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Equivalence of switching linear systems by bisimulation

G. POLA*{, A. J. VAN DER SCHAFT{
and M. D. DI BENEDETTO{

{Department of Electrical Engineering and Computer Science, Center of Excellence DEWS,
University of L’Aquila, Poggio di Roio, 67040 L’Aquila, Italy,
{Department of Applied Mathematics, University of Twente,

P.O. Box 217,7500 AE Enschede, The Netherlands

(Received 11 November 2004; in final form 27 September 2005)

A general notion of hybrid bisimulation is proposed for the class of switching linear systems.
Connections between the notions of bisimulation-based equivalence, state-space equivalence,
algebraic and input–output equivalence are investigated. An algebraic characterization of
hybrid bisimulation and an algorithmic procedure converging in a finite number of steps to

the maximal hybrid bisimulation are derived. Hybrid state space reduction is performed
by hybrid bisimulation between the hybrid system and itself. By specializing the results
obtained on bisimulation, also characterizations of simulation and abstraction are derived.

Connections between observability, bisimulation-based reduction and simulation-based
abstraction are studied.

1. Introduction

Hybrid systems have been the subject of intense research
over the past few years because of their expressive power
that is able to capture various non-smooth phenomena
in diverse application areas. Furthermore, many
interesting theoretical problems arise from the analysis
and design of these systems. However in many situations
the resulting hybrid systems are very complex, both in
scale and in dynamical properties. Therefore the task
of analysis and of synthesizing hybrid controllers to
ensure some prescribed performances requirements is a
complicated one, and formal methods for complexity
reduction are essential for a feasible approach to the
study of hybrid systems.
A powerful tool in this context, is the theory of

bisimulation, introduced in the 1980s by Milner (1989)
and Park (1981). This theory often provides an effective
method for reducing the complexity of concurrent pro-
cesses. The key idea in the notion of bisimulation is to
find (and compute) an equivalence relation on the

class of hybrid systems under consideration that is pre-

serving the properties of interest. Then reduction is per-

formed by choosing the minimal (in the sense of size of

state space) system in the sub-class of dynamical systems

belonging to the same equivalence class of this bisimula-

tion relation.
In the context of concurrent processes, the partition

of the state space into equivalence classes induced by

the bisimulation relation is in general finer than

the partition induced by input–output equivalence or

trace equivalence (Only for deterministic systems trace

equivalence can be shown to imply bisimulation

equivalence).
Also in system and control theory various equivalence

notions have been formulated for continuous systems

such as state-space and input–output equivalence.

Developments in both areas have been rather

independent; one of the reasons being that the employed

mathematics are rather different. The rise of interest in

hybrid systems has led to a reapproachment of the equiva-

lence notions on concurrent processes developed in the

computer science community with the equivalence

notions for continuous systems in the control community.
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In particular, extensions of the notion of bisimulation to
continuous systems have been explored before in
Broucke (1998) and in a series of papers by Pappas and
co-authors (e.g. Henzinger (1995), Lafferriere et al.
(1998, 2000), Alur et al. (2000), Tabuada et al. (2002)
and Pappas (2003, 2004)). The common denominator of
those works is to associate a transition system with
uncountable discrete state space to the continuous
systemunder consideration, preserving reachability prop-
erties. Then, after reduction by bisimulation a simpler
transition system is obtained, which hopefully has a
finite discrete state space, thereby allowing the use of stan-
dard methods for analysis and verification of concurrent
systems. This problem is not decidable in general as
shown in Alur et al. (2000). However, by restricting the
class of hybrid systems to timed automata, multirate
automata, rectangular automata and O-minimal hybrid
systems (Tabuada et al. 2002), the reduced transition
system is finite. The continuous systems considered in
Henzinger (1995), Lafferriere et al. (1998, 2000), Alur
et al. (2000) and Tabuada et al. (2002) neither have
continuous inputs or continuous outputs. Recently
Pappas et al. proposed a new definition of bisimulation
for linear (Pappas 2003, Tabuada et al. 2003, ) and non-
linear (Pappas 2004) systems that do include continuous
control inputs. In particular Pappas (2003) derives for
the case of linear control systems, interesting connections
between the maximal bisimulation relation and the
maximal controlled invariant subspace contained in the
kernel of a given observation map, while Pappas (2004)
shows how to reduce non-linear control systems
to lower-dimensional systems by factoring out certain
invariant distributions.
While in the previous approach the emphasis is on the

preservation of the reachability properties, van der
Schaft (2004a, b, c) focuses on external equivalence as
the key property to be preserved in the definition of
bisimulation. This latter approach is fundamental to a
compositional modelling and control of hybrid systems
as argued in van der Schaft and Schumacher (2001). In
particular, it allows the design of a controller applied
to the original continuous system on the basis of the
reduced dynamical system. Furthermore in van der
Schaft (2004a, c) it is shown that a linear deterministic
dynamical system � is observable if and only if it
equals the minimal system that is bisimilar to �,
thus offering interesting links between the theory of
bisimulation, the theory of realization, and the classical
Kalman decomposition.
The aim of the present paper is to make another

step in the reapproachement between the theory of
concurrent processes and mathematical systems theory
by defining and studying the notion of bisimulation
for continuous-time switching linear systems. A switch-
ing linear system (SLS) (De Santis et al. 2003) can be

viewed as a combination of a discrete event (concurrent)
system with linear continuous dynamical systems and
includes as external variables both continuous inputs
and outputs, discrete outputs, as well as hybrid (discrete
and continuous) disturbance variables. These hybrid
disturbances may be thought of as internal generators
for non-determinism. The resulting class of systems are
rather general since they may accept Zeno executions
(Lygeros 1999), are non-deterministic, since a hybrid
disturbance acts on the plant, and a reset map is defined
over the set of continuous states.

