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Fast Performance Estimation of Block Codes

Rajan Srinivasan, Fellow, IEEE, and Nuo Wang

Abstract—Importance sampling is used in this paper to address
the classical yet important problem of performance estimation
of block codes. Simulation distributions that comprise discrete-
and continuous-mixture probability densities are motivated and
used for this application. These mixtures are employed in concert
with the so-called g-method, which is a conditional importance
sampling technique that more effectively exploits knowledge of
underlying input distributions. For performance estimation, the
emphasis is on bit by bit maximum a-posteriori probability
decoding, but message passing algorithms for certain codes have
also been investigated. Considered here are single parity check
codes, multidimensional product codes, and briefly, low-density
parity-check codes. Several error rate results are presented for
these various codes, together with performances of the simulation
techniques.

Index Terms—Block codes, error rates, Monte Carlo simula-
tion, importance sampling, mixture densities.

I. INTRODUCTION

HIS paper is yet another attempt at estimating error rates

of block coded communication systems using importance
sampling. The problem has been addressed by several authors
(see [1], [2], and references therein) with varying success. Im-
portance sampling (IS) has been employed in various fields, in
many cases with remarkable results. It has not yielded quite the
same benefits in the study of coded systems. Part of the reason
presumably lies in the fact that error rate estimation involves
evaluation (by simulation) of high-dimensional integrals over
regions that are very complicated. It has rendered the task of
constructing good simulation distributions difficult.

The approach to IS taken here is motivated by bitwise max-
imum a-posteriori probability (MAP) decoding algorithms,
which are based on distance properties and are optimum in
terms of error rate performance. Bit decoding algorithms (such
as the BCJR algorithm of [3]) have received less attention in
the past (compared to maximum-likelihood word decoding,
[4]) as they have had a relatively high level of decoding com-
plexity. They have attracted more attention recently, mainly
due to the fact that suboptimal decoding algorithms have
been developed which have low implementation complexity,
[5]. Examples are the class of iterative decoding algorithms
such as message passing which are based on the concept of
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belief propagation. It is noted that message passing algorithms
provide exact MAP decoding performance for codes that have
Tanner graphs which are cycle-free, [9]. The codes considered
here are examples of single parity check (SPC), Hamming,
and low density parity check (LDPC) codes. Of these, only
the SPC codes have graphs that are cycle-free. Although bit
decoding algorithms can have error-rate performances close
to ML decoding, it is clear that the collection of decoded bits
may not constitute a valid codeword. This paper concentrates
on estimating error rates for bitwise decoding.

An examination of the geometry of signal spaces generated
by transmission of codes indicates that simulation distributions
that comprise mixtures of different distributions could be
‘good’ for error rate estimation. They indeed are, as borne out
by results reported herein. Though subjective, goodness here
means achieving simulation gains (over straight Monte Carlo
(MC) procedures) that are close to or more than 1/P,, where
P, is the error rate being estimated. In essence, this implies
that fewer than a hundred simulation trials are sufficient to
provide absolute accuracies within 20% with 95% confidence,
for any P.. Mixture distributions for fast simulation were
(first) suggested in [8] and have been studied more recently
in greater detail in [2], for the general problem of estimating
small probabilities. They were suggested from the perspec-
tive of performing IS by exploiting certain large deviation
properties of rare-event probabilities. In the latter reference
it was shown that certain mixtures are efficient, in the sense
of maximizing the asymptotic rate (as noise becomes smaller)
of decay of variance. The approach taken here is to try to
devise procedures that attempt to minimize error variances of
IS estimators. Mixture-density simulation estimators have the
appealing intuition that they can, with a single distribution,
‘scan’ (boundaries of) error regions effectively with economy
of simulation effort. It is shown here that they emerge quite
simply from a (virtual) partitioning of rare-event regions that
are natural in an application. Some properties of mixture
simulation distributions are given.

