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Summary. An overview is given of cover results for normal forms of context- 
free grammars.  The emphasis in this paper is on the possibility of construct- 
ing e-free grammars,  non-left-recursive grammars  and grammars  in Greibach 
normal form. Among others it is proved that any z-free context-free g rammar  
can be right covered with a context-free grammar  in Greibach normal form. 

All the cover results concerning the e-free grammars,  the non-left-re- 
cursive grammars  and the grammars  in Greibach normal form are listed, 
with respect to several types of covers, in a cover-table. 

1. Introduction 

We study the existence and nonexistence of grammar covers for some normal  
forms for context-free grammars.  That  is, we consider problems in which we ask: 
Given classes of grammars  F1 and F2, can we find for each grammar  G in F1 a 
g rammar  G' in F2 such that G' covers G? 

For F 1 we will consider arbitrary context-free grammars.  Moreover, by 
introducing some conditions which should be satisfied we consider also some 
subclasses of the context-free grammars.  For F 2 we will concentrate on the e-free, 
the non-left-recursive and the Greibach normal form grammars.  

A context-free grammar  G' is said to cover a context-free g rammar  G if it is 
possible to define a homomorphism between the parses of G' and those of G. 

We will restrict ourselves to covers which are defined with the help of left 
and right parses of the grammars  in question. It follows that we can define four 
types of covers, viz. we can define covers in such a way that left parses are 
mapped on left parses, left parses are mapped on right parses, right parses are 
mapped on left parses or right parses are mapped on right parses. For each of 
these covers we will present a yes or no answer to the question whether several 
types of context-free grammars  can be covered by grammars in a certain normal 
form. 

A variety of results in this research area have been obtained before (cf. Aho 
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and Ullman [1], Gray and Harrison [6, 7], Nijholt [21, 22, 23, 24], Soisalon- 
Soininen [29] and Ukkonen [31-33 and unpublished]. The aim of this paper is 
to give a complete overview of the relevant cover results for normal forms of 
context-free grammars. That is, we collect some of the results in the above 
mentioned papers and we fill in the missing parts. 

The concept of grammar cover can be considered as a grammatical similar- 
ity relation. Many other relations between grammars have been defined. For 
example, there is the concept of structural equivalence (Paull and Unger [27]), 
there is the grammar functor or X-functor approach, initiated by Hotz [10, 11], 
and there are the grammar forms introduced by Cremers and Ginsburg [3]. 

One motivation to consider these relations can just be the mathematical 
interest in comparing and relating different subclasses of the context-free gram- 
mars. Especially in the case of normal forms of context-free grammars it is 
natural to ask whether a grammar belonging to a certain class can be trans- 
formed to a grammar in a certain normal form and to determine which relations 
hold between the two grammars. Dependent on this relation one can then 
conclude that the transformation preserves certain properties of the original 
grammar. 

For each similarity relation there are some obvious questions concerning 
decidability and complexity. In Hunt, Rosenkrantz and Szymanski [15, 16] 
decidability results for context-free grammars with respect to the grammar cover 
are presented. Among others it is shown that it is undecidable whether a 
context-free grammar G' covers a context-free grammar G. An overview of 
complexity results for grammatical similarity relations is given in Hunt  and 
Rosenkrantz [14]. The second motivation to consider grammar covers is their 
proven usefulness in the theory and practice of parsing and compiler building. 
Immediately after the presentation of the cover definition we will return to this 
aspect. 

The organization of this paper is as follows. After the presentation of some 
preliminaries there is a short section in which we discuss the grammar cover 
concept and how it has appeared, sometimes defined in an informal way, in the 
literature. In Sect. 2 we list some general theorems on the existence of covering 
grammars. New theorems and corresponding transformations on context-free 
grammars to produce grammars in Greibach normal form are also presented in 
this section. 

As the main result of this section we consider that we are able to show that 
any e-free context-free grammar can be transformed to a context-free grammar 
in Greibach normal form in such a way that a right cover (in this case right 
parses can be mapped on right parses) can be defined. 

In Sect. 3 we present an adapted version of a grammar which is due to 
Ukkonen [33]. Together with the results and observations in Sect. 2 this 
grammar is sufficient to obtain all negative cover results which are relevant for 
the classes of grammars which we consider. The example in this section is 
chosen in such a way that some cover results for strict deterministic, LL(k) and 
LR(k) grammars become obvious. 

Finally, in Sect. 4 a (cover-) table is constructed in which all the results are 
listed. 
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For a survey of normal form cover results for regular grammars the reader is 
referred to Nijholt [26]. A survey which includes results for LL(k), LR(k) and 
strict deterministic grammars is in preparation. In Mickunas [19], Mickunas, 
Lancaster and Schneider [20] and in Nijholt [25] other cover results for LR(k) 
grammars can be found. 

Results for the grammar functor approach for normal forms of context-free 
grammars can be found in Hotz [12] and Benson [-2] and for the LL(k) and 
LR(k) grammars in Hotz and Ross [-13] and in Ross, Hotz and Benson [28]. 

1.1. Preliminaries 

We review various commonly known definitions (cf. Aho and Ullman [1]) and 
give some notations. 

A context-free grammar (CFG) will be denoted with the usual fourtuple G 
=(N,  2~, P, S), where N is the set of nonterminal symbols (generally denoted by 
the Roman capitals A, B, C . . . .  ), S is the set of terminal symbols (denoted by the 
smalls a, b, c ...), P e N  • is the set of productions (we use the notation 
A ~c~ if (A, ~)eP) and SeN is the start symbol. We define V = N w S .  Elements of 
V will generally be denoted by X, Y and Z; elements of V* by the Greek smalls 
~, fl, 7 . . . .  and elements of S* by the smalls u, v, w, x, y and z. We have the usual 
notations =~, =~, and ~* for derivations and we use indices L and R to denote 
leftmost and rightmost derivations, respectively. The language generated by G is 
the set L(G)={weS*IS * 

The sequence of productions which are used in a leftmost derivation from S 
to a string weS* is called a left parse for w. The reverse of a sequence of 
productions in such a rightmost derivation is called a right parse for w. 

If eeV* then eR denotes the reverse of c~ and Ic~l denotes the length of c~. The 
symbol e is reserved for the empty string (the string with length zero). If 1~] <k  
then k: c~ denotes ~, otherwise k: c~ denotes the prefix of ~ with length k. 

If Q is a set then rQ[ denotes the number of elements in Q. For each CFG G 
=(N, X, P, S) we define Aa= {i11 < i <  [P]}, the set of production numbers of G. If 
A--,c~ is the ith production in P then we sometimes write i. A-.c~. Moreover, we 
write A =~ e, where ~eA~, if the derivation from A to e is done according to the 

sequence of productions re. Hence, if S =~ w then rc is a left parse for w and if 
L 

S =~ w then rc R is a right parse for w. 
R 

The degree of ambiguity of a sentence w6L(G) is the number of different left 
parses for w. Notation: (w, G). If for any weL(G) we have (w, G ) =  1 then G is 
called unambiguous. 

For any A e N  we define rhs(A)= {c~[A--*e is in P}. 

Definition 1.1. A CFG G = (N, S, P, S) is said to be 

a) e-free, i f P ~ N x  V +. 
b) cycle-free, if for any A e N  a derivation A =~ A does not exist. 
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C) non-left-recursive (NLR), if for any A~N and ~ V *  a derivation A :~  Ac~ 
does not exist. 

d) in Greibach normal form (GNF), if Pc_N • SN*. 

