
Acta Informatica 14, 271-294 (1980) i m

�9 by Springer-Verlag 1980

A Survey of Normal Form Covers
for Context Free Grammars

Anton Nijholt

Vrije Universiteit, Dept. of Mathematics, PO-Box 7161, Amsterdam, The Netherlands

Summary. An overview is given of cover results for normal forms of context-
free grammars. The emphasis in this paper is on the possibility of construct-
ing e-free grammars, non-left-recursive grammars and grammars in Greibach
normal form. Among others it is proved that any z-free context-free g rammar
can be right covered with a context-free grammar in Greibach normal form.

All the cover results concerning the e-free grammars, the non-left-re-
cursive grammars and the grammars in Greibach normal form are listed,
with respect to several types of covers, in a cover-table.

1. Introduction

We study the existence and nonexistence of grammar covers for some normal
forms for context-free grammars. That is, we consider problems in which we ask:
Given classes of grammars F1 and F2, can we find for each grammar G in F1 a
g rammar G' in F2 such that G' covers G?

For F 1 we will consider arbitrary context-free grammars. Moreover, by
introducing some conditions which should be satisfied we consider also some
subclasses of the context-free grammars. For F 2 we will concentrate on the e-free,
the non-left-recursive and the Greibach normal form grammars.

A context-free grammar G' is said to cover a context-free g rammar G if it is
possible to define a homomorphism between the parses of G' and those of G.

We will restrict ourselves to covers which are defined with the help of left
and right parses of the grammars in question. It follows that we can define four
types of covers, viz. we can define covers in such a way that left parses are
mapped on left parses, left parses are mapped on right parses, right parses are
mapped on left parses or right parses are mapped on right parses. For each of
these covers we will present a yes or no answer to the question whether several
types of context-free grammars can be covered by grammars in a certain normal
form.

A variety of results in this research area have been obtained before (cf. Aho

0001- 5903/80/0014/0271/$04.80

272 A. Nijholt

and Ullman [1], Gray and Harrison [6, 7], Nijholt [21, 22, 23, 24], Soisalon-
Soininen [29] and Ukkonen [31-33 and unpublished]. The aim of this paper is
to give a complete overview of the relevant cover results for normal forms of
context-free grammars. That is, we collect some of the results in the above
mentioned papers and we fill in the missing parts.

The concept of grammar cover can be considered as a grammatical similar-
ity relation. Many other relations between grammars have been defined. For
example, there is the concept of structural equivalence (Paull and Unger [27]),
there is the grammar functor or X-functor approach, initiated by Hotz [10, 11],
and there are the grammar forms introduced by Cremers and Ginsburg [3].

One motivation to consider these relations can just be the mathematical
interest in comparing and relating different subclasses of the context-free gram-
mars. Especially in the case of normal forms of context-free grammars it is
natural to ask whether a grammar belonging to a certain class can be trans-
formed to a grammar in a certain normal form and to determine which relations
hold between the two grammars. Dependent on this relation one can then
conclude that the transformation preserves certain properties of the original
grammar.

For each similarity relation there are some obvious questions concerning
decidability and complexity. In Hunt, Rosenkrantz and Szymanski [15, 16]
decidability results for context-free grammars with respect to the grammar cover
are presented. Among others it is shown that it is undecidable whether a
context-free grammar G' covers a context-free grammar G. An overview of
complexity results for grammatical similarity relations is given in Hunt and
Rosenkrantz [14]. The second motivation to consider grammar covers is their
proven usefulness in the theory and practice of parsing and compiler building.
Immediately after the presentation of the cover definition we will return to this
aspect.

The organization of this paper is as follows. After the presentation of some
preliminaries there is a short section in which we discuss the grammar cover
concept and how it has appeared, sometimes defined in an informal way, in the
literature. In Sect. 2 we list some general theorems on the existence of covering
grammars. New theorems and corresponding transformations on context-free
grammars to produce grammars in Greibach normal form are also presented in
this section.

As the main result of this section we consider that we are able to show that
any e-free context-free grammar can be transformed to a context-free grammar
in Greibach normal form in such a way that a right cover (in this case right
parses can be mapped on right parses) can be defined.

In Sect. 3 we present an adapted version of a grammar which is due to
Ukkonen [33]. Together with the results and observations in Sect. 2 this
grammar is sufficient to obtain all negative cover results which are relevant for
the classes of grammars which we consider. The example in this section is
chosen in such a way that some cover results for strict deterministic, LL(k) and
LR(k) grammars become obvious.

Finally, in Sect. 4 a (cover-) table is constructed in which all the results are
listed.

Normal Form Covers for Context Free Grammars 273

For a survey of normal form cover results for regular grammars the reader is
referred to Nijholt [26]. A survey which includes results for LL(k), LR(k) and
strict deterministic grammars is in preparation. In Mickunas [19], Mickunas,
Lancaster and Schneider [20] and in Nijholt [25] other cover results for LR(k)
grammars can be found.

Results for the grammar functor approach for normal forms of context-free
grammars can be found in Hotz [12] and Benson [-2] and for the LL(k) and
LR(k) grammars in Hotz and Ross [-13] and in Ross, Hotz and Benson [28].

1.1. Preliminaries

We review various commonly known definitions (cf. Aho and Ullman [1]) and
give some notations.

A context-free grammar (CFG) will be denoted with the usual fourtuple G
=(N, 2~, P, S), where N is the set of nonterminal symbols (generally denoted by
the Roman capitals A, B, C), S is the set of terminal symbols (denoted by the
smalls a, b, c ...), P e N • is the set of productions (we use the notation
A ~c~ if (A, ~)eP) and SeN is the start symbol. We define V = N w S . Elements of
V will generally be denoted by X, Y and Z; elements of V* by the Greek smalls
~, fl, 7 and elements of S* by the smalls u, v, w, x, y and z. We have the usual
notations =~, =~, and ~* for derivations and we use indices L and R to denote
leftmost and rightmost derivations, respectively. The language generated by G is
the set L(G)={weS*IS *

The sequence of productions which are used in a leftmost derivation from S
to a string weS* is called a left parse for w. The reverse of a sequence of
productions in such a rightmost derivation is called a right parse for w.

If eeV* then eR denotes the reverse of c~ and Ic~l denotes the length of c~. The
symbol e is reserved for the empty string (the string with length zero). If 1~] <k
then k: c~ denotes ~, otherwise k: c~ denotes the prefix of ~ with length k.

If Q is a set then rQ[denotes the number of elements in Q. For each CFG G
=(N, X, P, S) we define Aa= {i11 < i < [P]}, the set of production numbers of G. If
A--,c~ is the ith production in P then we sometimes write i. A-.c~. Moreover, we
write A =~ e, where ~eA~, if the derivation from A to e is done according to the

sequence of productions re. Hence, if S =~ w then rc is a left parse for w and if
L

S =~ w then rc R is a right parse for w.
R

The degree of ambiguity of a sentence w6L(G) is the number of different left
parses for w. Notation: (w, G). If for any weL(G) we have (w, G) = 1 then G is
called unambiguous.

For any A e N we define rhs(A)= {c~[A--*e is in P}.

Definition 1.1. A CFG G = (N, S, P, S) is said to be

a) e-free, i f P ~ N x V +.
b) cycle-free, if for any A e N a derivation A =~ A does not exist.

274 A. Nijholt

C) non-left-recursive (NLR), if for any A~N and ~ V * a derivation A :~ Ac~
does not exist.

d) in Greibach normal form (GNF), if Pc_N • SN*.

We will also use the obvious notion of non-right-recursiveness (NRR) and we
use the notation G N F if P ~ N x N* S.

