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Abstract

This paper investigates linear systems subject to input and state constraints. It is shown that the recoverable region (which is the largest
domain of attraction that is theoretically achievable) can be semiglobally stabilized by continuous nonlinear feedbacks while satisfying
the constraints. Moreover, when trying to compute the recoverable region, a reduction technique shows that we only need to compute the
recoverable region for a system of lower dimension which generally leads to a considerable simpli3cation in the computational e4ort.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we revisit the problem of stabilization of
general linear time-invariant systems subject to input and
state constraints. Over the past years there has been rather
strong interest (see for instance, [Bernstein & Michel, 1995;
Kapila & Grigoriadis, 2002; Saberi & Stoorvogel, 1999;
Tarbouriech & Garcia, 1997]) in this problem, possibly due
to a wide recognition of the inherent constraints on the in-
put and state in most practical control systems. A result due
to Sontag and Sussmann (1990) shows that, for linear sta-
bilizable systems, only systems which have no open-loop
poles with positive real parts can be globally asymptoti-
cally stabilized by a bounded feedback. However, global
stabilization in general requires a nonlinear controller as
was established 3rst by Fuller (1969) and more recently by
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Sussmann and Yang (1991). Later, it is shown in Lin and
Saberi (1993) that systems which are globally stabilizable
by nonlinear control laws are semi-globally stabilizable by
linear control laws. It is easily established that for systems
having open-loop poles with positive real parts, global
or semi-global stabilization with constrained input is
impossible.
More recently, the global and semi-global stabilization re-

sults for input constraints are extended to linear systems with
state and input constraints in Saberi, Han, and Stoorvogel
(2002), where global and semi-global stabilization are de-
3ned relative to the admissible set. The admissible set is
de3ned as the set of initial conditions that do not violate
the constraints at time 0. It turns out that invariant zeros,
in3nite zeros and right-invertibility properties play a cru-
cial role. In Saberi et al. (2002) these invariant zeros and
in3nite zeros are labeled as constraint invariant zeros and
constraint in3nite zeros. For systems with right invertible
constraints, it is shown that the necessary conditions for
global and semi-global stabilization are that the system is
stabilizable and the constrained invariant zeros are in the
closed left-half plane. Moreover, for global stabilization one
needs an additional condition that the constrained in3nite
zeros are of order less than or equal to one. For constraints
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that are right invertible and at most weakly non-minimum
phase, it is possible to achieve semi-global stabilization by
a linear control law; however, in general one has to use
nonlinear control laws for global stabilization. For the case
of non-right invertible constraints, the complete develop-
ment of necessary and suJcient conditions for semi-global,
global stabilization, and output regulation turns out to be
a very complex and challenging problem that is yet to
be resolved. If a system has at least one of the constraint
invariant zeros in the open right-half plane, a so-called
non-minimum phase constraint, then neither semi-global
nor global stabilization in the admissible set is possible.
The notion of recoverable region (set), sometimes called

domain of null controllability or null controllable region,
is closely related to the stabilization of linear systems sub-
ject to constraints. Generally speaking, for a system with
constraints, an initial state is said to be recoverable if it
can be driven to zero by some control without violating the
constraints on the state or input. The set of all recover-
able initial conditions denoted by RC is said to be the
recoverable region. The recoverable region is closely re-
lated to the stabilization problem for it represents the
maximum achievable constrained domain of attraction,
which is de3ned as the set of all initial condition which
can be made to converge to the equilibrium point with-
out violating constraints. As such, the goal of stabilization
is to design a feedback such that the constrained do-
main of attraction of the equilibrium point of the closed
loop system is equal or close to the recoverable region.
The earliest literature in this respect can be traced back
to the 1960s. For the case of input constraints, J. L.
LeMay in 1964 3rst studied the conditions for charac-
terizing the maximal region of recoverability and the
maximal region of reachability (LeMay, 1964). LeMay
also derived a method for calculation of recoverable re-
gions based on optimal control techniques. It is known
that for any state in the recoverable region there exists
a time-optimal control law that drives the state to zero.
This fact builds a direct connection between the char-
acterization of the recoverable region and time-optimal
control. There exists a vast literature in the 1960s and
1970s that were devoted to time-optimal control, among
them we mention FlLugge-Lotz (1968), Fulks (1970), Lee
and Markus (1967), Pontryagin, Boltyanskii, Gamkrelidze,
and Mischenko (1962). The book (Ryan, 1982) presented
a set of very detailed results of time-optimal control of
systems with input constraints whose number of unstable
eigenvalues is between 1 and 4. It also provided some re-
sults for explicit characterization of the recoverable region,
including
• Systems with one or two unstable real eigenvalues;
• Systems with two unstable complex eigenvalues;
• Systems with three unstable eigenvalues which are pro-
portional: (�; 2�; 3�), where �¿ 0;

• Some systems with four unstable poles can be reduced to
systems with lower order unstable dynamics.

Note that the above crucially depends on the fact that in
the case of only input constraints the recoverable region is
completely determined by the unstable dynamics. More re-
cently in 1995, Stephan et al. extended some of LeMay’s
results to systems with input and state constraints (Stephan,
Bodson, & Lehoczky, 1995,1998). They examined compu-
tational issues of the recoverable regions for planar systems
with state and input constraints.
There are two lines of research in the literature on sta-

bilization problems in the presence of non-minimum phase
constraints. A traditional line employs the construction of
invariant sets. A common denominator in the stream of
literature taking this approach is the idea of seeking a
control law that does not violate the constraints posed on
actuators and at the same time makes a subset of the admis-
sible set invariant. Subsets of the admissible set which can
be made invariant in this way are called positive invariant
sets. Two candidate positively invariant sets widely used in
the literature are ellipsoidal sets and polyhedral sets. Ellip-
soidal sets are classical in control theory. It has been shown
in Hu, Lin, and Shamash (2001a) for the case of input
constraints that we can only approximate the recoverable
set arbitrarily well by a 3nite number of ellipsoidal sets
but computationally this is very demanding. More recently,
polyhedral sets have received great attention, see for exam-
ple Bitsoris (1988), Blanchini and Miani (1996), Blanchini
(1998), Cwikel and Gutman (1986), Vassilaki, Hennet, and
Bitsoris (1988) among others. In principle polyhedral sets
are not intrinsically conservative but this might require an
exponential growth in the number of edges with the related
exponential growth in the required numerical e4ort. For
a detailed perspective in this line of research, the reader
should consult the excellent review in Blanchini (1999).
Further information in this regard can be found in two
survey papers (Dontchev & Lempio, 1992; Gayek, 1991).
The second line of research takes a fundamental view of

