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a b s t r a c t

In this paper we consider the output synchronization problem for heterogeneous networks of linear
agents. The network’s communication infrastructure provides each agent with a linear combination of
its own output relative to that of neighboring agents, and it allows the agents to exchange information
about their own internal observer estimates. We design decentralized controllers based on setting the
control input of a single root agent to zero and letting the remaining agents synchronize to the root
agent. A distinguishing feature of ourwork is that the agents are assumed to be non-introspective, meaning
that they possess no knowledge about their own state or output separate from what is received via the
network. We also consider the problem of regulating the agreement trajectory according to an a priori
specified referencemodel. In this case we assume that some of the agents have access to their own output
relative to the reference trajectory.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of achieving synchronization among agents in a
network – that is, asymptotic agreement on the agents’ state or
output trajectories – has received substantial attention in recent
years. The essential difficulty of the synchronization problem is the
lack of a central authority with the ability to control the network
as a whole. Instead, each agent must implement a controller based
on limited information about itself and its surroundings—typically
in the form of measurements of its own state or output relative to
that of neighboring agents in the network.

Much of the attention has been directed toward state synchro-
nization in homogeneous networks (i.e., networks where the agent
models are identical), with each agent receiving information about
its own state relative to that of neighboring agents (e.g., Olfati-
Saber, Fax, & Murray, 2007; Olfati-Saber & Murray, 2003, 2004;
Ren & Atkins, 2007; Ren, Beard, & Atkins, 2007). Roy, Saberi, and
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Herlugson (2007), Tuna (2008a), and Yang, Roy, Wan, and Saberi
(2011) considered this type of problem for more general observa-
tion topologies andmore complex identical agentmodels than pre-
viously considered. Others have studied the case where the agents
receive relative information about their own partial-state output
(e.g., Li, Duan, Chen, & Huang, 2010; Pogromsky & Nijmeijer, 2001;
Pogromsky, Santoboni, & Nijmeijer, 2002; Tuna, 2008b). A key idea
in the work of Li et al. (2010), which was expanded upon by Yang,
Stoorvogel, and Saberi (2011), is the development of a distributed
observer. This observer makes additional use of the network by al-
lowing the agents to exchange information with their neighbors
about their own internal estimates. Many of the results on the syn-
chronization problem are rooted in the seminal work of Wu and
Chua (1995a,b).

1.1. Heterogeneous networks and output synchronization

A limited amount of research has also been conducted on
heterogeneous networks (i.e., networks where the agent models
are non-identical). Ramírez and Femat (2007) presented a robust
state-synchronization design for networks of nonlinear systems
with relative degree one, where each agent implements a
sufficiently strong feedback based on the difference between its
own state and that of a common reference model. In the work of
Xiang and Chen (2007) it is assumed that a common Lyapunov
function candidate is available, which is used to analyze stability
with respect to a common equilibrium point. Depending on the
system, some agents may also implement feedbacks to ensure
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stability, based on the difference between those agents’ states
and the equilibrium point. Zhao, Hill, and Liu (2011) analyzed
state synchronization in a network of nonlinear agents based on
the network topology and the existence of certain time-varying
matrices. Controllers can be designed based on this analysis, to the
extent that the available information and actuation allows for the
necessary manipulation of the network topology.

The above-cited works focus on synchronizing the agents’
internal states. In heterogeneous networks, however, the physical
interpretation of one agent’s state may be different from that of
another agent. Indeed, the agents may be governed by models of
different dimensions. In this case, comparing the agents’ internal
states is not meaningful, and it is more natural to aim for
output synchronization—that is, agreement on some partial-state
output from each agent. Chopra and Spong (2008) focused on
output synchronization for weakly minimum-phase systems of
relative degree one, using a pre-feedback within each agent to
create a single-integrator system with decoupled zero dynamics.
Pre-feedbacks were also used by Bai, Arcak, and Wen (2011) to
facilitate passivity-based designs. The authors have previously
considered output synchronization for right-invertible agents,
using pre-compensators and an observer-based pre-feedback
within each agent to yield a network of asymptotically identical
agents (Yang, Saberi, Stoorvogel & Grip, 2011).

Kim, Shim, and Seo (2011) studied output synchronization for
uncertain single-input single-output, minimum-phase systems, by
embedding an identical model within each agent, the output of
which is tracked by the actual agent output. A similar approach
was taken by Wieland, Sepulchre, and Allgöwer (2011), who
showed that a necessary condition for output synchronization in
heterogeneous networks is the existence of a virtual exosystem
that produces a trajectory to which all the agents asymptotically
converge. If one knows the model of an observable virtual
exosystem without exponentially unstable modes, which each
agent is capable of tracking, then it can be implemented within
each agent and synchronized via the network. The agent can then
be made to track the model with the help of a local observer
estimating the agent’s states.

1.2. Introspective versus non-introspective agents

The designs mentioned above for heterogeneous networks rely
– explicitly or implicitly – on some sort of self-knowledge that
is separate from the information transmitted over the network.
In particular, the agents may be required to know their own
state, their own output, or their own state/output relative to
that of a reference trajectory. In this paper we shall refer to
agents that possess this type of self-knowledge as introspective
agents, to distinguish them from non-introspective agents—that
is, agents that have no knowledge of their own state or output
separate from what is received via the network. This distinction
is significant because introspective agents have much greater
freedom to manipulate their internal dynamics (e.g., through
the use of pre-feedbacks) and thus change the way that they
present themselves to the rest of the network. The notion of a
non-introspective agent is also practically relevant; for example,
two vehicles in close proximity may be able to measure their
relative distance without either of them having knowledge of their
absolute position.

To the authors’ knowledge, the only result that solves the
output synchronization problem for a well-defined class of
heterogeneous networks of non-introspective agents is by Zhao,
Hill, and Liu (2010). In their work, the only information available
to each agent is a linear combination of outputs received over the
network. However, the agents are assumed to be passive—a strict
requirement that, among other things, requires the agents to be
weakly minimum-phase and of relative degree one.
1.3. Contributions of this paper

In this paper we consider heterogeneous networks of non-
introspective linear agents that receive, via the network, a linear
combination of their own output relative to that of neighboring
agents. In the spirit of Li et al. (2010)we also assume that the agents
can exchange relative information about their internal estimates
using the network’s communication infrastructure. We design
decentralized controllers for achieving output synchronization
under a set of straightforward assumptions about the agents and
the topology of the network. A version of this design has also been
presented at the 2012 American Control Conference (Grip, Yang,
Saberi, & Stoorvogel, 2012).