Throughout this paper we assume that the (context-free) grammars in
question are cycle-free and that the alphabets of the grammars do not contain
useless symbols (cf. Aho and Ullman [1]).

Definition 1.2. a) Let V 1 and V 2 be alphabets. A homomorphism is a mapping
: V t --> I:2". The domain of the homomorphism ~ is extended to V* by letting

O(e)=e and O(c~a)=~b(e) O(a) for all eeV* and aeV 1. We say that ~ isfine if
~: V 1 ~ V z w {e} and very fine if ~ : V a ~ V 2.

g

b) Let G =(N, 27, P, S) be a CFG. We define ~ (G)= {(w, re) IS =~ w} and r~(G)

= {(w, ~R) IS ~ w}.

c) Assume that x, y~{/, ?}. A CFG G=(N, Z, P, S) is said to x-to-y cover a
CFG G' =(N', Z', P', S') if there exists a homomorphism ~b: A G, ~A ~ such that

(i) if (w, ~')s~x(G') then (w, ~(~'))szy(G), and
(ii) if (w, ~z)~zy(G) then there exists ~z' such that (w, ~')~z~(G') and ~b(~')=~.

Clearly, if G' x-to-y covers G then L(G)=L(G') and (w, G ') > (w , G). To
denote that a production A ~ (or i .A~cr is mapped on a string zc of
productions by a (cover) homomorphism we will sometimes write A ~ (T z) (or
i. A ~ ~(Tz)).

For the original cover definition the reader is referred to Gray and Harrison
[6, 7] ~ (cf. also Aho and Ullman [1]). A more general treatment of covers can
be found in Nijholt [24]. The following notation will be useful.

Notation. a) G' [l/l] G, if G' left-to-left covers G (left cover).
b) G' [l/g] G, if G' left-to-right covers G.
c) G' [?/l] G, if G' right-to-left covers G.
d) G' [g/r--] G, if G' right-to-right covers G (right cover).

In one of the main transformations of this paper we will use chains and left
production chains.

Definition 1.3. Let G = (N, 27, P, S) be a CFG.
a) Define a relation CHc_ V x N* S, as follows. If XoeN then CH(Xo), the

set of chains of X o is defined by

CH(Xo)={XoX ~. . .Xnlxo ~ X~ @ ~ ~ . . . ~ X,~k,, OfeV*, l <=i<=n},

and for ceZ,
CH(c) = {c}.

It should be observed that our cover definition is slightly different from theirs. Gray and
Harrison's definition of complete cover may be compared with our definition of cover if we demand
that the homomorphism is fine

Normal Form Covers for Context Free Grammars 275

b) Define a relation L P c _ N * Z x A* as follows. Let r c = X o X 1 ... X , eN+Z,
then LP(rc), the set of left production chains of re, is defined by

io i l
LP(rc)={i 0i 1 . . . i . 1] X 0 ~ X 1 4 1 ~ ' "

L L

If rc~22 then LP(rc)= {e}.

in-1
:. X ,O , , OisV *, l <i<n} .

L

1.2. Covers and Parsing

Let G = (N, Z, P, S) be a CFG. A parser for G determines whether a string w of
symbols is in L(G) and if so it produces a parse tree for w with respect to G.
Either left parses or right parses will be used to represent a parse tree. Once the
parse tree is known, code generation can take place. Various persing methods
have been introduced for the class of context-free grammars and its subclasses.
For each parsing method there is a class of grammars which are suitable for this
method. One can try to transform a grammar to make it suitable for a chosen
parsing method or to improve its parsing properties. If this transformation can
be done in such a way that the new grammar G' covers the original grammar G,
then we can parse with respect to G' and, by applying the cover homomorphism,
obtain the parse with respect to G. This is illustrated in Fig. 1.

It is usual to distinguish between top-down parsing and bottom-up parsing.
In top-down parsing the goal is to find a left parse while in bottom-up parsing
the goal is a right parse. Both for top-down parsing as for bottom-up parsing
there exist conditions which, when satisfied by the grammar, can improve the
parsing. A well-known condition for (deterministic) top-down parsing is that the
grammar should be non-left-recursive. Grammars in G N F are non-left-recursive.

It has been observed in Griffiths and Petrick [8] that the original G N F
transformation distorts the structure of the grammar in such a way that "To
date, no efficient procedure for relating the structural descriptions of Greibach
normal form grammars to the context-free grammars from which they were
constructed has been found". Further investigations on this problem can be
found in Kuno [17], Kurki-Suoni [18], Foster [4, 5] and Stearns [30]. The
latter three authors do in fact use, in an informal way, the notion of a right
cover. Gray and Harrison [6, 7] gave a formal definition of right covers. Their
definition, which slightly differs from ours, was inspired by cover definitions

Transformation
G --- G'

w r L{G) wG L{G'}=LIG}

t
i

t
i
1 Cover- homomorphism

parse~of w parse ~'of w

F i g . 1

276 A. Nijholt

which appear in unpublished work of J.C. Reynolds and R. Haskell. Soisalon-
Soininen [29] has translated the results of Kurki-Suonio in the cover-formalism.

As mentioned in Nijholt [23] there has been some confusion on the
possibility to cover grammars with grammars in GNF. In this paper we will give
a transformation from arbitrary grammars to grammars in G N F such that a
right cover can be defined.

2. Theorems and Transformations

This section contains a rather long list of theorems and transformations which
are necessary to construct the cover-table which is presented in Sect. 4. For
some algorithms and proofs the reader is referred to other papers. None of the
algorithms not given here does have a complicated proof of correctness.

2.1. General Results

Our first results deal with some general observations on covers for context-free
grammars. Firstly we will slightly generalize the cover definition in order to be
able to present the following lemma. In the remainder of this paper we will not
refer to this lemma if it is used. We will admit covers which are defined with the
help of reversed left and right parses. We use/-and r to denote them. Moreover,
for any xe{f, f} we will write ~ = x .

Lemma 2.1. I f G' Ix~y] G then G' [~/y] G.

Proof. Suppose that G'[x/y]G under a cover-homomorphism ~p. Define tp'(i)
=(@(i)) R for any i~AG,. Homomorphism ~p' is the cover-homomorphism under
which G'[~/y] G. []

Theorem 2.1. a) For any CFG G there exists a CFG G' such that G'[l/g] G.
b) For any CFG G there exists a CFG G' such that G'[f/l] G.

Proof. (a) Grammar G' is constructed from CFG G by defining

P ' = { A ~ H i (e > l i . A ~ c ~ is in P } w { H i ~ e (i > l l < i < l P I } .

The symbols Hi, 1 < i < IPI are newly introduced nonterminal symbols which are
added to N to obtain N'.

(b) Grammar G' is constructed from CFG G by defining

P'= {A--* Hi~<e> li. A ~ is in P } w { H i ~ < i > l l <i<[P[} .

The symbols H i, 1 < i < [P[are newly introduced nonterminal symbols which are
added to N to obtain N'. []

The following observation on 'symmetry ' will be very useful if we construct
the cover-table in Sect. 4.

Observation 2.1. Let G=(N, 2;, P, S) be a CFG. Define GR=(N, Y,, pR, S) by
letting P R = { A - - * ~ R I A ~ is in P}. Notice that a leftmost derivation of a

Normal Form Covers for Context Free Grammars 277

sentence wEL(G) coincides with a rightmost derivation of wR~L(GR). In what
follows we will frequently make use of this ' symmetry ' . For example, if a
g rammar G can not be left covered by an e-free grammar then it follows (cf. also
Lemma 2.1) that G R can not be right covered by an e-free grammar. Another
example is the situation in which a g rammar G does not have a left-to-right
covering grammar in GNF. Then G R does not have a right-to-left covering
grammar in GNF. []

2.2 Non-Left-Recursive Grammars

Next we turn our attention to results which show the possibility of finding non-
left-recursive grammars for ' a rb i t ra ry ' context-free grammars.