global and semi-global stabilization relative to the recover-
able region. In global stabilization problem one would seek a
stabilizing feedback law that achieves a constrained domain
of attraction for the equilibrium point of the closed loop sys-
tem that is equal to the recoverable region. The semi-global
stabilization problem deals with the issue of designing a
family of stabilizing feedback laws such that, for any a priori
given set, a member among the family of stabilizing feed-
back laws achieves a constrained domain of attraction for
the equilibrium point of the closed loop system that contains
the given set. The literature on this line of research, with the
exception of Saberi et al. (2002), has only focused on input
constraints. Moreover, no results are yet available for global
stabilization in the presence of non-minimum phase con-
straints. Note that, in the case of input constraints only, the
presence of non-minimum phase constraints is equivalent to
existence of open right-half plane poles (i.e., exponentially
unstable open-loop systems). For semi-global stabilization
problem, Choi (1999) showed that for exponentially unsta-
ble discrete-time linear systems subject to input constraints
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any compact subset of the maximal recoverable region can
be exponentially stabilized via a periodic linear variable
structure controller. However, Choi (2001) showed that in
general linear feedback can not achieve global stabilization
for discrete-time unstable systems. Also, Hu, Lin, and Qiu
(2001b) studied the possibility of semi-global stabilization
of continuous-time systems with two unstable open-loop
poles. It should be emphasized that all the mentioned works
deal only with the case when the constraints are posed on
the inputs. Recently, in a more general setting including
input and state constraints, Saberi et al. (2002) have pro-
vided solvability conditions for semi-global stabilization in
the admissible set of systems subject to right-invertible and
non-minimum phase constraints.
In this paper, we focus on two issues. The 3rst issue is

properties and computational issues for the recoverable re-
gion. Our goal is to provide a reduction in computation
and removal of some of the computational complexity in-
volved in obtaining the recoverable set. The second issue
is semi-global stabilization via continuous state feedbacks
in the recoverable region. In the special case that the con-
straints are right invertible, these questions were addressed
in Saberi et al. (2002).
This paper is organized as follows. After the introduc-

tion we present some preliminary results in Section 2. In
Section 3 we discuss the issues related to computing the re-
coverable region and present a reduction technique which
allows us to reduce the computational e4ort by developing
an explicit relationship between the recoverable region of
the full system and the recoverable region of a subsystem of
lower order. In Section 4 we establish that for any compact
set contained in the interior of the recoverable region, there
exists a continuous controller that stabilizes the system and
contains the chosen compact set in its domain of attraction
while satisfying the constraints.
Notation: For any set C ⊂ Rn, intC denotes the interior

of set C, @C the boundary of set C, and C the closure
of set C.

2. Preliminaries

This section provides the fundamentals for our develop-
ment. We start with a description of our system model and
its constraints. Then we introduce some basic notions that
we are interested in. After that we recall a taxonomy of con-
straints related to the constrained system � in (1). This tax-
onomy provides us some basic terminology for the rest of
the paper.
Consider the time-invariant linear system

� :

{
ẋ = Ax + Bu;

z = Czx + Dzu;
(1)

where x∈Rn is the state, u∈Rm is the control input, and
z ∈Rp is the constrained output which is subject to the

constraint z(t)∈S for all t¿ 0, where S is a given subset
of Rp. Note that the case of input constraints is included
as a special case in this general setup by letting Cz = 0
and Dz = I in the constrained output equation. However,
one should note the di4erence between input saturation and
input constraints: a saturation can be overloaded, whereas,
a constraint should never be violated.
We make a general assumption on the constraint set S

and the structure of the constrained output.

Assumption 1. The setS is compact, convex and contains
0 as an interior point.Moreover, we assume CT

z Dz=0 and

S= (S ∩ im Cz) + (S ∩ im Dz): (2)

This assumption is satis3ed in many cases. In fact, it is a
general reSection of the separability of input constraints and
state constraints. If the initial state of the system is arbitrary
then, given the constraint on the output, constraint violation
can never be avoided. For this reason, we need to de3ne an
admissible set of initial conditions.

De�nition 2. Given the system � in (1) and a constraint set
S satisfying Assumption 1, the set

A(�;S) := {x∈Rn|Czx∈S};
is said to be the admissible set of initial conditions.

Remark 3. In view of Assumption 1, we observe that Czx+
Dzu∈S implies Czx∈S. Therefore, if the state is not in
the admissible set then constraint violation is unavoidable.

Remark 4. If S is a polytope described by all z ∈Rp for
which Rz6 q with R and q a given matrix and vector, re-
spectively, then clearly the admissible setA(�;S) is given
by all x∈Rn for which RCzx6 q. Note that in connection
with polytopes, the inequality “6” is always interpreted
componentwise.

De�nition 5. Given system � in (1) together with a con-
straint set S satisfying Assumption 1. The recoverable re-
gion RC(�;S) of this system is the set of all initial states
x(0)∈A(�;S) for which there exists a control input u such
that x(t) → 0 as t → ∞ while z(t)∈S for all t¿ 0.

2.1. Taxonomy of constraints

We review brieSy, the taxonomy of constraints for the
system �, given by (1), which has emerged from the study
of stabilization of such systems (Saberi et al., 2002). It is
known that structural properties of this system play impor-
tant roles in the solvability of certain constrained stabiliza-
tion problems. Speci3cally, right invertibility, the location
of invariant zeros, and the order of in3nite zeros of the
quadruple (A; B; Cz; Dz) dictate the solvability conditions for
some constrained stabilization problems. The taxonomy of
the constraints is based on these structural properties.
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The 3rst category in the taxonomy of constraints is based
on whether the system � is right invertible or not.

De�nition 6. The constraints are said to be right invertible
constraints if the system � is right invertible and non-right
invertible constraints if the system � is non-right invertible.

The second category of constraints is based on the location
of the invariant zeros of the system �, which are labeled
the constraint invariant zeros of the plant. In the following
de3nition, C−, C0, and C+ denote respectively the set of
complex numbers with negative real part, zero real part, and
positive real part.

De�nition 7. The constraints are said to be

• minimum phase constraints if all the constraint invariant
zeros are in C−.

• at most weakly non-minimum phase constraints if all the
constraint invariant zeros are in C− ∪ C0.

• strongly non-minimum phase constraints if one or more
of the constraint invariant zeros are in C+.

The third categorization is based on the order of the in-
3nite zeros of the system �, which are labeled as the con-
straint in3nite zeros of the plant.

De�nition 8. The constraints are said to be type one con-
straints if the order of all constraint in3nite zeros is less
than or equal to one.

3. Properties and computational issues of the recoverable
region

This section is devoted to some characterizations of the
recoverable regionRC(�;S) of system � as de3ned in Def-
inition 5. The 3rst set of properties of the recoverable region
RC(�;S) are more or less well known. They are compiled
in the following lemma for easy reference.

Lemma 9. Consider system � in (1) and a compact,
convex constraint set S containing 0 in the interior.
The recoverable region RC(�;S) for this system has the
following properties:

(i) If (A; B) is controllable, then for any initial x(0) ∈ RC

(�;S) there exists T ¿ 0 and an input signal u such
that x(T ) = 0 while z(t)∈S for all t ∈ [0; T ].

(ii) The set RC(�;S) is convex and contains the origin
as an interior point.

(iii) If (A; B) is stabilizable, then the set RC(�;S) is open
in case we have only input constraints, i.e. Cz =0, but
in general this need not be true.

(iv) The setRC(�;S) is bounded if all the invariant zeros
of the system (1) are in the open right half plane, the

system is left invertible and the constraints are of type
one.

