÞ2. We also use the notation nh :¼ ðn1h1;n2h2Þ. The computational meshes are indi-
cated with Mnh. The first part of the hp-MGS algorithm is defined recursively in Algorithm 1 and consists of the V-cycle
p-multigrid algorithm HPnh;p, with the h-MGS algorithm HUnh;p, defined in Algorithm 2, as smoother. In Algorithm 1 the linear
system is denoted as Lnh;p. The multigrid solution of the linear system is vnh;p and the known righthand side fnh;p. The linear
system originates from a numerical discretization with polynomial order p and mesh sizes h1 and h2 in the different local
coordinate directions. The mesh coarsening is indicated by the integer n ¼ ðn1;n2Þ. The parameters c1; c2; m1; m2; l1; l2,
and l3 are used to control the multigrid algorithm, such as the number of pre- and post-relations at each grid level and poly-

nomial order. The HPnh;p-multigrid algorithm uses the prolongation operators Tp
nh;p�1 and the restriction operators Q p�1

nh;p. The

prolongation operators Tp
nh;p�1 interpolate data from a discretization with polynomial order p� 1 to a discretization with

polynomial order p using an L2 projection. The restriction operators Qp�1
nh;p project data from a discretization with polynomial

order p to a discretization with polynomial order p� 1. The restriction operators are the transpose of the prolongation oper-

ators, viz. Qp�1
nh;p ¼ Tp

nh;p�1

� �T
.

In the HUnh;p-multigrid algorithm, defined recursively in Algorithm 2, the semi-coarsening multigrid algorithm HSi
nh;p,

with i ¼ 1;2, is used as smoother in the local i-direction of each element. The restriction of the data from the mesh Mnh

to the meshMmh, with m1 P n1 and m2 P n2, is indicated by the restriction operators Rmh
nh;p. The prolongation of the data from

the meshMmh to the meshMnh is given by the prolongation operators Pnh
mh;p. The prolongation operators Pnh

mh;p are defined as
the L2 projection from the coarse grid element onto the fine grid elements which are a subset of the coarse grid element. The

restriction operators are defined as Rmh
nh;p ¼ Pnh

mh;p

� �T
=ðn1n2Þ.

The semi-coarsening h-multigrid smoothers HSi
nh;p, with i ¼ 1;2, are defined recursively in Algorithm 3. Here, i denotes

the direction of the semi-coarsening, e.g. a coordinate direction or local face index in an unstructured mesh. The smoother
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in the direction i is indicated with Si
nh;p and will be discussed in detail in Section 3.2. At the coarsest levels in the semi-coars-

ened meshes we use l3 smoother iterations. Using the inverse of Lnh;p at the coarsest semi-coarsened meshes is not practical
since these meshes are still much larger than the coarsest uniformly coarsened mesh.

Various multigrid algorithms can be obtained by simplifying the hp-MGS algorithm given by Algorithms 1–3. The first
simplification is obtained by replacing in the HPnh;p algorithm for polynomial levels p > 1 the h-MGS-multigrid smoother
HUnh;p with the smoothers S2

nh;pS1
nh;p in the pre-smoothing step and S1

nh;pS2
nh;p in the post-smoothing step. We denote this algo-

rithm as the hp-MGS(1) algorithm, since the h-MGS algorithm is now only used at the p ¼ 1 level. The second simplification is
to use only uniformly coarsened meshes in the hp-MGS(1) algorithm instead of semi-coarsened meshes. In addition, the
semi-coarsening smoothers HSi

nh;p in the HUnh;p algorithm are replaced by the smoothers Si
nh;p for i ¼ 1;2. We denote this algo-

rithm as hp-multigrid.

3.2. Pseudo-time multigrid smoothers

As multigrid smoothers we use in Algorithm 3 a pseudo-time integration method. In a pseudo-time integration method
the linear system
Lnh;pvnh;p ¼ fnh;p ð4Þ
is solved by adding a pseudo-time derivative. This results in a system of ordinary differential equations
@v	nh;p

@r
¼ � 1
Mt

Lnh;pv	nh;p � fnh;p

� �
; ð5Þ
Algorithm 2. h-MGS Algorithm ðHUnh;pÞ

vnh;p :¼ HUnh;pðLnh;p; fnh;p;vnh;p;n; p; m1; m2;l1;l2;l3Þ
{
if coarsest uniformly coarsened mesh then

vnh;p :¼ L�1
nh;pfnh;p;

return
end if
// pre-smoothing using semi-coarsening multigrid
for it ¼ 1; . . . ; m1 do

vnh;p :¼ HS1
nh;pðLnh;p; fnh;p;vnh;p;1;n; p;l1;l2;l3Þ;

vnh;p :¼ HS2
nh;pðLnh;p; fnh;p;vnh;p;2;n; p;l1;l2;l3Þ;

end for
// coarse grid solution
rnh;p :¼ fnh;p � Lnh;pvnh;p;

f2nh;p :¼ R2nh
nh;prnh;p;

v2nh;p :¼ 0;
v2nh;p :¼ HUnh;pðL2nh;p; f2nh;p;v2nh;p;2n; p; m1; m2;l1;l2;l3Þ;
// coarse grid correction

vnh;p :¼ vnh;p þ Pnh
2nh;pv2nh;p;

// post-smoothing using semi-coarsening multigrid
for it ¼ 1; . . . ; m2 do

vnh;p :¼ HS2
nh;pðLnh;p; fnh;p;vnh;p;2;n; p;l1;l2;l3Þ;

vnh;p :¼ HS1
nh;pðLnh;p; fnh;p;vnh;p;1;n; p;l1;l2;l3Þ;

end for
}

which is integrated to steady-state in pseudo-time. At steady state, vnh;p ¼ v	nh;p. Note, for nonlinear problems this system is
obtained after linearization. The matrix Lnh;p is then the Jacobian of the nonlinear algebraic system. The hp-MGS algorithm
therefore naturally combines with a Newton multigrid method for nonlinear problems.

Since the goal of the pseudo-time integration is to reach steady state as efficiently as possible, time accuracy is not impor-
tant. This allows the use of low order time integration methods, which can be optimized to improve multigrid convergence
to steady state. In [15,29] optimized explicit pseudo-time Runge–Kutta methods are presented, which are used for the solu-



J.J.W. van der Vegt, S. Rhebergen / Journal of Computational Physics 231 (2012) 7537–7563 7543
tion of second order accurate space–time DG discretizations of the compressible Euler and Navier–Stokes equations [14,29].
An important benefit of these explicit pseudo-time smoothers is that they can be directly applied to nonlinear problems
without linearization. For higher order accurate DG discretizations, in particular for problems with thin boundary layers,
the performance of these smoothers is, however, insufficient. This motivated the development of a semi-implicit Runge–Kut-
ta pseudo-time integration method, which will be discussed in the next section.

Algorithm 3. Semi-coarsening multigrid algorithm HSi
nh;p

� �
vnh;p :¼ HSi

nh;pðLnh;p; fnh;p;vnh;p; i;n; p;l1;l2;l3Þ
{
if (i ¼¼ 1 and coarsest mesh in local i1-direction) or (i ¼¼ 2 and coarsest mesh in local i2-direction) then

for it ¼ 1; . . . ;l3 do

vnh;p :¼ Si
nh;pðLnh;p; fnh;p;vnh;pÞ;

end for
return

end if
// pre-smoothing
for it ¼ 1; . . . ;l1 do

vnh;p :¼ Si
nh;pðLnh;p; fnh;p;vnh;pÞ;

end for
// coarse grid solution on semi-coarsened meshes
rnh;p :¼ fnh;p � Lnh;pvnh;p;
if ði ¼¼ 1Þ then

// semi-coarsening in local i1-direction

fð2n1;n2Þh;p :¼ Rð2n1 ;n2Þh
nh;p rnh;p;

vð2n1 ;n2Þh;p :¼ 0;

vð2n1 ;n2Þh;p :¼ HS1
nh;pðLð2n1 ;n2Þh;p; fð2n1;n2Þh;p;vð2n1 ;n2Þh;p; i; ð2n1;n2Þ; p, l1;l2;l3Þ;

vnh;p :¼ vnh;p þ Pnh
ð2n1 ;n2Þh;pv ð2n1 ;n2Þh;p;

else if ði ¼¼ 2Þ then
// semi-coarsening in local i2-direction

fðn1 ;2n2Þh;p :¼ Rðn1;2n2Þh
nh;p rnh;p;

vðn1 ;2n2Þh;p :¼ 0;

vðn1 ;2n2Þh;p :¼ HS2
nh;pðLðn1;2n2Þh;p; fðn1 ;2n2Þh;p;vðn1 ;2n2Þh;p; i; ðn1;2n2Þ; p, l1;l2;l3Þ;

vnh;p :¼ vnh;p þ Pnh
ðn1 ;2n2Þh;pv ðn1 ;2n2Þh;p;

end if
// post-smoothing
for it ¼ 1; . . . ;l2 do

vnh;p :¼ Si
nh;pðLnh;p; fnh;p;vnh;pÞ;

end for
}

3.2.1. Semi-implicit Runge–Kutta smoother
The system of ordinary differential Eq. (5) will be solved using a five-stage semi-implicit Runge–Kutta method. In the

semi-implicit Runge–Kutta method we use the fact that the hp-MGS algorithm uses semi-coarsening in the local i1- and
i2-directions of each element. This makes it a natural choice to use a Runge–Kutta pseudo-time integrator which is implicit
in the local directions used for the semi-coarsening. Also, the space–time DG discretization uses, next to data on the element
itself, only data from elements connected to each of its faces. This results in a linear system with a block matrix structure. It is
therefore straightforward to use a Runge–Kutta pseudo-time integrator which is alternating implicit in the local i1 and i2-
direction. The linear system then consists of uncoupled systems of block tridiagonal matrices, which can be efficiently solved
with a direct method. The semi-implicit pseudo-time integration method then can efficiently deal with highly stretched
meshes in boundary layers. For this purpose we split the matrix Lnh;p, when sweeping in the i1-direction, as
Lnh;p ¼ Li11
nh;p þ Li12

nh;p
and for sweeps in the i2-direction as
Lnh;p ¼ Li21
nh;p þ Li22

nh;p:
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The matrices Li11
nh;p and Li21

nh;p contain the contribution from the element itself and the elements connected to each face in the i1-
direction, respectively, i2-direction, which are treated implicitly. The matrices Li12

nh;p and Li22
nh;p contain the contribution from each

face in the i2-direction, respectively, i1-direction, which are treated explicitly. Since the DG discretization only uses information
from nearest neighboring elements this provides a very natural way to define the lines along which the discretization is impli-
cit. The semi-implicit Runge–Kutta method for sweeps in the i1-direction then can be defined for the lþ 1 pseudo-time step as
v0 ¼ v l
nh;p

vk ¼ Inh;p þ bkkrLi11
nh;p

� ��1
v0 � kr

Xk�1

j¼0

akjðLi12
nh;pv j � fnh;pÞ

 !
; k ¼ 1; . . . ;5;

v lþ1
nh;p ¼ Si

nh;pv
l
nh;p ¼ v5;