Observation 2.2. If C F G G in Theorem 2.1 is non-left-recursive then (both in a)
and b)) G' is non-left-recursive. []

Any e-free C F G G (cycle-free, no useless symbols) can be transformed to a
N L R grammar G' such that G' IF/F] G and G' [I/F] G. This result first appeared in
Nijholt [22]. Soisalon-Soininen [29] gave a more simple proof of this result. One
of the transformations which is used in the latter paper is based on an idea of
Kurki-Suonio [18]. This trick can also be used for a transformation presented in
Wood [34] and which is due to J.M. Foster.

Corollary 2.1. Any e-free CFG G can be transformed to a CFG G' such that G' is
NLR and such that G' [l/F] G and G' IF/F] G.

Each of the above mentioned methods to obtain the N L R grammar G' can
be adapted in a very simple way in order to obtain an e-free N L R grammar G"
such that G"[F/F] G. This result can also be obtained from a more general
observation of Ukkonen [32, and unpublished] which we give, slightly adapted,
below.

Corollary 2.2. Any N L R grammar G can be transformed to an e-free NLR
grammar G' such that G' [F/F] G. 2

In Ukkonen 's algorithm for eliminating e-productions from a grammar G
=(N, S, P, S) it is assumed that if eeL(G) then there do not exist two different
rightmost derivations to e. Since in our definition of e-free grammar we have
P _ N x V + we do not bother about introducing a special production S ' ~ e for
g rammar G'. Hence, in Corollary 2.2 we have L(G')=L(G)/{e}.

The following corollary follows from the transitivity of the cover relation.

Corollary 2.3. Any e-free CFG G can be transformed to an e-free N L R grammar G'
such that G' [F/F] G.

With this corollary we conclude our observations on finding non-left-
recursive grammars.

2 It is assumed that if eeL(G) then there do not exist two different rightmost derivations to e

278 A. Nijholt

2.3. Elimination of Single Productions

Before we turn our attention to the problem of finding grammars in G N F we
have a few remarks on some special conditions. Consider a C F G G with
productions S ~ A , S ~ B , A ~ a and B ~ a . Suppose we want to find an equiva-
lent e-free grammar without single productions (i.e. productions of the form
X ~ Y with both X and Y in N). There is only one grammar which has this
property, g rammar G' with the one production S '~a . It follows that in genral
elimination of single productions can not be done in such a way that a left or
right cover can be defined since condition (ii) of the cover definition can not
always be satisfied.

In some cases we find it convenient to talk about grammars without single
productions. Although it is not always necessary (in some cases we could use
more refined conditions) we assume for a few algorithms in the remainder of this
paper that they have an input g rammar without single productions. We use a
rather rude approach to solve the problem of eliminating single productions.
The method which is in the proof of the following theorem was first shown in
[21] and we include it here. It should be observed that a more simple method
can be used if we allow, as is possible in the grammar functor approach, that
one production can have different labels. However, from the point of view of
parsing we recognize productions rather than labels. Therefore we use the
following method.

Theorem 2.2. Let G = (N , Z , P , S) be an e-free CFG. Grammar Go=(Nu{So},
Z ~ { l } , P~{So--,S_I_ }, So) can be transformed to a CFG G' without single
productions in such a way that G' [?ff] G o and G' [l/l] G o.

Proof. We show how the elimination can be done. We use auxiliary sets P0 and
P1. The set Po is the set of all the single productions in P. Initially P1
= { A ~ (i) [i . A---~ is in P-Po}, N ' = N and P ' = 0 .

6 i
(i) Let A~N. If A = ~ f l = ~ 7 is a derivation in G such that 6 # e and either

[7[>2 or 7~Z then add [A 6 i] ~ 7 (n) to P~ and [Abi] to N'. To obtain a left
cover define n = 6i. To obtain a right cover define n = i6 R. Notice that since G is
cycle-free there are finitely many derivations to consider.

(ii) Define a homomorphism h: N' u X ~ N u X by defining h (X) = X for each
X E N u Z and h([An])=A for each [A n] ~ N ' - N . For each production
A ' ~ 7 (n) in P~ (hence, A'EN' and 7~VV +) add the productions in the set
{A'- -*7 ' (~)KA'~?(n) in P1 and h(y')=y} to P'.

(iii) Remove the useless symbols.

Clearly, g rammar G' =(N' , 2;, P', So) which is obtained does not have single
productions. G r a m m a r G' left covers g rammar G. This follows from the follow-
ing observations. They can be formally proved by induction on the lengths of
the derivations. Similar observations hold for the right cover.

~' G! a) I f A ~ w in t h e n A = ~ w i n G , witht~(rc')=zc.
L L

b) If [A6] '~' G' '~ w in then A ~ w in G, with qs(=')= n.
L L

c) If A : ~ w in G then there exists =' such that either A : ~ w in G' or
L L %'

[A6] ~ w in G', for some 6~A*, and with qs(~')=n.
L

Normal Form Covers for Context Free Grammars 279

In observation c) we have for G' the grammar which is obtained from step (i)
and (ii). The implicitly defined cover homomorphism is denoted by ~. This
concludes the proof of the theorem. []

We emphasize that it is not always necessary to introduce the special
production S o ~ S • For example, if G is unambiguous. In this case the method
mentioned in the proof can be simplified. In fact, only in the case that there
exist, for some a~Z, different derivations from S to a it is necessary to introduce
this production.

In what follows we do not bother about this special production. The result
mentioned in the following observation is an immediate consequence of the
method which is used in the proof of Theorem 2.2.

Observation 2.3. If CFG G in Theorem 2.2 is non-left-recursive then CFG G'
without single productions is also non-left-recursive. []

2.4. Grammars in Greibach Normal Form

Now we are sufficiently prepared to consider grammars in GNF. This normal
form can be obtained in such a way, from e-free and non-left-recursive gram-
mars, that a left cover can be defined. This was shown in Nijholt [21].
Moreover, this result is a special case of a more general theorem in Nijhott [24].
In the latter paper a transformation (the 'left part transformation') is used which
we will recall here. This transformation will be used later, in an adapted form, to
obtain right cover results.

We use a special alphabet which is defined below.

Definition 2.1. Let G=(N, Z, P, S) be a CFG. Define the set

[N] ={[A/a] [i-A~c~fl is in P, fl~V*}

and a homomorphism 4: IN]--*IN] by letting ~([Aia]) is
(i) e i f i . A ~ e i s i n P .

(ii) [Aie] i f i . A--.efl is in P, with fi4=e.

We present the algorithm in such a way that each newly obtained pro-
duction is followed by its image under a cover-homomorphism ~ for a left
cover.

Algorithm 2.1. Input. An t-free NLR grammar G=(N, Z, P, S) without single
productions. Qutput. A CFG G'=(N', Z, P', IS]) in GNF such that G'[I/1] G.
Method. The set P' consists of all the productions which are introduced below. Set
N' will contain [S] and all symbols of [N] which appear in the productions.
Initially set P'= O.

(i) For each pair (n, p), n = S X 1X a ... Xn~CH(S) and p=ioi 1 ... i n_ 1ELP(rc),
add [S] - - - * I nr 1 in_ l Xn] ... [S ioXlJ)<P> tO e ' .

(ii) Let i .A~c~Xoq~ be in P, ~+-E. For each pair (n,p), n = X o X 1 . . .
XneCH(Xo) and p=i o i 1 ... in_ l e L P (n) , add [AiT]--.Xn r x in_ 1Xn] ...
[XoioX1][Aio~Xo])(p> to P'. []

280 A. Nijholt

Notice that for this algori thm the condi t ion that the input g rammar G does
not have single product ions is not a necessary condition. It would be sufficient
to demand that, for any A ~ N and X~V, if A = ~ X and A ~ X then g = ~ ' .
However, as we have shown the single product ions can be eliminated in a simple
way and we can avoid the introduct ion of new conditions.