Proof. See Appendix B.

Remark 10. Note that item (i) of the above lemma states
that in3nite-time recoverability is equivalent to 3nite-time
recoverability.

Remark 11. As is clear from the example in Section 5, the
recoverable region is in general not a polytope. Of course,
like any set, it can be arbitrarily well approximated by a
polytope.

Remark 12. Assume that Cz = 0 and Dz = I in (1), i.e. the
system is only subject to input constraints and without state
constraints. Then, under a suitable coordinate system in the
state space, the plant can be split into two subsystems:

�s: ẋs = Asxs + Bsu;

�u: ẋu = Auxu + Buu;

where the eigenvalues of As are in the closed left-half plane
(at most critically unstable) and those of Au are in the open
right-half plane (antistable). Then it was already established
by LeMay (1964) that

(i) RC(�u;S) is bounded;
(ii) x∈RC(�;S) if and only if xu ∈RC(�u;S).

The fact stated above tells us that, without state constraints,
the recoverable region is completely determined by the ex-
ponentially unstable part of the system. On the other hand,
for the case of state constraints, this decomposition is no
longer possible. Later in this section we show that, in gen-
eral, a di4erent type of order reduction is possible of which
the above is actually a special case.

Next, we present our 3rst reduction result for the set
RC(�;S). In order to do so 3rst we represent � in a special
coordinate basis (scb). A brief review of scb is presented in
Appendix A and we obtain the system (A.1) which is in the
scb form.
We can extract a subsystem from the full system in scb

consisting of the state variables xa and xb, input variable �
consisting of z0 and zd and output Vz:

�1:




ẋa = Aaxa + KabCbxb + Ka2�;

ẋb = (Ab + KbbCb)xb + Kb2�;

Vz =

(
Cb

0

)
xb +

(
0

I

)
�:

(3)

The state dimension of this system equals na + nb. Ob-
viously � is not an input for the original system. How-
ever, for the moment we view � as the input to this sub-
system while Vz is a constrained output for this subsystem.
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A transformation of the system into scb clearly a4ects the
constraint set and we obtain a new constraint setSz=T−1

z S.
Thus, the constraint on Vz becomes

Vz(t)∈Sz for all t¿ 0:

Let RC(�1;Sz) be the recoverable region of subsystem �1

with the constraint set Sz. The following theorem shows
the relationship between the recoverable region of the full
system � and the recoverable region of the subsystem �1.

Theorem 13. Consider the plant � as given by (1) and a
constraint set S satisfying Assumption 1. Assume that we
have extracted the subsystem �1 in (3) from � as described
above. Then the closure of the set RC(�;S) is equal to

Tx

{ (
x1

x2

)∣∣∣∣∣ x1 ∈RC(�1;Sz)

}
∩ A(�;S); (4)

where x2 is of compatible dimension, i.e. x2 ∈Rnc+nd .

In (4), x1 is the state of �1 consisting of xa and xb while
x2 is the rest of the state variables of the system � which in
scb is composed of xc and xd.

Remark 14. If RC(�1;Sz) is approximated by a polytope
consisting of all x∈Rna+nb for which R1x6 q1 while S is
described by all z ∈Rp for which Rz6 q then RC(�;S) is
approximated by the set of all x∈Rn for which(

RCz

(R1 0)T−1
x

)
x6

(
q

q1

)
:

By improving the approximation of RC(�1;Sz) we can ap-
proximate RC(�;S) arbitrarily well in this way.
The decomposition of the recoverable region as presented

in Theorem 13 is therefore very important from a compu-
tational point of view. Although it does not capture which
boundary points of the recoverable set actually are part
of the recoverable set itself, by approximating or exactly
computing the set RC(�1;Sz), we immediately obtain with
arbitrary accuracy the set RC(�;S).

As pointed out by Stephan et al. (1998), numerical com-
putation of recoverable regions su4ers from dimension
growth. Papers such as (Yfoulis, Muir, & Wellstead, 2002)
try to improve the gridding methods but the exponential
growth with dimension is not avoided. In this sense, any
reduction of dimension in the computation of the recov-
erable region is crucial for improvement of computation
eJciency. The above method allows us to obtain the re-
coverable set for the system � from the recoverable set of
a lower-dimensional system in a transparent way. Note that
the transformation in scb and the computation of the trans-
formation matrices (in particular Tx) has been implemented
in Matlab and works very well on numerous examples.

Proof. It is obvious thatRC(�;S) is contained inA(�;S).
Moreover, assuming that in the 3rst subsystem we have �
as a free input we clearly enlarge the recoverable set. The
reverse inclusion follows from the proof of Theorem 18
since there we prove that for any compact set contained in
the interior of (4), we can 3nd a controller which contains
this compact set in its constrained domain of attraction.

Let us next have a di4erent look at the structure of the
system � which will provide some interesting results for
special cases. To do so we need to de3ne another subsystem.
Consider the remaining dynamics in the system � besides
the subsystem �1. We consider the system in the special
coordinate basis and we get the following description for the
dynamics which together with �1 describe the full system:

�2:




ẋc = Acxc + Kc2�+ Bcuc + Kcbzb;

ẋd = Adxd + Kd2�+ Bdud + Kdbzb;

�=

(
0

Cd

)
xd +

(
I

0

)
u0:

(5)

Note that �2 is only a4ected by �1 via the signal zb. When
we set zb = 0 then we decouple �2 from �1 and when we
also ignore the constraints on zb by setting

S2 :=

{
�∈Rn2 | ∃ zb such that

(
zb

�

)
∈Sz

}
;

and view S2 as the constraint set for �2, we obtain an in-
dependent system �2. In this way we de3ne the recoverable
region RC(�2;S2) for the second subsystem.
The following lemma establishes the recoverable set of

the second subsystem �2 and shows conditions under which
we can completely characterize the recoverable set of the
original set from the recoverable set of the subsystem �1.
Theorem 13 did not capture which boundary points belong
to the recoverable set and the following theorem does this
explicitly for a special case.

Theorem 15. Consider the plant � as given by (1) and
a constraint set S satisfying Assumption 1. Assume that
system � has been decomposed into two subsystems in scb
as described by (3) and (5). Then we have the following
properties:

(i) It holds that RC(�2;S2) =A(�2;S2).
(ii) If the constraints are right invertible, then S2 =Sz.
(iii) If the constraints are right invertible and of type one,

then RC(�2;S2) =A(�2;S2), and

RC(�;S) = Tx[RC(�1;Sz) × A(�2;S2)]: (6)

Proof. The 3rst property is evident from the fact that the
system �2 has a special structure as constructed within the
scb. It is strongly controllable which yields that we can
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make Vz follow any trajectory with arbitrary accuracy and
therefore any initial state that is admissible at time 0 can
be steered to zero without violating any constraints. For de-
tails we refer to the semi-global stabilization result in Saberi
et al. (2002). The last properties also follow from this paper.