Based on the output-synchronization results we also consider
the slightly different problem of regulated output synchronization.
Here, the goal is not only to achieve output synchronization, but
to make the synchronization trajectory follow an a priori given
reference. When considering this problem we assume that some
of the agents are introspective in the sense that they know their
own output relative to that of the reference output.

1.4. Notation

Given a matrix A, A′ denotes its transpose and A∗ denotes its
conjugate transpose. We denote by A ⊗ B the Kronecker product
of the matrices A and B. When clear from the context, 0 denotes a
zero matrix of appropriate dimensions.

2. Problem formulation

We consider a network of N multiple-input multiple-output
agents of the form
ẋi = Aixi + Biui, (1a)
yi = Cixi + Diui, (1b)
where xi ∈ Rni , ui ∈ Rmi , and yi ∈ Rp. Our goal is to achieve output
synchronization among the agents, meaning that limt→∞(yi −

yj) = 0 for all i, j ∈ {1, . . . ,N}.
The agents are non-introspective; hence, agent i does not

have access to its own output yi. The only available information
comes from the network, which provides each agent with a linear
combination of its own output relative to that of the other agents.
In particular, agent i has access to the quantity

ζi =

N
j=1

aij(yi − yj),

where aij ≥ 0 and aii = 0. The topology of the network can be de-
scribed by a directed graph (digraph) G with nodes corresponding
to the agents in the network and edges given by the coefficients aij.
In particular, aij > 0 implies that an edge exists from agent j to i.
Agent j is then called a parent of agent i, and agent i is called a child
of agent j. The weight of the edge equals the magnitude of aij.

We shall frequently make use of the matrix G = [gij], where
gii =

N
j=1 aij and gij = −aij for j ≠ i. This matrix is known as

the Laplacianmatrix of the digraph G and has the property that all
the row sums are zero. In terms of the coefficients of G, ζi can be
rewritten as

ζi =

N
j=1

gijyj.

We also assume that the agents can exchange relative informa-
tion about their internal estimates using the network’s commu-
nication infrastructure. Specifically, agent i is presumed to have
access to the quantity

ζ̂i =

N
j=1

aij(ηi − ηj) =

N
j=1

gijηj,
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Fig. 1. The depicted digraph contains multiple directed spanning trees, rooted at
nodes 2, 3, 4, 8, and 9. One of these, with root node 2, is illustrated by bold arrows.

where ηj ∈ Rp is a variable produced internally by agent j as part
of the controller. This variable will be specified as we proceed with
the control design.

2.1. Assumptions

We make the following assumptions about the network topol-
ogy and the individual agents.

Assumption 1. The digraph G has a directed spanning tree with
root agent K ∈ {1, . . . ,N}, such that for each i ∈ {1, . . . ,N} \ K ,

(1) (Ai, Bi) is stabilizable
(2) (Ai, Ci) is observable
(3) (Ai, Bi, Ci,Di) is right-invertible
(4) (Ai, Bi, Ci,Di) has no invariant zeros in the closed right-half

complex plane that coincide with the eigenvalues of AK .

Remark 1. A directed tree is a directed subgraph of G , consisting of
a subset of the nodes and edges, such that every node has exactly
oneparent, except a single root nodewith noparents. Furthermore,
theremust exist a directed path from the root to every other agent.
A directed spanning tree is a directed tree that contains all the nodes
ofG . A digraphmay containmanydirected spanning trees, and thus
there may be several choices of root agent K . Fig. 1 illustrates a
digraph containing multiple directed spanning trees.

Remark 2. Right-invertibility of a quadruple (Ai, Bi, Ci,Di)means
that, given a reference output yr(t), there exist an initial condition
xi(0) and an input ui(t) such that yi(t) = yr(t) for all t ≥ 0.
For example, every single-input single-output system is right-
invertible, unless its transfer function is identically zero.

Let the matrix ḠK = [gij]i,j≠K be defined from G by removing
row and column number K , corresponding to the root of a directed
spanning tree of G . We shall need the following result, which is
proven in Appendix A.

Lemma 1. All the eigenvalues of ḠK are in the open right-half
complex plane.

3. Control design

In this section we describe the construction of decentralized
controllers that achieve output synchronization. Before embarking
on the actual design procedure, however, we shall describe the
motivation behind the design.

The main idea is to set the control input of the root agent K
to zero (i.e., uK = 0) and to also set ηK = 0. We then design
controllers for all the other agents such that their outputs asymp-
totically synchronize with the trajectory yK (t). That is, for each
i ∈ {1, . . . ,N}\K wewish to achieve limt→∞(yi −yK ) = 0. Equiv-
alently, we wish to regulate the synchronization error variable

ei := yi − yK
to zero, where the dynamics of ei is governed by
ẋi
ẋK


=


Ai 0
0 AK

 
xi
xK


+


Bi
0


ui, (2a)

ei =

Ci −CK

  xi
xK


+ Diui. (2b)

The system (2) is in general not stabilizable. If xi and xK were
available to agent i as measurements, then the problem of mak-
ing ei converge to zero would nevertheless be solvable by standard
output-regulationmethods (see, e.g., Saberi, Stoorvogel, & Sannuti,
2000). But alas, the only information available to agent i is ζi and ζ̂i.
To achieve our objective with such limited information, we carry
out our design for each agent i ∈ {1, . . . ,N} \ K in three steps.

In Step 1 we construct a new state x̄i, via a transformation of xi
and xK , so that the dynamics of the synchronization error variable
ei can be described by the alternative equations

˙̄xi = Āix̄i + B̄iui :=


Ai Āi12

0 Āi22


x̄i +


Bi
0


ui, (3a)

ei = C̄ix̄i + D̄iui :=

Ci −C̄i2


x̄i + Diui. (3b)

The purpose of this state transformation is to reduce the dimension
of themodel underlying ei by removing redundantmodes that have
no effect on ei. In particular, the model (2) may be unobservable,
but the model (3) is always observable.

The properties of the model (3) also allow us, in Step 2 of
the design, to construct a controller that regulates ei to zero
by using state feedback from x̄i. This controller is not directly
implementable, however, because x̄i is not known to agent i. This
brings us to Step 3 of the design, where we construct an observer
that makes an estimate of x̄i available to agent i. This observer
is based on the information ζi and ζ̂i received via the network,
and it works in a distributed manner together with the observers
for the other agents to achieve convergence. The observer design
is based on previous results on distributed observer design for
homogeneous networks. Since our network is heterogeneous, we
first perform a second state transformation of x̄i to χi, in order to
obtain a dynamical model that is substantially the same as for the
other agents. In particular, themodel differences nowoccur only in
particular locations where they can be suppressed by using high-
gain observer techniques. By combining the observer estimates
with the state-feedback controller designed in Step 2, we achieve
output synchronization.