Theorem 2.3. Each e-free N L R grammar G can be transformed to a CFG G' in
G N F such that G' [l/l] G.

Proof We assume that the single product ions have been eliminated. We use
Algor i thm 2.1 to t ransform G to a g rammar G'. Clearly, G' is in G N F . The cover
h o m o m o r p h i s m which is implicitly defined in the algori thm is denoted by ~. We
use two claims.

Claim I. If [Aict] ~' G' = ~ w in then there exists i .A-- ,e~o in P, ~04=e, such that
L

~o ~ , w in G, with 7~=~(~').
L

Proof o f Claim 1. Induct ion on [~'1.

Basis. Assume [~'[= 1. In this case we have a product ion ~' . [Aie] ~ w in P ' with
weN. This product ion is obtained from either a product ion i. A ~ e w in P such
that ~ = e and O(~ ')=e or f rom product ions i. A ~ X o a n d j . X o ~ w , with ~(~')
= j .

Induction. Assume 1~'1 > 1. We can write

i' " X ,] [Xo ioX1][A io~Xo]) ~'' [Aic~] ==~ a~([Xn_ l tn_ 1 ... ==~ av,

where X , = a, i' ~" = ~' and a v = w.
We can factorize ~" such that
(a) " ' . . . ' : ~ n 7~0, l) = W n W n - 1 " " W o "

(b) If ~([A ic tXo])~e then

~o
[Aic~Xo] ~ w o

L

and it follows from the induct ion hypothesis that there exists i. A ~ ~X o tp o such
that q~o ~ Wo, with ~ (~o)=no . If ~ ([A i ~ X o]) = e then ~Oo=go=Wo=e.

L

(c) If ~([Xk_ 1 ik- 1 Xk'])zt=e, O<k <n, then

[X k - 1 ik- 1 Xk] ==~ wk
L

~t k
and it follows that there exists i k 1 " X k - ~ ~ Xkq~k such that q~k = ~ W k, with ~ (~)

=~k. If ~ ([X k _ l i k 1Xk])=e then q~g=~k=Wk=e. Since G has no single pro-
ductions, this case can only occur if k = n.

Hence, since ~ (i ') = i o i I ... i,_ l = p we obtain a derivation

6
q~ = X o ~Oo = ~ X,~o, ~o,_ 1 ... ~o~ ~Oo=~ X , w , w , _ 1 ... Wl Wo =av,

with 6 = ~ , . . . ~17~o and ~O(=')= p6 = ~. This concludes the p roof of Claim 1. []

Normal Form Covers for Context Free Grammars 281

If IS] ~' G' L"" W in then we can, as we did in the induction part of the proof of

Claim 1, distinguish the first production which is used and then factorize n' in a

similar way to obtain the conclusion that S =~ w in G, with q/(n')=n.
L

Claim 2. Assume i . A ~ T X o c P o ~ P , ~:#e. If Xoq~ o =~w in G then there exists

~' G' n'~ A*, such that [A i~] =~ w in and q/(n') = n.

Proof of Claim 2. The proof is by induction on I~1,

Basis. If Ircl = 0 then X 0 ~o0~S + and from the construction it follows that there

exists a derivation [Ai~] ~' G' ::~ w in such that ~k(n')=n=e. If]hi = 1, then Xoq~ 0

can be written as v l B v 3 with B e N , v lv3~S* and n . B ~ v 2 in P with v2ES +. In
this case there exists a derivation

~1 ~2 ~3
[Aio~] ~ Vl[Ai~vl] ~ VlVz~([AiO~VlB]) ~ v 1V2U3=W

in G' such that ~(zh)=qJ(n3)=~ and ff(n2)=n.
Induction. Assume In[> 1. Then there exists p = i o i~ ... i ,_ l~A ~ such that

~ k
i k . X k ~ X k + 1 ~Ok+l, O < k < n - - 1 , with X , ~ S and such that q~k=~Wk . Hence, we

can write

Xo qgo ~ X , qg,'"cPl qgo +

with 6 = n , . . . n i n o and w = X , w , . . . w xw o.
From the construction and the induction hypothesis it follows that

(a) i'. [Ai~] ~ X , ~ ([X , _ a i,_~ X,] ... EAi~Xo]) (p) is in P'.
rc~

(b) If qgk:~e, O<k< n , then [Xk_ a ik_iXk] = ~ W k, with ~(nk)=n k. If q~k=e then

n k = n' k = w k = e. Since G has no single productions this latter case can only occur
i f k = n .

(c) If q~o4:e then [A i~Xo]==~w o, with ff(n~)=n o. If q~o=e then n o = n ~ = w o

Hence, there exists a derivation

[A ie w, with n ' = i ' n ' ~ . . . n 0 and O (n ') = p 6 = n .

This concludes the proof of Claim 2. []

It remains to show that if S ~ W L in G, then [S] =~w in G', with 0 (n ')=n .

However, also in this case this can be shown by proceeding in a way similar to
the induction part of the proof of Claim 2. It follows that G' [l/l] G. []

Next we consider the possibility to obtain a C F G in G N F which right covers
the ~-free N L R grammar. We use two transformations. Firstly, we transform e-

282 A. Nijholt

free NLR grammars to grammars which are almost GNF. For convenience of
description we assume that the input grammar is such that terminal symbols in
the righthand sides of the productions can only appear at the leftmost positions
of the righthand sides. This can be done without loss of generality. For example,
if a grammar has a production i. A~c~afl, with e+e , then we can replace this
production by A ~ H , fi<i) and H , ~ a < e) and the new grammar right covers
the original grammar. The second transformation will produce G N F grammars
from almost G N F grammars.

Definition 2.2. A CFG G =(N, Z, P, S) is said to be an almost G N F grammar if
for any production A ~ ~ in P either

(i) ~eX, or
(ii) e e N N + and rhs(l: e)~_Z.

Algorithm 2.2. Input. A N L R grammar G=(N, 2, P,S) such that p c_N
x (XN*uNN+) . Output. An almost GNF grammar G' =(N', Z, P', [S]), G' If/g] G.

Method. The set P' will contain all productions introduced below. The set N' will
contain [S], all symbols of [N] which appear in the productions and some special
indexed symbols H. Initially set P'=O.

(i) For each production of the form i . S ~ a in P with aeX, ad d [S] -~a< i)
to P'.

(ii) For each pair Or, p), 7r =SX1 . . . X ,~ CH(S) and p = i o i~... i,_ I~LP(zr),
n > 1, add

[S] ~H,._, ~([X._, i ._ , X .] . . . [S i o X,])@>
and

H,~

to P'. Here, p = i,_ 1 if i,_ 1 "X,_ 1 ~ X . e P and p = e otherwise.
(iii) Let i.A---,~Xo~o be in P, e#~. For each pair (re, p), rc

= X o X1 ... X , e CH(Xo) and p = i o i, ... i ,_, eLP(n), the following two cases are
distinguished:

(1) n = l , qo=e, and ~([XoioXx])=e; add[A i ~] ~ X .< i o i) to P'.
(2) otherwise, add

[Aic~] -~Hi,_, ~([X,_ 1 i, 1 Xn].. . [Xo i0 X1] [AiuXo])<P>
and

Hi._1-~X. <q)

to P', where p=i if i.A--+~X o is in P and p=e otherwise, and q=i._, if
i~_,.X._,~X.eP and q--e otherwise. []

Lemma 2.2. Any e-free NLR grammar G can be transformed to an almost GNF
grammar G' such that G' [F/Y] G.