We have achieved a reduction from computing the recov-
erable region for the system � to the computation of the
recoverable region for the subsystem �1. As noted before a
reduction in system order is crucial in making the compu-
tation of the recoverable region feasible. The question re-
mains whether we can achieve further reductions. In scb the
matrix Aa is in fact a block diagonal matrix. With this one
more step re3ning, subsystem �1 becomes:

�1:




ẋ−0
a = A−0

a x−0
a + K−0

ab Cbxb + K−0
a2 �;

ẋ+a = A+
a x

+
a + K+

abCbxb + K+
a2�;

ẋb = (Ab + KbbCb) xb + Kb2�;

Vz =

(
Cb

0

)
xb +

(
0

I

)
�:

(7)

Note that the eigenvalues of A−0
a and A+

a are in the closed
left-half plane and open right-half plane respectively. We
extract a subsystem from �1 given by:

V�1:




ẋ+a = A+
a x

+
a + K+

abCbxb + K+
a2�;

ẋb = (Ab + KbbCb)xb + Kb2�;

Vz =

(
Cb

0

)
xb +

(
0

I

)
�;

(8)

with state dimension n+a +nb. We can relate the recoverable
region of �1 to the recoverable region of V�1 and then, using
Theorem 13, we can relate the recoverable region of � to
the recoverable region of V�1.

Theorem 16. Consider the plant � as given by (1) and a
constraint setS satisfying Assumption 1. De<ne �1 by (3)
and V�1 by (8). We have

RC(�1;Sz) = Rn−0
a × RC( V�1;Sz) (9)

and the closure of RC(�;S) is given by

Tx







x1

x2

x3



∣∣∣∣∣∣∣∣
x2 ∈RC( V�1;Sz)


 ∩ A(�;S); (10)

where x1 and x3 are of compatible dimension, i.e. x1 ∈Rn−0
a

and x3 ∈Rnc+nd .

Using the decompositions from the scb we have in the
above that x1 is equal to x−0

a , x2 denotes the variables of V�1

consisting of x+a and xb while x3 is composed of xc and xd.

Proof. See Appendix C.

Remark 17. Again, as with Theorem 13, the above theo-
rem does not capture the boundary points of the recoverable
set. However, if RC( V�1;Sz) is approximated by a polytope
R2x6 q2 while S is described by Rz6 q then RC(�;S) is
approximated by(

RCz

( 0 R2 0 )T−1
x

)
x6

(
q

q2

)
:

By improving the approximation of RC( V�1;Sz) we can
approximate RC(�;S) arbitrarily well in this way.
Since the transformation into scb and the associated

computation of Tx is already implemented in Matlab, the
remaining problem is the computation or approximation of
RC( V�1;Sz).
If the constraint is right invertible and at most weakly

non-minimum phase then V�1 is actually an empty
(zero-dimensional) system and we have

RC(�1;Sz) = Rna ;

and the closure ofRC(�;S) is equal to the admissible set. If
this subsystem V�1 has dimension two or less the tools from
the book by Ryan (1982) can be used. Otherwise, gridding
tools are needed as mentioned in Remark 14.

Note that the reduction of the computation of the recov-
erable region from � to the computation of the recoverable
region for the lower order system V�1 actually yields the re-
sult in Remark 12 as a special case.

4. Semi-globally stabilization in the recoverable region

The 3rst objective of this paper was the reduction in the
computation of the recoverable region as outlined in the
previous section. The second objective of this paper is to
show the possibility of stabilization without violating the
constraints for any compact subset K contained in the inte-
rior of RC(�;S) by a continuous feedback. Regarding the
existence of Lipschitz continuous controllers, our main re-
sult is summarized in the following theorem.

Theorem 18. Given the linear time-invariant system � in
(1) with a constraint set S satisfying Assumption 1. As-
sume that (A; B) is stabilizable. Then, for any compact
subset K contained in the interior of RC(�;S), there
exists a Lipschitz-continuous (in general nonlinear) feed-
back u = f(x) such that the zero equilibrium point of the
closed-loop system is asymptotically stable with a domain
of attraction containing K and moreover, z(t)∈S for all
t¿ 0 when x(0)∈K.
Moreover, for all initial conditions inside K the state

converges to the origin exponentially fast.
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Remark 19. Note that although this theorem is a pure exis-
tence result, this paper will also establish that we only need
to design a controller for a subsystem which can have con-
siderably lower dimension and in this way it does reduce
the complexity of computational tools, available for actu-
ally designing controllers, which grow exponentially with
the dimension.

In the previous section we connected the recoverable set
of the original system � to that of the reduced system V�1

through the intermediate system �1. We will use these three
layers to look also into the design of controllers. We 3rst
look in the next subsection at the design of controllers for
systems of the form V�1. This will turn out to be the most
involved design step. In the second subsection we will ex-
tend a controller for this subsystem to a controller for the
original system �. Note that we assume in proof that the
system has no invariant zeros on the imaginary axis. This is
without loss of generality since changing A to A� = A+ �I
with � arbitrary small would remove the zeros on the imag-
inary axis. Clearly a controller for this system with a certain
constrained domain of attraction would, when applied to the
original system, always yield a larger domain of attraction
and according to the following lemma, the recoverable set
of this new system would be only marginally smaller than
the recoverable set of the original system.

Lemma 20. Consider system � in (1) and a convex, com-
pact constraint setS containing 0 in the interior. Let �� be
the system obtained from � by replacing A by A+ �I with
�¿ 0. Assume (A; B) stabilizable. Then for any compact
subset K ⊂ intRC(�;S) there exists �∗ ¿ 0 such that

K ⊂ RC(��;S) ⊂ RC(�;S);

for any �∈ [0; �∗].

Proof. See Appendix D.

4.1. Proof of Theorem 18 for the subsystem V�1

As we mentioned before, the subsystem V�1 in (8) is the
core of the original system �, which causes most of the de-
sign diJculties under constraints. Therefore, we 3rst prove
Theorem 18 for systems which are left-invertible, have rel-
ative degree zero, and have only antistable invariant zeros.
Obviously, subsystem V�1 is one of such systems. To simplify
notation, we assume the system is in the following form

�0:




�̇= A0�+ B0�;

Vz =

(
C0

0

)
�+

(
0

I

)
�;

(11)

with constraint Vz(t)∈Sz for all t¿ 0, where the un-break
observable eigenvalues of (C0; A0), i.e. the invariant zeros,
are in the open right-half plane (antistable) and (A0; B0) is
stabilizable.

Consider the set RC(�0;Sz). Our 3rst objective is to
choose the input in such a way that we stay inside this set.
If this is possible then we call the set positive invariant. In
order to do this we can try to choose at each boundary point
of the set, an input such that the derivative of the state points
inside or tangent to the set and then expand this feedback to
the full set. We will show that this basic idea works although
we need to spend quite some e4ort on avoiding technical
diJculties:

• We need that the set RC(�0;Sz) is bounded and closed,
since the suggested design is based on designing the feed-
back on the boundary.

• If the derivative does not point inside but tangent to the
set then we are not guaranteed that the state stays in the
set.

• Our aim is to achieve asymptotic stability and the above
idea only looks at achieving positive invariance and this
is clearly not the same.

• The feedback that we choose in this way might not even
be continuous and therefore we are not sure that the closed
loop system has a (unique) solution.

