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Planar Graph Coloring Avoiding Monochromatic
Subgraphs: Trees and Paths Make It Difficult1

Hajo Broersma,2 Fedor V. Fomin,3 Jan Kratochvı́l,4 and Gerhard J. Woeginger5

Abstract. We consider the problem of coloring a planar graph with the minimum number of colors so
that each color class avoids one or more forbidden graphs as subgraphs. We perform a detailed study of the
computational complexity of this problem.

We present a complete picture for the case with a single forbidden connected (induced or noninduced)
subgraph. The 2-coloring problem is NP-hard if the forbidden subgraph is a tree with at least two edges, and
it is polynomially solvable in all other cases. The 3-coloring problem is NP-hard if the forbidden subgraph
is a path with at least one edge, and it is polynomially solvable in all other cases. We also derive results for
several forbidden sets of cycles. In particular, we prove that it is NP-complete to decide if a planar graph can
be 2-colored so that no cycle of length at most 5 is monochromatic.

Key Words. Graph coloring, Graph partitioning, Forbidden subgraph, Planar graph, Computational
complexity.

1. Introduction. We denote by G = (V, E) a finite undirected and simple graph with
|V | = n vertices and |E | = m edges. For any nonempty subset W ⊆ V , the subgraph of
G induced by W is denoted by G[W ]. A clique of G is a nonempty subset C ⊆ V such
that all the vertices of C are mutually adjacent. A nonempty subset I ⊆ V is independent
if no two of its elements are adjacent. An r-coloring of the vertices of G is a partition
V1, V2, . . . , Vr of V ; the r sets Vj are called the color classes of the r -coloring. An
r -coloring is proper if every color class is an independent set. The chromatic number
χ(G) is the minimum integer r for which a proper r -coloring of G exists.

Evidently, an r -coloring is proper if and only if for every color class Vj , the induced
subgraph G[Vj ] does not contain a subgraph isomorphic to P2. (We use Pk to denote the
path on k vertices.) This observation leads to a number of interesting generalizations of
the classical graph coloring concept. One such generalization was suggested by Harary
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[24]: Given a graph property π , a positive integer r , and a graph G, a π r -coloring
of G is a (not necessarily proper) r -coloring in which each subgraph induced by a
color class has property π . This generalization has been studied for the cases where the
graph property π is acyclic, or planar, or perfect, or a path of length at most k, or a
clique of size at most k. We refer the reader to the work of Brown and Corneil [7]–[9],
Chartrand et al. [11]–[13], Farrguia [16], and Sachs [29] for more information on these
variants.

In this paper we investigate graph colorings where the property π can be defined
via some (maybe infinite) list of forbidden induced subgraphs. This naturally leads to
the notion of F-free colorings. Let F = {F1, F2, . . .} be the set of so-called forbidden
graphs. Throughout the paper we assume that the set F is nonempty, and that all graphs
inF are connected and contain at least one edge. Moreover, to avoid technical difficulties
in the proofs we assume that no graph of F is a proper subgraph of another graph of F .
For a graph G, a (not necessarily proper) r -coloring with color classes V1, V2, . . . , Vr is
called weakly F-free, if for all 1 ≤ j ≤ r , the graph G[Vj ] does not contain any graph
fromF as an induced subgraph. Similarly, we say that an r -coloring is stronglyF-free if
G[Vj ] does not contain any graph from F as an (induced or noninduced) subgraph. The
smallest possible number of colors in a weakly (respectively, strongly) F-free coloring
of a graph G is called the weakly (respectively, strongly) F-free chromatic number; it is
denoted by χW(F,G) (respectively, by χS(F,G)).

In the cases where F = {F} consists of a single graph F , we sometimes simplify
the notation and omit the curly brackets: We write F-free short for {F}-free, χW(F,G)
short for χW({F},G), and χS(F,G) short for χS({F},G). With this notation χ(G) =
χS(P2,G) = χW(P2,G) holds for every graph G, and hence also

χW(F,G) ≤ χS(F,G) ≤ χ(G).
It is easy to construct examples where both inequalities are strict. For instance, for
F = {P3} (the path on three vertices) and G = C3 (the cycle on three vertices) we have
χ(G) = 3, χS(P3,G) = 2, and χW(P3,G) = 1.

Our main concern in the paper is planar graphs. Recall that a graph is planar if it
can be drawn in the (Euclidean) plane without intersections of edges. Such a drawing is
referred to as a plane graph. Hence a graph G is planar if and only if there exists a plane
graph isomorphic to G. A planar graph is called outerplanar if it has a drawing such that
all vertices lie on the boundary of the unbounded face (this face is usually referred to as
the outer face).

1.1. Previous Results. The literature contains quite a number of papers on weakly and
stronglyF-free colorings of graphs. One of the most general results is due to Achlioptas
[1]: For any graph F with at least three vertices and for any r ≥ 2, the problem of
deciding whether a given input graph has a weakly F-free r -coloring is NP-hard. We often
use weakly (strongly) F-free r -coloring as shorthand for the corresponding decision
problem.

The special case of weakly P3-free coloring is known as the subcoloring problem in
the literature. It has been studied by Broere and Mynhardt [4], by Albertson et al. [2],
by Fiala et al. [18], or Gimbel and Hartman [21], and by Broersma et al. [6]. We further
utilize especially the following result:
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PROPOSITION 1.1 [18]. Weakly P3-free 2-coloring is NP-hard for triangle-free planar
graphs.

A (1, 2)-subcoloring of G is a partition of V into two sets S1 and S2 such that
S1 induces an independent set and S2 induces a subgraph consisting of a matching
and some (possibly none) isolated vertices. Le and Le [27] proved that recognizing
if a graph is (1, 2)-subcolorable is NP-hard even for cubic triangle-free planar
graphs.

The case of weakly P4-free coloring has been investigated by Gimbel and Nešetřil [22]
who study the problem of partitioning the vertex set of a graph into induced cographs.
Since cographs are exactly the graphs without an induced P4, the graph parameter studied
in [22] equals the weakly P4-free chromatic number of a graph. In [22] it is proved
that the problems of deciding χW(P4,G) ≤ 2, χW(P4,G) = 3, χW(P4,G) ≤ 3, and
χW(P4,G) = 4 are all NP-hard and/or coNP-hard for planar graphs. The work of Hoàng
and Le [25] on weakly P4-free 2-colorings was motivated by the Strong Perfect Graph
Conjecture. Among other results, they show that weakly P4-free 2-coloring is NP-hard
for comparability graphs.