Proof. Without loss of generality we may assume that G does not have single
productions. We use Algorithm 2.2 to transform G to a grammar G'. By
construction G' is almost GNF.

Claim 1. Cover homomorphism ~, implicitly defined in the algorithm, is well-
defined.

Normal Form Covers for Context Free Grammars 283

Proof of Claim 1. To verify that for any pair p and p' of productions in P' it
follows that if ~ (p)=n and ~k(p')=n', with n:~n' then p4:p'. This is straightfor-
ward to verify and therefore it is omitted. []

In the following claims 9: AG' ~A~ is defined by letting, for any pEA~,, ~o(p)
= n R iff O(p)----n.

Claim 2. If [Ai~] 7' ,p(~') �9 > ~ W . R " w t h e n A g

Proof of Claim 2. The proof is by induction on In'l.

Basis. If 17(1 = 1 then n '= [Ai~] ~ a (j i) . In this case there is a derivation

i j
A =~ c~X o for 7 ~a, XoeN.

Induction. Assume In'[=m, m > l and assume the property holds for all right-
most derivations with lengths less than m. Let

p' . [Ai~] ~ Hi._, ~([X,_~ i,_~ X,] ... IX o i o X~] [AiotXo])

be the first production which is used in the derivation [Ai~] '~' = ~ w. Hence, we

may write w = X , x and n'=p'Tq', where q'=Hi,_, ~ X . . Then we have

[Ai~] + Hi, , ~([Xn_ 1 in_ 1X,] . . . FX 0 ioX1] [A i c (X o]) + ...
~i q '

...==~" Hi, lX, X,_ l . . . X 1 X o ~ XnXnXn_ 1 . . .X 1X o=W ,

such that

(a)

(b)

(c)

and
(d) q'. Hi,_l ~ X ,

with p' n o n I ... n,q' =P'Tq' =n'.
It follows from the induction hypothesis that

~o(p'no)
(a)' A R r- ~XoXo, with either ~o(p')=e or no=Xo=e,

~(~" XkX k, l < k < n - l , and (b)' X k_ 1 R -"
q T (n n q ') _

(c)' X . _ l R :" X"X"' with either ~o(q')=e or

A *(~')'-c(w. []
R

if ~([AiaXo]) 4: e then [Ai~Xo] =o =:~ Xo, otherwise x o = n o = e,

[X,_ 1 ik- 1 X,] + Xk, 1 < k < n - 1,

if ~([X._ 1 i,_ 1 X,]) + e then IX,_ a i,_ 1 X,] ~ x., otherwise n. = x , = ~,

n . = x . = e . Thus,

Claim 3. Assume that i.A--*eXo~o is in P and A ~ e w . Then there exists
R 7'

n'eA*, such that [Aic(]==~ w and q~(n')=izc.

Proof of Claim 3. The proof is by induction on Inl.

284

Basis. If Ir~[= 1 then, with r~. X o ~ w in P, weZ, we have

i

A =:> ~X o : ~ ~w
R

in G, and by construction of G'

A. Nijholt

i' [Ai~] ~ w,

with ~p(i') = in.

Induction. Assume 17z[> 1. We factorize

i

A~R ~ X ~

into
i

A =~ ~Xo~ p,
R

P l
(o = ~ v l, and X o @ a V o,

where aVoVl=W. Since X o e N we have Ipll<[~l and from the induction hy-
pothesis we obtain, if ~p + e,

[Aic~Xo] + vl, with q)(p'l)=ipl .

Moreover, there exist productions i k. X k ~ X k + 1 q)k, O < k < - n - 1 and X , = a ,
such that

7~ k

X k + X k + ~ (O k : = ~ X k + l W k , with O<_k<_n-1 and such that I~kl<lrcl, (i)

hence

[X k i k X k + l] : : ~ % and q~(rck)=iku k

i n - I ~ n 1
(ii) X,_.,===~a(oR , , ~ a w . R , -1 , such that Ire, xl <lr~l, hence, if ~0. ~= e,

I X , l i , l a] ~ w , _ l , and q~(r~',_l)=z,_lTr._l

(iii) w,_ t ... wl wo=v o and iorcoil rt 1 . . . i . l r t ,_ l=PO .

It follows that in P' there exists a production

p'. [Aic~]--*H~,_, ~([X, x i , - l a] ... [X o i o X o] [a i ~ X o])

g'

and a derivation [Aic~] =~ w, such that
t t t t (a) w=avov 1, r (=p'p lTZo. . . r t ,_ lq , with q' is Hi, l ~ a .

(b) q)(p'p'l)=ip~,

q)(rC'o...rt',_x)=iortoix...i. 2 re,_ 2,

q)(r(,_lq')=i . 1re,_1, and i 0 1 Z o i l . . . i n _ z T C n _ 2 i n _ l ~ Z n l=P 0 �9

Hence, q~(Tz')=ip~ po =irc. []

Normal Form Covers for Context Free Grammars 285

Now it is not difficult to verify that G'[F/F] G. We leave the details to the

reader and we only mention that if IS] 7 w then one should distinguish the first

production from the remainder of the derivation. A similar argument can be
used for the reverse direction (Condition (ii) of the cover definition). This
concludes the proof of Lemma 2.2. []

Next we show that any almost G N F grammar can be transformed to a G N F
grammar. This is done in the following algorithm. The newly obtained grammar
will right cover the original grammar.

Algorithm 2.3. Input. An almost GNF grammar G = (N, Z, P, S). Output. A GNF
grammar G'= (N', Z, P', S) such that G' [V/F] G. Method. We use two auxiliary sets,
No and Po. Initially set N '= N, N o = 0 and

Po = {A ~ ~(i) [i. A ~ ~ is in P and ~ Z } .

Step 1: For each production i . A - * B C ~ in P (with B, C~N and ~ N *) the
following is done.

(i) I f j . C ~ D f l E is in P (with D, E e N and fleN*) then, for any pair of
productions k. B + a and l- D ---r b in P add

a ~ a H , , fl[Ej] ~(i)
and

H k l ~ b (k l)

to Po. Add [Ej] to N O and [Ej] and Hkz tO N'.
(ii) I f j . C ~ b is in P, then, for any production k. E ~ a add

A -~aHk~a(i)

and
U k j ~ b (k j)

to P0. Add Hkj to N'.

Step 2: Set P'=Po. For each [Ej] in N o add [E j] ~ (/ j } to P' for each
production E-- ,~(i) in Po-

Step 3: Remove the useless symbols. []

The general idea of the transformation is displayed in Fig. 2.

Lemma 2.3. Any almost GNF grammar G can be transformed to a GNF grammar
G' such that G'[V/V] G.

Proof. Let ~: dw-*A* be the cover homomorphism which is defined in the
algorithm. As we did in the proof of Lemma 2.2 we will use homomorphism ~o
instead of ~. Two claims are used in the proof of Lemma 2.3. For any triple of
strings a, fl and 7 with ~=fl? we have that a/3 denotes ~.

Claim I. Assume A~N.

286 A. Nijholt

A

~ '1
b

=>

A

< k [> < . j >

b

Fig. 2. Step 1 of Algorithm 2.3

~' G' ~(~') (i) If A =~ w in then A > w in G.
R R

~' G' ~ w in G, with 6=tp(n')/k. (ii) I f [Ak] =~ w in then A R

Proof of Claim 1. The proof is by induct ion on [n'l.

Basis. If [n'l = 1 then we have

(i) Produc t ion A ~ w is bo th in P and P' , hence the claim is trivially
satisfied.