The 3rst technical issue mentioned above can actually be
resolved due to the extra structure of the system (11):

Lemma 21. Given the stabilizable linear system �0 in (11)
whose invariant zeros are antistable and a convex, compact
constraint set Sz containing 0 in the interior. The recov-
erable region RC(�0;Sz) for this system has the following
properties:

(i) The set RC(�0;Sz) is bounded.
(ii) For any initial condition �0 ∈ @RC(�0;Sz), there ex-

ists an input u such that the state of the system re-
mains in RC(�0;Sz), while the constraint Vz(t)∈Sz is
satis<ed for all t¿ 0.

Proof. See Appendix E.

By property (ii) of the above lemma, it seems feasible
to 3nd a feedback such that the compact set RC(�0;Sz)
becomes invariant. However, in order to avoid the technical
diJculties mentioned before, it turns out that it is desirable
to start working with an auxiliary system:

��
0 :




�̇= A��+ B0�̃;

z̃ =

(
C0

0

)
�+

(
0

I

)
�̃;

(12)

with constraint z̃(t)∈Sz for all t¿ 0, where A�=A+�I for
�¿ 0. It is more diJcult to keep the state inside a convex
set V (containing 0) for this system due to the fact that the
extra term �� always points outside the set V.

All the technical diJculties mentioned before are resolved
in this way. If we choose a direction for the derivative to
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point tangent or inside the set for this auxiliary system then
by reducing � we can guarantee that, for a slightly smaller
�, we can make the set positive invariant. Moreover, by
reducing � we obtain some Sexibility which enables us to
make the feedback continuous and even Lipschitz continu-
ous. Finally, if the state stays in the set for some positive
� then for the original system the state converges to zero
exponentially.
Note that the recoverable set of this auxiliary system is

close to the recoverable set of the original system by Lemma
20. The technical details of the above are in Appendix F and
yield the proof of Theorem 18 for the special case of system
�0 given in (11). However, in order to expand a controller of
the subsystem V�1 to a controller for the system �, we need
a strengthened version of Theorem 18 which can handle
small exponentially decaying disturbances. The details of
this expansion from V�1 to � are in the next subsection.

Theorem 22 (Special case with disturbance). Given a lin-
ear time-invariant system

�d
0 :




�̇= A0�+ B0�+ d;

 =

(
C0

0

)
�+

(
0

I

)
�;

(13)

with the unobservable modes of (C0; A0) antistable and
(A0; B0) stabilizable. Given M ¿ 0 and a compact sub-
set K ⊂ intRC(�d

0 ;Sz), there exists "¿ 0 and a
Lipschitz-continuous feedback � = f(�) such that the
equilibrium point 0 is asymptotically stable for all initial
conditions in K and for any disturbance d satisfying

‖d(t)‖6Me−"t ; (14)

the closed-loop system satis<es �(t) → 0 as t → ∞ and
 (t)∈Sz for all t¿ 0.

4.2. Proof of Theorem 18

In the above, we have decomposed the original system
� into two subsystems �1 and �2 and then we established
that the computational e4ort for determining the recoverable
set is concentrated in system �1. If we look more closely
at the system �1, we can extract another subsystem V�1 and
the recoverable set of this last subsystem is the core of the
computational e4ort needed in determining the recoverable
set.
This time, we want to establish a suitable controller

with a domain of attraction containing an arbitrarily chosen
compact set K which is itself contained in the interior of
RC(�;S). First note that the recoverable set of the full
system satis3es the structure established in Theorem 13.
Therefore, we can 3nd a compact set K1 such that K1

is contained in the interior of RC(�1;Sz) and

K ⊂ Tx

{(
xab

xcd

)∣∣∣∣∣ x1 ∈K1

}
∩ A(�;S);

where xab and xcd denote the initial conditions of �1 and �2,
respectively. As noted in the beginning of this section we
assume without loss of generality that we have no zeros on
the imaginary axis which implies in the scb structure that
the dynamics of x−0

a is asymptotically stable and hence can
be exempted from stabilization. Consider the system

V�1�:




ẋ+a = A+
a�x

+
a + K+

ab + Cbxb + K+
a2�;

ẋb = (Ab� + KbbCb)xb + Kb2�;

Vz =

(
Cb

0

)
xb +

(
0

I

)
�;

(15)

with A+
a� = A+

a + �I and Ab� = Ab + �I . The associated
recoverable set RC( V�1�;S) has the following property:

{(
x1

x2

)∣∣∣∣∣ x1 ∈RC( V�1�;Sz)

}
⊂ RC(�1;Sz);

where x1 denotes the initial condition for x+a and xb while
x2 denotes the initial condition for x−0

a . Moreover, similar
to Lemma 20 it is easy to verify that for � small enough:

K1 ⊂ Tx

{(
x1

x2

)∣∣∣∣∣ x1 ∈RC( V�1�;Sz)

}
:

Choose � small enough such that this latter inclusion is sat-
is3ed. Then we can design a controller f for V�1� according
to Theorem 22 and it is easily veri3ed that this controller
when applied to �1 creates an exponentially stable system
with K1 contained in its domain of attraction which can
handle exponentially decaying disturbances satisfying (14).
Next, we consider the second subsystem �2 given by (5).

This system has the nice structure that the mapping from
(ũ d; u0) to � is strongly controllable. Assume the initial state
of � is in the interior of the set

Tx

{(
xab

xcd

)∣∣∣∣∣ x1 ∈K1

}
∩ A(�;S): (16)

Following the design methodology in Saberi et al. (2002),
we can then design a feedback for inputs (ũ d; u0) which
stabilizes �2 and such that �= f(x1) + d with d satisfying
(14) while satisfying the constraints. This controller is then
easily seen to satisfy the conditions of Theorem 18.
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5. Example

We consider the following system:

ẋ =




0 1 0 0

−1 0 0 1

1 −2 0 0

1 0 −1 0


 x +




0

0

0

1


 u;

z =

(
0 1 0 0

0 0 0 1

)
x;

with S given by

S= {z ∈R2| − 16 z16 4; −16 z26 1}:
In this case, we note that in the scb context x0a corresponds
to x3 while xd corresponds to x4. Moreover, xc is not present
since the system is left-invertible. Note that the system is
not right-invertible and hence we cannot rely on the rela-
tively easy structure we obtain for right-invertible systems
as outlined in our previous paper (Saberi et al., 2002).
In order to obtain the recoverable set we 3rst compute the

system �1 which is given by

�1:




˙̃x =




0 1 0

−1 0 0

1 −2 0


 x̃ +




0

1

0


 �;

z =

(
0 1 0

0 0 0

)
x̃ +

(
0

1

)
�

and then the system V�1 given by

V�1:




V̇x =

(
0 1

−1 0

)
Vx +




0

1

0


 �;

z =

(
0 1

0 0

)
Vx +

(
0

1

)
�:

The recoverable region for this system can be computed
using the techniques available from the work of Ryan, see
(Ryan, 1982).We obtain the recoverable setR( V�1;S) given
in Fig. 1. Next, consider the boundary. The dashed line does
not belong to the recoverable set while the solid line is part
of the recoverable set. The theory developed in this paper
then tells us that