A notion that is closely related to strongly F-free r -coloring is the so-called defective
graph coloring. A defective (k, d)-coloring of a graph is a k-coloring in which each color
class induces a subgraph with maximum degree at most d. Defective colorings have been
studied for example by Archdeacon [3], by Cowen et al. [14], and by Frick and Henning
[19]. Cowen et al. [15] have shown that the defective (3, 1)-coloring problem and the
defective (2, d)-coloring problem for any d ≥ 1 are NP-hard even for planar graphs.
We observe that for any k, defective (k, 1)-coloring is equivalent to strongly P3-free
k-coloring, and hence we derive the following proposition.

PROPOSITION 1.2 [15].

(i) Strongly P3-free 2-coloring is NP-hard for planar graphs.
(ii) Strongly P3-free 3-coloring is NP-hard for planar graphs.

1.2. Our Results. We perform a complexity study of weakly and strongly F-free col-
oring problems for planar graphs. By the Four Color Theorem, every planar graph G
satisfies χ(G) ≤ 4. Consequently, every planar graph also satisfies χW(F,G) ≤ 4
and χS(F,G) ≤ 4, and so we may concentrate on 2-colorings and on 3-colorings.
For the case of a single forbidden subgraph, we obtain the following results for
2-colorings:

• If the forbidden (connected) subgraph F is not a tree, then every planar graph is
strongly and hence also weakly F-free 2-colorable. Therefore, the corresponding
decision problems are trivially solvable.
• If the forbidden subgraph F = P2, then F-free 2-coloring is equivalent to proper

2-coloring. It is well known that this problem is polynomially solvable.
• If the forbidden subgraph is a tree T with at least two edges, then both weakly and

strongly T -free 2-colorings are NP-hard for planar graphs. Hence, these problems are
intractable.
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For 3-colorings with a single forbidden subgraph, we obtain the following results:

• If the forbidden (connected) subgraph F is not a path, then every planar graph is
strongly and hence also weakly F-free 3-colorable. Hence, the corresponding decision
problems are trivially solvable.
• For every path P with at least one edge, both weakly and strongly P-free 3-colorings

are NP-hard for planar graphs. Hence, these problems are intractable.

Moreover, we derive several results for 2-colorings with certain forbidden sets of
cycles:

• For the forbidden set F345 = {C3,C4,C5}, both weakly and strongly F345-free 2-
colorings are NP-hard for planar graphs. In fact for any finite setF≥345 ⊇ {C3,C4,C5}
of cycles, both weakly and stronglyF≥345-free 2-colorings are NP-hard for planar input
graphs.
• Also for the forbidden set Fcycle of all cycles, both weakly and strongly Fcycle-free

2-colorings are NP-hard for planar graphs.
• For the forbidden set Fodd of all cycles of odd lengths, every planar graph is strongly

and hence also weaklyFodd-free 2-colorable. This follows from (in fact, it is equivalent
to) the Four Color Theorem.

2. The Machinery for Establishing NP-Hardness. Throughout this section let F
denote some fixed set of forbidden planar subgraphs. We assume that all graphs inF are
connected and contain at least two edges. We also assume that no graph of F is a (not
necessarily induced) proper subgraph of another graph from F . We develop a generic
NP-hardness proof for certain types of weakly and stronglyF-free 2-coloring problems.
The crucial concept is the so-called equalizer gadget. Before we define this gadget, we
introduce the following technical concept of crossing graphs. We note that we distin-
guish between planar graphs and plane graphs (the latter being particular nonintersecting
drawings of abstract planar graphs), but we use the same notation for a plane graph and
its underlying abstract (planar) graph. When talking about more than one graph, we use
subscripts to distinguish their vertex and edge sets (i.e., VG and EG denote the vertex
and edge sets of a graph G).

DEFINITION 2.1. Given a plane graph G with outer face C and a set S ⊆ VG of vertices
on the boundary of C (referred to as contact points), we say that another plane graph H
is crossing G if the following assertions hold:

1. G ∪ H is a plane graph (i.e., no edge of G crosses any edge of H in the simultaneous
drawing of G and H ),

2. all edges of EH\EG are drawn in C ,
3. no edge of EH\EG is incident with a vertex of VG\S,
4. VH ∩ (VG\S) = ∅.

If G is a plane graph with a set S of contact points, we say that a planar graph H
may cross G if some nonintersecting planar drawing of a graph isomorphic to H is
crossing G.



Planar Graph Coloring Avoiding Monochromatic Subgraphs 347

a

b1

b2

b3

c d a b

(a) (b)

Fig. 1. Examples to illustrate Definitions 2.1 and 2.2.

In Figure 1(a) the graph H induced by the vertices b2, c and d is crossing the graph
G induced by the vertices the a, b1, b2, b3, and c with S = {c}.

DEFINITION 2.2 (Equalizer). An (a, b)-equalizer for F is a plane graph E with two
nonadjacent contact points a and b on the boundary of the outer face, which satisfies the
following properties:

(i) In every weakly F-free 2-coloring of E , a and b receive the same color.
(ii) There exists a strongly F-free 2-coloring of E such that a and b receive the same

color, whereas no monochromatic copy of a graph inF may cross E . Such a coloring
is called a good 2-coloring of E .

The graph E in Figure 1(b) is an (a, b)-equalizer for P3. In every weakly P3-free 2-
coloring of E the vertices a and b should receive the same color; otherwise a monochro-
matic P3 is unavoidable if we extend the 2-coloring. A good coloring of E can be obtained
by assigning a and b the same color and all remaining vertices of E the other color.

To understand the definition of an equalizer E better, we remark right away that if F
contains a graph with a leaf, then an F-free 2-coloring of E is good if and only if all
neighbors of the contact points in E have the color that is not assigned to the contact
points.

The rest of this section is devoted to the proof of the following (technical) main
theorem. This theorem generates a number of NP-hardness statements in subsequent
sections of the paper.