The principal results of this paper comprise: a proof that
mixture simulation IS densities outperform the usual proce-
dure of partitioning the codeword error region into a set of sub-
error events and estimating each separately, a demonstration
that combining the so called g-method ([11] and [6]) with
mixtures can provide gains over conventional MC simulation
exceeding 1/P, for bitwise MAP decoding error rates when
the codebook is known, and the realization that further re-
search needs to be carried out to develop equally effective
IS techniques for evaluating iterative decoding algorithms
for long codes. The next section provides a straightforward
account of bit by bit MAP decoding leading to formulation of
the g-method technique of estimation. Section III motivates
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mixture distributions for IS and describes their construction
for uniform signal constellations. Application to block codes
and results are in Section IV, followed by a concluding section.

II. ERROR PROBABILITY FOR BITWISE MAP DECODING

Consider a binary linear block code C(n, k) with a code-
word ¢ = (c1,¢2,...,Ciy...,Cy) of length n. Using binary
phase-shift keying, the mapping to channel symbols is

Y = W1,92YirUn)
= (m(c1),m(c2),..m(c;),...m(cn))
£ m(c)
where m(0) = —1 and m(1) = 1. The vector r received

through an additive white Gaussian noise channel is

r = (r1,72,..Ti,...T)
— y+n
where
ri =y +ni=m(c)+n;, i=1,...,n

and n; ~ N(0,02) where 02 = Ny /2 and Now/Hz is the one-
sided noise spectral height. This represents a geometrically
uniform signal constellation in n-dimensional Euclidean space
R™. The noise samples {n;} are assumed independent. Using
a MAP rule, the j‘h bit is to be decoded based on observing
all n received samples. The code is partitioned into a subcode
CY and its coset Cj, according to values of the bits in the j™
position, as

C)={ceC:c;=0} & Cj={ceC:¢;=1}

The likelihood function of the received vector can be written
as

p(rle) = (2m0?) "2 e~ lr-m(I/20?

Assuming transmitted sequences of independent and equally
probable bits, the ratio of posterior probabilities for bit c; is
equal to its corresponding likelihood ratio LR. This is given
by

p(rle; =1)
LR(¢e;) = PG =21
@) = ele;=0)
Z e—Hl'—lm(C)Hz/?U2
B CGC}
Ty e
CGCJQ

For linear block codes in symmetric memoryless channels, the
pairwise error probability is independent of the transmitted
codeword. It is assumed the all-zero codeword (c¢; = 0 for all
1) is transmitted and thus C’]1 is the set of all error codewords.
The probability of decoding error for bit ¢; can then be written
as

Pe(j) = P(LR(cj) = 1|y; = —1)
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after some algebra, where

Z?Zl mrn(ci)/a'2

E e i#i

2 0
eCe
n(r;) = o log — :
2 iy rim(ci)/o
g e i#d
1
ceCy
with r; = (r1,...,7j-1,7j+1,--.,7n), and each channel

output r; in the above equation is —1 + n;. Further, we can
write (1) as

Pe(5) P(r; > n(r;) [r;)}

E{
E{g(r;)} 2

where the expectation is over the distribution of r; (or
equivalently n;, which is similarly defined). This is an (n—1)-
fold integral where n can be large for long codes. Clearly, the
conditional probability g-function is

> 1l

g(x;) = gertell +n(r;)/ (o) G

where erfc is the standard complement of error function.
Calculation of bit error probability is then equivalent to eval-
uating the expectation of this g-function, which we proceed
to estimate using fast simulation based on IS.

III. FAST ESTIMATION USING IS

An unbiased and consistent estimator of P, in (2) is
described by

K
o) = = o) W)V e~ fon @)

i=1
where W = f/fin—1 is a likelihood ratio between the density
f of r; and a simulation density f, for it. We have to therefore
bias the (n — 1)-vector r;. A good simulation distribution
is one which provides the estimator with low variance and
thus proceeds with a small simulation length K. The reason
why this conditional IS procedure, initially introduced as the
g-method in [11], is used is that it can sometimes provide
enormous simulation gains compared to the usual IS estimator
(given in (5) below). A proof, in the context of this paper,
that the method yields lower variance estimates is given in
Appendix A for convenience of the reader. It is a slight
modification and generalization of the original proof given
in [11]. A more complete generalization for estimators in an
arbitrary rare-event setting can be found in [6].