We will also use the obvious notion of non-right-recursiveness (NRR) and we 
use the notation G N F  if P ~ N x N* S. 

Throughout  this paper we assume that the (context-free) grammars in 
question are cycle-free and that the alphabets of the grammars do not contain 
useless symbols (cf. Aho and Ullman [1]). 

Definition 1.2. a) Let V 1 and V 2 be alphabets. A homomorphism is a mapping 
: V t --> I:2". The domain of the homomorphism ~ is extended to V* by letting 

O(e)=e and O(c~a)=~b(e) O(a) for all eeV* and aeV 1. We say that ~ isfine if 
~: V 1 ~ V z w {e} and very fine if ~ : V a ~ V 2. 

g 

b) Let G =(N, 27, P, S) be a CFG. We define ~ (G)= {(w, re) IS =~ w} and r~(G) 

= {(w, ~R) IS ~ w}. 

c) Assume that x, y~{/,  ?}. A CFG G=(N, Z, P, S) is said to x-to-y cover a 
CFG G' =(N', Z', P', S') if there exists a homomorphism ~b: A G, ~A ~  such that 

(i) if (w, ~')s~x(G') then (w, ~(~'))szy(G), and 
(ii) if (w, ~z)~zy(G) then there exists ~z' such that (w, ~')~z~(G') and ~b(~')=~. 

Clearly, if G' x-to-y covers G then L(G)=L(G') and (w, G ' ) > ( w ,  G). To 
denote that a production A ~  (or i .A~cr is mapped on a string zc of 
productions by a (cover) homomorphism we will sometimes write A ~ ( T z )  (or 
i. A ~ ~(Tz)). 

For the original cover definition the reader is referred to Gray and Harrison 
[6, 7] ~ (cf. also Aho and Ullman [1]). A more general treatment of covers can 
be found in Nijholt [24]. The following notation will be useful. 

Notation. a) G' [l/l] G, if G' left-to-left covers G (left cover). 
b) G' [l/g] G, if G' left-to-right covers G. 
c) G' [?/l] G, if G' right-to-left covers G. 
d) G' [g/r--] G, if G' right-to-right covers G (right cover). 

In one of the main transformations of this paper we will use chains and left 
production chains. 

Definition 1.3. Let G = (N, 27, P, S) be a CFG. 
a) Define a relation CHc_ V x N* S, as follows. If XoeN then CH(Xo), the 

set of chains of X o is defined by 

CH(Xo)={XoX ~. . .Xnlxo ~ X~ @ ~ ~ . . .  ~ X,~k,, OfeV*, l <=i<=n}, 

and for ceZ, 
CH(c) = {c}. 

It should be observed that our cover definition is slightly different from theirs. Gray and 
Harrison's definition of complete cover may be compared with our definition of cover if we demand 
that the homomorphism is fine 
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b) Define a relation L P c _ N * Z  x A* as follows. Let r c = X o X  1 ... X ,  eN+Z,  
then LP(rc), the set of left production chains of re, is defined by 

io i l  
LP(rc)={i 0i 1 . . . i .  1 ] X 0 ~ X 1 4 1 ~ ' "  

L L 

If rc~22 then LP(rc)= {e}. 

in-1 
:. X ,O , ,  OisV *, l <i<n} .  

L 

1.2. Covers and Parsing 

Let G = (N, Z, P, S) be a CFG. A parser for G determines whether a string w of 
symbols is in L(G) and if so it produces a parse tree for w with respect to G. 
Either left parses or right parses will be used to represent a parse tree. Once the 
parse tree is known, code generation can take place. Various persing methods 
have been introduced for the class of context-free grammars and its subclasses. 
For  each parsing method there is a class of grammars which are suitable for this 
method. One can try to transform a grammar to make it suitable for a chosen 
parsing method or to improve its parsing properties. If this transformation can 
be done in such a way that the new grammar G' covers the original grammar G, 
then we can parse with respect to G' and, by applying the cover homomorphism, 
obtain the parse with respect to G. This is illustrated in Fig. 1. 

It is usual to distinguish between top-down parsing and bottom-up parsing. 
In top-down parsing the goal is to find a left parse while in bottom-up parsing 
the goal is a right parse. Both for top-down parsing as for bottom-up parsing 
there exist conditions which, when satisfied by the grammar, can improve the 
parsing. A well-known condition for (deterministic) top-down parsing is that the 
grammar should be non-left-recursive. Grammars in G N F  are non-left-recursive. 

It has been observed in Griffiths and Petrick [8] that the original G N F  
transformation distorts the structure of the grammar in such a way that .... "To  
date, no efficient procedure for relating the structural descriptions of Greibach 
normal form grammars to the context-free grammars from which they were 
constructed has been found". Further investigations on this problem can be 
found in Kuno [17], Kurki-Suoni [18], Foster [4, 5] and Stearns [30]. The 
latter three authors do in fact use, in an informal way, the notion of a right 
cover. Gray and Harrison [6, 7] gave a formal definition of right covers. Their 
definition, which slightly differs from ours, was inspired by cover definitions 

Transformation 
G --- G' 

w r L{G) wG L{G'}=LIG} 

t 
i 

t 
i 
1 Cover- homomorphism 

parse~of w parse ~'of w 

F i g .  1 
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which appear in unpublished work of J.C. Reynolds and R. Haskell. Soisalon- 
Soininen [29] has translated the results of Kurki-Suonio in the cover-formalism. 

As mentioned in Nijholt [23] there has been some confusion on the 
possibility to cover grammars with grammars in GNF.  In this paper we will give 
a transformation from arbitrary grammars to grammars in G N F  such that a 
right cover can be defined. 

2. Theorems and Transformations 

This section contains a rather long list of theorems and transformations which 
are necessary to construct the cover-table which is presented in Sect. 4. For 
some algorithms and proofs the reader is referred to other papers. None of the 
algorithms not given here does have a complicated proof of correctness. 

2.1. General Results 

Our first results deal with some general observations on covers for context-free 
grammars. Firstly we will slightly generalize the cover definition in order to be 
able to present the following lemma. In the remainder of this paper we will not 
refer to this lemma if it is used. We will admit covers which are defined with the 
help of reversed left and right parses. We use/-and r to denote them. Moreover, 
for any xe{f, f} we will write ~ = x .  

Lemma 2.1. I f  G' Ix~y] G then G' [~/y] G. 

Proof. Suppose that G'[x/y]G under a cover-homomorphism ~p. Define tp'(i) 
=(@(i)) R for any i~AG,. Homomorphism ~p' is the cover-homomorphism under 
which G'[~/y] G. [] 

Theorem 2.1. a) For any CFG G there exists a CFG G' such that G'[l/g] G. 
b) For any CFG G there exists a CFG G' such that G'[f/l] G. 

Proof. (a) Grammar  G' is constructed from CFG G by defining 

P ' = { A ~ H i ( e > l i . A ~ c ~  is in P } w { H i ~ e ( i > l l < i < l P I } .  

The symbols Hi, 1 < i <  IPI are newly introduced nonterminal symbols which are 
added to N to obtain N'. 

(b) Grammar  G' is constructed from CFG G by defining 

P'= {A--* Hi~<e> li. A ~ is in P } w { H i ~ < i >  l l <i<[P[} .  