THEOREM 2.3. Let F be a set of connected planar graphs that all contain at least two
edges, such that no graph of F is a proper subgraph of another graph of F . Suppose
that

• F contains a graph on at least four vertices with a cut vertex, or a 2-connected graph
with a planar embedding with at least five vertices on the boundary of the outer face;
• there exists an (a, b)-equalizer for F .

Then deciding weakly F-free 2-colorability and deciding strongly F-free 2-colorability
are NP-hard problems for planar input graphs.
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We postpone the proof of Theorem 2.3 to Section 2.2, but first introduce some addi-
tional tools.

2.1. Gadgets for the NP-Hardness Proof. We will design a series of gadgets that all use
the equalizer gadget as an atomic component. In all constructions the only connections
between an equalizer and the rest of the constructed graph will always be via the contact
points. The use of the equalizer gadget is justified (and motivated) by the following
lemma.

LEMMA 2.4. Consider a nontrivial planar graph H and an edge xy ∈ EH . Let the
graph H+ result from H by adding a vertex-disjoint copy E of an (a, b)-equalizer to
H and then identifying vertex x with contact point a, and vertex y with contact point
b. Then H+ is a planar graph, and H+ has a strongly/weakly F-free 2-coloring if and
only if H has a strongly/weakly F-free 2-coloring in which x and y both receive the
same color.

PROOF. Since E is a plane graph with a and b on the boundary of the outer face, H+ is
also planar and it has a nonintersecting drawing such that all edges of H are drawn in the
outer face of E . For the proof of the “only if” part, observe that every strongly/weaklyF-
free 2-coloring of H+ induces a strongly/weaklyF-free 2-coloring of H . By property (i)
in Definition 2.2, this induced coloring assigns the same color to x and y. For the proof
of the “if” part, we construct a strongly/weakly F-free 2-coloring of H+: We use the
strongly/weaklyF-free 2-coloring for the subgraph H , and we color the (a, b)-equalizer
E using a good coloring in the sense of property (ii) in Definition 2.2.

The negator gadget. An (a, b)-negator forF is a plane graphN with two nonadjacent
contact points a and b on the boundary of the outer face, which satisfies the following
properties:

(i) In every weakly F-free 2-coloring of N , a and b receive different colors.
(ii) There exists a strongly F-free 2-coloring of N such that a and b receive different

colors, whereas no monochromatic copy of a graph in F may cross N . Such a
coloring is called a good 2-coloring of N .

Next we show how to construct such an (a, b)-negator from (a, b)-equalizers. We choose
an arbitrary graph F ∈ F , and take some fixed planar embedding of F to form the so-
called skeleton of the negator. Let a′ and b′ denote two vertices on the boundary of the
outer face of F . We partition VF into two disjoint sets V1 and V2 in such a way that both
F[V1] and F[V2] (the subgraphs of F induced by V1 and V2) are connected, and so that
a′ ∈ V1 and b′ ∈ V2. For every edge xy ∈ EF[V1] ∪ EF[V2], we add an equalizer between
x and y exactly in the way we described in Lemma 2.4. We introduce a new vertex a and
connect it by an equalizer to a′; we create a new vertex b and connect it by an equalizer
to b′. This completes the construction of N . To see that (i) is fulfilled, consider some
weakly F-free 2-coloring of N . Suppose that a and b receive the same color. Then the
equalizers enforce that this color propagates to all vertices in the skeleton, and this yields
a monochromatic induced copy of F , a contradiction. To see that (ii) is fulfilled, we may
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color {a} ∪ V1 with one color, and {b} ∪ V2 with the other color. The vertices inside the
equalizer gadgets may be colored using a good coloring in the sense of Definition 2.2(ii).
Any monochromatic copy of a graph F ′ ∈ F would either contain some edges of some
equalizer gadget (which is impossible by the goodness of the equalizer coloring) or be
a subgraph of F[V1] or F[V2] (which is impossible by the assumption we made on F).

In our constructions, the negator gadget will be used similarly as the equalizer gadget
described in Lemma 2.4. While the equalizer gadget can be used to enforce that a pair
of vertices receives the same color, with the help of the negator gadget we can enforce
that a pair of adjacent vertices in some planar graph must receive different colors in any
weakly F-free 2-coloring. We omit the details since the counterpart of Lemma 2.4 with
respect to negators and its proof are straightforward variations on Lemma 2.4 and its
proof.

For our NP-hardness proof (of Theorem 2.3) we need two additional gadgets.

The clause gadget with four contact points. The gadget C4(a, b, c, d) is a plane graph
C with pairwise nonadjacent contact points a, b, c, and d that lie in this (cyclic) ordering
on the boundary of the outer face of C. It has the following properties:

(i) In every weakly F-free 2-coloring of C, not all four contact points receive the same
color.

(ii) Any 2-coloring of the four contact points that uses both colors can be extended to
a strongly F-free 2-coloring of the gadget C, in such a way that no monochromatic
copy of a graph in F may cross C. Such a coloring is called a good 2-coloring of C.

Now we construct such a clause gadgetC4(a, b, c, d). Suppose we are in the case assumed
in Theorem 2.3. Hence the set F contains some graph F that can be planarly embedded
such that there are four vertices a′, b′, c′, d ′ on the boundary of the outer face. We choose
this plane graph F to form the skeleton of the clause gadget. We create four new vertices
a, b, c, and d . Each of these new vertices is connected by an equalizer to its corresponding
primed vertex on the outer face of the skeleton. The vertices in the skeleton are partitioned
into four components (with connecting edges between them) such that a′, b′, c′, d ′ end up
in different components. Within each component, we introduce equalizers along every
edge in the way we described in Lemma 2.4. This completes the construction.

By now it is routine to verify that the construction indeed fulfills properties (i) and (ii).
We leave the details to the reader.

The clause gadget with five contact points. The gadget C5(a, b, c, d1, d2) is a plane
graph C with pairwise nonadjacent contact points a, b, c, d1, and d2 that lie in the
(cyclic) ordering a–b–d1–c–d2 on the boundary of the outer face of C. It has the following
properties:

(i) In every weakly F-free 2-coloring of C, the vertices d1 and d2 receive the same
color, and at least one of the vertices a, b, c receives the opposite color.