(ii) Product ion n ' . [Ak] ~ w is in P'. F r o m step 2 of the a lgor i thm it follows

that ~o(n')=ki, where i. A ~ w is in P. Therefore A ~ w in G, with 6=q~(n')/k.
R

Induction. Consider case (i). Assume A = ~ w in G', with In ' l>1 . The first
R

produc t ion which is used in this der ivat ion is either of the form
i'. A ~aHkl fl[Ej] e (i) or i'. A ~aHkj e (i) . Notice that in bo th cases we can
complete ly determine f rom which two product ions of P such a p roduc t ion has
been constructed. We cont inue with the former case. The case in which
A ~ a H k j a is the first p roduc t ion can be t reated similarly and is therefore
omit ted. N o w we can factorize the der ivat ion in the following way:

(a) i'. A ---~aHkl fl[Ej] ~, with q~(i') = i. A ~BCct, where B is the lefthand side
of p roduc t ion k in P and C is the lef thand side of p roduc t ion j in P.

(b) ~ = ~ w o, and f rom the induct ion hypothesis it follows that ~ - ~ w 0 in G,

where n o = ~o(n~).

(c) [E j] = ~ w1, and f rom the induct ion hypothesis it follows that E==~R wl

in G, where n 1 = ~o(n'0/j.

(d) f l = ~ w 2, and f rom the induct ion hypothesis it follows that fl==~ w 2 in G,

where n 2 = ~0(~).
(e) q'. Hk~ ~b , where we assume that b ~ S is the f ighthand side of p roduc t ion

1 in P. Moreover , q~(q')= lk.

It follows that i n o n 1 n z q = n , abw2 w 1Wo=W and (p(n')=inojn 1 n21k, such
that (if we assume that D is the lefthand side of p roduc t ion t)

B C o ~ BCw o BDflEwo== ~ BDflw 1 w o ...
R R

~2
...----~_ B D w 2 w l w o + B b w z W l W o + a b W z W l W o = W .

R

Normal Form Covers for Context Free Grammars 287

This concludes the verification of case (i). Case (ii) can be verified along similar
lines and therefore this case is omitted. This concludes the induction part of the
proof and therefore the claim is proved. []

Claim 2. Consider CFG G' before step 3 of the algorithm is executed. If A :2~ w
R

~' G ! in G then there exists n'~A*, such that A =* w in and ~0(g')= n.
g

Proof of Claim 2. In the proof which may proceed by induction on]n] one

should distinguish that A =*R w in G can also imply [Ak] =~ w, for some keA G

and with q~(n')/k =n. We omit the proof since it proceeds along the same lines as
the proof of Claim 1. []

From these two claims it is now clear that G' [Uf] G. []

The next theorem follows from the previous results.

Theorem 2.4. Any e-free CFG G can be transformed to a CFG G' in GNF such
that G' [f/f] G.

Proof For any e-free CFG G we can find an e-free N LR grammar Go (Corollary
2.3) such that G o [f/f] G. The single productions of G o can be eliminated in such
a way that the right cover is preserved (Theorem 2.2) and the new grammar,
which is also non-left-recursive (Observation 2.3) can be transformed with
Algorithm 2.2 followed by Algorithm 2.3 to a grammar G' which is in G N F and
which has the property G' [f/f] G. []

Now that we have seen this positive cover result one can ask for analogous
results for left covers and left-to-right covers. Unfortunately these results can not
be given in such a general way as the right cover result. We will extensively
return to this problem in the forthcoming sections. A few positive results on l/f-
and Ul-covers will be presented here.

Lemma 2.4. Any CFG G in GNF can be transformed to a CFG G' in GNF such
that G' [I/f] G.

Proof Assume that G=(N, X, P, S) is in GNF. Define GR =(N, A G, PR, S) with

PR = {A--*~i [i. A ~ a e P , a6X}.

Define a homomorphism ~0: A G ~ X by letting q~(i)=a if i. A--*ea is in P. Notice
that G n is unambiguous. Find for G R an equivalent grammar GL=(N', A G, Ps S')
in G N F (for example, apply to G R a transformation to GNF). Grammar G' and
the associated cover homomorphism 0 is obtained from G L by defining

P'= {i' . A' ~a~ ' (,j) [i' . A'--*J~' ~PL and ~o(j)=a}.

We may conclude that G' [l/f] G if we have verified that ~ is well-defined, that is,
if i'. A ' ~ i c (a n d j ' . A'--*ja' are in PL, then i:#j (hence, i'+j') implies q~(i)* q~(j).

But this property is trivially satisfied since otherwise we are able to generate
sentences of the form n 1 ig 2 and n l j g 2 in L(GL) and since ~o(n 1 in2)=q~(nljn2)
=weL(G) we have two different right parses for the same sentence w. Since
these two right parses are only different in one production this is
impossible. []

288 A. Nijholt

The usefulness of this lemma will become clear with the following obser-
vation. We know (Theorem 2.3 and ' symmetry ') that any z-free N R R grammar
G can be transformed to a C F G G o in G N F such that Go[F/F] G. From Lemma
2.4 it follows that we can transform G o to a g rammar G' in G N F such that
G' [l/f] G o and from transitivity we obtain G' [I/f] G.

Corollary 2.4. Any e-free N R R grammar G can be transformed to a CFG G' in
GNF such that G' [l/F] G.

A similar result has been obtained in Ukkonen [31 and unpublished].
Once we have a g rammar in G N F there is still one more useful transfor-

mation which can be applied. The following algorithm is a slight generalization
of a method which was first used in [-23].

Algorithm 2.4. Input. A CFG G = (N , Z , P , S) in GNF. Output. A CFG G'
=(N', S, P', S) in GNF such that G'[g/l] G. Method. Initially set P'
= { A ~ a (i) l i . A ~ a e P , aeZ} and N ' = N . The indexed symbols H which are
introduced below are added to N'.

(i) For each production of the form i . A ~ a ~ in P, e:~e, the following is
done. Assume e =BT, 7~N*. For any Jk" B ~ b k 7k in P, 1 < k < Irhs(B)[add

A --~aHij k 7k 7 (e)
and

Hij k -+b k (i jk)
to P'.

(ii) Remove all useless symbols. []

Theorem 2.5. Any CFG G in GNF can be transformed to a CFG G' in GNF such
that G' [g/l] G.

Proof. We use two claims to prove the theorem. Homomorph i sm q~ is defined as
in the proof of Lemma 2.2.

Claim 1. If A ~' G' ~o~') ;. w in then A :- w in G.
R L

Proof. Notice that AeN. The proof is by induction on Irc'l.

Basis. If In'[= 1 then cp(n')=rt' and the result is clear.

Induction. Assume In'[= m, m > 1. For A ==~ w we may write
R

i ' P ' t J '
A :=~ aHij k 7k 7 = ~ aHi~k w =:~ a b w',

where i' p'j'=rt' and abw'=w.
Since IP'I < m and 7kT~N* it is easily verified with the help of the induction

CtP'):.w' in G. Moreover, q~(i')=e and ~o(j')=jki, with hypothesis that 7k~ L

j k ' B ~ b Y k and i . A ~ a B ~ . Hence, A '~t~'):.win G. []
L

In the following claim we consider g rammar G' before step (ii) of the
algorithm is executed.

Normal Form Covers for Context Free Grammars 289

Claim 2. If A L:-w in G then there exists zt'~A*, such that A=~wR in G' and
~o(~')=~.

Proof of Claim 2. The argument is similar to that of Claim 1. Notice that if
Ircl > 1 then we can write

i ~ j ~ P ' 1 ,
A==~ ao7== ~ aoTkT==~ aow =w.

The details are left to the reader. []

In both claims we may take A = S and we can conclude that G'[Ul] G. []

Theorem 2.5 will be used in the construct ion of the cover-table.