A. On mixture distributions

In the form for P. and its estimate adopted in (2) and
(4), the error region in R™ (referred to as £ hereafter with
P(€) = P.(j)) contained in (1) is no longer explicit. Never-
theless its knowledge is helpful in designing good simulation
distributions for the estimator of (4). As well known to
analysts of coded systems, error sets have complicated shapes.
This is the principal reason why evaluating P (&) by analytical
means is hard, even for low-length codes. Consider now the
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usual IS estimator of any rare-event probability P(£) which,
in general, can be expressed as

K

YN UEWE): t~ fun

1

1

7 5)

A basic and well known fact of IS is that the perfect (or
clairvoyant) simulation density for this estimator is, in present
notation, given by

() =

1(€) f(r) (6)

P(&)

Let& = Ui\/[ &; denote a partition of the rare-event region into
M disjoint regions. The optimal density then takes the form

M

S(r)

M
> a £ (x) (7)
1

where
i) = 1(&) f(x)/pi

and ¢; = p;/P(€) are weighting probabilities with p; =
P(&;). That is, f is a convex combination of densities and
represents a (discrete-) mixture distribution using optimum
mixing probabilities {¢;} as defined above. From the result
stated in Appendix A, it follows that marginalizing (7) by
removing the variable r; yields an M-component mixture
which will be the perfect simulation density, denoted by fib',
for the estimator in (4). That is

M
/ e | o) sty an
/ 1(E) F(ry | 1) dry. £(x;)

=7z P(rj > n(r;) [ ;) f(r;)

F3P(r) dr; =

from (2)

the last line being a result similar to (6) (see [12], page 5).
Although the perfect density is an abstraction and the
above construction somewhat artificial, its form suggests that
one could seek mixture distributions for use in simulation.
This is in fact better, in terms of estimator variance and
therefore IS gain, than performing M independent simulations
(of different lengths) and adding up the weighted results. The
latter is a procedure that has been adopted in the literature,
[1], and is illustration of a ‘divide and conquer’ approach.
That mixtures are better is quite easily shown, in Appendix B.
Another advantage of the mixture-density estimator lies in its
implementation. A partition of £ need not be simulated, as
would be the case when using multiple estimators. In the ideal
case above, the size and shape of the partition of £ can be

arbitrary without affecting optimality. In a real application, one
can only conjecture that the number of error codewords (or
at least those that that dominate the error probability) should
determine the number of component densities used. This and
the choice of mixing probabilities will influence estimator
performance.

B. Error regions in signal space

The received signal space generated by a transmitted code
will contain 2¥ —1 points corresponding to codewords different
from the all-zeros codeword. Only a subset of these, belonging
to C’]l, are the error codewords for MAP decoding of the jth
bit. The weights g; of the mixture in our construction decrease
with the Hamming distances of the error codewords from the
all-zero codeword. Hence regions of the partition containing
signal points corresponding to codewords with large Hamming
weight would be simulated rarely if the mixture distribution
is obtained by a randomized combination. The surface of the
region £ has bumps (or distortions) in the vicinity of points
in the signal space corresponding to the error codewords, and
is difficult to characterize. A brief review of the geometry
of error codewords, however, is helpful to understand how
simulation distributions can be constructed.

In uniform signal constellations, all codewords in signal
space lie on the surface of a Euclidean ball or hypersphere
in R™ having radius 1/n and centered at the origin. Those
codewords that have minimum Euclidean (and Hamming)
distance to the all-zero codeword are also located on an n-
dimensional hypersphere of radius 2v/dn;, with the latter as
centre. Here, dy,i, denotes minimum Hamming distance. The
intersection of these two hyperspheres given by

rf—l—r?-u&—ri:n
and
(ri+12+ (re + )%+ (ry + 1) = ddyin

is an (n — 1)-dimensional hypersphere (in R™) that can be
written as the intersection

P+t =nyn{ri+- -+, = 2dmin — n}

that is, with a hyperplane. All error codewords with minimum
Hamming distance, including those with a 1 in the ;" bit
position, lie on this hypersphere. Sketch of a possible situation
is shown in Figure 1, to be interpreted as the n-dimensional
signal space. Assuming the first bit is to be MAP-decoded, the
error codewords lie on the (n — 2)-dimensional hypersphere
in R™ given by

a4 4+r2=n—1
ro+ -+ ry =2dpin—n—1

1"1:1

®)

This hypersphere has radius 2\/ dmin(1 — dmin/(n — 1)) and
centre at ; = 2dmin/(n — 1) — 1, ¢ = 1,...,n. Error
codewords with the next smallest Hamming distance also lie
on a corresponding hypersphere, and so on.
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> error

codewords

biasing
(-1,-1,-1) hypersphere
Fig. 1. Uniform signal constellation geometry and biasing.