The symbols H i, 1 < i < [P[ are newly introduced nonterminal symbols which are 
added to N to obtain N'. [] 

The following observation on 'symmetry '  will be very useful if we construct 
the cover-table in Sect. 4. 

Observation 2.1. Let G=(N,  2;, P, S) be a CFG. Define GR=(N, Y,, pR, S) by 
letting P R = { A - - * ~ R I A ~  is in P}. Notice that a leftmost derivation of a 
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sentence wEL(G) coincides with a rightmost derivation of wR~L(GR). In what 
follows we will frequently make use of this ' symmetry ' .  For example, if a 
g rammar  G can not be left covered by an e-free grammar  then it follows (cf. also 
Lemma 2.1) that G R can not be right covered by an e-free grammar.  Another 
example is the situation in which a g rammar  G does not have a left-to-right 
covering grammar  in GNF.  Then G R does not have a right-to-left covering 
grammar  in GNF.  [] 

2.2 Non-Left-Recursive Grammars 

Next we turn our attention to results which show the possibility of finding non- 
left-recursive grammars  for ' a rb i t ra ry '  context-free grammars. 

Observation 2.2. If C F G  G in Theorem 2.1 is non-left-recursive then (both in a) 
and b)) G' is non-left-recursive. []  

Any e-free C F G  G (cycle-free, no useless symbols) can be transformed to a 
N L R  grammar  G' such that G' IF/F] G and G' [I/F] G. This result first appeared in 
Nijholt [22]. Soisalon-Soininen [29] gave a more simple proof  of this result. One 
of the transformations which is used in the latter paper is based on an idea of 
Kurki-Suonio [18]. This trick can also be used for a transformation presented in 
Wood [34] and which is due to J.M. Foster. 

Corollary 2.1. Any e-free CFG G can be transformed to a CFG G' such that G' is 
NLR and such that G' [l/F] G and G' IF/F] G. 

Each of the above mentioned methods to obtain the N L R  grammar  G' can 
be adapted in a very simple way in order to obtain an e-free N L R  grammar  G" 
such that G"[F/F] G. This result can also be obtained from a more general 
observation of Ukkonen [32, and unpublished] which we give, slightly adapted, 
below. 

Corollary 2.2. Any N L R  grammar G can be transformed to an e-free NLR 
grammar G' such that G' [F/F] G. 2 

In Ukkonen 's  algorithm for eliminating e-productions from a grammar  G 
=(N,  S, P, S) it is assumed that if eeL(G) then there do not exist two different 
rightmost derivations to e. Since in our definition of e-free grammar  we have 
P _  N x V + we do not bother about  introducing a special production S ' ~ e  for 
g rammar  G'. Hence, in Corollary 2.2 we have L(G')=L(G)/{e}. 

The following corollary follows from the transitivity of the cover relation. 

Corollary 2.3. Any e-free CFG G can be transformed to an e-free N L R  grammar G' 
such that G' [F/F] G. 

With this corollary we conclude our observations on finding non-left- 
recursive grammars.  

2 It is assumed that if eeL(G) then there do not exist two different rightmost derivations to e 
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2.3. Elimination of Single Productions 

Before we turn our attention to the problem of finding grammars  in G N F  we 
have a few remarks on some special conditions. Consider a C F G  G with 
productions S ~ A ,  S ~ B ,  A ~ a  and B ~ a .  Suppose we want to find an equiva- 
lent e-free grammar  without single productions (i.e. productions of the form 
X ~ Y with both X and Y in N). There is only one grammar  which has this 
property, g rammar  G' with the one production S '~a .  It follows that in genral 
elimination of single productions can not be done in such a way that a left or 
right cover can be defined since condition (ii) of the cover definition can not 
always be satisfied. 

In some cases we find it convenient to talk about grammars  without single 
productions. Although it is not always necessary (in some cases we could use 
more refined conditions) we assume for a few algorithms in the remainder of this 
paper that they have an input g rammar  without single productions. We use a 
rather rude approach to solve the problem of eliminating single productions. 
The method which is in the proof  of the following theorem was first shown in 
[21] and we include it here. It should be observed that a more simple method 
can be used if we allow, as is possible in the grammar  functor approach, that 
one production can have different labels. However, from the point of view of 
parsing we recognize productions rather than labels. Therefore we use the 
following method. 

Theorem 2.2. Let G = ( N , Z , P , S )  be an e-free CFG. Grammar Go=(Nu{So},  
Z ~ { l } ,  P~{So--,S_I_ }, So) can be transformed to a CFG G' without single 
productions in such a way that G' [?ff] G o and G' [l/l] G o. 

Proof. We show how the elimination can be done. We use auxiliary sets P0 and 
P1. The set Po is the set of all the single productions in P. Initially P1 
= { A ~ ( i ) [ i .  A---~ is in P-Po},  N ' = N  and P ' = 0 .  

6 i 
(i) Let A~N.  If A = ~ f l = ~ 7  is a derivation in G such that 6 # e  and either 

[7[>2 or 7~Z then add [ A 6 i ] ~ 7 ( n )  to P~ and [Abi] to N'. To obtain a left 
cover define n = 6i. To obtain a right cover define n = i6 R. Notice that since G is 
cycle-free there are finitely many derivations to consider. 

(ii) Define a homomorphism h: N'  u X ~ N u X by defining h (X) = X for each 
X E N u Z  and h([An])=A for each [ A n ] ~ N ' - N .  For each production 
A ' ~ 7 ( n )  in P~ (hence, A'EN' and 7~VV +) add the productions in the set 
{A'- -*7 ' (~)KA'~?(n)  in P1 and h(y')=y} to P'. 

(iii) Remove the useless symbols. 

Clearly, g rammar  G' =(N' ,  2;, P', So) which is obtained does not have single 
productions. G r a m m a r  G' left covers g rammar  G. This follows from the follow- 
ing observations. They can be formally proved by induction on the lengths of 
the derivations. Similar observations hold for the right cover. 

~' G! a) I f A ~ w  in t h e n A = ~ w i n G ,  witht~(rc')=zc. 
L L 

b) If [A6] '~' G' '~ w in then A ~ w in G, with qs(=')= n. 
L L 

c) If A : ~ w  in G then there exists =' such that either A : ~ w  in G' or 
L L %' 

[A6] ~ w in G', for some 6~A*, and with qs(~')=n. 
L 
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In observation c) we have for G' the grammar which is obtained from step (i) 
and (ii). The implicitly defined cover homomorphism is denoted by ~. This 
concludes the proof of the theorem. [] 

We emphasize that it is not always necessary to introduce the special 
production S o ~ S •  For example, if G is unambiguous. In this case the method 
mentioned in the proof can be simplified. In fact, only in the case that there 
exist, for some a~Z, different derivations from S to a it is necessary to introduce 
this production. 

In what follows we do not bother about this special production. The result 
mentioned in the following observation is an immediate consequence of the 
method which is used in the proof of Theorem 2.2. 

Observation 2.3. If CFG G in Theorem 2.2 is non-left-recursive then CFG G' 
without single productions is also non-left-recursive. [] 

2.4. Grammars in Greibach Normal Form 

Now we are sufficiently prepared to consider grammars in GNF. This normal 
form can be obtained in such a way, from e-free and non-left-recursive gram- 
mars, that a left cover can be defined. This was shown in Nijholt [21]. 
Moreover, this result is a special case of a more general theorem in Nijhott [24]. 
In the latter paper a transformation (the 'left part transformation') is used which 
we will recall here. This transformation will be used later, in an adapted form, to 
obtain right cover results. 