ð6Þ
with a similar relation for sweeps in the i2-direction, where i11 is replaced by i21 and i12 with i22. Here, akj are the Runge–Kutta
coefficients, bk ¼

Pk�1
j¼0 akj for k ¼ 1; . . . 5; kr ¼ Mr=Mt, with Mr the pseudo-time step. At steady state of the r-pseudo-time

integration we obtain the solution of the linear system (4). The coefficients bk ensure that the semi-implicit Runge–Kutta
operator is the identity operator if v l

nh;p is the exact steady state solution of (5). Without this condition the pseudo-time inte-
gration method would not converge to a steady state. The only requirement we impose on the Runge–Kutta coefficients akj is
that the algorithm is first order accurate in pseudo-time, which implies the consistency condition
X4

j¼0

a5j ¼ 1:
For each polynomial level all other Runge–Kutta coefficients can be optimized to improve the pseudo-time convergence in
combination with the hp-MGS algorithm. For the computation of the multigrid error transformation operator we define the
semi-implicit Runge–Kutta operator Q 1

nh;p recursively for sweeps in the i1-direction as
Q 0 ¼ Inh;p

Q k ¼ Inh;p þ bkkrLi11
nh;p

� ��1
Inh;p � kr

Xk�1

j¼0

akjL
i12
nh;pQ j

 !
; k ¼ 1; . . . ;5;

Q 1
nh;p ¼ Q 5;

ð7Þ
with a similar expression for Q2
nh;p in the i2-direction, only with i11 and i12 replaced by, respectively, i21 and i22.

4. hp-MGS error transformation operator

The performance of the hp-MGS algorithm defined in Algorithms 1–3 is determined by the multigrid error transformation
operator. This operator determines the change in the error after one application of the full hp-MGS algorithm. We assume
that the linear system (4) is obtained from a space–time DG discretization using polynomial basis functions of order p.
The initial error in the solution of the algebraic system on the grid Mnh is defined as
e0
nh;p ¼ Unh;p � v0

nh;p:
Here, Unh;p is the exact solution of the algebraic system
Lnh;pUnh;p ¼ fnh;p
and v0
nh;p the initial guess used in the multigrid algorithm. Similarly, the error after one application of the multigrid algorithm

is defined as
e1
nh;p ¼ Unh;p � v1

nh;p;
with v1
nh;p ¼ HPnh;pv0

nh;p. The operator HPnh;p denotes the action of the hp-MGS algorithm defined in Algorithm 1. The initial
and multigrid error are related through the hp-MGS error transformation operator Mnh;p, viz.
e1
nh;p ¼ Mnh;pe0

nh;p:
The detailed formulation of the error transformation operator of the hp-MGS algorithm can now be obtained by computing
the error transformation operators of Algorithms 1–3, defined in Section 3.1, and the pseudo-time smoother, defined in Sec-
tion 3.2. For more details on the computation of the error transformation operator, see e.g. [10,28].

The hp-MGS error transformation operator Mnh;p for the HPnh;p multigrid algorithm can be defined recursively as
Mnh;p ¼ HUnh;p

� �c2 Inh;p � Tp
nh;p�1ðInh;p�1 �Mnh;p�1ÞðLnh;p�1Þ�1Q p�1

nh;pLnh;p

� �
HUnh;p

� �c1 if p > 1;

¼ HUnh;1 if p ¼ 1:
ð8Þ
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In the h-MGS step we first compute the error reduction using the HUnh;p algorithm, defined in Algorithm 2. The h-MGS error
transformation operator HUnh;p is equal to
HUnh;p ¼ HS1
nh;pHS2

nh;p

� �m2
Inh;p � Pnh

2nh;pðI2nh;p � HU2nh;pÞðL2nh;pÞ�1R2nh
nh;pLnh;p

� �
HS2

nh;pHS1
nh;p

� �m1
; if n < m;

¼ 0; if n ¼ m:
ð9Þ
The HUnh;p error transformation operator (9) can also be used to obtain the semi-coarsening multigrid error transformation
operators HS1

nh;p and HS2
nh;p, defined in Algorithm 3, which are equal to
HS1
nh;p ¼ S1

nh;p

� �l2
Inh;p � Pnh

ð2n1 ;n2Þh;pðIð2n1 ;n2Þh;p � HS1
ð2n1 ;n2Þh;pÞðLð2n1 ;n2Þh;pÞ

�1Rð2n1 ;n2Þh
nh;p Lnh;p

� �
S1

nh;p

� �l1
; if n < m;

¼ Inh;p � S1
nh;p

� �l3
; if n ¼ m;

HS2
nh;p ¼ S2

nh;p

� �l2
Inh;p � Pnh

ðn1 ;2n2Þh;pðIðn1 ;2n2Þh;p � HS2
ðn1 ;2n2Þh;pÞðLðn1 ;2n2Þh;pÞ

�1Rðn1 ;2n2Þh
nh;p Lnh;p

� �
S2

nh;p

� �l1
; if n < m;

¼ Inh;p � S2
nh;p

� �l3
; if n ¼ m:
Next, we discuss the error transformation operator of the semi-implicit Runge–Kutta pseudo-time smoother, defined in Sec-
tion 3.2. The error after the lst and l + 1th semi-implicit Runge–Kutta pseudo-time integration step is
~e0
nh;p ¼ vnh;p � v l

nh;p

~e1
nh;p ¼ vnh;p � v lþ1

nh;p
and the error in each Runge–Kutta stage as
�ek ¼ vnh;p � vk;
with �e0 ¼ ~e0
nh;p. The error after one semi-implicit Runge–Kutta step can now be defined recursively as
�e0 ¼ ~e0
nh;p

�ek ¼ Inh;p þ bkkrLi11
nh;p

� ��1
�e0 � kr

Xk�1

j¼0

akjL
i12
nh;p

�ej

 !
; k ¼ 1; . . . ;5;

�e1
nh;p ¼ S1

nh;p�e0
nh;p ¼ Q 1

nh;p�e0
nh;p ¼ �e5:
A similar expression is obtained for S2
nh;p, when the Runge–Kutta method is implicit in the i2-direction. Only i11 and i12 are

replaced by, respectively, i21 and i22. Combining all contributions gives the hp-MGS error transformation operator Mnh;p.

5. Fourier analysis of hp-MGS Algorithm

The analysis of the hp-MGS error transformation operator can be performed using discrete Fourier analysis. This allows
the efficient computation of the operator norm and spectral radius of the multigrid error transformation operator, which will
be used in Part II to optimize the pseudo-time Runge–Kutta smoother. The analysis of the hp-MGS algorithm will consider
three polynomial levels and three semi-coarsened and uniformly coarsened mesh levels. The large number of multigrid lev-
els in combination with the different types of mesh coarsening make the multilevel analysis intricate. We start in Sections
5.1 and 5.2 with some important definitions and discuss the aliasing of modes, which depends on the type of mesh coars-
ening. Next, we describe in Section 5.3 the Fourier symbols of the discrete operators, viz. the spatial discretization operators
and smoothers, and the restriction and prolongation operators for all types of meshes considered in this study. The Fourier
symbols of the discrete operators will then be used in Section 5.4 to give a unified description of three-level analysis, suitable
for both uniformly and semi-coarsened meshes. Finally, in Section 5.5 the different parts are combined into the Fourier sym-
bol of the hp-MGS error transformation operator. More details on the discrete Fourier multilevel analysis of the hp-MGS error
transformation operator can be found in [31]. General information on discrete Fourier analysis of multigrid algorithms is
available in [4,10,11,28,35–37].

5.1. Definitions

In this section we will introduce some definitions which will be used throughout the multilevel analysis. Assume a finite
mesh GN

nh � R2, with n;N 2 N2 and h 2 ðRþÞ2, which is defined as
GN
nh :¼ �x ¼ ð�x1; �x2Þ ¼ ðk1n1h1; k2n2h2Þ j k 2 GN

n

� 	
;

with index set GN
n given by
GN
n ¼ k 2 Z2 j �Ni=ni 6 ki 6 ðNi=niÞ � 1;Ni=ni 2 N; i ¼ 1;2

� 	
: ð10Þ
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We also use the set GN
n to enumerate the elements used in the space–time discretization. On GN

nh we define for
vnh;wnh : GN

nh ! C the scaled Euclidian inner product
ðvnh;wnhÞGN
nh

:¼ n1n2

4N1N2

X
�x2GN

nh

vnhð�xÞwnhð�xÞ ð11Þ
and norm
kvnhkGN
nh

:¼ ðvnh;vnhÞ
1
2

GN
nh
:

Here an overbar denotes the complex conjugate. We will also consider an infinite mesh Gnh, which is defined as
Gnh :¼ �x ¼ ð�x1; �x2Þ ¼ ðk1n1h1; k2n2h2Þ j k 2 Z2� 	
:

Similarly, on Gnh we define for vnh;wnh : Gnh ! C the scaled Euclidian inner product as
ðvnh;wnhÞGnh
:¼ lim

N!1

n1n2

4N2

X
�x2GN

nh

vnhð�xÞwnhð�xÞ; ð12Þ
with associated norm kvnhkGnh
. In R2 a uniform mesh with mesh sizes ðh1;h2Þ can now be represented as Gh ¼ Gðh1 ;h2Þ and a

uniformly coarsened mesh as G2h ¼ Gð2h1 ;2h2Þ. A mesh with semi-coarsening in the �x1-, respectively, �x2-direction is repre-
sented as Gð2h1 ;h2Þ and Gðh1 ;2h2Þ. Based on the mesh points it is straightforward to construct the finite element mesh consisting
of rectangular elements.