1) Discrete mixtures: Suppose that the codebook is avail-
able and the dominating error codewords (i.e. those that have
minimum and low Hamming distances and thus principally
contribute to the error probability) can be identified in the sig-
nal space. The IS simulation mixture distribution is then con-
structed by moving the noise distribution (essentially halfway)
towards the locations of the dominating codewords. In Figure 1
these are shown as circled dots on the ellipse labelled ‘biasing
hypersphere’. Biasing by translation is an often used method in
digital communication system simulation. Together with this,
scaling of the noise variance was carried out in the applications
below. The amounts of biasing (both translation and scaling)
were optimized using adaptive algorithms. It turned out that
in all cases only small increases in IS gain could be achieved
with optimum biasing parameters lying close to the halfway
translation and zero variance-scaling cases. Equal variance
scaling was used for all noise variables. Mixing probabilities
were estimated based on Hamming distance considerations,
and uniform mixing carried out where symmetries exist in
certain codes.

2) Continuous mixture: An alternative to discrete mixtures
is the use of continuous mixtures for simulation. The ad-
vantage is that minimum and low Hamming distance code-
words need not be determined. A continuous mixture (see
Appendix B) is set up by projecting the noise distribution onto
points on the surface of the biasing hypersphere whose radius
and location are determined as described below. It is assumed
that dy;, or an estimate of it is available. The procedure
for obtaining the simulation distribution is described here in
relation to the g-method estimator.

To remove the dependence of random variables imposed
by (8), a Gram-Schmidt orthogonalization, z7 = G - rf, is
used to rotate the original coordinates to new ones, where
z1 = (22,...,2,) and G is a normalized orthogonal matrix.
In Figure 1 the rotated system is labelled as ‘Z’. The all-
zero codeword in signal space becomes the point z; =
(=v/n—1,0,...,0) in the new system, assuming that we are
talking in relation to the (n — 2)-dimensional hypersphere in
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(8). The unbiased density of z; is therefore
f(z1) = (V2r o) e [(2tvn=D* =X 5 211/20% (g

The biasing hypersphere, in this rotated system, will then be
(approximately) placed at center (b,0,...,0) denoted by B in
Figure 1, with radius ¢, where

b = Vn_l(dmin/(n_l)_l)
cC = \/dmin[l - dmin/(n - 1)}

Biased random variables are obtained by first selecting points
randomly from (for simplicity) a uniform distribution on a
hypersphere with radius ¢ and centered at the origin. This is
for the variables {z;}} whereas zo is simply translated to B.
Denoting this bias vector by by = (dwmin/vn — 1,b3,...,by)
and rotating back to the original transmitted signal coordinates
yields
r{ =-1"+G . b] +nf

for the biased received vector. Using r;, the g-function in (3)
is calculated. Rotating again as z] = G -r7 yields the biased
vector

~G-1" +b] +G-nf

b )T

.
= (b+V2,b3+V3,..

in the rotated system and where {v;}} are i. i. d. zero-mean
Gaussian with variance o2. The (biased) density of z; is given
by

67[(22717)2%»2; z§+c2]/2¢72
VA =
f*( 1) (\/ﬁa)n_l

. I((n—2)/2)2(»—4/2 . I(n—4)/2(C(Z§ 22)12/0?)
[(Z; 222)1/2/02](n74)/2

which follows in a straightforward manner by multiplying the
density of zo with the formula given in [2] (with appropriate
notation changes) for a Gaussian density translated randomly
and uniformly onto the surface of a hypersphere. Ratio of the
densities in (9) and (10) is the weighting function to be used
in the estimator of (4). In the above, I' and () denote the
standard Gamma and modified Bessel functions respectively.