R(�;S)

=

{
x∈R4|

(
x1

x2

)
∈R( V�1;S);−16 x46 1

}
:

Assume we have a compact set K contained in the
interior of R(�;S) and we want to obtain a controller

Fig. 1. Recoverable region R( V�1;S).

which stabilizes the system and containsK in its domain of
attraction while avoiding constraint violation when starting
in the set K.
The theory developed in this paper tells us that we need

to look at a modi3cation of the system �1

�1; #:




˙̃x =




# 1 0

−1 # 0

1 −2 #


 x̃ +




0

1

0


 �;

z =

(
0 1 0

0 0 0

)
x̃ +

(
0

1

)
�;

for some #¿ 0 small enough. We 3rst need to design a
controller which stabilizes this system and contains K1 in
its domain of attraction while avoiding constraint violation
when the initial condition is in the set K1 where,

K1 =




1 0 0 0

0 1 0 0

0 0 1 0


K:

EJcient design methods for this are not known. However,
gridding can be one option, and working with a lower di-
mensional subsystem �1 will de3nitely make the gridding
method more attractive.
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Appendix A. A special coordinate basis

In this section we recall from Saberi and Sannuti (1990),
Sannuti and Saberi (1987) special coordinate basis (scb) for
system � in (1). A system in scb reveals the inherent 3nite
and in3nite zero structures, which are crucial components
in classifying the constraints and in facilitating the design.
For a general linear system � in (1), one can choose

appropriate coordinates in the state, input, and output spaces

x = Tx Vx; u= Tu Vu+ VFx; z = Tz Vz;

where Tx, Tu, and Tz are transformation matrices and VF is a
preliminary feedback which will make the structure of the
system more visible. With this objective, we also use the
following decomposition for the state, output and input of
the system.

Vx =




xa

xb

xc

xd


 ; Vz =

(
zb

�

)
; �=

(
z0

zd

)
and Vu=




u0

uc

ud


 ;

after which the system (1) takes the following form:

V�:




ẋa = Aaxa + Kabzb + Ka2�;

ẋb = Abxb + Kbbzb + Kb2�;

ẋc = Acxc + Bcuc + Kcbzb + Kc2�;

ẋd = Adxd + Bdud + Kdbzb + Kd2�;

Vz =

(
zb

�

)
=




Cbxb

u0

Cdxd


 :

(A.1)

Furthermore, the xa equation can be decomposed as

ẋ−0
a = A−0

a x−0
a + K−0

ab Cbxb + K−0
a2 �;

ẋ+a = A+
a x

+
a + K+

abCbxb + K+
a2�;

where

xa =

(
x−0
a

x+a

)
; Aa =

(
A−0
a 0

0 A+
a

)
;

Kab =

(
K−0
ab

K+
ab

)
; Ka2 =

(
K−0
a2

K+
a2

)
;

with all eigenvalues of A−0
a in the closed left-half plane, and

all eigenvalues of A+
a in the open right-half plane.

The scb components have the following dimensions. For
the state, xa ∈Rna , xb ∈Rnb , xc ∈Rnc , and xd ∈Rnd , with na+
nb+nc+nd=n. x−0

a ∈Rn−0
a , x+a ∈Rn+a , and n−0

a +n+a =na. For
the input, u0 ∈Rm0 , uc ∈Rmc , and ud ∈R‘, with m0 + mc +
‘ = m. And for the output, z0 ∈Rm0 , zb ∈Rmb , and zd ∈R‘,
with m0 + mb + ‘ = p. Finally �∈Rn2 with n2 = m0 + ‘.
The components involved in scb have lots of nice prop-

erties. Among others we mention the following that are
relevant to this work:

(i) The eigenvalues of Aa are the invariant zeros of the
system �.

(ii) The in3nite zeros are associated with the dynamics
of xd.

(iii) The matrix pair (Ac; Bc) is controllable.
(iv) The matrix pair (Cb; Ab) is observable.
(v) If system � is right invertible, then the dimension

of xb is zero. In this case, the components xb and zb
disappear.

(vi) If system � is left invertible, then the dimension of xc is
zero. In this case, the components xc and uc disappear.

Appendix B. Proof of Lemma 9

We start with showing property (i). Since 0∈ intS and
the system is linear and controllable, there exists a ball
B(0; #) around the origin with radius # and time T ¿ 0 such
that for any x(0)∈B(0; #) there exists a control u which
steers the state to the origin in time T without violating the
constraint. By de3nition, for any x(0)∈RC(�;S), there ex-
ists an input u such that x(t) → 0 as t → ∞ while satisfy-
ing the constraints. Hence, there exists a time T1 ¿ 0 so that
x(t)∈B(0; #) for t¿T1. Therefore, it is possible to drive
any initial state in RC(�;S) to the origin in time T + T1.
Property (ii) follows from the assumption that S is con-

vex and 0∈S.
To show property (iii), we note that already in LeMay

(1964) it was established that in the case of only input
constraints the recoverable set is open. In the case of gen-
eral state and input constraints the set RC(�;S) need not
be open. This is seen from the simple example ẋ = u with
z = x and constraint set S= {z | z ∈ [− 1; 1]} which yields
RC(�;S) =S which is obviously closed.
Finally, we consider property (iv). Under the condition

that system � has relative degree at most one, is left invert-
ible, and with all invariant zeros antistable the system � in
scb takes the following form (see Appendix A):


ẋa = Aaxa + Kabzb + Ka2�;

ẋb = Abxb + Kbbzb + Kb2�;

ẋd = Adxd + Bdud + Kddzb + Kd2�;

Vz =

(
zb

�

)
=




Cbxb

u0

xd


 :

(B.1)
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Firstly, since S is bounded, we 3nd that xd(t) must be
bounded. Secondly, the x+a dynamics is antistable and con-
trolled by the virtual input zb and � which are bounded. It is
a classical result that the recoverable region for this subsys-
tem must be bounded. It remains to show that the recover-
able region for xb(t) is also bounded. Consider the following
subsystem:

ẋb = Abxb + Kbbzb + Kb2�;

zb = Cbxb:

It is known that (Cb; Ab) is observable. Moreover, the inputs
zb and � and the output zb of this system are both bounded.
It is then not very hard to verify that this implies that the
state xb(t) must be bounded.