(ii) Any 2-coloring of the five contact points that assigns the same color to d1 and d2,
and the opposite color to at least one of a, b, c, can be extended to a strongly F-free
2-coloring of the gadget C, in such a way that no monochromatic copy of a graph in
F may cross C. Such a coloring is called a good 2-coloring of C.
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Suppose we are in the case assumed in Theorem 2.3, hence the setF contains a graph on
at least four vertices with a cut vertex, or a 2-connected graph with a planar embedding
with at least five vertices on the boundary of the outer face.

We first discuss the case of a graph F ∈ F with a cut vertex d ′. The skeleton of
C5(a, b, c, d1, d2) is formed by a planar embedding of F where d ′ is on the boundary of
the outer face. Choose three vertices a′, b′, c′ that all lie on the boundary of the outer
face, and that do not belong to the same component of F − d ′, such that we can move
around the boundary of the outer face starting at a′, then moving to b′, then to d ′, then
to c′, then to d ′ again, and then returning to a′ (maybe meeting other vertices, including
d ′ and b′, in between). For example, if F = K1,k is a star with k ≥ 3 leaves, we choose
d ′ as the center, and a′, b′ and c′ as three successive end vertices in a cyclic ordering in
a planar embedding of F . We can move around the boundary of the outer face from a′

(via d ′) to b′, then to d ′ and to c′, and back to a′ via d ′ (and alternating between d ′ and
the possible other end vertices if k ≥ 3). The other cases are similar. We create five new
vertices a, b, c, d1, and d2, and we connect them by equalizers to a′, b′, c′, d ′, and d ′,
respectively, at the place where we hit the primed vertices in the above ordering a′–b′–d ′–
c′–d ′ while moving around the boundary of the outer face in the way we described. The
vertices in the skeleton are partitioned into four components such that a′, b′, c′, d ′ end up
in different components. Within each component, we introduce equalizers along every
edge in the way we described in Lemma 2.4. This completes the construction for the first
case.

Next we discuss the case of a 2-connected planar graph F ∈ F that has a planar
embedding with at least five vertices on the boundary of the outer face. We use such
an embedding as the skeleton of C5(a, b, c, d1, d2). Consider the cycle C that forms the
boundary of the outer face. Choose five vertices v0–v1–v2–v3–v4 in this order along C .
Because all these v-vertices are on the outer face, only two subcases are possible:

• (Subcase 1) There is a face D inside C that touches all thesev-vertices. Then we choose
two nonadjacent vertices d ′1 and d ′2 from these five and three additional appropriate
vertices a′, b′, c′ from C such that the cyclic ordering along the cycle C is a′–b′–d ′1–
c′–d ′2. Then we connect d ′1 and d ′2 by an equalizer that is put inside D. Notice that in
the graph F − {d ′1, d ′2} the vertex c′ is in a component different from the component
containing a′ or b′.
• (Subcase 2) There is an i and a path P (possibly just one edge) internally disjoint from

C that connects two vertices vi and vi+3 (where the indices are taken modulo 5). We
put d ′1 = vi , d ′2 = vi+3 and call the remaining three v-vertices a′, b′, c′ in such a way
that the cyclic ordering along C is a′–b′–d ′1–c′–d ′2. For every edge of P we connect
its incident vertices by an equalizer. Again notice that in the graph F − VP the vertex
c′ is in a component different from the component containing a′ or b′.

In either subcase, we create five new vertices, a, b, c, d1, d2, and connect them by
equalizers to their corresponding primed vertices on the outer face of the skeleton. Finally,
we partition the vertices of the skeleton into five connected subgraphs, each containing
one of the vertices a′, b′, c′, d ′1, d ′2, and we introduce equalizers along the edges of these
subgraphs as in Lemma 2.4. This completes the construction.

It can be verified that this construction in both cases and subcases indeed fulfills
properties (i) and (ii).
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2.2. The NP-Hardness Argument. Now we prove Theorem 2.3. The proof is done by
a reduction from an NP-hard variant of the 3-satisfiability problem: Let	 be a Boolean
formula in conjunctive normal form over a set X of logical variables; every clause in
	 contains exactly three variables. With 	 we associate a graph Q	. The vertices of
Q	 are the clauses and the variables in 	. There are two types of edges in Q	. The
first type belongs to a cycle that spans all the clauses in some ordering. The second
type connects a variable x ∈ X to a clause ϕ ∈ 	 if and only if x or x̄ occurs as a
literal in ϕ. We call a formula 	 planar if for some choice of the cycle spanning all
the clauses of 	 the associated graph Q	 is planar. Fellows et al. [17] proved that the
restriction of the 3-satisfiability problem to planar formulas is NP-hard. (To be precise,
they only show the NP-hardness for formulas with at most three literals per clause. One
may achieve exactly three literals per clause by dropping the requirement of distinctness
of literals per clause. Since variable-clause incidences will later be replaced by gadgets
with nonadjacent contact points, our final graph will have no multiple edges anyway.)

Consider an arbitrary planar formula	 as described above, and let Q	 be an associated
planar graph. We construct in polynomial time a planar graph G	 which has the following
two properties: If formula 	 is satisfiable, then G	 has a strongly F-free 2-coloring.
If G	 has a weakly F-free 2-coloring, then formula 	 is satisfiable. This clearly will
prove Theorem 2.3.

Fix a planar embedding of Q	. The cycle through the clause vertices divides the
plane into a bounded and an unbounded region. Variables in X that are embedded in the
unbounded region are called outer variables, and variables in the bounded region are
called inner variables. As is usual in reductions from planar SAT, we construct a graph
from the planar drawing of Q	 by a series of local replacements. Slightly informally
described, we thicken the edges and the vertices in the planar embedding of Q	 such that
they become streets and squares; this yields a map into which we will put our gadgets.
For every variable x ∈ X , we put a vertex v(x) into the square corresponding to x . For
every clause ϕ ∈ 	, we put a corresponding clause gadget into the square corresponding
to ϕ in the following way:

• If all three literals in clause ϕ belong to inner variables, then the clause gadget for ϕ
is a clause gadget C4(a, b, c, d) with four contact points. The contact point d lies in
the center of the square of ϕ, and the contact points a, b, c lie at the beginning of the
streets leading to these three inner variables.
• If two literals in clause ϕ belong to inner variables and one literal belongs to an outer

variable, then the clause gadget for ϕ is a clause gadget C5(a, b, c, d1, d2) with five
contact points. The contact points d1 and d2 lie at the beginning of the streets that lead
to the left and right neighbors of the clause ϕ on the clause cycle. The contact points
a and b lie at the beginning of the streets that lead to the two inner variables. The
contact point c lies at the beginning of the street that leads to the outer variable.
• The case of three outer variables, and the case of one inner and two outer variables

are handled symmetrically to the above two cases.