(10)

IV. APPLICATIONS

The codebook must be known (or computed) to use the
estimator in (4) for estimating bit error probability of MAP
decoding. If all or almost all of the dominating codewords
are known for a specific code, then discrete mixture IS
distributions can be easily constructed. Continuous mixtures
can be used if only an estimate of d,;, is available. For
long codes for which the codebook is not explicitly available
or difficult to compute, the performance of message passing
decoders can still be estimated using mixture distributions.

Effectiveness of IS simulations (and therefore, estimator
precision) is measured by estimating sample-size gains over
straight Monte Carlo to achieve the same variance. In the
applications below, the simulation gain I' is estimated as
Pe(J) — Pe(5)?

2

I_Pe .])

/f:
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where P, (j) is given by (4), I = E{g*(r;) W(r;)}, and

K

A 1 i

1= 2 Y)W D5 1~ funa
i=1

A little algebra reveals that the estimated IS variance is given
by

—~ . I - Pe(])2
P, =
var P (j) e
L
= 2K3ZZ[yz(j)_ym(j)]2
1:1';%:1
> 0 with probability 1 an
where y;(j) = [g(r;) W(r;)]”). To implement the error

probability and gain estimators, an appropriate value of K
is required. We have used the following empirical procedure
(consisting of a few steps) to make this choice. When nothing
is known about the target P., then an arbitrary initial value
of K is used to generate I for the chosen biasing scheme as
a function of the biasing parameter. The aim is to estimate
an initial parameter value for adaptive biasing algorithms that
minimize /. In cases where the computation load in calculating
I is intensive (as often happens in radar detection algorithms),
then a rough optimum biasing parameter estimate can be
obtained by using the same underlying random variables to
make the calculations. Using this initial parameter estimate, I'
is estimated, the value of K is compared with 100/(P.(j) T'),
and then K is altered suitably. This procedure needs to be
usually carried out not more than 2 or 3 times to obtain
reasonable choices of K and biasing parameter to adaptively
fine-tune the IS simulation.

If the estimator in (5) is used instead of the g-estimator
of (4), then the inequality in (11) is not strict. In such cases,
as pointed out in [13], it is safer to overbias the simulation
to ensure that the indicator function in the estimator is not
always zero. In our simulations below with message passing
decoders for long codes, estimates of d,i, have been used to
construct mixture distributions.

These IS simulation ideas are used below for certain
block codes. Both bitwise MAP and message passing de-
coding have been investigated. All the LDPC codes used
in this paper can be found on the website of MacKay
(http://www.inference.phy.cam.ac.uk/mackay/).

A. Locating dominating codewords

Codewords with weight d,,;, lie on a hypersphere. Suppose
an estimate of the minimum Hamming distance d.y,;, (possibly
based on bounds) for a code is available. Assume the all-
zero codeword is input to a message-passing decoder. Then,
moving the noise distribution randomly onto a hypersphere
that uses the estimated d,;, would, presumably with high
probability, cause the decoder to find minimum Hamming
distance codewords satisfying the parity check condition for
that code. All such codewords (and d.;,) could be found if
this is done a sufficiently larger number of times. To increase
the chances of locating desired codewords, the samples on the
hypersphere are perturbed with some Gaussian noise and the

10
107°
~10
10 SPC (3,2)
o’ (4,3)
1078t (6,5)
(20,19), (40,39) /
107
107
10 ‘ ‘ ‘
0 5 10 15
SNR dB

Fig. 2. Performance of bitwise MAP decoding of SPC codes.

TABLE I
ESTIMATED MINIMUM HAMMING DISTANCE AND MULTIPLICITY.
Codes Hamming distance | Multiplicity
LDPC(96,48) 6 3
LDPC(204,102) 8 1
LDPC(504,252) 20 2
LDPC(1008,504) 34 1

variance is controlled. Carrying out this procedure with the
next larger Hamming weight would locate codewords with
that weight. In this manner, distance properties of a code can
be determined. Some results of such experiments are given
in Table I. To locate all the minimum distance codewords for
the LDPC (96,48) code required 10° trials, whereas 102 trials
were required for the LDPC (1008,504) code to locate one
codeword. The numbers presented in this table are estimates,
and should not be taken as guaranteed, especially in the last
two rows. The smallest distances listed are probably dyiy.