The linear system (3) on the mesh Gnh using periodic boundary conditions and polynomials of order p in the space–time
DG discretization is described in stencil notation as
Lnh;pvnh;pð�xÞ ¼
X
k2Jn

lk;nh;pvnh;pð�xþ knhÞ; �x 2 Gnh; ð13Þ
where the stencil coefficients lk;nh;p are mp �mp matrices, with mp P 1 depending on the polynomial order p used in the
space–time DG discretization. Note, in matrix notation the linear system can be represented by a block Toeplitz matrix.
The space–time DG coefficients are denoted vnh;p and are associated in the Fourier analysis with the center of each element.
The finite index sets Jn � Z2 describe the space–time DG stencil. In two dimensions the space–time DG discretization has a
5-point stencil. The stencil of Lnh;p is then given by
½Lnh;p� ¼
0 lð�1;0Þ;nh;p 0

lð0;�1Þ;nh;p lð0;0Þ;nh;p lð0;1Þ;nh;p

0 lð1;0Þ;nh;p 0

0B@
1CA:
On the infinite mesh Gnh � R2, we define for �x 2 Gnh the continuous Fourier modes with frequency h ¼ ðh1; h2Þ 2 Pn, with
Pn ¼ ½� p

n1
; p

n1
Þ � ½� p

n2
; p

n2
Þ, as
/nhðnh; �xÞ :¼ eınh��x=ðnhÞ; ð14Þ
where nh � �x=ðnhÞ ¼ h1�x1=h1 þ h2�x2=h2, h 2 ðRþÞ2 and ı ¼
ffiffiffiffiffiffiffi
�1
p

. Note, the Fourier modes are orthonormal with respect to the
scaled Euclidian inner product on Gnh.

We define the space of bounded grid functions on the infinite mesh Gnh as
FðGnhÞ :¼ vnh j vnh : Gnh ! C with kvnhkGnh
<1

n o
:

For each vnh 2 FðGnhÞ, there exists a Fourier transform, which is defined as
dvnhðnhÞ ¼ n1n2

4p2

X
�x2Gnh

vnhð�xÞe�ınh��x=ðnhÞ; h 2 Pn: ð15Þ
The inverse Fourier transform is given by
vnhð�xÞ ¼
Z

h2Pn

dvnhðnhÞeınh��x=ðnhÞdh; �x 2 Gnh: ð16Þ
Hence vnh can be written as a linear combination of Fourier components.
Due to aliasing, Fourier components with j ĥ j:¼maxfn1 j h1 j;n2 j h2 jgP p are not visible on Gnh. These modes therefore

coincide with eınh��x=ðnhÞ, where h ¼ ĥðmod2p=nÞ. Hence, the Fourier space
F nðGnhÞ :¼ span /hðh; �xÞ j h 2 Pn; �x 2 Gnhf g
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contains any bounded infinite grid function on Gnh.
On a finite domain with mesh GN

nh, where at the domain boundaries periodic boundary conditions are imposed, only a
finite number of frequencies can be represented. Hence, for every vnh 2 F nðGN

nhÞ the discrete Fourier transform is defined as
Fig. 3.
domain
dvnhðnhkÞ ¼
n1n2

4N1N2

X
�x2GN

nh

vnhð�xÞe�ınhk ��x=ðnhÞ;
with hk ¼ ðhk1 ; hk2 Þ; hk ¼ pk=N; k 2 GN
n ; N 2 Nd. The inverse discrete Fourier transform is given by
vnhð�xÞ ¼
X
k2GN

n

dvnhðnhkÞeınhk ��x=ðnhÞ; �x 2 GN
nh:
The results of the discrete Fourier analysis on the infinite mesh Gnh and the finite mesh GN
nh are equal for a periodic field at

the frequencies h ¼ hk, with hk ¼ pk=N; k 2 GN
n ; N 2 N2. This equivalence will be used to find approximate results for the dis-

crete Fourier analysis on the infinite mesh Gnh, which generally results in eigenvalue problems which can not be solved
analytically.

5.2. Aliasing of Fourier modes

In three-level analysis with uniform mesh coarsening 16 modes on the fine mesh Gðh1 ;h2Þ alias to four independent modes
on the mesh Gð2h1 ;2h2Þ and to one mode on the coarsest mesh Gð4h1 ;4h2Þ, see Fig. 3. We therefore introduce the Fourier harmonics
F 3

hðhÞ, with h 2 Pð4;4Þ, as
F 3
hðhÞ :¼ span /hðha

b ; �xÞ j a 2 a2;b 2 b2

n o
;

with
h ¼ h00
00 2 Pð4;4Þ :¼ ½�p=4;p=4Þ2;

h00
b ¼ h00

00 � ð�b1signðh1Þ; �b2signðh2ÞÞp;
ha

b :¼ h00
b � ð�a1signððh00

b Þ1Þ; �a2signððh00
b Þ2ÞÞp;

a2 ¼ fð�a1; �a2Þ j �ai 2 f0;1g; i ¼ 1;2g;

b2 ¼ ð�b1; �b2Þ j �bi 2 0;
1
2

� �
; i ¼ 1;2

� �
:

ð17Þ
Next to uniform coarsening, the hp-MGS algorithm also uses semi-coarsening multigrid. In this case the grid is coarsened
in only one direction, which implies that four modes on the fine mesh alias to two modes on the medium mesh, and to one
mode on the coarsest mesh, see Figs. 4 and 5.

The aliasing relations for the Fourier modes on the different coarse meshes can be straightforwardly computed using the
representation of the modes ha

b given by (17). First, assume the following mesh coarsenings Gh ! Gnh, with
Aliasing of Fourier modes for uniform-coarsening. Modes with a black symbol alias on the mesh G2h to the mode with equivalent open symbol in the
½�p=2;p=2Þ2. Modes in the domain ½�p=2;p=2Þ2 n ½�p=4;p=4Þ2 alias on the mesh G4h to the mode in ½�p=4;p=4Þ2.



Fig. 4. Aliasing of Fourier modes for semi-coarsening in the �x1-direction. Modes with a black symbol alias on the mesh Gð2h1 ;h2Þ to the mode with an
equivalent open symbol in the domain ½�p=2;p=2Þ � ½�p;pÞ. Modes in the domain h 2 ð½�p=2;�p=4Þ [ ½p=4;p=2ÞÞ � ½�p;pÞ alias on the mesh Gð4h1 ;h2Þ to
the mode in ½�p=4;p=4Þ � ½�p;pÞ with the same value of h2.

Fig. 5. Aliasing of Fourier modes for semi-coarsening in the �x2-direction. Modes with a black symbol alias on the mesh Gðh1 ;2h2Þ to the mode with an
equivalent open symbol in the domain ½�p;pÞ � ½�p=2;p=2Þ. Modes in the domain h 2 ½�p;pÞ � ð½�p=2;�p=4Þ [ ½p=4;p=2ÞÞ alias on the mesh Gðh1 ;4h2Þ to
the mode in ½�p;pÞ � ½�p=4;p=4Þ with the same value of h1.
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n 2 fð2;2Þ; ð2;1Þ; ð1;2Þg, which includes both uniform and semi-coarsening. For �x 2 Gnh Fourier modes with frequency
ha

b 2 Pð1;1Þ, with a 2 a2; b 2 b2, alias on the mesh Gnh to modes with frequency ha0
b 2 Pn with
/hðha
b ; �xÞ ¼ /hðha0

b ; �xÞ ¼ /nhðnha0
b ; �xÞ; ha0

b 2 Pn; �x 2 Gnh
and
a0 ¼
ð0;0Þ if n ¼ ð2;2Þ;
ð0; �a2Þ if n ¼ ð2;1Þ;
ð�a1;0Þ if n ¼ ð1;2Þ:

8><>: ð18Þ
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Analogously, for the mesh coarsening Gnh ! Gmh, with m 2 fð4;4Þ; ð4;1Þ; ð1;4Þg, modes with frequency ha0
b 2 Pn alias on the

mesh Gmh to modes with frequency ha0
b0 2 Pm as
/nhðnha0
b ; �xÞ ¼ /hðha0

b0 ; �xÞ ¼ /mhðmha0
b0 ; �xÞ; ha0

b0 2 Pm; �x 2 Gmh;
with a0 and b0 given by
a0 ¼ ð0;0Þ; b0 ¼ ð0;0Þ; if m ¼ ð4;4Þ;
a0 ¼ ð0; �a2Þ; b0 ¼ ð0; �b2Þ if m ¼ ð4;1Þ;
a0 ¼ ð�a1;0Þ; b0 ¼ ð�b1; 0Þ if m ¼ ð1;4Þ:
In order to unify the analysis of uniform and semi-coarsening multigrid we use the sixteen modes ha
b defined in (17) for uni-

form coarsening also in the semi-coarsening analysis. These modes are, however, subdivided into four independent groups.
On the coarser meshes there is no aliasing between modes in different groups, only between modes in the same group.

For the three-level Fourier analysis of semi-coarsening in the �x1-direction we subdivide the Fourier harmonics with fre-
quencies ha

b ; a 2 a2; b 2 b2, on the mesh Gðh1 ;h2Þ into the groups
a1
ð2;1Þ ¼ fð0;0Þ; ð1;0Þg ! c1

ð2;1Þ ¼ ð0; 0Þ;
a2
ð2;1Þ ¼ fð1;1Þ; ð0;1Þg ! c2

ð2;1Þ ¼ ð0;1Þ;

b1
ð2;1Þ ¼ ð0;0Þ; 1

2
; 0

� �� �
! d1

ð2;1Þ ¼ ð0; 0Þ;

b2
ð2;1Þ ¼

1
2
;
1
2

� �
; 0;

1
2

� �� �
! d2

ð2;1Þ ¼ 0;
1
2

� �
;

where the index of the mode to which each group of modes aliases on the next coarser mesh level is indicated with an arrow,

see also Fig. 4. For example, the modes on the mesh Gh with frequency ha
b ;a 2 a1

ð2;1Þ, alias for each b 2 b1
ð2;1Þ to the frequency h

c1
ð2;1Þ

b

on the mesh Gð2h1 ;h2Þ. Similarly, on the mesh Gð2h1 ;h2Þ the modes h
c1
ð2;1Þ

b ; b 2 b1
ð2;1Þ, alias to the frequency h

c1
ð2;1Þ

d1
ð2;1Þ

on the mesh Gð4h1 ;h2Þ.