If the variable x occurs un-negated (respectively, negated) in the clause ϕ, then we put
an equalizer (respectively, a negator) from v(x) to the corresponding contact point in the
clause gadget for ϕ. Finally, we put an equalizer gadget between the d-vertices into every
street that connects a clause square to another clause square, and thus connect all clause
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gadgets into a ring. These equalizer gadgets connect contact points d from clause gadgets
C4(a, b, c, d), and contact points d1 and d2 from clause gadgets C5(a, b, c, d1, d2) in an
appropriate way. This completes the construction of the graph G	 which is easily seen
to be planar.

Assume that formula 	 is satisfiable, and consider a satisfying truth assignment.
Intuitively speaking, color 1 will correspond to TRUE and color 0 will correspond to
FALSE. Color all contact points d, d1, and d2 of clause gadgets by color 0. If variable
x is TRUE, then color the vertex v(x) by color 1. If x is FALSE, then color v(x) by 0.
The equalizers and negators propagate the colors (respectively opposite colors) of the
variables to the corresponding contact points a, b, c in the clause gadgets. Since the truth
assignment is a satisfying truth assignment, in every clause gadget at least one of the
contact points a, b, c is colored 1. Moreover, in every clause gadget the contact points d
(respectively, d1 and d2) are colored 0. Therefore, we can use property (ii) of the clause
gadgets to get a strongly F-free 2-coloring of all used clause gadgets. Altogether, this
yields a strongly F-free 2-coloring for the graph G	.

Now assume that G	 has a weaklyF-free 2-coloring. Because of the ring of equalizer
gadgets that connect the clause gadgets to each other and property (i) of the C5-gadgets,
all contact points d , d1, d2 of clause gadgets must receive the same color; without loss
of generality we assume that this color is 0. We construct the following truth assignment
for X : If v(x) is colored 1, then x is set to TRUE. If v(x) is colored 0, then x is set to
FALSE. Suppose for the sake of contradiction that some clause ϕ in	 is not satisfied by
this truth setting. Then the three literals in ϕ are all FALSE, and hence all three contact
points a, b, c in the corresponding clause gadget are colored 0. However, then all contact
points of this clause gadget are colored 0, and by property (i) of the clause gadgets
the coloring cannot be a weakly F-free 2-coloring. This contradiction shows that 	 is
satisfiable.

This completes the proof of Theorem 2.3.

3. Tree-Free 2-Colorings of Planar Graphs. The main result of this section is an
NP-hardness result for weakly and strongly T -free 2-colorings of planar graphs for the
case where T is a tree with at least two edges (see Theorem 3.3). The proof of this result
is based on an inductive argument over the number of edges in T . The following two
propositions are used as the base case of the induction.

Let K1,k denote the complete bipartite graph with one vertex in one color class and
the other k ≥ 1 vertices in the other color class. The leftmost drawing in Figure 2 shows
a K1,7 graph.

Fig. 2. The graph K1,7 (left) and the double-stars X4,5 and X1,1.
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PROPOSITION 3.1. For every k ≥ 2, it is NP-hard to decide whether a planar graph has
a weakly (strongly) K1,k-free 2-coloring.

PROOF. For k = 2, the statement for weakly K1,k-free 2-colorings follows from Propo-
sition 1.1, and the statement for strongly K1,k-free 2-colorings follows from Proposi-
tion 1.2(i).

For k ≥ 3, we apply Theorem 2.3. The first condition in this theorem is fulfilled,
since for k ≥ 3, the star K1,k is a graph on at least four vertices with a cut vertex.

For the second condition, we note that the complete bipartite graph K2,2k−1 with color
classes I with |I | = 2k−1, and {a, b}, is an (a, b)-equalizer forF = {K1,k}. This graph
satisfies Definition 2.2(i): In any 2-coloring, at least k of the vertices in I receive the
same color, say color 0. If a and b are colored differently, then one of them is colored
0. This would yield an induced monochromatic K1,k . A good coloring as required in
Definition 2.2(ii) results from coloring a and b with the same color, and all vertices in
I with the opposite color. This coloring has no monochromatic copy of K1,k itself, and
since all neighbors of the contact points are colored with the other color than the contact
points, no monochromatic copy of K1,k may cross the equalizer.

As we mentioned in Section 1.1, Cowen et al. [15] have shown that the defective
(2, d)-coloring problem for any d ≥ 1 is NP-hard even for planar graphs. This implies
that strongly K1,k-free 2-coloring is NP-hard for planar graphs for any k ≥ 2, so the
above proof is needed for the weak case only.

For 1 ≤ k ≤ m, a double-star Xk,m is a tree of the following form: Xk,m has k+m+2
vertices. There are two adjacent central vertices y1 and y2. Vertex y1 is adjacent to k
leaves, and y2 is adjacent to m leaves. In other words, the double-star Xk,m results from
adding an edge between the centers (vertices of maximum degree) of K1,k and K1,m . See
Figure 2 for an illustration. Note that X1,1 is isomorphic to the path P4.

PROPOSITION 3.2. For every 1 ≤ k ≤ m, it is NP-hard to decide whether a planar
graph has a weakly (strongly) Xk,m-free 2-coloring.

PROOF. We apply Theorem 2.3. The first condition in this theorem is fulfilled, since
Xk,m is a graph on at least four vertices with a cut vertex. For the second condition, we
construct an (a, b)-equalizer.