We use a special alphabet which is defined below. 

Definition 2.1. Let G=(N, Z, P, S) be a CFG. Define the set 

[N] ={[A/a]  [i-A~c~fl is in P, fl~V*} 

and a homomorphism 4: IN]--*IN] by letting ~([Aia]) is 
(i) e i f i .  A ~ e i s i n P .  

(ii) [Aie] i f i .  A--.efl is in P, with fi4=e. 

We present the algorithm in such a way that each newly obtained pro- 
duction is followed by its image under a cover-homomorphism ~ for a left 
cover. 

Algorithm 2.1. Input. An t-free NLR grammar G=(N, Z, P, S) without single 
productions. Qutput. A CFG G'=(N', Z, P', IS]) in GNF such that G'[I/1] G. 
Method. The set P' consists of all the productions which are introduced below. Set 
N' will contain [S] and all symbols of [N] which appear in the productions. 
Initially set P'= O. 

(i) For each pair (n, p), n = S X  1X a ... Xn~CH(S ) and p=ioi  1 ... i n_ 1ELP(rc), 
add [ S ] - - - * I  nr  1 in_ l Xn] ... [S ioXlJ)<P> tO e ' .  

(ii) Let i .A~c~Xoq~ be in P, ~+-E. For each pair (n,p), n = X o X 1 . . .  
XneCH(Xo)  and p=i  o i 1 ... in_ l e L P ( n ) ,  add [AiT]--.Xn r x in_ 1Xn] ... 
[XoioX1][Aio~Xo])(p> to P'. [] 
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Notice that for this algori thm the condi t ion that the input g rammar  G does 
not  have single product ions  is not  a necessary condition. It would be sufficient 
to demand  that, for any A ~ N  and X~V, if A = ~ X  and A ~ X  then g = ~ ' .  
However,  as we have shown the single product ions  can be eliminated in a simple 
way and we can avoid the introduct ion of  new conditions. 

Theorem 2.3. Each e-free N L R  grammar G can be transformed to a CFG G' in 
G N F  such that G' [l/l] G. 

Proof  We assume that the single product ions  have been eliminated. We use 
Algor i thm 2.1 to t ransform G to a g rammar  G'. Clearly, G' is in G N F .  The cover 
h o m o m o r p h i s m  which is implicitly defined in the algori thm is denoted by ~. We 
use two claims. 

Claim I. If  [Aict] ~' G' = ~ w  in then there exists i .A-- ,e~o in P, ~04=e, such that 
L 

~o ~ ,  w in G, with 7~=~(~'). 
L 

Proof  o f  Claim 1. Induct ion  on [~'1. 

Basis. Assume [~'[ = 1. In this case we have a product ion  ~' .  [Aie]  ~ w  in P '  with 
weN. This product ion  is obtained from either a product ion  i. A ~ e w  in P such 
that ~ = e  and O(~ ' )=e  or f rom product ions  i. A ~ X  o a n d j .  X o ~ w ,  with ~(~') 
= j .  

Induction. Assume 1~'1 > 1. We can write 

i' " X , ]  [Xo ioX1][A io~Xo]  ) ~'' [Aic~] ==~ a~([Xn_ l tn_ 1 ... ==~ av, 

where X ,  = a, i' ~" = ~' and a v = w. 
We can factorize ~" such that  
( a )  " ' . . .  ' : ~ n  7~0, l ) = W n W n - 1  " " W o "  

(b) If  ~([A ic tXo] )~e  then 

~o 
[Aic~Xo] ~ w o 

L 

and it follows from the induct ion hypothesis  that  there exists i. A ~ ~X o tp o such 
that  q~o ~ Wo, with ~ (~o)=no .  If  ~ ( [ A i ~ X o ] ) = e  then ~Oo=go=Wo=e.  

L 

(c) If ~([Xk_  1 ik- 1 Xk'])zt=e, O<k  <n, then 

[ X k -  1 ik- 1 Xk] ==~ wk 
L 

~t k 
and it follows that there exists i k 1 " X k -  ~ ~ Xkq~k such that  q~k = ~  W k, with ~ ( ~ )  

=~k. If  ~ ( [ X k _ l i  k 1Xk] )=e  then q~g=~k=Wk=e. Since G has no single pro- 
ductions, this case can only occur if k = n. 

Hence, since ~ ( i ' ) = i  o i I ... i,_ l = p  we obtain a derivation 

6 
q~ = X  o ~Oo = ~  X,~o, ~o,_ 1 ... ~o~ ~Oo=~ X , w , w , _  1 ... Wl Wo =av,  

with 6 = ~ , . . .  ~17~o and ~O(=')= p6 = ~. This concludes the p roof  of  Claim 1. [ ]  
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If IS] ~' G' L"" W in then we can, as we did in the induction part  of the proof  of 

Claim 1, distinguish the first production which is used and then factorize n' in a 

similar way to obtain the conclusion that S =~ w in G, with q/(n')=n. 
L 

Claim 2. Assume i . A ~ T X o c P o ~ P ,  ~:#e. If Xoq~ o =~w in G then there exists 

~' G' n'~ A*, such that [A i~] =~ w in and q/(n') = n. 

Proof of Claim 2. The proof  is by induction on I~1, 

Basis. If  Ircl = 0  then X 0 ~o0~S + and from the construction it follows that there 

exists a derivation [Ai~] ~' G' ::~ w in such that ~k(n')=n=e. If ]hi = 1, then Xoq~ 0 

can be written as v l B v  3 with B e N ,  v lv3~S* and n . B ~ v  2 in P with v2ES +. In 
this case there exists a derivation 

~1  ~2  ~3  
[Aio~] ~ Vl[Ai~vl]  ~ VlVz~([AiO~VlB]) ~ v 1V2U3=W 

in G' such that ~(zh)=qJ(n3)=~ and ff(n2)=n. 
Induction. Assume In[ > 1. Then there exists p = i  o i~ ... i ,_ l~A ~ such that 

~ k  
i k . X k ~ X k +  1 ~Ok+l, O < k < n - - 1 ,  with X , ~ S  and such that q~k=~Wk . Hence, we 

can write 

Xo qgo ~ X ,  qg,'"cPl qgo + 

with 6 = n , . . . n  i n  o and w = X , w , . . . w  xw o. 
From the construction and the induction hypothesis it follows that 

(a) i'. [Ai~] ~ X , ~ ( [ X , _  a i,_~ X,]  ... EAi~Xo] ) (p )  is in P'. 
rc~ 

(b) If qgk:~e, O<k< n ,  then [Xk_ a ik_iXk] = ~  W k, with ~(nk)=n k. If  q~k=e then 

n k = n' k = w k = e. Since G has no single productions this latter case can only occur 
i f k = n .  

(c) If  q~o4:e then [A i~Xo]==~w o, with ff(n~)=n o. If q~o=e then n o = n ~ = w  o 

Hence, there exists a derivation 

[A ie  w, with n ' = i ' n ' ~ . . . n  0 and O ( n ' ) = p 6 = n .  

This concludes the proof  of Claim 2. [] 

It remains to show that if S ~ W L  in G, then [S] =~w in G', with 0 (n ' )=n .  