B. Single parity-check codes

Single parity-check codes, denoted as SPC(n,n — 1), are
simple codes with dp,i, = 2, [7]. The parity-check condition
is c1 +- - -+c, = 0. Message-passing decoding for this family
of codes performs as well as MAP decoding. Both discrete-
and continuous-mixture IS distributions have been used to
simulate error rate performances. In Figure 2 is shown the bit
error rate for these codes. The signal-to-noise ratio SNR in
all figures is Ep/No where Ej, denotes transmitted energy per
bit. Simulation performances of the two mixture distributions
are compared in Figure 3 for various SPC codes. It is clear
that discrete-mixture simulation distributions are superior to
continuous-mixtures ones, and this is generally representative
of all our investigations. The difference in performance can
be appreciable. At error rates below 10710, discrete mixtures
require IS simulation lengths that are at least a few hundred
times smaller. It is evident that estimated simulation gains
clearly exceed 1/P.. For example, all the results in Figure 2
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25

10
SPC(3,2), (4,3), (5,4), (6:5)
102l (8,7), (12,11), (40,39)
10 1
£ discrete mixture
0]
10" <—_continuous |
mixture
10° ]
(40,39)
=
100 i i i i
0 5 10I p 15 20 25
109"
Fig. 3. Estimated simulation gains for SPC codes.
10°
10"}
Product codes
0® SPC (3,2)
107} ) 1
Hamming (7,4)
10%} 8
10
2 4 6 8 10 12 14
SNR dB
Fig. 4. Performance of (exact) MAP decoding for 2-dimensional product
codes.

were generated using K = 200 IS trials or less, with discrete-
mixture simulation.

C. Multidimensional product codes

The (multidimensional) product codes studied here consist
of Hamming as well as SPC component codes. Results for ex-
act MAP decoding are in Figures 4 and 5 for two-dimensional
codes. For these codes, simulation gains are close to 1/P..

Complexity of MAP decoding increases rapidly with code
size. A lower complexity algorithm which is suboptimal is
discussed in [7] and has been used here, with comparable
results for low dimensions. When the dimension of the product
code increases, the block length increases rapidly. This makes
it difficult to employ discrete mixtures with benefit, especially
at low SNR’s. At higher SNR’s, simulating with continuous
mixtures gives some gains but discrete mixtures perform better
and have been used, although gains are low. Results for an
SPC(8, 7) 5-dimensional product code are shown in Figure 6
for each iteration of the decoding algorithm. For a bit error
rate of 3 x 10718 at 5dB, the gain is only 1.25 x 10%° at the
5th iteration.
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107 Product codes
SPC (3,2), (4,3), (5.4)
25| Hamming (7,4)

§ 1 020 |
discrete mixtures
1 015 [ B
10"
10°
1 OD 1 I 1 I i I i
0 5 10 15 20 25 30 35 40
og 1 Py
Fig. 5. Estimated simulation gains for 2-dimensional product codes.
0
10
5 iteration 1
10
-10
10
[0}
o
-15
10
-20
10
—25
10 .
1 2 5 6

3 4
SNR(dB)

Fig. 6. Iteration-wise performance for 5-dimensional SPC(8, 7) product code.

D. Low-density parity-check codes

These codes employ message-passing decoding to reduce
complexity. Their asymptotic (in code length) performance has
been investigated thoroughly, [9]. The IS techniques described
here have been applied to a MacKay(96,48) rate 1/2 regular
LDPC code with 5 decoding iterations. Results are shown
in Figures 7 and 8. At low SNR’s, the continuous mixture
simulation distribution has been used but gains are lower than
obtained with discrete mixtures. At SNR’s higher than 9dB,
discrete mixtures have been used to speed up the simulations.
Although the 5-dimensional SPC(8,7) code has a rate of
0.513, close to that of LDPC (96, 48), the former has codeword
length 32768. Hence it outperforms the LDPC code. It is clear
that estimated simulation gains for the LDPC code fall far
short of 1/P,.