Appendix C. Proof of Theorem 16

We note that Theorem 13 helps us to relate the recoverable
regions of V�1 and � and we obtain (10). In order to obtain
(9), we need to do a bit more work. Our proof is strongly
motivated by results from LeMay (1964). One inclusion is
basically obvious:

RC(�1;Sz) ⊂ Rn−0
a × RC( V�1;Sz): (C.1)

For notational ease we will denote an initial condition of �1

by (x1; x2) with x1 equal to the initial condition for x−0
a and

x2 a vector consisting of initial conditions for x+a and xb.
We 3rst note that for any x2 ∈RC( V�1;Sz) we can 3nd

x1 such that (x1; x2)∈RC(�1;Sz). After all if we choose an
input u for V�1 which steers x2 to 0 at time T without violating
constraints, then for this same input u we can always choose
x1 such that for the initial condition (x1; x2) the system �1

reaches the origin at time T . Moreover, since x1 does not
a4ect the constraints, the initial condition (x1; x2) is steered
to zero without constraint violations.
Next, we note that for any x1 ∈Rn−0

a we have that
(x1; 0)∈RC(�1;Sz). It is well known that we can locally
stabilize a system using a linear feedback u = −B′Px with
P a solution of an algebraic Riccati equation and such that
an ellipsoid of the form x′Px6 c is invariant for the closed
loop system while constraint violations are avoided. If we
apply this to the system �1, we 3nd that P restricted to the
part of the system composed of x1 can be made arbitrarily
small and this yields that we can guarantee that for any x1
there exists a solution of the Riccati equation P such that
(x1; 0) is contained in this invariant ellipsoidal set and for
which we can hence avoid constraint violation. This clearly
implies that (x1; 0)∈RC(�1;Sz). For further details regard-
ing this type of arguments we refer to Hu et al. (2001a,b).
We claim that for all (x1; x2) with x2 ∈RC( V�1;Sz) we

have that (x1; x2)∈RC(�1;Sz). In other words

RC(�1;Sz) ⊃ Rn−0
a × RC( V�1;Sz):

and combined with (C.1) the proof of (9) would be
complete.

Let #¿ 0 be given. Choose any (x1; x2) with x2 ∈
RC( V�1;Sz). We know there exists x̃1 such that (x̃1; x2) is
in RC(�1;Sz).
Choose �∈ (0; 1). We have

(x1 − �x̃1=1 − �; 0)∈RC(�1;Sz):

This implies

(x1; x2) = �(x̃1; x2) + (1 − �)(x1 − �x̃1=1 − �; 0);

is an element of the set RC(�1;Sz) due to convexity.

Appendix D. Proof of Lemma 20

We need the following lemma in order to prove Lemma
20. which can be easily proven.

Lemma 23. Consider system � in (1) and a convex, com-
pact constraint set S containing 0 in the interior. Assume
that (A; B) is stabilizable. For any compact subset K ⊂
intRC(�;S) and any ball B(0; #) ⊂ K with #¿ 0 su?-
ciently small, there exists a time T ¿ 0 such that for any
initial condition in K there exists an input u for which
x(T )∈B(0; #) and z(t)∈S; ∀ t ∈ [0; T ].

Proof of Lemma 20. We 3rst note that for any �¿ 0 we
have

RC(��;S) ⊂ RC(�;S): (D.1)

This follows from a simple observation that if x(t) and u(t)
satisfy system �� with initial condition x(0) and the con-
straint, then e−�tx(t) and e−�tu(t) satisfy system � with the
same initial condition and the constraint. Also, it is clear
from the same observation that

RC(�‘;S) ⊂ RC(��;S); (D.2)

for ‘¿�¿ 0.
Next, we show that for any compact set K satisfying

K ⊂ (RC(�;S); (∈ (0; 1);

there exists a �¿ 0 such that

K ⊂ RC(X�;S): (D.3)

Note that if (A; B) is stabilizable, then there exists a suJ-
ciently small �0 ¿ 0 such that for all 06 �6 �0 the pair
(A�; B) is also stabilizable. Also note that by stabilizability,
there exists #¿ 0 suJciently small such that one can 3nd
for any point in B(0; #), a control u such that the resulting
trajectory goes to zero asymptotically without violating the
constraints. We choose such a small #¿ 0 for which this
property holds for system ��0 .

Next, we consider system �. By Lemma 23 there ex-
ists a uniform T ¿ 0 such that any initial state in K can
be driven to the ball B(0; (#) in time T by a suitable u
while respecting the constraints. Let x̃0 ∈K ⊂ (RC(�;S).
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Then there exist x̂(t) and û(t) satisfying

˙̂x(t) = Ax̂(t) + Bû(t); x̂(0) = x̃0;

ẑ(t) = Czx̂(t) + Dzû(t)∈ (S;

for t ∈ [0; T ] and x̂(T )∈B(0; (#), where T does not depend
on x̃0. By choosing �¿ 0 small enough so that (e�T ¡ 1,
it is straightforward that x̃(t) = e�t x̂(t) and ũ(t) = e�t û(t)
satisfy for t ∈ [0; T ]

˙̃x(t) = (A+ �I)x̃(t) + Bũ(t); x̃(0) = x̃0;

z̃(t) = Czx̃(t) + Dzũ(t)∈S;

while x̃(T ) = x(T )∈B(0; #). Hence, x̃0 ∈RC(��;S).

Appendix E. Proof of Lemma 21

In general the recoverable region is not closed and its
closure is not easily characterized. However, for system (11)
the closure of the recoverable region,RC(�0;S), can easily
be characterized by the set of initial conditions of system
(11) for which there exists an input that keeps the state
bounded while avoiding constraint violation. This result is
stated in the following lemma, which leads to the proof of
Lemma 21. Similar results have for instance been obtained in
LeMay (1964). Due to space limitations the proof is omitted.

Lemma 24. Consider system �0 in (11) with compact, con-
vex constraint set S containing 0 in the interior. Assume
that the unobservable modes of (C0; A0) are antistable and
(A0; B0) stabilizable. Then we have

RC(�0;S) = *(�0;S);

where

*(�0;S) := {�0 ∈Rn | ∃ � such that the solution of

�0 with �(0) = �0 satisfies

�∈L∞[0;∞) and Vz(t)∈S; ∀t¿ 0}:

Appendix F. Proof of Theorem 22

Some preparation is needed before we proceed to the
proof of this theorem. De3ne

C0(�) := RC(��
0 ;S):

From Lemmas 9 and 21 we know that C0(�) is convex and
bounded. Also, by Lemma 20, for any compact subsetK ⊂
intRC(�0;S) there exist ‘¿�¿ 0 such that

K ⊂ C0(‘) ⊂ C0(�) ⊂ RC(�0;S): (F.1)

Next we show the following:

(i) There exists a continuous feedback for system (12), so
that the closure of C0(‘) is an invariant set.

(ii) This feedback can be slightly modi3ed to be Lipschitz,
and when applied to the original system (11), C0(‘)
is again an invariant set while the state of the system
with any initial condition in C0(‘) will converge to the
origin.

From these we conclude that C0(‘), and hence K, is con-
tained in the domain of attraction.
As stated before, we will try to achieve this by trying to

guarantee that the trajectory points inwards or tangent to this
set in every boundary point by an appropriate choice of the
input. In order to formalize this we need the following set:

NV(�) := { ∈Rn | ‖ ‖ = 1

and 〈�′ − �;  〉6 0; ∀ �′ ∈V }:
Note that NV(�) is the set of normals in the point � to

the set V (as studied in for instance Rockafellar, 1970). It
is also shown in Rockafellar (1970) that for a convex set V
the set of normals is nonempty whenever � is a boundary
point of V. Its importance is due to the fact that if we start
in � in the direction v then this direction is tangent to or
pointing insideV if and only if 〈v;  〉6 0 for all  ∈NV(�).