However, also in this case this can be shown by proceeding in a way similar to 
the induction part  of the proof  of Claim 2. It follows that G' [l/l] G. [] 

Next we consider the possibility to obtain a C F G  in G N F  which right covers 
the ~-free N L R  grammar.  We use two transformations. Firstly, we transform e- 
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free NLR  grammars to grammars which are almost GNF.  For convenience of 
description we assume that the input grammar is such that terminal symbols in 
the righthand sides of the productions can only appear at the leftmost positions 
of the righthand sides. This can be done without loss of generality. For  example, 
if a grammar has a production i. A~c~afl, with e+e ,  then we can replace this 
production by A ~ H ,  fi<i) and H , ~ a < e )  and the new grammar right covers 
the original grammar. The second transformation will produce G N F  grammars 
from almost G N F  grammars. 

Definition 2.2. A CFG G =(N, Z, P, S) is said to be an almost G N F  grammar if 
for any production A ~ ~ in P either 

(i) ~eX, or 
(ii) e e N N  + and rhs(l: e)~_Z. 

Algorithm 2.2. Input. A N L R  grammar G=(N, 2, P,S) such that p c_N 
x (XN*uNN+) .  Output. An almost GNF grammar G' =(N',  Z, P', [S]), G' If/g] G. 

Method. The set P' will contain all productions introduced below. The set N' will 
contain [S], all symbols of [N] which appear in the productions and some special 
indexed symbols H. Initially set P'=O. 

(i) For each production of the form i . S ~ a  in P with aeX, ad d [S ] -~a< i )  
to P'. 

(ii) For each pair Or, p), 7r =SX1 . . .  X ,~  CH(S) and p = i o i~... i,_ I~LP(zr), 
n > 1, add 

[S] ~H,._, ~([X._, i ._  , X . ]  . . .  [ S i  o X,])@> 
and 

H,~ 

to P'. Here, p = i,_ 1 if i,_ 1 "X,_ 1 ~ X . e P  and p = e otherwise. 
(iii) Let i.A---,~Xo~o be in P, e#~.  For each pair (re, p), rc 

= X o X1 ... X , e  CH(Xo) and p = i o i, ... i ,_,  eLP(n), the following two cases are 
distinguished: 

(1) n = l ,  qo=e, and ~([XoioXx])=e; add[A i ~ ] ~ X .< i o i  ) to P'. 
(2) otherwise, add 

[Aic~] -~Hi,_, ~([X,_ 1 i, 1 Xn].. .  [Xo i0 X1] [AiuXo])<P> 
and 

Hi._1-~X. <q) 

to P', where p=i if i.A--+~X o is in P and p=e otherwise, and q=i._, if 
i~_,.X._,~X.eP and q--e otherwise. [] 

Lemma 2.2. Any e-free NLR grammar G can be transformed to an almost GNF 
grammar G' such that G' [F/Y] G. 

Proof. Without loss of generality we may assume that G does not have single 
productions. We use Algorithm 2.2 to transform G to a grammar G'. By 
construction G' is almost GNF. 

Claim 1. Cover homomorphism ~, implicitly defined in the algorithm, is well- 
defined. 
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Proof of Claim 1. To verify that for any pair p and p' of productions in P' it 
follows that if ~ (p )=n  and ~k(p')=n', with n:~n' then p4:p'. This is straightfor- 
ward to verify and therefore it is omitted. [] 

In the following claims 9: AG' ~A~  is defined by letting, for any pEA~,, ~o(p) 
= n  R iff O(p)----n. 

Claim 2. If [Ai~] 7' ,p(~') �9 > ~ W .  R " w t h e n A  g 

Proof of Claim 2. The proof is by induction on In'l. 

Basis. If 17(1 = 1 then n '=  [Ai~] ~ a ( j i ) .  In this case there is a derivation 

i j 
A =~ c~X o for 7 ~a, XoeN.  

Induction. Assume In'[=m, m > l  and assume the property holds for all right- 
most derivations with lengths less than m. Let 

p' . [Ai~] ~ Hi._, ~([X,_~ i,_~ X,]  ... IX o i o X~] [AiotXo] ) 

be the first production which is used in the derivation [Ai~] '~' = ~  w. Hence, we 

may write w = X , x  and n'=p'Tq', where q'=Hi,_, ~ X . .  Then we have 

[Ai~] + Hi, , ~([Xn_ 1 in_ 1X,] . . .  FX 0 ioX1] [ A i c ( X o ] ) +  ... 
~i q '  

...==~" Hi, lX, X,_ l . . . X 1 X o ~  XnXnXn_ 1 . . .X 1X o=W ,  

such that 

(a) 

(b) 

(c) 

and 
(d) q'. Hi,_l ~ X ,  

with p' n o n I ... n,q' =P'Tq' =n'. 
It follows from the induction hypothesis that 

~o(p'no) 
(a)' A R r- ~XoXo, with either ~o(p')=e or no=Xo=e,  

~(~" XkX k, l < k < n - l ,  and (b)' X k_ 1 R -" 
q T ( n n q ' )  _ 

(c)' X . _ l  R :" X"X"' with either ~o(q')=e or 

A *(~')'-c(w. [] 
R 

if ~([AiaXo] ) 4: e then [Ai~Xo] =o =:~ Xo, otherwise x o = n o = e, 

[X,_ 1 ik- 1 X,]  + Xk, 1 < k < n - 1, 

if ~([X._ 1 i,_ 1 X,]) + e then IX,_ a i,_ 1 X,]  ~ x., otherwise n. = x ,  = ~, 

n . = x . = e .  Thus, 

Claim 3. Assume that i.A--*eXo~o is in P and A ~ e w .  Then there exists 
R 7' 

n'eA*, such that [Aic(]==~ w and q~(n')=izc. 

Proof of Claim 3. The proof is by induction on Inl. 
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Basis. If Ir~[= 1 then, with r~. X o ~ w  in P, weZ, we have 

i 

A =:> ~X o : ~  ~w 
R 

in G, and by construction of G' 

A. Nijholt 

i' [Ai~] ~ w, 

with ~p(i') = in. 

Induction. Assume 17z[ > 1. We factorize 

i 

A~R ~ X ~  

into 
i 

A =~ ~Xo~ p, 
R 

P l  
( o = ~ v  l, and X o @ a V  o, 

where aVoVl=W. Since X o e N  we have Ipll<[~l and from the induction hy- 
pothesis we obtain, if ~p + e, 

[Aic~Xo] + vl, with q)(p'l)=ipl . 

Moreover, there exist productions i k. X k ~ X k +  1 q)k, O < k < - n - 1  and X , = a ,  
such that 

7~ k 

X k + X k + ~ ( O k : = ~ X k + l W k ,  with O<_k<_n-1 and such that I~kl<lrcl, (i) 

hence 

[ X k i k X k + l ] : : ~ %  and q~(rck)=iku k 

i n  - I ~ n  1 
(ii) X,_.,===~a(oR , ,  ~ a w . R  , -1 ,  such that Ire, xl <lr~l, hence, if ~0. ~= e, 

I X ,  l i ,  l a ] ~ w , _ l ,  and q~(r~',_l)=z,_lTr._l 

(iii) w,_ t ... wl wo=v o and iorcoil rt 1 . . . i .  l r t ,_ l=PO . 

It follows that in P' there exists a production 

p'. [Aic~]--*H~,_, ~([X, x i , - l a ]  ... [ X o i o X o ] [ a i ~ X o ] )  

g' 

and a derivation [Aic~] =~ w, such that 
t t t t (a) w=avov  1, r (=p'p lTZo. . . r t ,_ lq ,  with q' is Hi, l ~ a .  