3.1. Design preliminaries

Due to the design strategy of setting uK = 0, the trajectory
yK (t) becomes the unforced response of agent K , consisting of a
linear combination of the observable modes of the pair (AK , CK ).
Asymptotically stable modes vanish as t → ∞, and they therefore
play no role asymptotically. For simplicity of presentation, we
therefore assume that all the eigenvalues of AK are in the closed
right-half complex plane and that (AK , CK ) is observable. Wemake
this assumption without any loss of generality since, if AK does
contain unobservable or asymptotically stable modes, we can
always create an auxiliary model excluding those modes for the
purpose of control design (see Appendix C for details).

Below we describe the three steps of the design procedure that
must be carried out for each agent i ∈ {1, . . . ,N} \ K . In addition
to agent i’s systemmatrices (Ai, Bi, Ci,Di), the information needed
to carry out these three steps for agent i is as follows:

• the matrices AK and CK of the root agent
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• a common integer n̄ such that n̄ ≥ ni+nK for all i ∈ {1, . . . ,N}\

K (see footnote2)
• a common matrix L ∈ Rp×pn̄, freely chosen3

• a common high-gain parameter ε ∈ (0, 1]
• a common number τ > 0 that is a lower bound on the real part

of the eigenvalues of the matrix ḠK defined in Section 2.1.

Based on this information, we can define the matrices A ∈

Rpn̄×pn̄, C ∈ Rp×pn̄,Ωε ∈ Rpn̄×pn̄, and Lε ∈ Rpn̄×pn̄ as

A =


0 Ip(n̄−1)
0 0


, C =


Ip 0


,

Ωε =

Ipε−1

. . .

Ipε−n̄

 , Lε =


0

εn̄+1LΩε


.

The pair (A + Lε, C ) is always observable; hence, we can define
a matrix Pε = P ′

ε > 0 as the unique solution of the algebraic
Riccati equation

(A + Lε)Pε + Pε(A + Lε)
′
− 2τPεC

′C Pε + Ipn̄ = 0. (4)

The matrices A , C ,Ωε,Lε , and Pε will be used during the design
procedure.

3.2. Design procedure for agent i ∈ {1, . . . ,N} \ K

Step 1: state transformation
Let Oi be the observability matrix corresponding to the system

(2):

Oi =

 Ci −CK
...

...

CiA
ni+nK−1
i −CKA

ni+nK−1
K

 . (5)

Let qi denote the dimension of the null space of Oi, and define
ri = nK − qi. Next, define Λiu ∈ Rni×qi and Φiu ∈ RnK×qi such
that

Oi


Λiu
Φiu


= 0, rank


Λiu
Φiu


= qi. (6)

Because (Ai, Ci) and (AK , CK ) are observable, Λiu and Φiu have full
column rank (see Appendix D). Let thereforeΛio andΦio be defined
such thatΛi := [Λiu,Λio] ∈ Rni×ni and Φi := [Φiu,Φio] ∈ RnK×nK

are nonsingular. We define a new state variable x̄i ∈ Rni+ri as

x̄i =


xi −ΛiMiΦ

−1
i xK

−NiΦ
−1
i xK


,

where Mi ∈ Rni×nK and Ni ∈ Rri×nK are defined as

Mi =


Iqi 0
0 0


, Ni =


0 Iri


.

The following lemma, which is proven in Appendix A, shows how
the synchronization error ei is given in terms of x̄i.

Lemma 2. The synchronization error variable ei is governed by
dynamical equations of the form (3), where (Āi, C̄i) is observable and
the eigenvalues of Āi22 are a subset of the eigenvalues of AK .

2 The integer n̄ can be defined less conservatively as a bound on ni + ri for
i ∈ {1, . . . ,N} \ K , where ri is defined during Step 1 of the design procedure for
each agent.
3 See Section 3.4 for an explanation of the purpose of L.
Step 2: state-feedback control design
We now design a controller as a function of x̄i to regulate ei to

zero. Consider the following equations with unknownsΠi ∈ Rni×ri

and Γi ∈ Rmi×ri , commonly known as the regulator equations:

ΠiĀi22 = AiΠi + Āi12 + BiΓi, (7a)

CiΠi − C̄i2 + DiΓi = 0. (7b)

Based onΠi and Γi, we define a matrix

F̄i =

Fi Γi − FiΠi


, (8)

where Fi is chosen such that Ai + BiFi is Hurwitz. The following
lemma, which is proven in Appendix A, shows that the regulator
equations (7) are always solvable and that thematrix F̄i can be used
to define a state-feedback controller.

Lemma 3. The regulator equations (7) are solvable, and the state-
feedback controller ui = F̄ix̄i ensures that limt→∞ ei = limt→∞(yi −
yK ) = 0.

Step 3: observer-based implementation
Our last step is to design an observer to produce an estimate of

x̄i, denoted by ˆ̄xi. Define χi = Tix̄i, where

Ti =

 C̄i
...

C̄iĀn̄−1
i

 .
Note that Ti is not necessarily a square matrix; however, due to
observability of (Āi, C̄i), Ti is injective, which implies that T ′

i Ti is
nonsingular. In terms of χi, we can write the equations governing
ei as

χ̇i = (A + Li)χi + Biui, χi(0) = Tix̄i(0), (9a)
ei = Cχi + Diui, (9b)

where

Li =


0
Li


, Bi = TiB̄i, Di = D̄i,

and where Li = C̄iĀn̄
i (T

′

i Ti)
−1T ′

i . We construct the observer

˙̂χ i = (A + Li)χ̂i + Biui +ΩεPεC
′(ζi − ζ̂i), (10a)

ˆ̄xi = (T ′

i Ti)
−1T ′

i χ̂i. (10b)

Based on the observer estimate, we define the variable ηi =

C χ̂i + Diui to be shared with the other agents via the network’s
communication infrastructure as described in Section 2, and the
observer-based control law

ui = F̄i ˆ̄xi. (11)

Together, the observers for agents i ∈ {1, . . . ,N} \ K form
a distributed observer parameterized by a common high-gain
parameter ε. The following lemma, which is proven in Appendix A,
shows that all the observation errors vanish asymptotically if ε is
chosen sufficiently small.

Lemma 4. There exists an ε∗
∈ (0, 1] such that, if ε is chosen such

that ε ∈ (0, ε∗
], then for each i ∈ {1, . . . ,N} \ K , limt→∞(x̄i − ˆ̄xi)

= 0.