Next, for three-level Fourier analysis of semi-coarsening in the �x2-direction we define the groups
a1
ð1;2Þ ¼ fð0;0Þ; ð0;1Þg ! c1

ð1;2Þ ¼ ð0;0Þ;
a2
ð1;2Þ ¼ fð1;1Þ; ð1;0Þg ! c2

ð1;2Þ ¼ ð1; 0Þ;

b1
ð1;2Þ ¼ ð0;0Þ; 0;

1
2

� �� �
! d1

ð1;2Þ ¼ ð0;0Þ;

b2
ð1;2Þ ¼

1
2
;
1
2

� �
;

1
2
;0

� �� �
! d2

ð1;2Þ ¼
1
2
;0

� �
;

see Fig. 5. Finally, for uniform mesh coarsening the modes in the three-level Fourier analysis are ordered as
a1
ð2;2Þ ¼ fð0;0Þ; ð1;1Þ; ð1;0Þ; ð0;1Þg ! c1

ð2;2Þ ¼ ð0;0Þ;

b1
ð2;2Þ ¼ ð0;0Þ; 1

2
;
1
2

� �
;

1
2
; 0

� �
; 0;

1
2

� �� �
! d1

ð2;2Þ ¼ ð0;0Þ;
see Fig. 3. In principle the ordering of modes in the different groups can be changed, but it is important that the same order-
ing is used in all steps of the multilevel analysis.

5.3. Fourier symbols of discrete operators

In this section we will summarize the Fourier symbols of the multigrid operators, namely the fine and coarse grid oper-
ators, the smoothing operators, and the restriction and prolongation operators. We will present the Fourier symbols in a uni-
fied way, suitable for both uniform and semi-coarsening multigrid.

5.3.1. Discrete Fourier transform of space–time DG operator
On the mesh Gh we can express (13) in terms of its discrete Fourier transform through the relation
ðLh;pvh;pÞð�xÞ ¼
X

a2a1
ð2;2Þ

X
b2b1

ð2;2Þ

Z
h2Pð4;4Þ

dLh;p ha
b

� �dvh;p ha
b

� �
eıha

b ��x=hdh; ð19Þ
with ha
b ¼ ha

bðhÞ given by (17). The Fourier symbol dLh;p ha
b

� �
is defined as
dLh;p ha
b

� �
¼
X

k2JLh;p

lk;h;peıha
b �k 2 Cmp�mp :



7550 J.J.W. van der Vegt, S. Rhebergen / Journal of Computational Physics 231 (2012) 7537–7563
On the mesh Gnh, with n 2 fð2;2Þ; ð2;1Þ; ð1;2Þg, we obtain the relation
ðLnh;pvnh;pÞð�xÞ ¼
X
i2sn

X
j2sn

X
b2bj

n

Z
h2Pð4;4Þ

dLnh;p nhci
n

b

� � dvnh;p nhci
n

b

� �
eınha

b ��x=ðnhÞdh;
where the set sn ¼ f1;2g if n ¼ ð2;1Þ; ð1;2Þ; ð4;1Þ; ð1;4Þ and sn ¼ f1g if n ¼ ð2;2Þ; ð4;4Þ. The Fourier symbol dLnh;p nhci
n

b

� �
is

defined as
dLnh;p nhci
n

b

� �
¼
X

k2JLnh;p

lk;nh;peınh
ci

n
b
�k 2 Cmp�mp :
Finally, on the mesh Gmh, with m 2 fð4;4Þ; ð4;1Þ; ð1;4Þg, we can express (13) as
ðLmh;pvmh;pÞð�xÞ ¼
X
i2sm

X
j2sm

Z
h2Pð4;4Þ

dLmh;p mhci
n

dj
n

� � dvmh;p mhci
n

dj
n

� �
e

ımh
ci

n

dj
n

��x=ðmhÞ
dh;� �
with the Fourier symbol dLmh;p mhci
n

dj
n

defined as
dLmh;p mhci
n

dj
n

� �
¼

X
k2JLmh;p

lk;mh;pe
ımh

ci
n

dj
n

�k
2 Cmp�mp :
5.3.2. Discrete Fourier transform of pseudo-time smoother
Using the relations for the space–time discretization operators Lnh;p we obtain the Fourier symbols of the Runge–Kutta

pseudo-time integration operator discussed in Section 3.2.1. The Fourier symbol of Sl
h;p; l ¼ 1;2, on the mesh Gh, given by

(6), is equal to
cQ0 ha
b

� �
¼ Imp ;

cQk ha
b

� �
¼ Imp þ bkkr

dLl;1
h;p ha

b

� �� ��1

Imp � kr
Xk�1

j¼0

akj
dLl;2

h;p ha
b

� �cQj ha
b

� � !
; k ¼ 1; . . . ;5;

dSl
h;p ha

b

� �
¼ cQ5 ha

b

� �
; 8a 2 a2; 8b 2 b2:
On the coarse meshes Gnh the Fourier symbol of the semi-implicit pseudo-time Runge–Kutta operator Sl
nh;p; l ¼ 1;2, is equal to
dSl

nh;pðnhcr
n

b Þ ¼ cQ5ðnhcr
n

b Þ; 8b 2 bs
n; r; s 2 sn:
5.3.3. Restriction operators for h-multigrid
Define the restriction operator Rnh

h;p : FðGhÞ ! FðGnhÞ, with n 2 fð2;2Þ; ð2;1Þ; ð1;2Þg, as
ðRnh
h;pvh;pÞð�xÞ ¼

X
k2J

Rnh
h;p

rk;nh;pvh;pð�xþ khÞ; �x 2 Gnh; �xþ kh 2 Gh;
with JRnh
h;p

the stencil of the restriction operator and rk;nh;p 2 Rmp�mp the matrices defining the restriction operator. On the mesh
Gnh the restriction operator can be related to its discrete Fourier transform through the relation
Rnh
h;pvh;p

� �
ð�xÞ ¼

X
i2sn

X
j2sn

X
b2bj

n

Z
h2Pð4;4Þ

X
a2ai

n

dRnh
h;p ha

b

� �dvh;p ha
b

� �
eınh

ci
n

b
ðhÞ��x=ðnhÞdh; ð20Þ
with the Fourier symbol dRnh
h;p ha

b

� �
given by
dRnh
h;p ha

b

� �
¼
X

k2J
Rnh

h;p

rk;nh;peıha
b �k:
Note, in (20) we used the subdivision of modes with frequency h 2 Pn into different groups as discussed in Section 5.2.
Next, we define the restriction operator Rmh

nh;p : FðGnhÞ ! FðGmhÞ, with m 2 fð4;4Þ; ð4;1Þ; ð1;4Þg, as
Rmh
nh;pvnh;p

� �
ð�xÞ ¼

X
k2J

Rmh
nh;p

rk;mh;pvnh;pð�xþ knhÞ; �x 2 Gmh; �xþ knh 2 Gnh:
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On the mesh Gmh the restriction operator can be related to its discrete Fourier transform through the relation
Rmh
nh;pvnh;p

� �
ð�xÞ ¼

X
i2sn

X
j2sn

Z
h2Pð4;4Þ

X
b2bj

n

dRmh
nh;p nhci

n
b

� � dvnh;p nhci
n

b

� �
e

ımh
ci

n

dj
n

��x=ðmhÞ
dh; ð21Þ

� �

with the Fourier symbol dRmh

nh;p nhci
n

b given by
dRmh
nh;p nhci

n
b

� �
¼
X

k2J
Rmh

nh;p

rk;mh;peınh
ci

n
b
�k; 8b 2 bj

n; i; j 2 sn:
5.3.4. Prolongation operators for h-multigrid
The definition of the prolongation operator Ph

nh;p : FðGnhÞ ! FðGhÞ, with n 2 fð2;2Þ; ð2;1Þ; ð1;2Þg, requires the introduction
of subsets of the mesh Gh, which each have a different prolongation operator. Define the meshes Gj

h as
Gj
h :¼ ðx1; x2Þ 2 R2 j ðx1; x2Þ ¼ ððn1j1 þ �j1Þh1; ðn2j2 þ �j2Þh2Þ; j 2 Z2� 	

;

with j 2 jn :¼ j ¼ ð�j1; �j2Þ j �ji 2 f0;ni � 1g; i ¼ 1;2f g. The prolongation operator related to the mesh Gj
h then is equal to
ðPh
nh;pvhÞ �xð Þ ¼

X
k2Jj

Ph
nh;p

pj
k;h;pvnhð�xþ khÞ; �x 2 Gj

h ; �xþ kh 2 Gnh;
where the index set JjPh
nh;p
� Z2 and matrices pj

k;h;p 2 Rmp�mp are used to define the prolongation operator on each mesh. We

consider now the prolongation operator Pn
nh;p : FðGnhÞ ! FðGhÞ, with n 2 fð2;2Þ; ð2;1Þ; ð1;2Þg. The prolongation operator

Ph
nh;p is related to its discrete Fourier transform through the relationZ
Ph
nh;pvnh;p

� �
ð�xÞ ¼

X
i2sn

X
j2sn

X
a2ai

n

X
b2bj

n
h2Pð4;4Þ

dPh
nh;p ha

b

� � dvnh;p nhci
n

b

� �
eıha

b ��x=hdh; ð22Þ
with the Fourier symbol dPh
nh;p ha

b

� �
given by
dPh

nh;p ha
b

� �
¼ 1

n1n2

X
j2j2

X
k2Jj

Pnh
mh;p

pj
k;h;peıha

b �k:
Next, we consider the prolongation operator Pnh
mh;p : FðGmhÞ ! FðGnhÞ, with m 2 fð4;4Þ; ð4;1Þ; ð1;4Þg. The definition of the pro-

longation operator requires the introduction of subsets of the mesh Gnh. Define the meshes Gj
nh as
Gj
nh :¼ ðx1; x2Þ 2 R2 j ðx1; x2Þ ¼ ððm1j1 þ �j1Þh1; ðm2j2 þ �j2Þh2Þ; j 2 Z2� 	