(b) q)(p'p'l)=ip~, 

q)(rC'o...rt',_x)=iortoix...i. 2 re,_ 2, 

q)(r(,_lq')=i . 1re,_1, and i 0 1 Z o i l . . . i n _ z T C n _ 2 i n _ l ~ Z  n l=P 0  �9 

Hence, q~(Tz')=ip~ po =irc. [] 
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Now it is not difficult to verify that G'[F/F] G. We leave the details to the 

reader and we only mention that if IS] 7 w then one should distinguish the first 

production from the remainder of the derivation. A similar argument can be 
used for the reverse direction (Condition (ii) of the cover definition). This 
concludes the proof of Lemma 2.2. [] 

Next we show that any almost G N F  grammar can be transformed to a G N F  
grammar. This is done in the following algorithm. The newly obtained grammar 
will right cover the original grammar. 

Algorithm 2.3. Input. An almost GNF grammar G = (N, Z, P, S). Output. A GNF 
grammar G'= (N', Z, P', S) such that G' [V/F] G. Method. We use two auxiliary sets, 
No and Po. Initially set N '= N, N o = 0 and 

Po = {A ~ ~( i )  [ i. A ~ ~ is in P and ~ Z } .  

Step 1: For each production i . A - * B C ~  in P (with B, C~N and ~ N * )  the 
following is done. 

(i) I f j .  C ~ D f l E  is in P (with D, E e N  and fleN*) then, for any pair of 
productions k. B + a and l- D ---r b in P add 

a ~ a H , ,  fl[Ej] ~( i )  
and 

H k l ~ b ( k l )  

to Po. Add [Ej] to N O and [Ej] and Hkz tO N'. 
(ii) I f j .  C ~ b  is in P, then, for any production k. E ~ a  add 

A -~aHk~a(i) 

and 
U k j ~ b ( k j )  

to P0. Add Hkj to N'. 

Step 2: Set P'=Po. For each [Ej] in N o add [ E j ] ~ ( / j }  to P' for each 
production E-- ,~( i )  in Po- 

Step 3: Remove the useless symbols. [] 

The general idea of the transformation is displayed in Fig. 2. 

Lemma 2.3. Any almost GNF grammar G can be transformed to a GNF grammar 
G' such that G'[V/V] G. 

Proof. Let ~: dw-*A* be the cover homomorphism which is defined in the 
algorithm. As we did in the proof of Lemma 2.2 we will use homomorphism ~o 
instead of ~. Two claims are used in the proof of Lemma 2.3. For  any triple of 
strings a, fl and 7 with ~=fl? we have that a/3 denotes ~. 

Claim I. Assume A~N.  
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A 

~ '1 
b 

=> 

A 

< k [ >  < . j >  

b 

Fig. 2. Step 1 of Algorithm 2.3 

~' G' ~(~') (i) If  A =~ w in then A > w in G. 
R R 

~' G' ~ w  in G, with 6=tp(n')/k. (ii) I f  [Ak] =~ w in then A R 

Proof of Claim 1. The proof  is by induct ion on [n'l. 

Basis. If [n'l = 1 then we have 

(i) Produc t ion  A ~ w  is bo th  in P and P' ,  hence the claim is trivially 
satisfied. 

(ii) Product ion  n ' .  [Ak] ~ w  is in P'.  F r o m  step 2 of  the a lgor i thm it follows 

that  ~o(n')=ki, where i. A ~ w  is in P. Therefore  A ~ w in G, with 6=q~(n')/k. 
R 

Induction. Consider  case (i). Assume  A = ~ w  in G', with In ' l>1 .  The first 
R 

produc t ion  which is used in this der ivat ion is either of  the form 
i'. A ~aHkl  fl[Ej] e ( i )  or i'. A ~aHkj  e ( i ) .  Notice  that  in bo th  cases we can 
complete ly  determine f rom which two product ions  of  P such a p roduc t ion  has 
been constructed.  We cont inue with the former  case. The case in which 
A ~ a H k j a  is the first p roduc t ion  can be t reated similarly and is therefore 
omit ted.  N o w  we can factorize the der ivat ion in the following way: 

(a) i'. A ---~aHkl fl[Ej] ~, with q~(i') = i. A ~BCct,  where B is the lefthand side 
of  p roduc t ion  k in P and C is the lef thand side of  p roduc t ion  j in P. 

(b) ~ = ~  w o, and f rom the induct ion hypothesis  it follows that  ~ - ~  w 0 in G, 

where n o = ~o(n~). 

(c) [ E j ] = ~  w1, and f rom the induct ion hypothesis  it follows that  E==~R wl 

in G, where n 1 = ~o(n'0/j. 

(d) f l = ~  w 2, and f rom the induct ion hypothesis  it follows that  fl==~ w 2 in G, 

where n 2 = ~0(~). 
(e) q'. Hk~ ~b ,  where we assume that  b ~ S  is the f ighthand side of  p roduc t ion  

1 in P. Moreover ,  q~(q')= lk. 

It  follows that  i . . . . . .  n o n  1 n z q  = n ,  abw2 w 1Wo=W and (p(n')=inojn 1 n21k, such 
that  (if we assume that  D is the lefthand side of  p roduc t ion  t) 

B C o ~  BCw o BDflEwo== ~ BDflw 1 w o ... 
R R 

~2 
...----~_ B D w 2 w l w o + B b w z W l W o + a b W z W l W o = W .  

R 
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This concludes the verification of case (i). Case (ii) can be verified along similar 
lines and therefore this case is omitted. This concludes the induction part of the 
proof and therefore the claim is proved. [] 

Claim 2. Consider CFG G' before step 3 of the algorithm is executed. If A :2~ w 
R 

~' G ! in G then there exists n'~A*, such that A =* w in and ~0(g')= n. 
g 

Proof of Claim 2. In the proof which may proceed by induction on ]n] one 

should distinguish that A =*R w in G can also imply [Ak] =~ w, for some keA G 

and with q~(n')/k =n.  We omit the proof since it proceeds along the same lines as 
the proof of Claim 1. [] 

From these two claims it is now clear that G' [Uf] G. [] 

The next theorem follows from the previous results. 

Theorem 2.4. Any e-free CFG G can be transformed to a CFG G' in GNF such 
that G' [f/f] G. 

Proof For any e-free CFG G we can find an e-free N LR grammar Go (Corollary 
2.3) such that G o [f/f] G. The single productions of G o can be eliminated in such 
a way that the right cover is preserved (Theorem 2.2) and the new grammar, 
which is also non-left-recursive (Observation 2.3) can be transformed with 
Algorithm 2.2 followed by Algorithm 2.3 to a grammar G' which is in G N F  and 
which has the property G' [f/f]  G. [] 

Now that we have seen this positive cover result one can ask for analogous 
results for left covers and left-to-right covers. Unfortunately these results can not 
be given in such a general way as the right cover result. We will extensively 
return to this problem in the forthcoming sections. A few positive results on l/f- 
and Ul-covers will be presented here. 

Lemma 2.4. Any CFG G in GNF can be transformed to a CFG G' in GNF such 
that G' [I/f] G. 

Proof Assume that G=(N, X, P, S) is in GNF. Define GR =(N, A G, PR, S) with 

PR = {A--*~i [ i. A ~ a e P ,  a6X}. 