3. Counter Example Grammar

In U k k o n e n [33] it is shown that g r a m m a r G with product ions

S --* OSLIORL

R ~ I R L [1

L ~ E

can not be left covered with an e-free CFG. N o w consider C F G G O with
product ions

1. S ~ O S L

2. S ~ I R L

3. R ~ I R L

4. R ~ 2

5. L ~ e .

Clearly, if G does not have an e-free C F G which left covers G then also G O does
not have such a grammar . G r a m m a r G O will turn out to be useful if we construct
the cover table. 3

In Table 1 we list the product ions of a C F G G N which is such that
GN[UI]G o. G r a m m a r G N is in G N F and since G~[-UI]G o we may immediately
conclude that G N does not have an e-free C F G G' such that G' [l/-/] G N.

We have a few notes on special properties of the g rammars G o and G N.
G r a m m a r G o is both LL(1) and strict deterministic (of degree 1) (cf. Harr i son and
Havel [9]). Therefore the following result is obvious.

Corollary 3.1. a) Not every LL(k) grammar can be left covered with an e-free
grammar.

b) Not every strict deterministic grammar can be left covered with an e-free
grammar.

3 In Ukkonen [-33] not only g rammar G but also other counter examples for possible cover
results are given

290 A. Nijholt

Table 1. Grammar G N

S~OHooS (55) Hoo~0 (11)
S~OHolR <55> Ho,--'l (12)
S~IHI,R (55) H,,--,I (23)
S--+IH,2 (5) HI 2---2 (24)
R-*IQI~R (55) O , l ~ l (33)
R---*IQ12 (5) Q,2--.2 (34)
R--*2 (4>

A consequence is that left covering G N F grammars can not be obtained.
Notice that for LL(k) grammars this result is in contradiction with excercise
8.1.20 in Aho and Ullman [-1].

Both LL(k) and strict deterministic grammars are LR(k) grammars. There-
fore the negative results hold for LR(k) grammars as well.

Now we consider g rammar G N. This g rammar is defined in such a way that
it is both LL(2) and strict deterministic.

Corollary 3.2. a) Not every e-free LL(k) grammar can be left-to-right covered with
an e-free grammar.

b) Not every e-free strict deterministic grammar can be left-to-right covered
with an e-free grammar.

Also in this case the results hold for LR(k) grammars in G N F as well.

4. The Cover-Table

Once more we mention that the context-flee grammars which we consider are
cycle-free, they do not have useless symbols and if the empty word is in the
language then there is exactly one leftmost derivation for this word. Moreover,
we will not refer to the special production So---,SA_ which may be introduced in
the case of elimination of single productions. The cover-table has five rows
(ARB, e-FREE, NLR, e-FREE NLR, GNF) and seven columns (ARB, e-FREE,
NLR, e-FREE NLR, GNF, N R R and e-FREE NRR). Each row has four sub-
rows, one for each type of cover which we consider (l/l, l/F, F/l and U~). We use a
simple reference system to the entries of the table. Except for the ARB-row all
places are labeled with either letters (a p.) or numbers (1 96.).

The details of the construction of the table can be found in the Appendix.
Example. Entry 25. is no. This means that not every e-free grammar can be left
covered with a N L R grammar.

5. Conclusions

In the present paper we have given an overview of cover results for some normal
forms for context-free grammars. Similar cover results as obtained in this paper

Normal Form Covers for Context Free Grammars 291

Table 2. Cover-table

G , ~ COVER ARB e-FREE N LR e-FREE G N F N R R e-FREE
N LR N R R

ARB l/l yes yes yes yes yes yes yes
1/~ yes yes yes yes yes yes yes
~/l yes yes yes yes yes yes yes
UF yes yes yes yes yes yes yes

e-FREE 1/l a. no 1. yes 5. no 9. yes 13. yes 17. yes 21. yes
l/P- b. no 2. no 6. no 10. no 14. no 18. yes 22. yes
F/l c. no 3. no 7. yes 11. yes 15. yes 19. no 23. no
f/~" d. no 4. yes 8. yes 12. yes 16. yes 20. no 24. yes

N L R l/l e. no 25. no 29. yes 33. yes 37. yes 41. no 45. no
l/~ f. no 26. yes 30. yes 34. yes 38. yes 42. no 46. yes
F/l g. no 27. no 31. yes 35. yes 39. yes 43. no 47. no
F/~- h. no 28. yes 32. yes 36. yes 40. yes 44. no 48. yes

e-FREE l/l i. no 49. no 53. no 57. yes 61. yes 65. no 69. no
N L R l/~- j. no 50. no 54. no 58. no 62. no 66. no 70. yes

~/l k. no 51. no 55. yes 59. yes 63. yes 67. no 71. no
P-/f 1. no 52. yes 56. yes 60. yes 64. yes 68. no 72. yes

G N F Ill m. no 73. no 77. no 81. yes 85. yes 89. no 93. no
l/~ n. no 74. no 78. no 82. no 86. no 90. no 94. yes
Ul o. no 75. no 79. yes 83. yes 87. yes 91. no 95. no
~/P- p. no 76. yes 80. yes 84. yes 88. yes 92. no 96. yes

will be given in forthcoming papers for regular and deterministically parsable
grammars.

The main problems which had to be solved in order to obtain the covertable
of Sect. 4 were the elimination of left recursion, the elimination of e-productions
and the problem of finding a right covering grammar in Greibach normal form
from an e-free non-left-recursive grammar. It would be interesting to have a
thorough comparison between results for grammar covers and for grammar
functors. Unfortunately the elimination of left-recursion does not admit a
grammar functor between the original and the non-left-recursive grammar (see
e.g. [2]). This does not imply, as has become clear in Hotz [12, 13] that the
grammar functor approach does not have useful applications when considering
normal form transformations.

Acknowledgements. I would like to thank one of the referees for pointing out a few errors in the
manuscript and for suggestions concerning the presentation of the results.

References

1. Aho AV, Ullman JD (1972/1973) The theory of parsing, translation and compiling, Vol. I and II,
Prentice Hall, Englewood Cliffs, NJ

2. Benson DB (1977) Some preservation properties of normal form grammars. SIAM J Comput

6:381-402

292 A. Nijholt

3. Cremers AB, Ginsburg S (1975) Context-free grammar forms. J. Comput. System Sci. 11:86-117
4. Foster JM (1968) A syntax improving program. Comput J. 11:31-34
5. Foster JM (1970) Automatic syntactic analysis. MacDonald, London
6. Gray JN, Harrison MA (1969) Single pass precedence analysis, IEEE Conf. Record of the 10th

Annual Symposium on Switching and Automata Theory, 106-117
7. Gray JN, Harrison MA (1972) On the covering and reduction problems for context-free

grammars. J. Assoc. Comput. Mach. 19:385-395
8. Griffiths TV, Petrick SR (1965) On the relative efficiencies of context-free grammar recognizers.