;

with j 2 jm :¼ j ¼ ð�j1; �j2Þ j �ji 2 f0; ð2mi � 2Þ=3g; i ¼ 1;2f g. The prolongation operator related to the mesh Gj
nh then is

equal to
Pnh
mh;pvmh;p

� �
ð�xÞ ¼

X
k2Jj

Pnh
mh;p

pj
k;nh;pvmh;pð�xþ knhÞ; �x 2 Gj

nh; �xþ knh 2 Gmh:
The prolongation operator Pnh
mh;p is related to its discrete Fourier transform through the relation
Pnh
mh;pvmh;p

� �
ð�xÞ ¼

X
i2sn

X
j2sn

X
b2bj

n

Z
h2Pð4;4Þ

dPnh
mh;p nhci

n
b

� � dvmh;p mhci
n

dj
n

� �
eınh

ci
n

b
��x=ðnhÞdh; ð23Þ
with the Fourier symbol dPnh
mh;p nhci

n
b

� �
given by
dPnh
mh;p nhci

n
b

� �
¼ n1n2

m1m2

X
j2j2

X
k2Jj

Pnh
mh;p

pj
k;nh;peınh

ci
n

b
�k:
5.3.5. Restriction and prolongation operators for p-multigrid
Define the p-multigrid prolongation operators Tp

h;p�1 : FðGhÞ ! FðGhÞ in stencil notation as� �

Tp

h;p�1vh;p�1 ð�xÞ ¼ th;pvh;pð�xÞ; �x 2 Gh;
where th;p 2 Rmp�mp is the matrix defining the p-multigrid prolongation operator in a space–time element. Since this is a
purely element based operator it immediately follows that its Fourier symbol is equal to
dTp

h;p�1 ¼ th;p: ð24Þ
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The p-multigrid restriction operator Q p�1
h;p : FðGhÞ ! FðGhÞ is equal to the transpose of the p-multigrid prolongation operator.

The Fourier symbol of the p-restriction operator then is equal to
dQ p�1
h;p ¼ dTp

h;p�1

� �T
: ð25Þ
5.4. Three-level Fourier analysis

In this section we will describe the discrete Fourier analysis of the three-level h-multigrid error transformation operator.
A unified formulation for both uniform and semi-coarsening multigrid will be presented. This unified formulation makes the
construction of the complete hp-MGS error transformation operator, which is discussed in Section 5.5, much easier. In order
to simplify notation we omit in this section the subscript p in the discrete operators. It should be kept in mind, however, that
all discrete operators depend on the polynomial order p of the space–time DG discretization.

In the three-level analysis the Fourier symbols cLhðhÞ; cLnhðnhÞ and dLmhðmhÞ, with n 2 fð2;2Þ; ð2;1Þ; ð1;2Þg;m 2
fð4;4Þ; ð4;1Þ; ð1;4Þg can be zero for certain values of h. The frequencies of these Fourier harmonics are removed from
F 3

hðhÞ through the definition of
;
F 3g
h :¼ F 3

hðh
a
bðhÞÞ j h 2 Pð4;4Þ nWn;m; 8a 2 ai

n; 8b 2 bj
n; i; j 2 sn; 8n 2 fð2;2Þ; ð2;1Þ; ð1;2Þg; 8m 2 fð4;4Þ; ð4;1Þ; ð1;4Þg

n o

with
Wn;m :¼ h2Pð4;4Þ j det cLh ha
bðhÞ

� �� �
¼ 0 or det cLnh nhci

n
b ðhÞ

� �� �
¼ 0 or det dLmh mhci

n

dj
n
ðhÞ

� �� �
¼ 0; 8a2 ai

n; 8b2 bj
n; i; j2 sn

� �
ð26Þ
and ha
b ¼ ha

bðhÞ given by (17). The error eD
h after a three-level multigrid cycle is equal to
eD
h ¼ M3g

h eA
h ; ð27Þ
with eA
h the initial error. The three-level multigrid error transformation operator M3g

h can be obtained from (9) and is equal to
M3g
h ¼ Sm2

h Ih � Ph
nh Inh �Mm

nh

� �
Lnhð Þ�1Rnh

h Lh

� �
Sm1

h ð28Þ
with the coarse grid correction defined as
Mm
nh ¼ Sm2

nh Inh � Pnh
mh Lmhð Þ�1Rmh

nh Lnh

� �
Sm1

nh: ð29Þ
Here Lh; Lnh and Lmh denote the matrices of the DG discretization (4) on the meshes Gh;Gnh and Gmh, respectively, Sh; Snh the
multigrid smoothers, which can be either the semi-coarsening smoothers HS2

nh;pHS1
nh;p; HS1

nh;pHS2
nh;p, or the semi-implicit Run-

ge–Kutta smoother Si
nh;p; i ¼ 1;2. Furthermore, Rnh

h ; Rmh
nh are the restriction operators, Ph

nh; Pnh
mh the prolongation operators,

and Ih; Inh the identity operators on the meshes Gh and Gnh, respectively. The parameters m1; m2 denote the number of
pre- and post-smoothing iterations.

We start the three-level analysis with the coarse grid contribution (29) on the mesh Gnh, which can be expressed as
eD
nhð�xÞ ¼

X
i2sn

X
j2sn

X
b2bj

n

Z
h2Pð4;4Þ

dMm
nheA

nh nhci
n

b

� �
eınh

ci
n

b
��x=ðnhÞdh;
with
dMm
nheA

nh nhci
n

b

� �
¼ cSnh nhci

n
b

� �� �m1þm2 ceA
nh nhci

n
b

� �
� cSnh nhci

n
b

� �� �m2 dPnh
mh nhci

n
b

� � dLmh mhci
n

dj
n

� �� ��1

�
X
b22b

j
n

dRmh
nh nhci

n
b2

� �cLnh nhci
n

b2

� � cSnh nhci
n

b2

� �� �m1 ceA
nh nhci

n
b2

� �
; 8b 2 bj

n; i; j 2 sn ð30Þ
using the expressions for the Fourier symbols of the discrete operators given in Section 5.3. Define now the coarse grid cor-
rection operator
eMm

nh ¼ Inh �Mm
nh: ð31Þ
If we introduce the matrices deMm
nh

� �
b

2 Cqr�qr , with b 2 bj
n; i; j 2 sn; q ¼ mp the size of the blocks in the space–time DG dis-

cretization, and r ¼ Carðai
nÞ ¼ Carðbj

nÞ, then we can write the discrete Fourier transform of eMm
nheA

nh as
deMm
nheA

nh nhci
n

b

� �
¼
X
b22b

j
n

deMm
nh

� �
b2

nhci
n

b

� �ceA
nh nhci

n
b2

� �
; 8b 2 bj

n; i; j 2 sn; ð32Þ
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where an explicit expression of deMm
nh

� �
b2

nhci
n

b

� �
can be obtained using (30)� � � �� �
deMm

nh
b2

nhci
n

b

� �
¼ Iqr� cSnh nhci

n
b

� �� �m1þm2
þ cSnh nhci

n
b

� �� �m2 dPnh
mh nhci

n
b

� � dLmh mhci
n

dj
n

�1dRmh
nh nhci

n
b

� �cLnh nhci
n

b

� � cSnh nhci
n

b

� �� �m1
;if b2¼b;

¼ cSnh nhci
n

b

� �� �m2 dPnh
mh nhci

n
b

� � dLmh mhci
n

dj
n

� �� ��1dRmh
nh nhci

n
b2

� �cLnh nhci
n

b2

� � cSnh nhci
n

b2

� �� �m1
; if b2 –b:
Next, we compute the Fourier symbol of the error transformation operator M3g
h on the mesh Gh. Using (28) and the Fourier

symbols of the individual discrete operators discussed in Section 5.3 the error in the three-level multigrid algorithm can now
be expressed as
eD
h ð�xÞ ¼

X
i2sn

X
j2sn

X
a2ai

n

X
b2bj

n

Z
h2Pð4;4Þ

dM3g
h eA

h ha
b

� �
eıha

b ��x=hdh;
with
dM3g
h eA

h ha
b

� �
¼ cSh ha

b

� �� �m1þm2ceA ha
b

� �
� cSh ha

b

� �� �m2dPh
nh ha

b

� �X
b22b

j
n

deMm
nh

� �
b2

nhci
n

b

� � cLnh nhci
n

b2

� �� ��1 X
a22ai

n

dRnh
h ha2

b2

� �cLh ha2
b2

� �
� cSh ha2

b2

� �� �m1ceA
h ha2

b2

� �
; 8a 2 ai

n; 8b 2 bj
n; i; j 2 sn:
The expressions for the discrete Fourier transform of the error transformation operator can be simplified using a matrix rep-
resentation. On the mesh Gnh we introduce the matrices
bLn
nh nhci

n

bj
n

� �
¼ bdiag cLnh nhci

n
b1

� �
; . . . ; cLnh nhci

n
br

� �� �
2 Cqr�qr; ð33Þ

bSn
nh nhci

n

bj
n

� �
¼ bdiag cSnh nhci

n
b1

� �
; . . . ; cSnh nhci

n
br

� �� �
2 Cqr�qr; ð34Þ

bRmh
nh nhci

n

bj
n

� �
¼ dRmh

nh nhci
n

b1

� �
; . . . ;

dRmh
nh nhci

n
br

� �� �
2 Cq�qr; ð35Þ

bPnh
mh nhci

n

bj
n

� �
¼ dPnh

mh nhci
n

b1

� �
; . . . ;

dPnh
mh nhci

n
br

� �� �T

2 Cqr�q; ð36Þ
with hci
n

bj
n
¼ hci

n
b1
; . . . hci

n
br

� �T
; b1; . . . ; br 2 bj

n; r ¼ Carðai
nÞ ¼ Carðbj

nÞ; i; j 2 sn, and bdiag refers to a block diagonal matrix consisting

of q� q blocks with q P 1. For each group of modes bj
n; j 2 sn, the discrete Fourier transform of the coarse grid multigrid error

transformation operator bMm
nh can be directly obtained from (30) resulting in
bMm
nh nhci

n

bj
n

� �
¼ bSn

nh nhci
n

bj
n

� �� �m2

Iqr � bPnh
mh nhci

n

bj
n

� � dLmh mhci
n

dj
n

� �� ��1bRmh
nh nhci

n

bj
n

� �bLn
nh nhci

n

bj
n

� � ! bSn
nh nhci

n

bj
n

� �� �m1

2 Cqr�qr ; i; j 2 sn;
with Iqr 2 Rqr�qr the identity matrix. The matrices representing the discrete Fourier transform of the coarse grid operator (31)
then are equal to
deMm
nh nhci