V. CONCLUSIONS

Some headway has been made in this paper in devising
fast simulation procedures for error rate analysis of block
codes. From a theoretical standpoint it has been shown that
mixture-density simulation has attractive properties. Although
continuous mixtures are easier to implement for long codes
than discrete mixtures, their IS performances are not as good.
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10
107"}
(0]
o
107+
30 —&— continuous mixture
10 —— discrete mixture
107% : :
0 5 10 15
SNR(dB)
Fig. 7. Performance of LDPC(96,48) code.
1040
1035 [
1030 [
5 107
0]
()
- 1020 L
discrete mixture
1015 L
1010 [
” M i i
continuous mixture
100 1 Il 1 1 I
4 6 8 10 12 14 16
SNR(dB)
Fig. 8. Estimated simulation gains for LDPC(96,48) code.

Excellent results have been obtained for bitwise MAP decod-
ing with discrete mixtures but the techniques are cumbersome
to apply for very long codes. The main reason lies not as
much in the IS techniques themselves as in the computational
intensity involved in identifying dominating codewords and
performing associated calculations required in the estimation
algorithms. The latter difficulties are ameliorated to some
extent for message passing decoding, but our IS techniques
reveal shortcomings in terms of simulation gains achievable.
It appears that better fast simulation techniques need to be
developed to handle decoding algorithms that have low imple-
mentation complexity but involve operations that are relatively
obdurate to mathematical analysis.

APPENDIX A
VARIANCE OF THE g-METHOD ESTIMATOR
The probability to be estimated is p = P(X > Y') where
X and Y have density f(z,y). Two estimators are to be
compared for variance. The usual one employs a simulation
density f, (other than f) with weighting function W =
f(z,y)/ fe(z,y) in the estimator

K
%zﬁuzywwxyx(xHNﬂ@m
1
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that has variance (I — p?)/K, where I E{1(X >
Y)W (X,Y)}. We show that, using the (marginal) simulation

density
w:/ﬂmwm

with weighting function V' fW)/f+(y), the g-method

estimator X

R AV Y 1)
with g(y) = P(X > Y | Y = y) and variance (I, — p?)/K
where I, = E{g?(Y) V(Y)}, has the property that I, < I.

Deﬁne W(z|y)=f(z|y)/felz]|y). We have
o) = [1ez 0]

= [1ez W )ty ds

Then
P < [1ez W il
= [1ez W e |y

by Jensen’s inequality. Therefore

v s
// (@ = y)W(z|y)f(@|»V(Y)fly)dedy
[/“nyWV@JAﬂ%yMMdy

Iy

IN

APPENDIX B
MIXTURE SIMULATION DISTRIBUTIONS

The results given here are applicable to IS estimation of
rare-event probabilities in general.

A. Discrete mixtures

For notational comfort, random vectors are suppressed in
the following as manipulations on these are not needed. All
expectations below are with respect to f. The probability p =
Ziv[ pi, each p; > 0, is to be estimated using M unbiased
estimators given by

1 &
pi:EzlzliWi; Zzl,...

where 1; = 1(&;) and W; = f/fi, as p > p;. The
simulation lengths K; satisfy > K; = K, the total length.
The variance of this estimator is

, M

M
- 1
varp =y = [E{LW:} —p?]
1 (]

This is to be compared with a single (unbiased) estimator,
using the M-component mixture fix = Y ¢; f; with the same
component densities as the multiple estimator above, given by

1
Amx — 1
p K El Em
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where Winx = f/ fmx, With variance

Varib\mx = %[E{l(g)WmX} _pQ}

M
= > B{1,Wm/K}-p*/K
1

It is easy to show that the variances of both estimators are
strictly convex, respectively, in {K;} and {¢;}. In the case of
the mixture estimator, for instance, with V' (¢) = E{1(E)Wnx}
where ¢ € RM it is sufficient to show that h(t) = V (r +ts)
is strictly convex in ¢ where r, s € R™. Minimization of V' (q)
over the probability simplex ) ¢; = 1 is not possible without
specifying the density functions involved. For the multiple
estimator, however, minimization of varp leads to

Ki= —1—K
1 @i
where a? = E{1;W;} — p?. This results in the minimum
variance (> a;)?/K. When no biasing is used (W; = 1),
we have a? = p; — p?. The minimized variance can then be
written as
1 (& i
. ~ _ 1 L o1/2
mimvarp = K (; (Pz pz) )
| M
2
> ?§m )
1 M
= —(p— 2
1 U
> —=|p- i
()
1 2
= g(]? —p°)

the last quantity being the variance of a straight K-length
MC estimator of p. Multiple estimation (even with optimized
simulation lengths) is therefore inferior to MC simulation. This
is not surprising from an intuitive point of view.