3.3. Main result

By implementing the observer-based control law (11) for each
agent i ∈ {1, . . . ,N} \ K , we obtain a decentralized controller
structure that achieves output synchronization. The following
theorem formalizes this result.
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Theorem 1. There exists an ε∗
∈ (0, 1] such that, if ε is chosen such

that ε ∈ (0, ε∗
], then for each i, j ∈ {1, . . . ,N}, limt→∞(yi − yj)

= 0.

Proof. Since the systems are linear, the result follows from Lem-
mas 3 and 4 and the separation principle. �

3.4. Remarks on the design procedure

Having presented the design procedure, some remarks are in
order.

The purpose of Step 1 is to reduce the dimension of the model
(2) by removing redundantmodes that cannot be observed from ei.
Such modes exist if agent i and agent K share particular unforced
solutions. Consider, for example, the case where agents i and K are
identical. Then the states xi and xK cannot be individually observed
from ei = yi − yK , since there are infinitely many initial conditions
that yield the unforced solution ei = 0. If, on the other hand,
we define the state x̄i = xi − xK , then we obtain the model
˙̄xi = Aix̄i + Biui, ei = Cix̄i + Diui, which is observable. Indeed, it is
easily verified that in our design procedure, identical agents yield
qi = ni = nK and ri = 0, and that Λi = Ini and Φi = InK are valid
choices; thus, one obtains precisely x̄i = xi−xK . In the general case,
Step 1 yields a model (3) that incorporates the difference between
modes that are shared between agents i and K in addition tomodes
from agents i and K that are not shared.

In Step 2 we must find the solutions Πi and Γi of the regulator
equations (7). A special situation arises when ri = 0, which implies
that Āi22, Āi12, and C̄i2 are emptymatrices. In this case,Πi andΓi are
also empty matrices, and the need to solve the regulator equations
vanishes. This situation occurs, in particular, if agent i and agent K
are identical.

In Step 3, we introduce a state transformation from x̄i to
χi, where χi has dimension pn̄. Since the dimension of x̄i
may be less than pn̄, the transformation to χi may involve an
over-parameterization. In this case, (9) is not the only possible
dynamical model of χi, but it is always one of the possible
representations. After performing the state transformation, we
proceed to construct an observer that depends on a high-gain
parameter ε. Following the proof of Lemma 4, it can be seen that
ε must be chosen to stabilize the dynamics (A.2) by making the
matrix IN−1 ⊗(A +Lε)− ḠK ⊗(PεC

′C )− L̃ε Hurwitz. This works
because the nonzero elements of L̃ε are of the form εn̄+1(L− Li)Ωε

(meaning that ∥L̃ε∥ = O(ε)), and L̃ε is therefore dominated by
the Hurwitz matrix IN−1 ⊗ (A + Lε)− ḠK ⊗ (PεC

′C ) as ε → 0.
The freely chosen matrix L plays a role in determining how small
ε needs to be chosen, because the difference L − Li affects the
nonzero elements of L̃ε . If sufficient information is available about
the agent models, L can be chosen to make the differences L − Li
small, in order to reduce the need for high gain. If all the agents are
identical, then Li is the same for all the agents and one can choose
L = Li. In this case, L̃ε vanishes and ε can be chosen arbitrarily. It
is therefore evident that the role of ε is to suppress the differences
in agent models that exist in heterogeneous networks.

3.4.1. Information required about the network
When designing the controller for agent i, it is necessary to

know the model (Ai, Bi, Ci,Di) of agent i, but it is not necessary
to know the models of all the other agents or the exact topology
of the network. Some additional information is nevertheless
required, as specified in Section 3.1. To justify the required level of
information, we note that most of the required information is also
assumed available in the literature on homogeneous networks,
albeit implicitly. In a homogeneous network, knowledge of Ai and
Ci implies knowledge of AK and CK , since the models are identical.
Moreover, n̄ = 2ni is a known bound on ni + nK , since the agents
are of the same order. As described above, the matrices Li are all
the same in a homogeneous network; hence one can choose L = Li,
which means that ε = 1 is always a valid choice. The lower bound
τ > 0 on the real part of the eigenvalues of ḠK can be viewed
as a measure of the connectivity of the network. Similar measures
of connectivity are typically assumed available in the literature on
general homogeneous networks (Li et al., 2010; Tuna, 2008a; Yang,
Stoorvogel et al., 2011).

Even though exact information about the network is not
required in the design process, it is nevertheless useful, as it is then
possible to search for a non-conservative ε thatmakes IN−1⊗(A +

Lε)− ḠK ⊗(PεC
′C )− L̃ε Hurwitz. One can also define τ as a tight

lower bound on the real part of the eigenvalues of ḠK and n̄ as a
tight bound on ni + ri in accordance with footnote 2 on page 2447.

3.5. Computational complexity

The controllers constructed in this paper contain internal
dynamics in the form of an observer for χi. The internal dynamics
introduces additional computational complexity compared to
the static control laws that have previously been used for
synchronization of single and double integrators (e.g., Olfati-
Saber & Murray, 2003, 2004; Ren & Atkins, 2007) and general
homogeneous networkswith relative-state information (e.g., Tuna,
2008a; Yang, Roy et al., 2011). The need for internal dynamics
arises for two reasons. First, since only relative-output information
is exchanged, the agents need internal observer dynamics to
estimate unmeasured states. Second, since the agents are non-
identical, the agreement manifold may contain modes that are
not contained within all the agents, and which must therefore be
replicated by internal dynamics according to the internal model
principle.

The order of the internal dynamics is n̄, which is an upper bound
on ni + nK for i ∈ {1, . . . ,N} \ K . Alternatively, as remarked in
footnote 2 on page 2447, n̄ can be defined less conservatively as a
bound on ni + ri. The integer ri can be viewed as representing the
order of the part of the root agent dynamics that is not contained
within agent i. Hence, the computational complexity is in this case
dependent on how similar the agents are to one another. Indeed,
in the case of identical agents, one always has ri = 0, so n̄ = ni,
meaning that each agent implements an observer of order equal to
that of its own dynamics.

An interesting topic of future work is the reduction of compu-
tational complexity by finding ways to reduce the order of the in-
ternal dynamics within each agent.

4. Regulated output synchronization

Our focus so far has been on achieving agreement on a common
output trajectory, without regard to the particular properties of
that trajectory. In this section we consider the related problem of
regulating the outputs toward a desired reference trajectory yr(t),
which is defined as the output of an autonomous exosystem

ω̇ = Sω, (12a)
yr = Rω, (12b)

where ω ∈ Rnω and yr ∈ Rp. Our goal is to achieve limt→∞ ei = 0
for each i ∈ {1, . . . ,N}, where ei is now defined as

ei := yi − yr .