n

bj
n

� �
¼ Iqr � bMm

nh nhci
n

bj
n

� �
2 Cqr�qr ; i; j 2 sn:
Next, we introduce for each group of modes ai
n; b

j
n, with i; j 2 sn, the matrices
eLn
h hai

n
bk

� �
¼ bdiag cLh ha1

bk

� �
; . . . ;cLh har

bk

� �� �
2 Cqr�qr ; ð37Þ

Ln
h hai

n

bj
n

� �
¼ bdiag eLn

h hai
n

b1

� �
; . . . ; eLn

h hai
n

br

� �� �
2 Cqr2�qr2

; ð38Þ

eSn
h hai

n
bk

� �
¼ bdiag cSh ha1

bk

� �
; . . . ;cSh har

bk

� �� �
2 Cqr�qr ð39Þ

Sn
h hai

n

bj
n

� �
¼ bdiag eSn

h hai
n

b1

� �
; . . . ; eSn

h hai
n

br

� �� �
2 Cqr2�qr2

; ð40Þ

eRnh
h hai

n
bk

� �
¼ dRnh

h ha1
bk

� �
; . . . ;

dRnh
h har

bk

� �� �
2 Cq�qr; ð41Þ

Rnh
h hai

n

bj
n

� �
¼ bdiag eRnh

h hai
n

b1

� �
; . . . ; eRnh

h ðh
ai

n
br
Þ

� �
2 Cqr�qr2 ð42Þ
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ePh
nh hai

n
bk

� �
¼ dPh

nh ha1
bk

� �
; . . . ;

dPh
nh har

bk

� �� �T

2 Cqr�q; ð43Þ

Ph
nh hai

n

bj
n

� �
¼ bdiag ePh

nh hai
n

b1

� �
; . . . ; ePh

nh hai
n

br

� �� �
2 Cqr2�qr ; ð44Þ

Qn
nh nhci

n

bj
n

� �
¼ bdiag cLnh nhci

n
b1

� �
; . . . ; cLnh nhci

n
br

� �� �� ��1
2 Cqr�qr; ð45Þ
with hai
n

bk
¼ ha1

bk
; . . . ; har

bk

� �T
; hai

n

bj
n
¼ hai

n
b1
; . . . ; hai

n
br

� �T
; a1; . . . ;ar 2 ai

n, b1; . . . ; br 2 bj
n.

The discrete Fourier transform of the error transformation operator for a three-level multigrid cycle can now be expressed
for each group of Fourier modes as
bMn
h hai

n

bj
n

� �
¼ Sn

h hai
n

bj
n

� �� �m2

Ir2q � Ph
nh hai

n

bj
n

� �deMm
nh nhci

n

bj
n

� �
Q n

nh nhci
n

bj
n

� �
Rnh

h ðh
ai

n

bj
n
ÞLn

h hai
n

bj
n

� �� �
Sn

h hai
n
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n

� �� �m1

2 Cr2q�r2q; i; j 2 sn:

ð46Þ
The discrete Fourier transform of the three-level error transformation operator for different types of mesh coarsening can
now be obtained by combining the contributions from the different groups of Fourier modes. For uniform coarsening the
multigrid error transformation operator is equal to
bM ð2;2Þ

h ha
b

� �
¼ bM ð2;2Þ

h h
a1
ð2;2Þ

b1
ð2;2Þ

� �
2 C16q�16q; ð47Þ
with ha
b ¼ h

a1
ð2;2Þ

b1
ð2;2Þ

. The discrete Fourier transform of the error after one three-level multigrid cycle with uniform coarsening can

now be expressed as
ceD
h ha

b

� �
¼ bM ð2;2Þ

h ha
b

� �ceA
h ha

b

� �
;

with
 deA;D
h ha

b

� �
¼ ceD

h ha1
b1

� �
; . . . ;

deA;D
h ha4

b1

� �
;
deA;D

h ha1
b2

� �
; . . . ;

deA;D
h ha4

b2

� �
; . . . ;

deA;D
h ha1

b4

� �
; . . . ;

deA;D
h ðh

a4
b4
Þ

� �T

; a1; . . . ;a4 2 a1
ð2;2Þ;

b1; . . . ;b4 2 b1
ð2;2Þ:
The discrete Fourier transform of the multigrid error transformation operator for semi-coarsening in the �x1-direction is
bM ð2;1Þ
h h

að2;1Þ
bð2;1Þ

� �
¼ bdiag bM ð2;1Þ

h h
a1
ð2;1Þ

b1
ð2;1Þ

� �
; bM ð2;1Þ

h h
a2
ð2;1Þ

b1
ð2;1Þ

� �
; bM ð2;1Þ

h h
a1
ð2;1Þ

b2
ð2;1Þ

� �
; bM ð2;1Þ

h h
a2
ð2;1Þ

b2
ð2;1Þ

� �� �
2 C16q�16q;
with h
að2;1Þ
bð2;1Þ
¼ h

a1
ð2;1Þ

b1
ð2;1Þ
; h

a2
ð2;1Þ

b1
ð2;1Þ
; h

a1
ð2;1Þ

b2
ð2;1Þ
; h

a2
ð2;1Þ

b2
ð2;1Þ

� �T

. The frequencies h
ai
ð2;1Þ

bj
ð2;1Þ
; i; j 2 sn, are defined as
h
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ð2;1Þ

b1
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¼ h00

00; h
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00
1
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; h
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¼ h11

00; h
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1
20 ; h
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1
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� �T
;

h
a1
ð2;1Þ

b2
ð2;1Þ
¼ h00

1
2

1
2
; h10

1
2

1
2
; h00

01
2
; h10
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2

� �T
; h

a2
ð2;1Þ

b2
ð2;1Þ
¼ h11

1
2

1
2
; h01

1
2

1
2
; h11

01
2
; h01

01
2

� �T
:

Note, however, that the Fourier modes in the error vectors for semi-coarsening in the �x1 and �x2-direction have a different

ordering than for uniform coarsening deA;D
h ha

b

� �
. The ordering of the Fourier modes in the error vectors is not important for

the computation of the operator norms and the spectral radius of the error transformation operator when one particular type
of mesh coarsening is used. For the coupling of multigrid algorithms with different types of mesh coarsening, which is re-
quired for the multilevel analysis of the hp-MGS algorithm, it is, however, essential that the same ordering of the Fourier

modes in the error vectors is used. This can be easily accomplished using the permutation matrix Pð2;1Þh 2 R16q�16q, which reor-

ders the Fourier modes in the error vector for semi-coarsening in the �x1-direction to that of deA;D
h ðh

að2;1Þ
bð2;1Þ
Þ to the error vector for

uniform coarsening deA;D
h ha

b

� �
. The permutation matrix consists of blocks of size q� q. All blocks in the permutation matrix

Pð2;1Þh are zero, except the blocks with indices
ð1;1Þ; ð2;3Þ; ð3;9Þ; ð4;11Þ; ð5;2Þ; ð6;4Þ; ð7;10Þ; ð8;12Þ; ð9;5Þ; ð10;7Þ; ð11;13Þ; ð12;15Þ; ð13;6Þ; ð14;8Þ; ð15;14Þ; ð16;16Þ;
which are equal to the identity matrix Iq. The error after one three-level multigrid cycle with semi-coarsening in the �x1-direc-
tion can now be expressed as
ceD
h ha

b

� �
¼ Pð2;1Þh

� ��1 bM ð2;1Þ
h h

að2;1Þ
bð2;1Þ

� �
Pð2;1Þh

ceA
h ha

b

� �
:
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Finally, the discrete Fourier transform of the multigrid error transformation operator for semi-coarsening in the
�x2-direction is
bM ð1;2Þ
h h

að1;2Þ
bð1;2Þ

� �
¼ bdiag bM ð1;2Þ

h h
a1
ð1;2Þ

b1
ð1;2Þ

� �
; bM ð1;2Þ

h h
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ð1;2Þ
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ð1;2Þ

� �
; bM ð1;2Þ

h h
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ð1;2Þ

� �
; bM ð1;2Þ

h h
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ð1;2Þ

b2
ð1;2Þ

� �� �
2 C16q�16q;� �
with h
að1;2Þ
bð1;2Þ
¼ h

a1
ð1;2Þ

b1
ð1;2Þ
; h

a2
ð1;2Þ

b1
ð1;2Þ
; h

a1
ð1;2Þ

b2
ð1;2Þ
; h

a2
ð1;2Þ

b2
ð1;2Þ

T

. The frequencies h
ai
ð1;2Þ

bj
ð1;2Þ

are defined as
h
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ð1;2Þ
¼ h00

00; h
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2
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ð1;2Þ
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ð1;2Þ
¼ h11
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11
01

2
; h10
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2

� �T
;

h
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ð1;2Þ
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ð1;2Þ
¼ h00

1
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1
2
; h01

1
2

1
2
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1
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1
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� �T
; h
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ð1;2Þ
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ð1;2Þ
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1
2

1
2
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1
2

1
2
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1
20 ; h

10
1
20

� �T
:

The permutation matrix Pð1;2Þh 2 R16q�16q, which reorders the Fourier modes in the error vector for semi-coarsening in the �x2-

direction to that of deA;D
h for uniform coarsening consists of blocks of size q� q. All blocks in the permutation matrix Pð1;2Þh are

zero, except blocks with the indices
ð1;1Þ; ð2;4Þ; ð3;13Þ; ð4;16Þ; ð5;2Þ; ð6;3Þ; ð7;14Þ; ð8;15Þ; ð9;5Þ; ð10;8Þ; ð11;9Þ; ð12;12Þ; ð13;6Þ; ð14;7Þ; ð15;10Þ; ð16;11Þ;
which are equal to the identity matrix Iq. The discrete Fourier transform of the error after one three-level multigrid cycle
with semi-coarsening in the �x2-direction can now be expressed as
ceD
h ha

b

� �
¼ Pð1;2Þh

� ��1 bM ð1;2Þ
h h

að1;2Þ
bð1;2Þ

� �
Pð1;2Þh

ceA
h ðh

a
bÞ:
5.5. Discrete Fourier transform of hp-MGS multigrid error transformation operator