The (a, b)-equalizer E = (V ′, E ′) consists of 2m+k−1 independent copies (V i , Ei )

of the double-star Xk,m where 1 ≤ i ≤ 2m + k − 1. Moreover, there are five special
vertices a, b, v1, v2, and v3. We define

V ′ = {v1, v2, v3, a, b} ∪
⋃

1≤i≤2m+k−1

V i and

E ′ = {v1v2, v2v3, v1v3, av3, bv3} ∪
⋃

1≤i≤2m+k−1

Ei

∪
⋃

1≤i≤m

{v1v: v ∈ V i } ∪
⋃

m+1≤i≤2m

{v2v: v ∈ V i }

∪
⋃

2m+1≤i≤2m+k−1

{v3v: v ∈ V i } .
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v1 v2

Xk;m Xk;m
� � �

| {z }

m

Xk;m Xk;m Xk;m Xk;m
� � �

� � �

| {z }

m

v3

Xk;m Xk;m
� � �

k�1
z }| {

a b

Fig. 3. An equalizer for the double-star Xk,m .

See Figure 3 for an illustration.
We claim that every 2-coloring of E with a and b colored differently contains a

monochromatic induced copy of Xk,m : Consider some weakly Xk,m-free 2-coloring of
E . Then each copy (V i , Ei ) of Xk,m must have at least one vertex that is colored 0 and
at least one vertex that is colored 1. If v1 and v2 had the same color, then together with
appropriate vertices in V i , 1 ≤ i ≤ 2m, they would form a monochromatic copy of
Xk,m . Hence, we may assume by symmetry that v1 is colored 1, and that v2 and v3 are
colored 0. Suppose for the sake of contradiction that a and b are colored differently.
Then one of them would be colored 0, and there would be a monochromatic copy of
Xk,m with center vertices v3 and v2. Thus E satisfies property (i) in Definition 2.2.

To show that property (ii) in Definition 2.2 is also satisfied, we construct a good
2-coloring: The vertices a, b, v1 are colored 0, and v2 and v3 are colored 1. In every
set V i with 1 ≤ i ≤ m, one vertex is colored 0 and all other vertices are colored 1.
In every set V i with m + 1 ≤ i ≤ 2m + k − 1, one vertex is colored 1 and all other
vertices are colored 0. This coloring has no monochromatic copy of Xk,m , and since
vertex v3 as the only neighbor of the contact points a, b, is colored differently than a, b,
no monochromatic copy of any tree may cross E .

Now we are ready to prove the main result of this section.

THEOREM 3.3. Let T be a tree with at least two edges. Then it is NP-hard to decide
whether a planar input graph G has a weakly (strongly) T -free 2-coloring.

PROOF. By induction on the number � of edges in T . If T has � = 2 edges, then
T = K1,2, and NP-hardness follows by Proposition 1.1. If T has � ≥ 3 edges, then
we consider the so-called shaved tree T ∗ of T that results from T by removing all the
leaves. If the shaved tree T ∗ is a single vertex, then T is a star, and NP-hardness follows
by Proposition 3.1. If the shaved tree T ∗ is a single edge, then T is a double-star, and
NP-hardness follows by Proposition 3.2.

Hence, it remains to settle the case where the shaved tree T ∗ contains at least two
edges. In this case we know from the induction hypothesis that weakly (strongly) T ∗-free
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2-coloring is NP-hard. Consider an arbitrary planar input graph G∗ for weakly (strongly)
T ∗-free 2-coloring. To complete the NP-hardness proof, we construct in polynomial
time a planar graph G that has a weakly (strongly) T -free 2-coloring if and only if G∗

has a weakly (strongly) T ∗-free 2-coloring: Let � be the maximum number of leaves
pending on a vertex of T . For every vertex v in G∗, we create � independent copies
T1(v), . . . , T�(v) of T , and we join v to all vertices of all these copies.

Assume first that G∗ is weakly (strongly) T ∗-free 2-colorable. We extend this coloring
to a weakly (strongly) T -free 2-coloring of G by taking a proper 2-coloring of every
subgraph Ti (v) in G, such that for every v ∈ VG∗ , exactly one vertex of each Ti (v)

receives the same color as v. It can be verified that this extended 2-coloring for G does
not contain any monochromatic copy of T .

Now assume that G is weakly (strongly) T -free 2-colorable, and let c be such a
2-coloring. Every subgraph Ti (v) in G must meet both colors. This implies that every
vertex v in the subgraph G∗ of G has at least � neighbors of color 0 and at least �
neighbors of color 1 in the subgraphs Ti (v). Any monochromatic (induced) copy of T ∗

in G∗ would then extend to a monochromatic (induced) copy of T in G, and hence the
restriction of the coloring c to the subgraph G∗ is a weakly (strongly) T ∗-free 2-coloring.
This concludes the proof of the theorem.

Using the same ideas as in the proofs of the previous theorem and propositions, one
can prove the following more general statement about larger sets of forbidden graphs.

THEOREM 3.4. Let F be a finite set of graphs containing at least one tree with at least
two edges. Then both weakly and strongly F-free 2-coloring are NP-hard.

PROOF. Let T ∈ F be a tree in F with the minimum number of edges. If T = P3,
then the remaining graphs in F must be complete (every noncomplete connected graph
contains P3 as an induced subgraph), so they could be only K3 or K4. The NP-hardness
of F-free 2-coloring then follows from Proposition 1.1, since for coloring triangle-free
graphs, graphs containing triangles are irrelevant as forbidden subgraphs.

For T being a star (with at least three leaves) or a double-star, the result follows
directly from the construction of equalizers in the proofs of Propositions 3.1 and 3.2,
since the good colorings presented there are such that the neighbors of the contact points
receive a different color from the contact points, and the only connected monochromatic
subgraphs of the equalizers are singletons (in case of T = K1,k) or smaller double-
stars (Xk−1,m in case of T = Xk,m). Since T itself may be used as the skeleton of the
negator and the clause gadgets, the good colorings of these gadgets also do not contain
a monochromatic copy of any graph of F (neither induced nor noninduced).

If T is such that the shaved tree T ∗ has at least two edges, we proceed by induction
similarly as in the proof of Theorem 3.3. For any graph F ∈ F , we denote by F∗ the
shaved copy of F , i.e., the graph obtained from F by removing all leaves (vertices of
degree 1). Let� be the maximum number of leaves pending on a vertex of a graph from
F . Construct the graph G from a graph G∗ as in the proof of Theorem 3.3 and use the
fact that G has a weakly (strongly) F-free 2-coloring if and only if G∗ has a weakly
(strongly) F∗-free 2-coloring, where F∗ = {F∗: F ∈ F}.
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4. Cycle-Free 2-Colorings of Planar Graphs. In this section we turn to the case
when the forbidden graph F is not a tree and hence contains a cycle (we assume F is
connected).