By the same argument as in Section 3.1, we assumewithout loss of
generality that (S, R) is observable and that all the eigenvalues of
S are in the closed right-half complex plane.

In order for the agents to follow the reference trajectory,
some information must be available to the network about agent
outputs relative to the reference trajectory. In particular, let I ⊂

{1, . . . ,N} be a set of indices corresponding to a subset of agents in
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the network. We assume that each agent i ∈ {1, . . . ,N} has access
to the quantity

ψi = ιi(yi − yr), ιi =


1, i ∈ I ,
0, i ∉ I .

That is, each agent in the index setI knows the difference between
its own output and that of the reference trajectory. To proceed
with the design, we need to replace Assumption 1 with a slightly
modified assumption.

Assumption 1′. Every node of G is a member of a directed tree
with the root contained inI . Furthermore, for each i ∈ {1, . . . ,N},
(1) (Ai, Bi) is stabilizable
(2) (Ai, Ci) is observable
(3) (Ai, Bi, Ci,Di) is right-invertible
(4) (Ai, Bi, Ci,Di) has no invariant zeros in the closed right-half

complex plane that coincide with the eigenvalues of S.

We define the matrix Ḡ := G + diag(ι1, . . . , ιN). It then follows
from Lemma 7 in Appendix B that all the eigenvalues of Ḡ are in the
open right-half complex plane.

4.1. Control design

The control design is similar to that in Section 3.2, except that
the exosystemnowplays the role of agentK , andwe carry out three
steps for each agent i ∈ {1, . . . ,N}. In addition to agent i’s system
matrices (Ai, Bi, Ci,Di), the information needed to carry out these
three steps is as follows:
• the matrices S and R of the exosystem
• a common integer n̄ such that n̄ ≥ ni + nω for all i ∈ {1, . . . ,N}

(see footnote 2 on page 2447 for a less conservative definition)
• a common matrix L ∈ Rp×pn̄, freely chosen
• a common high-gain parameter ε ∈ (0, 1]
• a common number τ > 0 that is a lower bound on the real part

of the eigenvalues of the matrix Ḡ.

Based on this information, the matrices A , C ,Ωε,Lε , and Pε can
be defined in the same way as in Section 3.1.

4.1.1. Design procedure for agent i ∈ {1, . . . ,N}

We follow the exact procedure of Steps 1 and 2 in Section 3.2,
with xK = ω, yK = yr , and (AK , CK ) = (S, R).4 This yields a state x̄i
such that the dynamics of the synchronization error ei is governed
by the system (3), with the same properties as those shown in
Lemma 2 (with AK replaced by S). Similar to Lemma 3, we can
therefore state the following result.

Lemma 5. The regulator equations (7) are solvable, and the state-
feedback controller ui = F̄ix̄i, where F̄i = [Fi,Γi − FiΠi] and Fi
is chosen such that Ai + BiFi is Hurwitz, ensures that limt→∞ ei =

limt→∞(yi − yr) = 0.

We continue by constructing an observer. Let χi be defined in
the same way as in Step 3 of Section 3.2, to obtain the dynamic
equations (9). We construct the observer

˙̂χ i = (A + Li)χ̂i + Biui +ΩεPεC
′(ζi − ζ̂i)

+ΩεPεC
′(ψi − ιi(C χ̂i + Diui)), (13a)

ˆ̄xi = (T ′

i Ti)
−1T ′

i χ̂i. (13b)

Finally, we define ηi = C χ̂i + Diui and ui = F̄i ˆ̄xi as before.
The following lemma, which is proven in Appendix A, shows

that all the estimation errors vanish asymptotically if the high-gain
parameter ε is chosen sufficiently small.

4 We note that Assumption 1′ ensures that Properties 1–4 of Assumption 1 now
hold for each i ∈ {1, . . . ,N}, which facilitates the design in Steps 1 and 2.
Lemma 6. There exists an ε∗
∈ (0, 1] such that, if ε is chosen such

that ε ∈ (0, ε∗
], then for each i ∈ {1, . . . ,N} we have limt→∞(x̄i −

ˆ̄xi) = 0.

Based on Lemmas 5 and 6, we can state the following result, which
shows that regulated output synchronization is achieved.

Theorem 2. There exists an ε∗
∈ (0, 1] such that, if ε is chosen such

that ε ∈ (0, ε∗
], then for each i ∈ {1, . . . ,N}, limt→∞(yi − yr) = 0.

5. Example

We illustrate the results from Section 3 on a network of ten
agents. Agents 1 and 2 are composed as the cascade of a second-
order oscillator and a single integrator:

Ai =

0 1 0
0 0 1
0 −1 0


, Bi =

0
0
1


, Ci =


1 0 0


,

Di = 0.

Agents 3, 4, and 5 are double integrators:

Ai =


0 1
0 0


, Bi =


0
1


, Ci =


1 0


, Di = 0.

Agents 6, 7, and 8 are single integrators: Ai = 0, Bi = 1,
Ci = 1,Di = 0. Finally, agents 9 and 10 are second-order
mass–spring–damper systems:

Ai =


0 1

−2 −2


, Bi =


0
1


, Ci =


1 0


,

Di = 0.

The topology of the network is given by the digraph depicted
in Fig. 1, which contains multiple directed spanning trees. One
of these is rooted at node 2, and we therefore choose K = 2
for our design. The real part of the eigenvalues of the matrix Ḡ2,
constructed by removing row and column 2 from the Laplacian of
the digraph in Fig. 1, are lower bounded by approximately 0.33.We
assume that a bound τ = 0.3 is known during the design process.
We also assume that a bound n̄ = 6 on ni + n2, i ∈ {1, . . . , 10} \ 2,
is known. The matrix L is chosen as the zero matrix. Following the
design procedure in Section 3.2, we set u2 = 0 and proceed with
Steps 1–3 for each of the other agents.

For illustrative purposes, we give the details for agent 3. In Step
1, we first compute O3 as

O3 =


1 0 −1 0 0
0 1 0 −1 0
0 0 0 0 −1
0 0 0 1 0
0 0 0 0 1

 H⇒ q3 = 1, r3 = 2.

We may choose Λ3u = [1, 0]′ and Φ3u = [1, 0, 0]′, and hence we
can setΛ3 = I2 andΦ3 = I3. It follows that

x̄3 =

1 0
0 1
0 0
0 0

 x3 −

1 0 0
0 0 0
0 1 0
0 0 1

 x2.