The discrete Fourier transform of the error transformation operator bMh;3 of the hp-MGS algorithm for a polynomial order
p ¼ 3 and three (semi)-coarsened mesh levels can be obtained by combining the results from the previous sections. The first
part of the hp-MGS algorithm consists of p-multigrid. Since there is no coupling in p-multigrid between modes on different
meshes the discrete Fourier transform of the p-multigrid part of the hp-MGS algorithm can be computed straightforwardly
using the Fourier symbols discussed in Section 5.3, resulting in
bMh;3 ha

b

� �
¼ dHUh;3 ha

b

� �� �c2
I16q3 � T3

h;2 ha
b

� �
I16q2 � bMh;2 ha

b

� �� �
Lð2;2Þh;2 ha

b

� �� ��1
Q 2

h;3 ha
b

� �
Lð2;2Þh;3 ha

b

� �� � dHUh;3 ha
b

� �� �c1

2 C16q3�16q3 ; ð48Þ

with the contribution from the p ¼ 2 level given by
bMh;2 ha
b

� �
¼ dHUh;2 ha

b

� �� �c2
I16q2 � T2

h;1 ha
b

� �
I16q1 �dHUh;1 ha

b

� �� �
Lð2;2Þh;1 ha

b

� �� ��1
Q1

h;2 ha
b

� �
Lð2;2Þh;2 ha

b

� �� � dHUh;2 ha
b

� �� �c1 2C16q2�16q2 ;
where ha
b ¼ h

a1
ð2;2Þ

b1
ð2;2Þ

. In this section we will use the shorthand notation a ¼ a1
ð2;2Þ and b ¼ b1

ð2;2Þ. The superscript qp, with

p ¼ 1;2;3, refers to the size of the blocks in the matrices of the space–time DG discretization using polynomial basis func-
tions of order p. Using (24) the p-multigrid prolongation matrices Tpþ1

h;p are defined as
Tpþ1
h;p ha

b

� �
¼ bdiag dTpþ1

h;p ha1
b1

� �
; . . . ;

dTpþ1
h;p ha4

b1

� �
;
dTpþ1

h;p ha1
b2

� �
; . . . ;

dTpþ1
h;p ha4

b2

� �
;
dTpþ1

h;p ha1
b4

� �
; . . . ;

dTpþ1
h;p ha4

b4

� �� �
2 C16qp�16qp
and the restriction matrices are equal to Qp
h;pþ1 ¼ Tpþ1

h;p

� �T
. Note, frequently the p-multigrid restriction and prolongation oper-

ators are purely element based in which case their discrete Fourier transform is independent of ha
b . The discrete Fourier trans-

form of the hp-MGS error transformation operator depends on the three-level h-MGS smoothers dHUh;p ha
b

� �
; p 2 f1;2;3g.

These operators are obtained using the three-level analysis discussed in Section 5.4. In order to describe the discrete Fourier
transform we extend the matrices defined in (33)–(36) and (37)–(45) to include also the polynomial order p of the basis
functions used in the space–time discretization. Using the result for the three-level error transformation operator given
by (47) we obtain the discrete Fourier transform of the three-level h-MGS error transformation operator for each polynomial
order
dHUh;p ha
b

� �
¼ cHSð2;1Þh;p ha

b

� �cHSð1;2Þh;p ha
b

� �� �m2
I16qp � Ph

2h;p ha
b

� � deM ð4;4Þ
2h;p 2h00

b

� �
Q ð2;2Þ2h;p 2h00

b

� �
R2h

h;p ha
b

� �
Lð2;2Þh;p ha

b

� �� �
� cHSð1;2Þh;p ha

b

� �cHSð2;1Þh;p ha
b

� �� �m1
2 C16qp�16qp ; ð49Þ
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with cHSð2;1Þh;p ha
b

� �
and cHSð1;2Þh;p ha

b

� �
the discrete Fourier transform of the error transformation operator of the semi-coarsening

multigrid smoothers in, respectively, the local �x1- and �x2-direction. The coarse grid contribution deM ð4;4Þ
2h;p 2h00

b

� �
from the mesh

G2h in (49) is given by
deM ð4;4Þ
2h;p 2h00

b

� �
¼ I4qp � bM ð4;4Þ

2h;p 2h00
b
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2 C4qp�4qp ;
with
bM ð4;4Þ
2h;p ð2h00

b Þ ¼ cHSð2;1Þ2h;p ð2h00
b ÞcHSð1;2Þ2h;p ð2h00
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b Þ

� �m1
2 C4qp�4qp :
The discrete Fourier transform of the semi-coarsening smoother in the local �x1-direction is given by
cHSð2;1Þh;p ha
b

� �
¼ Pð2;1Þh

� ��1
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h;p h
a1
ð2;1Þ

b1
ð2;1Þ

� �
; bM ð2;1Þ

h;p h
a2
ð2;1Þ

b1
ð2;1Þ

� �
; bM ð2;1Þ

h;p h
a1
ð2;1Þ

b2
ð2;1Þ

� �
; bM ð2;1Þ

h;p h
a2
ð2;1Þ

b2
ð2;1Þ

� �� �
Pð2;1Þh 2 C16qp�16qp ;
with the permutation matrix Pð2;1Þh 2 C16qp�16qp defined in Section 5.4 and
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:

The discrete Fourier transform of the semi-coarsening smoother in the local �x2-direction is
cHSð1;2Þh;p ha
b

� �
¼ Pð1;2Þh

� ��1
bdiag bM ð1;2Þ
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with the permutation matrix Pð1;2Þh 2 C16qp�16qp defined in Section 5.4 and
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:

Note, the permutation matrices are necessary in order to combine the error transformation operators for the different types
of mesh coarsening which use a different ordering of the Fourier modes. The contribution to the error transformation oper-

ators from the different groups of modes in the semi-coarsening smoothers cHSð2;1Þh;p ha
b

� �
and cHSð1;2Þh;p ha

b

� �
is now given for

i; j 2 sn by
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n

bj
n
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with the coarse grid contributions
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2 C2qp�2qp
and
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¼ bSn
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n

bj
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2 C2qp�2qp ;
where n ¼ ð2;1Þ; m ¼ ð4;1Þ for HSð2;1Þh;p and n ¼ ð1;2Þ; m ¼ ð1;4Þ for HSð1;2Þh;p . The smoother matrices Sn
h;p;

bSn
nh;p are defined in

Section 5.4 and dSmh;p is the discrete Fourier symbol of the semi-implicit Runge–Kutta smoother discussed in Section 5.3.2,
which is implicit in, respectively, the local �x1-direction for HSð2;1Þh;p and in the local �x2-direction for HSð1;2Þh;p .

The contribution of the semi-coarsening smoothers at the mesh level 2h is equal to
cHSn
2h;p 2h00

b

� �
¼ Pn

2h

� ��1bdiag bMn
2h;p 2h00

b1
n

� �
; bMn

2h;p 2h00
b2

n
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Pn

2h 2 C4qp�4qp ;
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with
bMn
2h;p 2h00

bj
n

� �
¼ bSn

2h;p 2h00
bj

n

� �� �l2
I2qp � bP2h

2nh;p 2h00
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n

� �
Iqp � dS2nh;p 2nh00
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� bR2nh
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n
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n

� �� �l1 2 C2qp�2qp ;
where n ¼ ð2;1Þ for HSð2;1Þ2h;p and n ¼ ð1;2Þ for HSð1;2Þ2h;p . The permutation matrices are defined as
Pð2;1Þ2h ¼

Iq 0 0 0
0 0 Iq 0
0 Iq 0 0
0 0 0 Iq

0BBB@
1CCCA Pð1;2Þ2h ¼

Iq 0 0 0
0 0 0 Iq

0 Iq 0 0
0 0 Iq 0

0BBB@
1CCCA:
6. Multilevel analysis of higher order space–time DG discretization

The multilevel Fourier analysis of the hp-MGS algorithm will be demonstrated for the advection–diffusion equation in two
space-dimensions. The optimization of the Runge–Kutta smoother, including details about the Runge–Kutta coefficients, and
the performance of the hp-MGS algorithm on a number of test cases is discussed in Part II [32].

The space–time discretization is made dimensionless by introducing the following dimensionless numbers, viz. the CFL
number and the cell Reynolds number, defined as
CFL ¼ j a j Dt
j h j ; Reh ¼

j a jj h j
m

; ð50Þ
with j h j the diameter of the element and time step Mt ¼ tnþ1 � tn.
For the multigrid analysis we assume a uniform mesh with mesh sizes h1 and h2 in the �x1- and �x2-direction, respectively.

Furthermore, we introduce the mesh aspect ratio Ah ¼ h2
h1

, which implies that j h j¼ h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

h

q
, and the flow angle a with re-

spect to the �x1-axis, hence a1 ¼j a j cos a and a2 ¼j a j sin a. On meshes with h1 – h2 we use two cell Reynolds numbers, viz.
Reh1 and Reh2 , with h replaced by h1 and h2 in (50). The space–time DG discretization for the advection–diffusion Eq. (3) on a
uniform mesh can be represented using the following dimensionless stencil notation:
Lh;p :¼ La
h;1 þ La

h;2 þ Ld
h;1 þ Ld

h;2 þ Lt
h;

Fh;p :¼ Lt�1
h Un�1

h :
The inviscid part of the stencil only depends on the CFL number and can be written as:
La
h;1 ¼ CFL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

h

q
cos a

0
La

1 Da
1 0

0

264
375;

La
h;2 ¼ CFL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

h

q
Ah

sina
0

0 Da
2 0

La
2 :

264
375
Note, we assume here that both components of the advection velocity a are positive. In case one or both coefficients are neg-
ative then the upwind direction in the stencil has to be adjusted accordingly. The viscous part of the stencil depends on the
cell Reynolds and CFL numbers:
Ld
h;1 :¼ CFL

Reh

0
Ld

1 Dd
1 Ud

1

0

264
375; Ld

h;2 :¼ CFL
Reh

Ud
2

0 Dd
2 0

Ld
2

2664
3775:
The stencils related to the time discretization are given by
Lt
h :¼

0
0 Dt 0

0

264
375; Lt�1

h :¼
0

0 Dt�1 0
0

264
375:
The size mp of the blocks La;d
1;2; Da;d

1;2; Ud
1;2, Dt;t�1 2 Rmp�mp depends on the order of the polynomial basis functions used in the

space–time DG discretization.
In the multilevel analysis we will first consider steady state problems. In general it is much harder to get good multigrid

performance for steady state problems than for time-accurate problems. At steady state the contribution of Lt
h to the matrix