If F contains an odd cycle, then the Four Color Theorem (4CT) shows that any planar
graph G has a strongly F-free 2-coloring: a proper 4-coloring of G partitions VG into two
sets S1 and S2, each inducing a bipartite graph. Coloring all the vertices of Si by color i
yields a strongly F-free 2-coloring of G. If we extend the set of forbidden graphs to all
cycles of odd length, denoted by Fodd, then the converse is also true: In any Fodd-free
2-coloring of G both monochromatic subgraphs of G are bipartite, yielding a 4-coloring
of G. To summarize we obtain the following.

PROPOSITION 4.1. The statement “χS(Fodd,G) ≤ 2 for every planar graph G” is equiv-
alent to the 4CT.

In case F is just the triangle C3, one can avoid using the heavy 4CT machinery to prove
that χS(C3,G) ≤ 2 for every planar graph G by applying a result due to Burstein [10]. A
brief sketch of the argument follows. Prove by induction that in any plane triangulation,
any nonmonochromatic precoloring of the outer face (triangle) can be extended to a
coloring which avoids monochromatic triangles.

If F contains no triangles, a result of Thomassen [31] can be applied. He proved that
the vertex set of any planar graph can be partitioned into two sets, each of which induces
a subgraph with no cycles of length exceeding 3. Hence every planar graph is strongly
F≥4-free 2-colorable, whereF≥4 denotes the set of all cycles of length exceeding 3. The
following theorem summarizes the above observations.

THEOREM 4.2. If the forbidden connected subgraph F is not a tree, then every planar
graph is strongly and hence also weakly F-free 2-colorable.

The picture changes if one forbids all cycles, or a combination of cycles including the
triangle. A result of Stein [30] states that the vertex set of a plane triangulation G can
be partitioned into two sets, each inducing a forest if and only if the plane dual of G is
hamiltonian. Since deciding hamiltonicity of planar cubic graphs is NP-hard (see [20]),
this implies that deciding whether a (maximal) planar graph has a weakly (strongly)
cycle-free 2-coloring is NP-hard. We are able to strengthen this statement slightly.

THEOREM 4.3. LetF345 = {C3,C4,C5} be the set of cycles of lengths 3, 4, and 5. Then
the problem of deciding whether a given planar graph has a weakly (strongly) F345-free
2-coloring is NP-hard.

We prove this theorem in a more general setting as a corollary of Theorem 4.4.
However, first we note that {C3,C4,C5} is a minimal set of cycles which determines
an NP-hard instance of the F-free 2-coloring problem. Indeed, if F ⊂ {C3,C4,C5} is
a proper subset, then every planar graph is strongly F-free 2-colorable. We have noted
this already for F ⊆ {C3,C5} and F ⊆ {C4,C5}, and the last case F = {C3,C4} is
covered by the result of Kaiser and Škrekovski [26] who proved that every planar graph
is strongly {C3,C4}-free 2-colorable.



Planar Graph Coloring Avoiding Monochromatic Subgraphs 357

THEOREM 4.4. Let F be a finite set of planar 2-connected graphs. If there exists a
planar graph which is not weakly (strongly) F-free 2-colorable, then weakly (strongly)
F-free 2-coloring is NP-hard for planar input graphs.

PROOF. Consider the graphs of F with some fixed plane embeddings. If every face of
every graph F ∈ F is C3 or C4, then every planar graph is strongly F-free 2-colorable
by the main result in [26]. If not, then there is an F ∈ F with a face of size at least 5 and
the first assumption of Theorem 2.3 is met.

Next we show how to construct an equalizer. Let H ′ be a smallest (by the number
of edges) planar graph which is not weakly (strongly) F-free 2-colorable. Take an
edge xy ∈ EH ′ and denote by H the graph obtained from H ′ by deleting this edge.
Then H is weakly (strongly) F-free 2-colorable, and in every weakly (strongly) F-
free 2-coloring of H the vertices x and y receive the same color. We construct an
equalizer E by concatenating sufficiently many copies of H . More formally, choose
a number k to be larger than the order of any graph in F . The copies of H will be
Hi = (Vi , Ei ) with Vi = {vi : v ∈ VH } and Ei = {uivi : uv ∈ EH }, for i = 1, 2, . . . , k.
For i = 1, 2, . . . , k − 1, we identify yi with xi+1, and we set a = x1 and b = yk to be
the contact points.

Clearly, E is planar and in every weakly (strongly)F-free 2-coloring of E the vertices
xi , yi for i = 1, 2, . . . , k, and hence also a and b, receive the same color.

Let c be a weakly (strongly) F-free 2-coloring of H . Color E using c on every Hi .
Consider a graph F ∈ F . No copy of F which lies entirely in E is monochromatic, since
the 2-connectedness of F implies that such a copy of F lies entirely within one of the
Hi ’s. Therefore this 2-coloring of E is weakly (strongly) F-free. It also follows from the
2-connectedness of F that every copy of F which crosses E contains a path from a to b
through E . However, every such path has more vertices than F . Hence the 2-coloring of
E is good.

To conclude the proof of Theorem 4.3 it would suffice to construct a planar graph which is
not weakly F345-free 2-colorable. It is, however, equally simple to describe an equalizer
for F345 (and exploit the fact that C5 ∈ F345 is 2-connected and every plane drawing
contains a face of size 5): Let (x, y) be the graph depicted in Figure 4. This graph
has the following important property: In any weakly F345-free 2-coloring of (x, y),
the vertices x and y have different colors (we leave the simple proof of this fact to the
reader). The (a, b)-equalizer is constructed from a graph (a, x) and a graph (b, y)
by identifying the two vertices x and y. A good 2-coloring of the (a, b)-equalizer is
induced by the 2-coloring indicated in Figure 4.

The following statement is now a direct corollary of Theorems 4.4 and 4.3.