Let the relation (F.1) hold for ‘¿�¿ 0. De3ne
T� : @C0(‘) → P(Rn), where P(Rn) denotes the collection
of all subsets of Rn, by

T�(�) :=
{
A��+ B0�|

(C0�

�

)
∈S and

〈A��+ B0�;  〉6 0; ∀  ∈NC0(‘)(�)
}
:

The next lemma states some properties of T�(�). The proof
is omitted due to page limitations.

Lemma 25. Assume �¡‘. Then we have:

(i) T�(�) is convex and closed for every �∈ @C0(‘).
(ii) For any point �∈ @C0(‘) the sets T�(�) and T‘(�) are

nonempty.

Next we ask: will the state trajectory stay in C(�) for all
t¿ 0 if we choose a feedback such that �̇(0)∈T�(x0) for all
initial conditions �(0)∈ @C(�)? This can be addressed using
Nagumo’s theorem (see Aubin, 1991; Nagumo, 1942).

Theorem 26 (Nagumo). Consider system (12). Let the re-
lation (F.1) hold for ‘¿�¿ 0. Assume that there is a
Lipschitz continuous feedback � = f(�) such that A�� +
B0f(�)∈T�(�) for all �∈ @C0(‘). Then for any initial con-
dition inside C0(‘) the solution of the di@erential equation
remains in C0(‘).

Since T�(�(t)) is nonempty for �(t)∈ @C0(‘), there exists
�(t) such that �̇(t)∈T�(x(t)). In order to apply Nagumo’s
Theorem, we need a continuous �(t) for feedback. The ex-
istence of a continuous feedback is assured by Michael’s
Theorem. We 3rst recall the formal de3nition of upper and



A.A. Stoorvogel et al. / Automatica 40 (2004) 1481–1494 1493

lower semicontinuity of set valued functions, see for instance
Aubin (1991, Sections 2.1.2 and 6.5.3).

De�nition 27. Let X and Y be normed spaces, D ⊂ X and
F(·) a set-valued function from D to subsets of Y such that
F(x) is nonempty for all x∈D.
F is called upper semicontinuous at x0 ∈D if for any

neighborhood U of F(x0), there exists #¿ 0 such that for
all x′ ∈D with ‖x′ − x‖¡# we have F(x′) ⊂ U . F is called
upper semicontinuous if F is upper semicontinuous at every
point of D.
F is called lower semicontinuous at x0 ∈D if for any

y∈F(x0) and for any sequence {xn} ∈D that converges to
x0 there exists a sequence {yn} with yn ∈F(xn) that con-
verges to y. F is lower semicontinuous if F is lower semi-
continuous at every point of D.

Using the above, we can formulate Michael’s theorem:

Theorem 28 (Michael, 1956; Aubin and Frankowska,
1990). Let D be a compact metric space and Y a Banach
space. Every lower semicontinuous function F(·) from D
to the non-empty, closed, and convex subsets of Y admits
a continuous selection.

In our case D=@C0(‘) which is clearly a compact metric
space and Y = Rn is clearly a Banach space. Lemma 25
assures that T�(�) is not empty for all �∈ @C0(‘); that is, F=
T� maps into nonempty subsets of Y . A continuous selection
means that we can 3nd a continuous function h : @C0(‘) →
Rn such that h(�)∈T�(�) for all �∈ @C0(‘), which is the
result we need. But, to apply Michael’s Theorem we need
to establish that T� is lower semicontinuous and T�(�) is
closed and convex for all �∈ @C0(‘). The set is closed and
convex by lemma 25 and lower semicontinuity is the content
of next lemma.

Lemma 29. Let the relation (F.1) hold for ‘¿�¿ 0.Then
T� is lower semicontinuous on @C0(‘).

Michael’s Theorem leads to the existence of a continuous
function h such that h(�)∈T�(�) for all �∈ @C0(‘). Let

�= f(�) = B†
0[h(�) − A��]; (F.2)

where B†
0 is the Moore–Penrose generalized inverse of B0.

Clearly, this �(�) is a continuous feedback on @C0(‘).
The control law in this proposition does not guarantee

asymptotic stability. After a slight modi3cation, we obtain
a stabilizing continuous control law that achieves our goal.

Proof of Theorem 22. Given that the system has a bounded
input there exists t1 such that at time t1 for all initial condi-
tions in K1 and any input satisfying the constraint, we are
guaranteed to be inside the set RC(�0; S). We consider the
system from time t1 onward.

Let f be the continuous controller given by (F.2) whose
existence followed from Michael’s theorem. Let 8¿ 0 be
such that B(0; 8) ⊂ C0(‘). Then it is readily veri3ed that

〈�;  〉¿ 8; ∀ �∈ @C0(‘); ∀  ∈NC0(‘)(�):

For any M ¿ 0, choose " such that d(t) satis3es ‖d(t)‖6
8�=4 for all t ¿ t1. It also follows that for all �∈ @C0(‘) and
 ∈NC0(‘)(�):

〈A�=2�+ B0f(�);  〉¡ − 8�
2
: (F.3)

Since f is a continuous function de3ned on the compact set
@C0(‘), there exists a di4erentiable function f0 on @C0(‘)
such that ‖B[f(x)−f0(x)]‖¡8�=2. Thus, by (4) f0 satis-
3es for all �∈ @C0(‘) and for all  ∈NC0(‘)(�):

〈A�=2�+ B0f0(�);  〉6 0: (F.4)

Next we extend the di4erentiable feedback f0 de3ned on
@C0(�) to a globally Lipschitz feedback f1 de3ned onC0(‘).
De3ne 9 :Rd → R+

0 , where d= dim�, as

9(�) := inf{9¿ 0 | �∈ 9C0(‘) }:
Clearly, �∈ 9(�)@C0(‘) for all � �= 0. It is easily seen that
the function 9 is Lipschitz and there existsM ¿ 0 such that:

|9(�) − 9(�′)|6 9(� − �′)6M‖� − �′‖:
De3ne f1 :Rd → Rm by

f1(�) :=

{
9(�)f0(�=9(�)); � �= 0;

0; �= 0:

Since 9 is globally Lipschitz and f0 di4erentiable, it is
easily veri3ed that f1 is globally Lipschitz. Moreover, f1 is
positively homogeneous, i.e. f1(:�) = :f1(�) for all �∈Rn

and :¿ 0, because 9(:�) = :(9�).
Noting that f1(�) =f0(�) for �∈ @C0(‘), utilizing (F.4),

we 3nd for all �∈ @C0(‘) and  ∈NC0(l)(�):

〈A�=4�+ B0f(�) + d;  〉6 0

for all t¿ t1. Then from Nagumo’s theorem we conclude
that for all �∈C0(‘) the state �(t) remains in C0(‘) for all
t¿ t1. But if we apply the feedback u=f1(�) to system (11)
with the same initial condition �(0)∈C0(‘) and let �̃(t) be
the solution of system (11), it is easy to see that

�̃(t) = e−�t=4�(t);

where we used the property that f1 is positive homogeneous.
Since �(t) remains in C0(‘), a bounded set, we conclude
that �̃(t) converges to zero exponentially, which shows that
K is a subset of the domain of attraction of system �0.
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