It can be confirmed that the dynamics of x̄i with output ei takes the
form of (3) with

Ā312 =


1 0
0 0


, Ā322 =


0 1

−1 0


, C̄32 =


0 0


.

In Step 2, the regulator equations (7) are found to have the
solution

Π3 =


0 0

−1 0


, Γ3 =


0 −1


.
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Fig. 2. Outputs from the simulation example.

We select the matrix F3 = [−2 −3] to place the poles of A3 +B3F3
at −1 and −2. Thus, we obtain the matrix F̄3 = [−2,−3,−3,−1].

In Step 3 we design the observer according to the procedure in
Section 3.2, with the high-gain parameter ε = 0.3. The relevant
matrices for the model (9) are

A =


0 I5
0 0


, C =


1 0 0 0 0 0


,

B3 =

0 1 0 · · · 0

′
,

L3 =

0 0 0.5 0 −0.5 0


.

We perform the same procedure for the other agents. For agent
1, we obtain qi = 3 and ri = 0; for agents 6, 7, and 8, we obtain
qi = 1 and ri = 2; and for agents 9 and 10, we obtain qi = 0
and ri = 3. Fig. 2 shows the resulting simulated output for all ten
agents.

6. Concluding remarks

The designs presented in this paper rely on a set of conditions
about the agents and the network that are straightforward to
verify. However, they are not all strictly necessary. Inspecting the
proofs of our results we see, for example, that the condition on
the invariant zeros in Assumption 1 (and Assumption 1′) is used
only in the proof of Lemma 3 (5) to guarantee that no invariant
zeros of (Ai, Bi, Ci,Di) coincide with the eigenvalues of Āi22. Since
the eigenvalues of Āi22 are only a subset of the eigenvalues ofAK (S),
the quadruple (Ai, Bi, Ci,Di) can be allowed to contain certain
invariant zeros of AK (S). Indeed, in the special case of identical
agents, the matrix Āi22 vanishes, so the condition on the invariant
zeros is not needed. Similarly, the condition of right-invertibility
is used only to guarantee solvability of the regulator equations (7),
which vanish for identical agents. Hence, if agent i is identical to
AK , then it does not need to be right-invertible.

Finally, we also note that by choosing uK = 0 and ηK = 0
in the design for output synchronization, we discard agent K ’s
actuation capability and the information that it receives from the
network. It is possible that the assumptions made in this paper
can be relaxed by letting all the agents participate actively in
the synchronization process (as is done in the regulated output
synchronization problem), although this is yet to be investigated.
Current research is focused on relaxing the assumptions with
respect to right-invertibility and invariant zeros.
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Appendix A. Proof of Lemmas 1–4 and 6

Proof of Lemma 1. The set of nodes {1, . . . ,N}\K can be grouped
into directed subgraphs G1, . . . , GM , each of which has a directed
spanning tree rooted at a child of nodeK .We can assume that there
are no edges from Gk to Gj if k > j (if such an edge exists, then the
child node in Gj can be moved to Gk). With this permutation, the
matrix ḠK takes the block-triangular form

ḠK =

 G̃11 · · · 0
...

. . .
...

G̃M1 · · · G̃MM

 .
Each submatrix G̃ii, i ∈ 1, . . . ,M , can be written as G̃ii = Gi + Di,
where Gi is the Laplacian of Gi and Di is a diagonal matrix whose
j’th entry is the total weight of all the edges to node j of Gi from
nodes in G outside of Gi. Since Gi contains a directed spanning
tree whose root is a child of node K , the diagonal element in Di
corresponding to that root is positive. It therefore follows from
Lemma 7 in Appendix B that all the eigenvalues of G̃ii are in the
open right-half complex plane. The same is true for ḠK , due to its
block-triangular form. �

Proof of Lemma 2. The definitions of Λiu and Φiu imply that the
columns of [Λ′

iu,Φ
′

iu]
′ span the unobservable subspace of the

model (2), which is invariant with respect to blkdiag(Ai, AK ).
Hence, there exists a matrix Ui ∈ Rqi×qi such that
Ai 0
0 AK

 
Λiu
Φiu


=


Λiu
Φiu


Ui,


Ci −CK

 Λiu
Φiu


= 0. (A.1)

Let x̄i be partitioned as x̄i = [x̄′

i1, x̄
′

i2]
′, where x̄i1 = xi −

ΛiMiΦ
−1
i xK and x̄i2 = −NiΦ

−1
i xK . Using the equality

CiΛiu = CKΦiu, derived from (A.1), we calculate ei in terms of x̄i1
and x̄i2:

ei = Cixi − CK xK + Diui

= Cixi − CK

Φiu Φio


Φ−1

i xK + Diui

= Cixi −

CiΛiu CKΦio


Φ−1

i xK + Diui

= Cixi − (CiΛiMi + CKΦiN ′

iNi)Φ
−1
i xK + Diui

= Ci(xi −ΛiMiΦ
−1
i xK )− CKΦiN ′

iNiΦ
−1
i xK + Diui

= Cix̄i1 + CKΦiN ′

i x̄i2 + Diui.

From (A.1), we also have that AiΛiu = ΛiuUi and AKΦiu = ΦiuUi.
We therefore easily derive that there exist matrices Qi and Ri of the
form

Qi =


Ui Qi12
0 Qi22


, Ri =


Ui Ri12
0 Ri22


,

such that AiΛi = ΛiQi and AKΦi = ΦiRi. For x̄i1 we can now
calculate the state equations as
˙̄xi1 = Aixi −ΛiMiΦ

−1
i AK xK + Biui

= Aixi −ΛiMiRiΦ
−1
i xK + Biui

= Aixi −Λi


Ui Ri12
0 0


Φ−1

i xK + Biui

= Aixi −Λi


Ui 0
0 0


Φ−1

i xK −Λi


0 Ri12
0 0


Φ−1

i xK + Biui

= Aixi −ΛiQiMiΦ
−1
i xK −Λi


Ri12
0


NiΦ

−1
i xK + Biui

= Ai

xi −ΛiMiΦ

−1
i xK


−Λi


Ri12
0


NiΦ

−1
i xK + Biui

= Aix̄i1 +Λi


Ri12
0


x̄i2 + Biui.
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For x̄i2 we have
˙̄xi2 = −NiΦ

−1
i AK xK = −NiRiΦ

−1
i xK = −Ri22NiΦ

−1
i xK = Ri22x̄i2.