Define a homomorphism ~0: A G ~ X  by letting q~(i)=a if i. A--*ea is in P. Notice 
that G n is unambiguous. Find for G R an equivalent grammar GL=(N', A G, Ps S') 
in G N F  (for example, apply to G R a transformation to GNF). Grammar  G' and 
the associated cover homomorphism 0 is obtained from G L by defining 

P'= {i' . A' ~a~ '  (,j) [ i' . A'--*J~' ~PL and ~o(j)=a}. 

We may conclude that G' [l/f] G if we have verified that ~ is well-defined, that is, 
if i'. A ' ~ i c (  a n d j ' .  A'--*ja' are in PL, then i:#j (hence, i'+j') implies q~(i)* q~(j). 

But this property is trivially satisfied since otherwise we are able to generate 
sentences of the form n 1 ig  2 and n l j g  2 in L(GL) and since ~o(n 1 in2)=q~(nljn2) 
=weL(G) we have two different right parses for the same sentence w. Since 
these two right parses are only different in one production this is 
impossible. [] 
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The usefulness of this lemma will become clear with the following obser- 
vation. We know (Theorem 2.3 and ' symmetry ' )  that any z-free N R R  grammar  
G can be transformed to a C F G  G o in G N F  such that Go[F/F ] G. From Lemma 
2.4 it follows that we can transform G o to a g rammar  G' in G N F  such that 
G' [l/f] G o and from transitivity we obtain G' [I/f] G. 

Corollary 2.4. Any e-free N R R  grammar G can be transformed to a CFG G' in 
GNF such that G' [l/F] G. 

A similar result has been obtained in Ukkonen [31 and unpublished]. 
Once we have a g rammar  in G N F  there is still one more useful transfor- 

mation which can be applied. The following algorithm is a slight generalization 
of a method which was first used in [-23]. 

Algorithm 2.4. Input. A CFG G = ( N , Z , P , S )  in GNF. Output. A CFG G' 
=(N', S, P', S) in GNF such that G'[g/l] G. Method. Initially set P' 
= { A ~ a ( i )  l i . A ~ a e P ,  aeZ} and N ' = N .  The indexed symbols H which are 
introduced below are added to N'. 

(i) For  each production of the form i . A ~ a ~  in P, e:~e, the following is 
done. Assume e =BT, 7~N*. For  any Jk" B ~ b  k 7k in P, 1 < k < Irhs(B)[ add 

A --~aHij k 7k 7 (e)  
and 

Hij k -+b k (i jk) 
to P'. 

(ii) Remove all useless symbols. []  

Theorem 2.5. Any CFG G in GNF can be transformed to a CFG G' in GNF such 
that G' [g/l] G. 

Proof. We use two claims to prove the theorem. Homomorph i sm q~ is defined as 
in the proof  of Lemma 2.2. 

Claim 1. If A ~' G' ~o~') ;. w in then A :- w in G. 
R L 

Proof. Notice that AeN.  The proof  is by induction on Irc'l. 

Basis. If In'[ = 1 then cp(n')=rt' and the result is clear. 

Induction. Assume In'[ = m, m > 1. For  A ==~ w we may write 
R 

i '  P '  t J '  
A :=~ aHij k 7k 7 = ~  aHi~k w =:~ a b w', 

where i' p'j'=rt' and abw'=w.  
Since IP'I < m  and 7kT~N* it is easily verified with the help of the induction 

CtP'):.w' in G. Moreover,  q~(i')=e and ~o(j')=jki, with hypothesis that 7k~ L 

j k ' B ~ b Y k  and i . A ~ a B ~ .  Hence, A '~t~'):.win G. [] 
L 

In the following claim we consider g rammar  G' before step (ii) of the 
algorithm is executed. 
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Claim 2. If  A L:-w in G then there exists zt'~A*, such that A=~wR in G' and 
~o(~')=~. 

Proof of Claim 2. The argument  is similar to that  of  Claim 1. Notice that if 
Ircl > 1 then we can write 

i ~ j ~ P '  1 , 
A==~ ao7== ~ aoTkT==~ aow =w. 

The details are left to the reader. [ ]  

In both claims we may take A = S and we can conclude that G'[Ul] G. [] 

Theorem 2.5 will be used in the construct ion of  the cover-table. 

3. Counter Example Grammar 

In U k k o n e n  [33] it is shown that  g r a m m a r  G with product ions  

S --* OSLIORL 

R ~ I R L [ 1  

L ~ E  

can not  be left covered with an e-free CFG.  N o w  consider C F G  G O with 
product ions  

1. S ~ O S L  

2. S ~ I R L  

3. R ~ I R L  

4. R ~ 2  

5. L ~ e .  

Clearly, if G does not  have an e-free C F G  which left covers G then also G O does 
not  have such a grammar .  G r a m m a r  G O will turn out  to be useful if we construct  
the cover table. 3 

In Table 1 we list the product ions  of  a C F G  G N which is such that  
GN[UI]G o. G r a m m a r  G N is in G N F  and since G~[-UI]G o we may  immediately 
conclude that  G N does not  have an e-free C F G  G' such that  G' [l/-/] G N. 

We have a few notes on special properties of  the g rammars  G o and G N. 
G r a m m a r  G o is both  LL(1) and strict deterministic (of degree 1) (cf. Harr i son  and 
Havel  [9]). Therefore the following result is obvious. 

Corollary 3.1. a) Not every LL(k) grammar can be left covered with an e-free 
grammar. 

b) Not every strict deterministic grammar can be left covered with an e-free 
grammar. 

3 In Ukkonen [-33] not only g rammar  G but also other counter examples for possible cover 
results are given 
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Table 1. Grammar G N 

S~OHooS (55) Hoo~0 (11) 
S~OHolR <55> Ho,--'l (12) 
S~IHI,R (55) H,,--,I (23) 
S--+IH,2 (5) HI 2---2 (24) 
R-*IQI~R (55) O , l ~ l  (33) 
R---*IQ12 (5) Q,2--.2 (34) 
R--*2 (4> 

A consequence is that left covering G N F  grammars  can not be obtained. 
Notice that for LL(k) grammars  this result is in contradiction with excercise 
8.1.20 in Aho and Ullman [-1]. 

Both LL(k) and strict deterministic grammars  are LR(k) grammars.  There- 
fore the negative results hold for LR(k) grammars  as well. 

Now we consider g rammar  G N. This g rammar  is defined in such a way that 
it is both LL(2) and strict deterministic. 

Corollary 3.2. a) Not every e-free LL(k) grammar can be left-to-right covered with 
an e-free grammar. 

b) Not every e-free strict deterministic grammar can be left-to-right covered 
with an e-free grammar. 

Also in this case the results hold for LR(k) grammars  in G N F  as well. 

4. The Cover-Table 

Once more we mention that the context-flee grammars  which we consider are 
cycle-free, they do not have useless symbols and if the empty word is in the 
language then there is exactly one leftmost derivation for this word. Moreover, 
we will not refer to the special production So---,SA_ which may be introduced in 
the case of elimination of single productions. The cover-table has five rows 
(ARB, e-FREE, NLR,  e-FREE NLR,  GNF)  and seven columns (ARB, e-FREE, 
NLR,  e-FREE NLR,  GNF,  N R R  and e-FREE NRR).  Each row has four sub- 
rows, one for each type of cover which we consider (l/l, l/F, F/l and U~). We use a 
simple reference system to the entries of the table. Except for the ARB-row all 
places are labeled with either letters (a . . . . . .  p.) or numbers (1 . . . . . .  96.). 