With IS, a; can always be written as a? = c?p? where each
¢; depends on p; and f; such that 0 < ¢? < (1/p;)— 1. If each
biasing density is good (in terms of reducing the associated IS
variance), then ¢; will be small. Suppose now that we degrade
the estimator performance by setting each c; equal to some
constant c. Then we have

K =YK
p

and

C22

minvarp ~ —
That is, simulation lengths are chosen in proportion to the
probabilities being estimated. A similar result was obtained
in [1]. Note that knowledge of the {p;} is still required to
determine simulation lengths. In actual applications, it may
be possible to roughly estimate these.
For comparing with mixture estimation when IS is used, we
have the following.
Proposition: There exists a mixture estimator, using mixing

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 3, MARCH 2008

probabilities g; in the same proportions as the lengths K; of
the multiple estimator above, with a variance that is always
smaller.

Proof: Let ¢; = K;/K = p;/p. Then Wiy = Kf/ > K, f;
and

Wix Wi f -
K K SMOKf; Kifi
- f - f
M K fi
K f; +ZKjfj
i
< 0
As > p?/K; = p?/K, it follows that
M
varpmx — varp = ZE{li[me/K Wi/ K}
1
< 0 O

B. Continuous mixtures

Mixing probabilities as given in the Proposition above can
be taken to be nearly optimal but are impossible to determine
exactly, as knowledge of the unknown p is needed. In some
cases symmetry suggests using uniform probabilities. Another
possibility is to use continuous mixtures for simulation, [2].
The advantage is that multiple component densities and mix-
ing probabilities need not be set up. This is partially offset
by poorer simulation performance that is obtained in some
cases. The issue of determining optimal mixing probabilities is
replaced by one of finding an appropriate mixing density. The
optimal mixing density can be obtained as described below.

Let f,(z|a) denote a conditional simulation density given
a mixing random vector o with density v(a), where it is
assumed for convenience that x,a € R™. Then

folw) = / f.(zl0) v(0) da

In analogy with the discrete-mixture case, it follows that
the probabilities v(«)da should be chosen in proportion
to probabilities of an elemental partition of the error event
region £. Let J(z|a) denote the Jacobian of some one-to-one
transformation. Then v must satisfy

_1©
v(a) = p

and is a nearly optimal mixing density in terms of mini-
mizing IS variance for the choice of conditional simulation
density f,(z|a). There are thus, as for discrete mixtures, two
optimization aspects to be addressed. Consider the following
simple example.

Example. For n = 2, let X = (X3, X2) where X; and X5 are
independent, zero-mean Gaussian with variances o} and 3.
The region & is {z% + 23 > a?}, whose probability p is to be
estimated. The conditional simulation density is chosen as a
random translation of f(z) to points on the circle 22+x3 = b2,
The density is therefore

12)

f(x)J (2] )

fu(x]b,0) = f(x1 — bcosh, xa — bsinh)
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An optimum choice for the radius b exists that minimizes IS
variance, but this is not addressed here. Let o = (r,6) be
the mixing random vector in polar coordinates. The mixing
density can then be written as

v(r,0) = @Tf(xl,xg)
_ 1(r>a) . e~ AW®)
p 2mo109
where A(6) = cos® §/20? + sin® §/2073. 1t follows that
e—a’A(0)
u(ﬂ)zm, 0<6<2m

For the special case of 0; = o9, this reduces to a uniform
density and the corresponding simulation density is derived
in [2]. From symmetry, this is exactly optimal in terms of
minimizing IS variance. In general, the mixing density given
above covers with higher probability those parts of the error
region which dominate the probability p.
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