Defining

Āi12 = Λi


Ri12
0


, Āi22 = Ri22, C̄i2 = −CKΦiN ′

i ,

we see that ei is governed by the dynamical equations (3). To see
that (Āi, C̄i) is observable, note that the observability matrix Oi of
the system (2) has rank ni + ri, which is precisely the order of the
system (3). To see that the eigenvalues of Āi22 are a subset of the
eigenvalues of AK , note that, due to the block-triangular form of
Ri, the eigenvalues of Āi22 = Ri22 are a subset of the eigenvalues
of Ri. Since Ri is obtained from AK via a similarity transform Ri =

Φ−1
i AKΦi, it has the same eigenvalues as AK . �

Proof of Lemma 3. Using the notation of the proof of Lemma 2,
the task of achieving limt→∞ ei = 0 can be viewed as an output
regulation problem, where the subsystem ˙̄xi2 = Āi22x̄i2 is the
exosystem and ˙̄xi1 = Aix̄i1 + Āi12x̄i2 + Biui is the system to
be regulated to achieve ei = Cix̄i1 − C̄i2x̄i2 + Diui = 0.
Since (Ai, Bi) is stabilizable and the eigenvalues of Āi22 are in
the closed right-half complex plane, Saberi et al. (2000, Theorem
2.3.1) shows that the state-feedback controller ui = F̄ix̄i solves
the regulation problem, assuming the regulator equations (7) are
solvable. From Saberi et al. (2000, Corollary 2.5.1), the regulator
equations are solvable if, for each λ that is an eigenvalue of Āi22,
the Rosenbrock system matrix


Ai − λI Bi

Ci Di


has rank ni + p. The

Rosenbrock system matrix has normal rank ni + p due to right-
invertibility of the quadruple (Ai, Bi, Ci,Di) (see Saberi, Sannuti, &
Chen, 1995, Property 3.1.6). Since this quadruple has no invariant
zeros coinciding with eigenvalues of AK and the eigenvalues of Āi22
are a subset of the eigenvalues of AK , it follows that the rank of the
Rosenbrock system matrix is equal to the normal rank for each λ
that is an eigenvalue of Āi22. �

Proof of Lemma 4. Let χ̃i = χi − χ̂i. Then

˙̃χ i = (A + Li)χ̃i −ΩεPεC
′(ζi − ζ̂i)

= (A + L )χ̃i − L̃iχ̃i −ΩεPεC
′(ζi − ζ̂i),

where L = [0, L′
]
′ and L̃i := L − Li. Noting that for each

i ∈ {1, . . . ,N},
N

j=1 gij = 0, we have

ζi =

N
j=1

gijyj =

N
j=1

gij(yj − yK )

=


j∈{1,...,N}\K

gijej =


j∈{1,...,N}\K

gij(Cχj + Djuj).

Also, since ηK = 0, ζ̂i =


j∈{1,...,N}\K gij(C χ̂j+Djuj). It follows that

˙̃χ i = (A + L )χ̃i − L̃iχ̃i −Ωε


j∈{1,...,N}\K

gijPεC
′C χ̃j.

Introducing the state transformation ξi = ε−1Ω−1
ε χ̃i, it can be

confirmed that

εξ̇i = (A + Lε)ξi − L̃iεξi −


j∈{1,...,N}\K

gijPεC
′C ξj,

where

L̃iε =


0

εn̄+1(L − Li)Ωε


.

Define ξ = [ξ ′

1, . . . , ξ
′

K−1, ξ
′

K+1, . . . , ξ
′

N ]
′ and L̃ε = blkdiag(L̃1ε,

. . . , L̃(K−1)ε, L̃(K+1)ε, . . . , L̃Nε), and note that ∥L̃ε∥ = O(ε). The
overall dynamics of ξ is

εξ̇ = (IN−1 ⊗ (A + Lε)− ḠK ⊗ (PεC
′C )− L̃ε)ξ . (A.2)
We shall show that the dynamics in (A.2) can be stabilized by
making ε small, in order to diminish L̃ε .

Following themethodology ofWu and Chua (1995b), we define
U such that J = U−1ḠKU , where J is the Jordan form of ḠK , and
introduce the transformation ξ = (U ⊗ Ipn̄)ν. Then

εν̇ = (IN−1 ⊗ (A + Lε)− J ⊗ (PεC
′C )− W̃ε)ν, (A.3)

where W̃ε := (U−1
⊗ Ipn̄)L̃ε(U ⊗ Ipn̄). Note that ∥W̃ε∥ = O(ε).

Partitioning ν = [ν∗

1 , . . . , ν
∗

N−1]
∗ in the same way as ξ , we have

that

εν̇i = Riνi − ρiPεC
′Cνi+1 −

N−1
j=1

w̃εijνj, i ∈ 1, . . . ,N − 2,

εν̇N−1 = RN−1νN−1 −

N−1
j=1

w̃ε(N−1)jνj,

where Ri = A +Lε −λiPεC
′C ; λi is the i’th eigenvalue along the

diagonal of J; ρi ∈ {0, 1}; and w̃εij is the (i, j)’th pn̄ × pn̄ block of
W̃ε . Following the results of Yang, Stoorvogel et al. (2011), we can
show that Ri is Hurwitz:

RiPε + PεR
∗

i = (A + Lε)Pε + Pε(A + Lε)
′

− 2Re(λi)PεC
′C Pε

= (A + Lε)Pε + Pε(A + Lε)
′
− 2τPεC

′C Pε

− 2(Re(λi)− τ)PεC
′C Pε ≤ −Ipn̄.

Next, note that there exists anMP > 0 such that for all sufficiently
small ε > 0, ∥Pε∥ < MP . To see this, let P be the solution
of the Riccati equation A P + PA ′

− 2τPC ′C P + 2Ipn̄ = 0
and let ε be small enough that LεP + PL ′

ε ≤ Ipn̄. Then clearly
(A +Lε)P+P(A +Lε)

′
−2τPC ′C P+In̄p ≤ 0 and it then follows

from standard lq theory that Pε ≤ P (see, e.g., Kwakernaak &
Sivan, 1972).