Fig. 6. Spectra of the DG matrices Lh;p for polynomial orders p ¼ 1, 2 and 3, and spectra of the error transformation operator of the full hp-MGS algorithm,
and two simplifications, viz. the hp-MGS(1) and the hp-multigrid algorithms. Cell Reynolds numbers Reh1

¼ Reh2
¼ 103, mesh aspect ratio Ah ¼ 1, flow angle

45� , steady state.
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Lh drops out and the matrix Lh does not depend on the CFL-number anymore. The parameters in the hp-MGS algorithm are
c1 ¼ c2 ¼ m1 ¼ m2 ¼ l1 ¼ l2 ¼ l3 ¼ 1. The polynomial levels in the hp-MGS algorithm are p ¼ 1, 2 and 3, and three uniformly



Fig. 7. Spectra of the DG matrices Lh;p for polynomial orders p ¼ 1, 2 and 3, and spectra of the error transformation operator of the full hp-MGS algorithm,
and two simplifications, viz. the hp-MGS(1) and the hp-multigrid algorithms. Cell Reynolds numbers Reh1

¼ 10�1; Reh2
¼ 103, mesh aspect ratio Ah ¼ 100,

flow angle 75� , steady state.
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Fig. 8. Spectra of the DG matrices Lh;p for polynomial orders p ¼ 1, 2 and 3, and spectra of the error transformation operator of the full hp-MGS algorithm.
Cell Reynolds numbers Reh1

¼ Reh2
¼ 1, mesh aspect ratio Ah ¼ 1, flow angle 45� , steady state.
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and three semi-coarsened meshes are used. In the multilevel analysis 64� 64 Fourier modes are used. The Fourier code was
also verified with a matrix analysis and both methods agreed up to machine accuracy. The matrix analysis is, however, com-
putationally much more expensive.

The first test case we consider has cell Reynolds numbers Reh1 ¼ Reh2 ¼ 103 on a mesh with aspect ratio Ah ¼ 1. The flow
angle is 45� with respect to the �x1-axis. In Fig. 6(a)–(c) the spectrum is shown of the matrices Lh;1; Lh;2 and Lh;3 representing,
respectively, DG discretizations with polynomial orders p ¼ 1, 2 and 3. The blue color refers to low frequency eigenvalues
and the red color to high frequency eigenvalues relative to a uniformly coarsened mesh. The eigenvalues of the full
hp-MGS algorithm are shown in Fig. 6(d). The spectral radius of the error transformation operator Mh;3 is 0.4000 and the
operator norm kMh;3k ¼ 0:7379, which shows that the hp-MGS algorithm is an efficient algorithm for higher order accurate
DG discretizations of advection dominated flows. We also consider two simplifications of the hp-MGS algorithm. The first
simplification, denoted hp-MGS(1), is to use the semi-implicit Runge–Kutta smoother at the p ¼ 2 and 3 levels and only
use the h-MGS algorithm at the p ¼ 1 level. The eigenvalues of this algorithm are shown in Fig. 6(e). The spectral radius
of the error transformation operator is 0.9781 and the operator norm 1.645. The second simplification is standard hp-
multigrid, with h-multigrid with uniform coarsening at the p ¼ 1 level and the semi-implicit Runge–Kutta method as
smoother. The eigenvalues of this algorithm are shown in Fig. 6(f). The spectral radius of the error transformation operator
is 0.9856 and the operator norm 1.645. The multigrid performance of the hp-MGS(1) and the hp-multigrid algorithm is very
poor and the algorithms are not suitable for higher order accurate DG discretizations, despite extensive optimization of the
semi-implicit Runge–Kutta smoother. A more detailed comparison of the different multigrid algorithms and their computa-
tional cost will be given in Part II [32].

Next, we consider the multigrid performance on stretched meshes, which are essential to deal with thin boundary layers.
We consider cell Reynolds numbers Reh1 ¼ 10�1 and Reh2 ¼ 103 on a mesh with aspect ratio Ah ¼ 100. The same Runge–Kutta
coefficients as in the previous test case with Reh ¼ 103 and Ah ¼ 1 were used. The flow angle is 75� with respect to the �x1-axis.
In Fig. 7(a)–(c) the spectrum is shown of the DG matrices Lh;1; Lh;2 and Lh;3. The spectra have a distinctly different pattern



Fig. 9. Spectra of the DG matrices Lh;p for polynomial orders p ¼ 1, 2 and 3. Mesh aspect ratio Ah ¼ 1 and cell Reynolds numbers Reh1
¼ Reh2

¼ 105 in (a)–(c).
Mesh aspect ratio Ah ¼ 100 and cell Reynolds numbers Reh1

¼ 10�1; Reh2
¼ 103 in (d)–(f). Flow angle 75� , CFL=1.
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than the spectra in Fig. 6(a)–(c), which are for a mesh aspect ratio Ah ¼ 1. The spectra in Fig. 7(a)–(c) split into two or three
parts and the largest eigenvalue is close to �2000. These strongly negative eigenvalues are hard to deal with for explicit
smoothers. The multigrid performance of the hp-MGS algorithm, shown in Fig. 7(d), is excellent, with a spectral radius of



7562 J.J.W. van der Vegt, S. Rhebergen / Journal of Computational Physics 231 (2012) 7537–7563
the error transformation operator Mh;3 of 0.1021 and the operator norm 0.3093. Both the hp-MGS(1) and the hp-multigrid
algorithms are, however, unstable as can be seen in Fig. 7(e)–(f). The spectral radius of the error transformation operator
of the hp-MGS(1) algorithm is 1.224 and the operator norm 1.950. The spectral radius of the error transformation operator
of the hp-multigrid algorithm is 1.148 and the operator norm 1.950. This shows that the use of a semi-implicit Runge–Kutta
smoother is not sufficient to ensure good multigrid performance on highly stretched meshes and that the semi-coarsening
multigrid smoother is also important. Also, increasing the number of smoother iterations does not improve the convergence
rate for the hp-MGS(1) and hp-multigrid algorithms.

At low Reynolds numbers the difference between the different multigrid algorithms is small. We consider the cell Rey-
nolds numbers Reh1 ¼ Reh2 ¼ 1 on a mesh with aspect ratio Ah ¼ 1. The flow angle is 45� with respect to the �x1-axis. In
Fig. 8(a)–(c) the spectrum is shown of the matrices Lh;1; Lh;2 and Lh;3. Compared to the cell Reynolds number Reh ¼ 103, shown
in Fig. 6(a)–(c), the spectra look very different. The multigrid performance of all three algorithms for this low cell Reynolds
number is, however, excellent. The spectral radius for the hp-MGS, hp-MGS(1) and hp-multigrid algorithms is, respectively,
2:537� 10�7; 3:743� 10�2 and 8:715� 10�2. The operator norms are 2:976� 10�7; 9:469� 10�2 and 1:247� 10�1. The
excellent convergence rate at this low cell Reynolds number can be attributed to the use of the semi-implicit Runge–Kutta
smoother.

Finally, we consider time dependent problems. The space–time discretization now uses cubic polynomials, both in space
and time. We select a CFL number of 1 since this is a natural choice for time-accurate simulations. The first test case has cell
Reynolds numbers Reh1 ¼ Reh2 ¼ 105 on a mesh with aspect ratio Ah ¼ 1. The spectra are shown in Fig. 9(a)–(c). The second
test case has cell Reynolds numbers Reh1 ¼ 101 and Reh2 ¼ 105 on a mesh with aspect ratio Ah ¼ 100. The flow angle for both
cases is 75�. In the computations the same Runge–Kutta coefficients are used as for the steady state problem with mesh as-
pect ratio Ah ¼ 1 and Reh1 ¼ Reh2 ¼ 105. The spectra are shown in Fig. 9(d)–(f). The main feature of the spectra for time-accu-
rate problems is that the eigenvalues are in the left half of the complex plane, away from the imaginary axis. This makes it
much easier to get good multigrid performance, than when the eigenvalues are close to zero. The spectral radius and oper-
ator norm for the cell Reynolds numbers Reh1 ¼ Reh2 ¼ 105 are, respectively, 2:121� 10�18 and 2:268� 10�18. For the cell
Reynolds numbers are Reh1 ¼ 101 and Reh2 ¼ 105 the spectral radius is 2:950� 10�17 and the operator norm
1:575� 10�16. Both cases show an extremely fast convergence, which is also confirmed by multigrid computations. This very
fast convergence for time-accurate problems is observed for a very large range of cell Reynolds numbers, ranging from 1 to
109.

7. Conclusions and outlook

The hp-Multigrid as Smoother algorithm for the efficient solution of higher order accurate discretizations of advection
dominated flows was presented. This algorithm uses a V-cycle p-multigrid algorithm with h-multigrid as smoother at all
polynomial levels. The performance of the h-multigrid algorithm is further enhanced using semi-coarsening and a semi-im-
plicit Runge–Kutta smoother. The discrete Fourier multilevel analysis of the complete hp-MGS algorithm was discussed for
three p-levels and three uniformly and three semi-coarsened meshes. This analysis provides the operator norm and spectral
radius of the error transformation operator of the hp-MGS algorithm. This information is important both to obtain realistic
estimates of the multigrid performance and to optimize the multigrid algorithm, which will be discussed in Part II [32]. The
analysis of the hp-MGS algorithm is demonstrated for algebraic systems resulting from a fourth order accurate space–time
DG discretization of the two-dimensional advection–diffusion equation for various cell Reynolds numbers and mesh aspect
ratios. The multilevel analysis shows that the new hp-MGS algorithm has excellent convergence rates for a wide range of cell
Reynolds numbers, both on uniform and stretched meshes and for steady and time-dependent problems. The hp-MGS(1) and
the standard hp-multigrid algorithm do not perform well for high cell Reynolds numbers despite extensive optimization con-
ducted in Part II [32]. At low cell Reynolds numbers, the hp-MGS, hp-MGS(1) and the hp-multigrid algorithms converge well.

In Part II [32] the multilevel analysis discussed in this article will be used to optimize the semi-implicit Runge–Kutta
smoother and extensive tables with Runge–Kutta coefficients and multigrid convergence rates will be presented. In addition,
an analysis of the computational complexity of the hp-MGS algorithm and several simplifications will be discussed. Also, the
hp-MGS algorithm will be tested on a number of model problems, including thin boundary layers and highly stretched
meshes.
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