Comm. ACM 8, 289-300
9. Harrison MA, Havel IM (1973) Strict deterministic grammars. J. Comput. System Sci. 7, 237-277

10. Hotz G (1965) Eine Algebraisierung des Syntheseproblems yon Schaltkreisen, I und II. Elektron
Informationsverarbeit Kybernetik 1 : 185-231

11. Hotz G (1966) Eindeutigkeit und Mehrdeutigkeit formaler Sprachen. Elektron Informationsver-
arbeit Kybernetik 2:235-246

12. Hotz G (1978) Normal-form transformations of context-free grammars. Acta Cybernet. 4:65-84
13. Hotz G, Ross RJ (1979) LL(k)- und LR(k)-Invarianz yon kontextfreien Grammatiken unter einer

Transformation auf Greibach Normalform. Elektron Informationsverarbeit Kybernetik 15:73-86
14. Hunt HB, Rosenkrantz DJ (1977) Complexity of grammatical similarity relations. Proc. of the

Conf. on Theoretical Computer Science, Waterloo 139-145
15. Hunt HB, Rosenkrantz D J, Szymanski TG (1976) The covering problem for linear context-free

grammars. Theor. Comput. Sci. 2:361-382
16. Hunt HB, Rosenkrantz DJ, Szymanski TG (1976) On the equivalence, containment and covering

problems for regular and context-free languages. J. Comput. System Sci. 12:222-268
17. Kuno S (1966) The augmented predictive analyzer for context-free languages - Its relative ef-

ficiency. Comm. ACM 9:810-823
18. Kurki-Suonio R (1966) On top-to-bottom recognition and left recursion. Comm. ACM 9:527-

528
19. Mickunas MD (1976) On the complete covering problem for LR(k) grammars. J. Assoc. Comput.

Mach. 23:17-30
20. Mickunas MD, Lancaster RL, Schneider VB (1976) Transforming LR(k) grammars to LR(1),

SLR(1) and (1, 1) bounded right context grammars. J. Assoc. Comput. Mach. 23:511-533
21. Nijholt A (1979) Grammar functors and covers: From non-left-recursive to Greibach normal

form grammars. BIT 19:73-78
22. Nijholt A (1977) On the covering of left-recursive grammars. Conf. Record of the 4th ACM

Symposium on Principles of Programming Languages 86-96
23. Nijholt A (1979) From left regular to Greibach normal form grammars. Information Processing

Lett. 9:51-55
24. Nijholt A (1979) Structure preserving transformations on non-left-recursive grammars. Proc. 6th

Int. Coll. on Automata, Languages and Programming. Maurer HA (ed) Springer, Berlin
Heidelberg New York (Lecture Notes in Computer Science Vol. 71 p 446)

25. Nijholt A (1977) On the covering of parsable grammars. J. Comput. System Sci. 15:99-110
26. Nijholt A (1979) A survey of normal form covers for regular grammars. Informatica report 52,

Vrije Universiteit, Amsterdam
27. Paull MC, Unger SH (1968) Structural equivalence of context-free grammars. J. Comput. System

Sci. 2:427-463
28. Ross RJ, Hotz G, Benson DB (1978) A general Greibach normal form transformation. CS-78-

048, Washington State University, Pullman
29. Soisalon-Soininen E (1979) On the covering problem for left-recursive grammars. Theor. Com-

put. Sci. 8:1-12
30. Stearns RE (1971) Deterministic top-down parsing. Proc. 5th Princeton Conf. on Information

Sciences and Systems 182-188
31. Ukkonen E (1978) Transformations to produce certain covering grammars. Proc. 7th Int.

Sympos. on Mathematical Foundations of Computer Science. Winkowski J (ed) Springer, Berlin
Heidelberg New York (Lecture Notes in Computer Science Vol. 84 p 516)

32. Ukkonen E (1979) Remarks on the non-existence of some covering grammars. Proc. 4th GI
Conference on Theoretical Computer Science. Weihrauch K (ed) Springer, Berlin Heidelberg
New York (Lecture Notes in Computer Science Vol. 67 p 298)

Normal Form Covers for Context Free Grammars 293

33. Ukkonen E (1978) The non-existence of some covering context-free grammars. Information
Processing Lett. 8:187-192

34. Wood D (1969) The normal form theorem - another proof. Comput. J. 12:139-147

Received April 19, 1979; revised February 11, 1980

Appendix

In this Append ix we give the details of the construct ion of the cover- table
(Table 2) of Sect. 4.

A) All the l/l and ~-/~- entries of the A R B - r o w are trivially yes. The l/F and Ul

entries are yes because of Theo rem 2.1.
B) Trivially yes are also the entries 1., 4., 9 , 12., 13., 16, 21, 24., 29., 32., 33., 36.,

37. and 40. Because of Theo rem 2.1 and Observa t ion 2.2 the entries 30., 31., 34.,
35., 38. and 39. are yes. Trivially yes are also the entries 57., 60., 61., 64., 85. and
88.

C) Due to g r a m m a r Go we have that entry a. is no and f rom ' s y m m e t r y ' it
follows that entry d. is no. Therefore, also i., 1., m. and p. are no. Since G o is
N L R it follows that entry 5. is no and again f rom ' s y m m e t r y ' entry 20. is no.

Thus, entries 68. and 92. are no.

D) Next we consider g r a m m a r G N. This g r a m m a r has the p roper ty that
GN[Ul] G o. Since G o has no e-free g r a m m a r which left covers G o it follows that
G N does not have an e-free g r a m m a r which left-to-right covers G N. Moreover ,
G N is in G N F , hence, the entries 14., 10., 6., 2. and b. are all no. Because of
' s y m m e t r y ' it follows that the entries c., 3., 19. and 23. are no.

We have the following immedia te consequences.

(i) Since entries b. and c. are no it follows that entries j., k., n. and o. are no.

(ii) Since entries 2. and 3. are no it follows that entries 50., 51., 74. and 75.
are no.

(iii) Since entries 5. and 6. are no it follows that entries 53., 54., 77. and 78.
are no.

(iv) Since entries 10. and 14. are no it follows that entries 58., 82., 62. and 86.
are no.

(v) Since entries 19. and 23. are no it follows that entries 67, 91., 71. and 95.
are no.

E) Due to the Corol lar ies 2.1 and 2.3 the entries 26., 28. and 52. are yes.

F r o m Theo rem 2.3 it follows that entry 81. is yes. F r o m Theo rem 2.4 it follows
that entries 76., 84. and 96. are yes. Since entry 96. is yes it follows that entries
72. and 48. are yes. F r o m Corol la ry 2.4 it follows that entry 94. is yes and,
consequently, entries 70, 46. and 22. are yes. Since the entries 81. and 85. are yes

T h e o r e m 2.5 tells us that entries 83. and 87. are yes and, consequently, entries
59., 11., 63. and 15. are yes.

With some simple observat ions, in which T h e o r e m 2.5 can be used to obta in
contradict ions, it follows that the entries 73, 90., 93. and 89. are no.

Since the entries 73, 89, 93. and 90. are no we have that entries 49., 69, 65.
and 66. are no. Otherwise a contradic t ion with Theo rem 2.3 can be obtained.

294 A. Nijholt

F) Because of Corollary 2.2 we have that entry 8. is yes and from ' symmet ry '
it follows that entry 17. is yes. The assumption that entries h. and g. are yes
leads, with the help of Corollary 2.2, to a contradiction with entries d. and c. are
no, respectively. Similarly, with Corollary 2.2 and since entry 31. is yes, we must
conclude that entries f. and e. are no in order to avoid contradictions with h. and
g., respectively.

Since both entry 19. and entry 20. are no we obtain with the same type of
argument that entries 41., 42., 43. and 44. are no. Entry 56. is yes because of
entries 8. and 52. are yes.

The entries 25. and 27. are both no since otherwise a contradiction can be
obtained (via entry 31. and 56. in the case of entry 25. and via entry 56. in the
case of entry 27.) with entry 3. is no. For any N L R grammar G there exists a
N L R grammar G' such that G' [Ul] G. G r a m m a r G' has an e-free N L R grammar
G" such that G" IV~l] G. Hence, entry 55. is yes and therefore also entry 7. is yes

and ('symmetry ') entry 18. is yes.

Since entries 55. and 56. are yes it follows (with entry 84. is yes) that entries
79. and 80. are yes.

Both entries 45. and 47. are no because otherwise, with the help of 55. and
56., a contradiction with entry 71. is no is obtained. This concludes the con-
struction of the cover-table.