Define a Lyapunov function V = ε
N−1

i=1 ℓiν
∗

i P−1
ε νi, where the

ℓi’s are defined recursively by ℓN−1 = 1 and ℓi = ℓi+1/(9M4
P ) for

i ∈ 1, . . . ,N − 2. Then

V̇ =

N−1
i=1

ℓiν
∗

i P−1
ε (RiPε + PεR

∗

i )P
−1
ε νi

− 2Re


N−2
i=1

ℓiρiν
∗

i P−1
ε (PεC

′C Pε)P
−1
ε νi+1



− 2Re


N−1
i=1

N−1
j=1

ℓiν
∗

i P−1
ε (w̃εijPε)P

−1
ε νj



≤ −

N−1
i=1

ℓiυ
2
i + 2

N−2
i=1

ℓiM2
Pυiυi+1

+ 2
N−1
i=1

N−1
j=1

ℓi∥w̃εijPε∥υiυj,

where υi := ∥P−1
ε νi∥. Note that the first two terms can be

written as

−
1
3

N−1
i=1

ℓiυ
2
i −

1
3
ℓ1υ

2
1 −

1
3
ℓN−1υ

2
N−1

−

N−2
i=1

 ℓiM2
P

1
3ℓi+1

υi −


1
3
ℓi+1υi+1

2

−

N−2
i=1


1
3
ℓi −

ℓ2i M
4
P

1
3ℓi+1


υ2
i .
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From the definition of ℓi, it can be confirmed that the last term is
zero. It follows that
V̇ ≤ −

1
3

N−1
i=1 ℓiυ

2
i + 2

N−1
i=1

N−1
j=1 ℓiMP∥w̃εij∥υiυj, Since ∥w̃εij∥

= O(ε) and the ℓi’s are independent of ε, the first quadratic term
dominates the second quadratic term for all sufficiently small ε,
and hence V̇ is negative definite. It now follows that limt→∞ ν = 0,
which implies limt→∞ ξ = 0. This in turn implies that χ̂i converges
to χi = Tix̄i, and hence ˆ̄xi converges to (T ′

i Ti)
−1T ′

i Tix̄i = x̄i. �

Proof of Lemma 6. Let χ̃i = χi − χ̂i. Then

˙̃χ i = (A + L )χ̃i − L̃iχ̃i −ΩεPεC
′(ζi − ζ̂i)

−ΩεPεC
′(ψi − ιi(C χ̂i + Diui)),

where L = [0, L′
]
′ and L̃i := L − Li. Note that

N
j=1

gijyj =

N
j=1

gij(yj − yr) =

N
j=1

gij(Cχj + Djuj).

Also, ζ̂i =
N

j=1 gij(C χ̂j + Djuj) and ψi = ιiei = ιi(Cχi + Diui). It
follows that

˙̃χ i = (A + L )χ̃i − L̃iχ̃i −Ωε


N
j=1

gijPεC
′C χ̃j + ιiPεC

′C χ̃i


,

or, after introducing the state transformation ξi = ε−1Ω−1
ε χ̃i,

εξ̇i = (A + Lε)ξi − L̃iεξi −


N
j=1

gijPεC
′C ξj + ιiPεC

′C ξi


,

where L̃iε is defined in the same way as in the proof of Lemma 4.
Defining ξ = [ξ ′

1, . . . , ξ
′

N ]
′ and L̃ε = blkdiag(L̃1ε, . . . , L̃Nε), the

overall dynamics becomes

εξ̇ = (IN ⊗ (A + Lε)− Ḡ ⊗ (PεC
′C )− L̃ε)ξ .

The proof can now be completed in the same way as the proof of
Lemma 4. �

Appendix B. A useful lemma

We here give a slightly extended version of Li et al. (2010,
Lemma 5).

Lemma 7. Suppose that G is a weighted digraph with N nodes, and
suppose that I ⊂ {1, . . . ,N} represents a subset of nodes such that
every node of G is a member of a directed tree with its root contained
in I .5 Let G be the Laplacian of G and let D = diag(d1, . . . , dN) be a
diagonalmatrixwith non-negative elements. If for each i ∈ I , di > 0,
then all the eigenvalues of Ḡ := G + D are in the open right-half
complex plane.

Proof. Let Ĝ denote an expanded digraph constructed from G by
adding a node 0 and edges from node 0 to node i ∈ {1, . . . ,N}

with weight di, whenever di > 0. Then the Laplacian of Ĝ is
given by Ĝ =


0 0

−d Ḡ


, where d = [d1, . . . , dN ]

′. Since Ĝ

contains edges from 0 to every node in I , it contains a directed
spanning tree rooted at node 0. Hence, from Ren and Beard (2005,
Lemma 3.3), Ĝ has a simple eigenvalue at the origin, and all the
other eigenvalues are in the open right-half complex plane. Due to
the block-triangular form of Ĝ, its eigenvalues consist of the zero
element (1, 1) and the eigenvalues of Ḡ. It therefore follows that
the eigenvalues of Ḡ must be in the open right-half complex
plane. �

5 A special case is when I consists of a single element corresponding to the root
of a directed spanning tree of G .
Appendix C. Auxiliary model for (AK , CK )

Suppose that the model ẋK = AK xK , yK = CK xK contains un-
observable or asymptotically stable modes. We show here how
to construct an observable auxiliary model without asymptoti-
cally stable modes, whose output converges to that of the original
model. Let Γ1 be a nonsingular matrix such that the state trans-
formation Γ1zK = xK yields the stability structural decomposition
(Chen, Lin, & Shamash, 2004)
żK1
żK2


=


Â11 0
0 Â22

 
zK1
zK2


, yK =


Ĉ1 Ĉ2

 zK1
zK2


,

where Â11 has all its eigenvalues in the closed right-half complex
plane and Â22 has all its eigenvalues in the open left-half com-
plex plane. Since zK2 vanishes asymptotically, the system żK1 =

Â11zK1, yK1 = Ĉ1zK1 has the property that limt→∞(yK1 − yK ) = 0
for zK1(0) = [I, 0]Γ −1

1 xK (0). Next, let Γ2 be a nonsingular matrix
such that the state transformation Γ2qK = zK1 yields the Kalman
observable canonical form:
q̇K1
q̇K2


=


Ã11 Ã12

0 Ã22

 
qK1
qK2


, yK1 =


0 C̃2

 qK1
qK2


.

The reduced-order system q̇K2 = Ã22qK2, yK1 = C̃2qK2 is clearly ob-
servable and yields the same output for qK2(0) = [0, I]Γ −1

2 zK1(0).

Appendix D. Proof of column rank ofΛiu andΦiu

In this section we demonstrate that the matrices Λiu and Φiu
must have full column rank. For the sake of establishing a con-
tradiction, suppose that one of the matrices, say Λiu, has linearly
dependent columns. Then there are nonzero vectors z ∈ Rqi and
z̄ ∈ RnK such that
Λiu
Φiu


z =


0
z̄


H⇒ Oi


0
z̄


= 0 H⇒

 CK
...

CKA
nK−1
K

 z̄ = 0.

The last statement implies that (AK , CK ) is unobservable, thus es-
tablishing the contradiction.
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