COROLLARY 4.5. For any finite set F≥345 ⊇ {C3,C4,C5} of cycles, both weakly and
strongly F≥345-free 2-coloring are NP-hard for planar input graphs.

5. 3-Colorings of Planar Graphs A linear forest is a disjoint union of paths (some of
which may be trivial). The following result was proved independently in [23] and [28].
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x y

Fig. 4. A gadget for the forbidden set F345 in Theorem 4.3.

PROPOSITION 5.1 [23], [28]. Every planar graph has a partition of its vertex set into
three subsets such that every subset induces a linear forest.

This result immediately implies that if a connected graph F is not a path, thenχW(F,G)≤
3 and χS(F,G) ≤ 3 hold for all planar graphs G. Hence, these coloring problems are
trivially solvable in polynomial time.

We now turn to the remaining cases of F-free 3-coloring for planar graphs where the
forbidden graph F is a path. We start with a technical lemma that will yield a gadget for
the NP-hardness argument.

LEMMA 5.2. For every k ≥ 2, there exists an outerplanar graph Yk that satisfies the
following properties:

(i) Yk is not weakly Pk-free 2-colorable.
(ii) There exists a strongly Pk-free 3-coloring of Yk , in which at least one color class

being is an independent set.

PROOF. The skeleton of the graph Yk is formed by a regular tree, in which every inner
vertex has exactly k children, and all paths from the root to a leaf have exactly k vertices.
Additionally to the edges in this regular tree, the children of every inner vertex are
connected by a path. See Figure 5 for an illustration.

Fig. 5. Example for the graph Y3.
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Fig. 6. The graph Z in the proof of Theorem 5.3.

Suppose there was a Pk-free 2-coloring of Yk . Since the children of any vertex induce
a path Pk , both colors must show up at the children. Consequently, for every inner
vertex v at least one of its children must get the same color as v. However, this yields a
monochromatic induced Pk running from the root to some leaf. This contradiction proves
property (i). Property (ii) is straightforward to prove: The graph Yk is outerplanar, and
hence properly 3-colorable.

THEOREM 5.3. For any path Pk with k ≥ 2, it is NP-hard to decide whether a planar
input graph has a weakly (strongly) Pk-free 3-coloring.

PROOF. We use induction on k. The basic cases are k = 2 and k = 3. For k = 2, both
weakly and strongly P2-free 3-colorings are equivalent to proper 3-coloring which is
well known to be NP-hard for planar graphs.

Next, consider the case k = 3. Proposition 1.2(ii) yields NP-hardness of strongly P3-
free 3-coloring for planar graphs. For weakly P3-free 3-coloring, we sketch a reduction
from proper 3-coloring of planar graphs. As a gadget, we use the outerplanar graph Z
depicted in Figure 6. The crucial property of Z is that it does not allow a weakly P3-free
2-coloring, as is easily checked. Now consider an arbitrary planar graph G. From G we
construct the planar graph G ′: For every vertex v in G, create a copy Z(v) of Z , and add
all possible edges between v and Z(v). Since Z(v) is outerplanar, the new graph G ′ is
planar. It is easy to verify that χ(G) ≤ 3 if and only if χW(P3,G ′) ≤ 3.

For k ≥ 4, we give a reduction from weakly (strongly) Pk−2-free 3-coloring to weakly
(strongly) Pk-free 3-coloring. Consider an arbitrary planar graph G, and construct the
following planar graph G ′: For every vertex v in G, create a copy Yk(v) of the graph Yk

from Lemma 5.2, and add all possible edges between v and Yk(v). Since Yk is outerplanar,
the new graph G ′ is planar. If G has a weakly (strongly) Pk−2-free 3-coloring, then this
can be extended to a weakly (strongly) Pk-free 3-coloring of G ′ by coloring the subgraphs
Yk(v) according to Lemma 5.2(ii). If G ′ has a weakly (strongly) Pk-free 3-coloring, then
by Lemma 5.2(i) this induces a weakly (strongly) Pk−2-free 3-coloring for G.

6. Concluding Remarks and Open Problems

6.1. Triangle-Free Graphs. By modifying the gadgets for the equalizers in such a way
that the planar graph G	 constructed in the proof of Theorem 2.3 becomes triangle-free,
one might be able to prove complexity results for weakly (strongly) F-free 2-coloring
restricted to triangle-free planar graphs. In fact, it is not difficult to apply this method



360 H. Broersma, F. V. Fomin, J. Kratochvı́l, and G. J. Woeginger

to prove that for F = K1,k with k ≥ 2, weakly (strongly) F-free 2-coloring remains
NP-hard for triangle-free planar graphs.

PROBLEM. Is it true that every triangle-free planar graph G is P4-free 2-colorable? This
would imply that for every connected graph F of diameter at least 3 there is a weakly
F-free 2-coloring of G.

6.2. Monotonicity. All our NP-hardness techniques are such that hardness proofs for
F-free 2-colorability extend naturally to NP-hardness of F ′-free 2-colorability for any
finite F ′ ⊇ F . This raises the following question.

PROBLEM. For finite sets of graphs F ′ ⊇ F , is it true that F ′-F-2-CPG ∝ F-F-2-
CPG? (F-F-2-CPG standing for F-Free-2-Coloring-Planar-Graphs.)

Note that this is not necessarily true for infinite sets of forbidden graphs. The infinite set
Fcycle of all cycles has uncountably many subsets, and if each of these defines a different
problem, infinitely many of them will have to be undecidable, whereas deciding the
existence of an Fcycle-free 2-coloring is surely in NP.

6.3. Forbidden Sets of Cycles. It would be interesting to characterize for which partic-
ular (finite) sets of forbidden cycles the F-free 2-coloring problem on planar graphs is
feasible and for which it is hard. In particular, for two cycles this question remains open
if one of them is the triangle and the other one is an even cycle of length greater than 4.

PROBLEM. For which k > 2 does there exist a planar graph which is not {C3,C2k}-free
2-colorable?

6.4. Equalizers. Despite our inductive proof of NP-hardness for forbidden trees, it
would be interesting to know whether one can use the equalizer gadget machinery
directly.

PROBLEM. Does there exist an equalizer for any tree T ?

Acknowledgments. We are grateful to Oleg Borodin, Alesha Glebov, Sasha
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