Inspired by classical notions of bisimulation for
concurrent processes (Clarke et al. 2002) and by the
new notions introduced in (van der Schaft 2004a, c)
for linear and non-linear dynamical systems, we propose
a general notion of hybrid bisimulation for the class of
switching linear systems. Given a pair of SLSs S1 and
S2, the proposed definition formalizes the intuitive
idea of finding a relation R � �1 ��2 between the
hybrid spaces �1 and �2 of S1 and S2 such that for
any continuous input u and for any pair of initial condi-
tions in R, R is invariant and the hybrid outputs coin-
cide for any time and for a suitable choice of the
hybrid disturbances. The proposed definition does not
make use of the particular semantics of the class of
SLSs involving only the notion of execution, and there-
fore may be also applied to more general hybrid systems
where for example the discrete transitions depend on the
continuous state x of the automata. A first step in this
direction has been made in (van der Schaft 2004a, b).
Moreover the definition applies to SLSs where multiple
instantaneous jumps are allowed and where any execu-
tion �1 of an SLS S1 may be mimicked by an execution
�2 of an SLS S2 and vice versa, while the jumps of �1
and �2 may be asynchronous (compare with the
definition employed in (van der Schaft 2004a, b)).
The proposed definition seems particularly appealing
since it has clear links to well-known notions of
algebraic, state-space and input–output equivalences
(Callier and Desoer 1991) for dynamical systems. In
fact bisimulation-based equivalence will be shown to
be implied by algebraic equivalence, while implying
state-space equivalence and input–output equivalence.
Summarizing, we will prove the following sequence of
implications:

Algebraic E:)Bisimilarity) State�Space E:

) Input�Output E:

The proposed equivalence notions, except for algebraic
equivalence, all coincide for the class of deterministic
SLSs (no hybrid disturbances). By combining tools
from concurrent systems analysis and from geometric
control theory, a complete geometric characterization
of hybrid bisimulations is derived. Moreover, inspired
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by De Santis et al. (2004a), an algorithmic procedure
converging in a finite number of steps to the maximal
hybrid bisimulation is developed. This yields the con-
struction of the minimal-dimensional SLS bisimilar to
the original one. By specializing those results we propose
a new definition of simulation that, roughly speaking, is
a one-sided version of the notion of bisimulation, lead-
ing to a notion of abstraction for the class of SLSs.
Inspired by the connections between bisimulation and
observability for linear continuous systems (van der
Schaft 2004a, b), we also investigate this issue in the
context of SLSs. In view of the results developed in
De Santis et al. (2003), that characterize observability
of SLSs, we show that while an observable SLS
cannot be reduced anymore by bisimulation, the con-
verse implication is not true. More precisely, an example
is provided where an SLS that cannot be reduced by
bisimulation, is unobservable. Finally we use simula-
tion-based abstraction, instead of bisimulation-based
reduction for ‘extracting’ the observable sub-SLS of a
given unobservable SLS.
Most of the results presented in this paper also hold for

the class of discrete-time switching linear systems.
Moreover even if most of the bisimulation analysis will
be carried out in the context of switching linear
systems, it may be naturally extended to the case of
switching non-linear systems, in view of the results of
van der Schaft (2004c), and to the case of switching
systems with continuous dynamics given in pencil form
in view of the results developed in van der Schaft
(2004b), aswill be briefly discussed in the end of the paper.
A preliminary and partial version of this paper has

been published as (Pola et al. 2004).
The paper is organized as follows. In x 2, a general

notion of hybrid bisimulation is proposed and charac-
terized, and relations to equivalence notions are given.
In x 3, an algorithmic procedure converging in a finite
number of steps to the maximal hybrid bisimulation is
proposed. In x 4, reduction via bisimulation is studied.
x 5 is devoted to the definition and characterization of
simulation and abstraction. Section 6 addresses the
issue of connections between observability, reduction
via bisimulation, and abstraction via simulation. x 7
offers some guidelines for extending the results obtained
for switching linear systems to the case of switching non-
linear systems and switching systems in pencil form. The
Appendix contains some technical proofs. Finally, x 8
offers some concluding remarks.

2. Bisimilar switching linear systems

2.1. Preliminaries and basic definitions

Switching systems are an important subclass of hybrid
systems that have been extensively studied in the past

few years (e.g. Wicks et al. (1998), Zefran and Burdick

(1998), Dayawansa and Martin (1999), De Santis et al.