The details of the construction of the table can be found in the Appendix. 
Example. Entry 25. is no. This means that not every e-free grammar  can be left 
covered with a N L R  grammar.  

5. Conclusions 

In the present paper we have given an overview of cover results for some normal  
forms for context-free grammars.  Similar cover results as obtained in this paper 
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Table 2. Cover-table 

G , ~  COVER ARB e-FREE N LR e-FREE G N F  N R R  e-FREE 
N LR N R R  

ARB l/l yes yes yes yes yes yes yes 
1/~ yes yes yes yes yes yes yes 
~/l yes yes yes yes yes yes yes 
UF yes yes yes yes yes yes yes 

e-FREE 1/l a. no 1. yes 5. no 9. yes 13. yes 17. yes 21. yes 
l/P- b. no 2. no 6. no 10. no 14. no 18. yes 22. yes 
F/l c. no 3. no 7. yes 11. yes 15. yes 19. no 23. no 
f/~" d. no 4. yes 8. yes 12. yes 16. yes 20. no 24. yes 

N L R  l/l e. no 25. no 29. yes 33. yes 37. yes 41. no 45. no 
l/~ f. no 26. yes 30. yes 34. yes 38. yes 42. no 46. yes 
F/l g. no 27. no 31. yes 35. yes 39. yes 43. no 47. no 
F/~- h. no 28. yes 32. yes 36. yes 40. yes 44. no 48. yes 

e-FREE l/l i. no 49. no 53. no 57. yes 61. yes 65. no 69. no 
N L R  l/~- j. no 50. no 54. no 58. no 62. no 66. no 70. yes 

~/l k. no 51. no 55. yes 59. yes 63. yes 67. no 71. no 
P-/f 1. no 52. yes 56. yes 60. yes 64. yes 68. no 72. yes 

G N F  Ill m. no 73. no 77. no 81. yes 85. yes 89. no 93. no 
l/~ n. no 74. no 78. no 82. no 86. no 90. no 94. yes 
Ul o. no 75. no 79. yes 83. yes 87. yes 91. no 95. no 
~/P- p. no 76. yes 80. yes 84. yes 88. yes 92. no 96. yes 

will be given in forthcoming papers for regular and deterministically parsable 
grammars. 

The main problems which had to be solved in order to obtain the covertable 
of Sect. 4 were the elimination of left recursion, the elimination of e-productions 
and the problem of finding a right covering grammar in Greibach normal form 
from an e-free non-left-recursive grammar. It would be interesting to have a 
thorough comparison between results for grammar covers and for grammar 
functors. Unfortunately the elimination of left-recursion does not admit a 
grammar functor between the original and the non-left-recursive grammar (see 
e.g. [2]). This does not imply, as has become clear in Hotz [12, 13] that the 
grammar functor approach does not have useful applications when considering 
normal form transformations. 

Acknowledgements. I would like to thank one of the referees for pointing out a few errors in the 
manuscript  and for suggestions concerning the presentation of the results. 
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Appendix 

In this Append ix  we give the details of  the construct ion of the cover- table  
(Table 2) of  Sect. 4. 

A) All the l/l and ~-/~- entries of  the A R B - r o w  are trivially yes. The l/F and Ul 

entries are yes because of Theo rem 2.1. 
B) Trivially yes are also the entries 1., 4., 9 ,  12., 13., 16, 21, 24., 29., 32., 33., 36., 

37. and 40. Because of Theo rem 2.1 and Observa t ion  2.2 the entries 30., 31., 34., 
35., 38. and 39. are yes. Trivially yes are also the entries 57., 60., 61., 64., 85. and 
88. 

C) Due  to g r a m m a r  Go we have that  entry a. is no and f rom ' s y m m e t r y '  it 
follows that  entry d. is no. Therefore,  also i., 1., m. and p. are no. Since G o is 
N L R  it follows that  entry 5. is no and again f rom ' s y m m e t r y '  entry 20. is no. 

Thus, entries 68. and 92. are no. 

D) Next  we consider g r a m m a r  G N. This g r a m m a r  has the p roper ty  that  
GN[Ul  ] G o. Since G o has no e-free g r a m m a r  which left covers G o it follows that  
G N does not  have an e-free g r a m m a r  which left-to-right covers G N. Moreover ,  
G N is in G N F ,  hence, the entries 14., 10., 6., 2. and b. are all no. Because of 
' s y m m e t r y '  it follows that  the entries c., 3., 19. and 23. are no. 

We have the following immedia te  consequences.  

(i) Since entries b. and c. are no it follows that  entries j., k., n. and o. are no. 

(ii) Since entries 2. and 3. are no it follows that  entries 50., 51., 74. and 75. 
are no. 

(iii) Since entries 5. and 6. are no it follows that  entries 53., 54., 77. and 78. 
are no. 

(iv) Since entries 10. and 14. are no it follows that  entries 58., 82., 62. and 86. 
are no. 

(v) Since entries 19. and 23. are no it follows that  entries 67, 91., 71. and 95. 
are no. 

E) Due  to the Corol lar ies  2.1 and 2.3 the entries 26., 28. and 52. are yes. 

F r o m  Theo rem 2.3 it follows that  entry 81. is yes. F r o m  Theo rem 2.4 it follows 
that  entries 76., 84. and 96. are yes. Since entry 96. is yes it follows that  entries 
72. and 48. are yes. F r o m  Corol la ry  2.4 it follows that  entry 94. is yes and, 
consequently,  entries 70, 46. and 22. are yes. Since the entries 81. and 85. are yes 

T h e o r e m  2.5 tells us that  entries 83. and 87. are yes and, consequently,  entries 
59., 11., 63. and 15. are yes. 

With some simple observat ions,  in which T h e o r e m  2.5 can be used to obta in  
contradict ions,  it follows that  the entries 73, 90., 93. and 89. are no. 

Since the entries 73, 89, 93. and 90. are no we have that  entries 49., 69,  65. 
and 66. are no. Otherwise a contradic t ion  with Theo rem 2.3 can be obtained.  
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F) Because of Corollary 2.2 we have that entry 8. is yes and from ' symmet ry '  
it follows that entry 17. is yes. The assumption that entries h. and g. are yes 
leads, with the help of Corollary 2.2, to a contradiction with entries d. and c. are 
no, respectively. Similarly, with Corollary 2.2 and since entry 31. is yes, we must 
conclude that entries f. and e. are no in order to avoid contradictions with h. and 
g., respectively. 

Since both entry 19. and entry 20. are no we obtain with the same type of 
argument that entries 41., 42., 43. and 44. are no. Entry 56. is yes because of 
entries 8. and 52. are yes. 

The entries 25. and 27. are both no since otherwise a contradiction can be 
obtained (via entry 31. and 56. in the case of entry 25. and via entry 56. in the 
case of entry 27.) with entry 3. is no. For any N L R  grammar  G there exists a 
N L R  grammar  G' such that G' [Ul] G. G r a m m a r  G' has an e-free N L R  grammar  
G" such that G" IV~l] G. Hence, entry 55. is yes and therefore also entry 7. is yes 

and ( 'symmetry ')  entry 18. is yes. 

Since entries 55. and 56. are yes it follows (with entry 84. is yes) that entries 
79. and 80. are yes. 

Both entries 45. and 47. are no because otherwise, with the help of 55. and 
56., a contradiction with entry 71. is no is obtained. This concludes the con- 
struction of the cover-table. 