(2003, 2004b, 2005) and Pola et al. (2004)). The motiva-

tion for considering this particular subclass of hybrid

systems lies in their semantics that is able to capture

different non-smooth phenomena, arising in the area

of mechanical systems, power train control, aircraft

and air traffic control, switching power converters and

many other fields (e.g. Wicks et al. (1998), Zefran

and Burdick (1998), Dayawansa and Martin (1999),

de Santis et al. (2005) and the references therein). For

example in (De Santis et al. 2005), an automotive

engine in idle mode is modelled by means of a suitable

switching system, where times of switchings between

the different modes are lower bounded and upper

bounded by two positive real parameters that depend

themselves on the engine parameters. The hybrid state

� of a switching linear system is composed of two com-

ponents: the discrete state q belonging to a finite set Q

and the continuous state x belonging to a linear space

X(q) depending on q. The evolution of the discrete

state is governed by a discrete disturbance v that acts

on the plant, while the evolution of x is given by a

non-deterministic linear dynamical control system

whose matrices depend on the current discrete state q.

Whenever a discrete transition holds, the continuous

state is instantly reset to a new value by means of a

reset matrix depending on the discrete states before

and after the transition. Moreover switching linear sys-

tems are characterized by a hybrid output y associated

to the hybrid state � and allow multiple instantaneous

transitions on the discrete states. The formal model of

a switching linear system is given in the following defini-

tion that is based on (De Santis et al. 2003), following

the general model of hybrid automata, see e.g.

(Tomlin et al. 1998) and (Lygeros et al. 1999).

Definition 1: A Switching Linear System (SLS) S is a

tuple ð�,U,D,Y, �, �,E,M Þ where

. � ¼ [q2Qfqg � XðqÞ is the hybrid state space, where
– Q ¼ fq1, q2, . . . , qN1

g is the discrete state space,

N1 2 N,
– dim: Q!N,
– 8q 2 Q,XðqÞ � R

dimðqÞ is the linear continuous state

space.
. U is the linear input space.
. D ¼ V�W is the hybrid disturbance space, where

– V ¼ fv1, v2, . . . , vN2
g is the set of the discrete distur-

bances, N2 2 N,
– W is the linear continuous disturbance space.

. Y ¼ P�H is the hybrid output space, where
– P ¼ fp1, p2, . . . , pN3

g is the discrete output space,

N3 2 N,
– H is the linear continuous output space.
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. � is a function that associates to any discrete state
q 2 Q, the linear dynamical system

�ðqÞ:
_xxðtÞ ¼ AðqÞxðtÞ þ BðqÞuðtÞ þ GðqÞwðtÞ,

hðtÞ ¼ CðqÞxðtÞ, t � 0:

�

. �: Q! P associates a discrete output to each discrete
state.

. E � Q� V�Q is a collection of discrete transitions.

. M is a function that associates to any e ¼ ðq, v, q 0Þ 2
E, the reset matrix MðeÞ 2 R

dimðqÞ�dimðq 0Þ.

Any element � ¼ ðq, xÞ 2 � is called hybrid state, any
element d ¼ ðv,wÞ 2 D is called hybrid disturbance and
any element y ¼ ð p, hÞ 2 Y is called hybrid output of
S. Given an SLS S, the tuple DS ¼ ðQ,P,V,E, �Þ can
be viewed as a Discrete Event System (DES) (Hopcroft
and Ullman 1979), having state space Q, output set P,
input set V, transition relation E and output function
�. The set succðqÞ is composed by the successors of the
discrete state q 2 Q, i.e. succðqÞ ¼ fq 0 2 Q j 9v 2 V:
ðq, v, q 0Þ 2 Eg. Given a set Z � Z1 � Z2, the operator
�jZi
ðZÞ is the projection of the set Z onto Zi, i ¼ 1, 2.

We now formally define the semantics of switching
linear systems. First of all we assume throughout
the paper that the hybrid disturbance is not available
for measurements, thus yielding a non-deterministic
system.
The discrete transitions in the class of SLSs are

determined by the discrete disturbance v. We assume
that multiple events (instantaneous transitions) are
allowed. This can be formalized by using the notion
of hybrid time basis proposed in (Lygeros et al. 1999).
We recall that a hybrid time basis � is an infinite or
finite sequence of time intervals Ij, j 2 f0, 1, . . . , Jg,
i.e. � ¼ fIjg

J
j¼0, J 2 N [ f1g, satisfying the following

conditions:

. Ij ¼ ft 2 R
þ
0 : tj � t � t 0j g, if j< J;

. IJ may be of the form ft 2 R
þ
0 : tJ � t � t 0Jg or of the

form ft 2 R
þ
0 : tJ � t <1g and t 0J ¼ 1;

. for all j, tj � t 0j and for j>0, tj ¼ t 0j�1.

Denote by T the set of all hybrid time bases. Since the
SLSs under consideration are time-invariant continuous
systems, there is no loss of generality in assuming t0 ¼ 0,
for all � 2 T . Given a hybrid time basis � 2 T , denote by
½�� :¼ [Ij2�Ij � fjg the set of all hybrid times (t, j), t 2 Ij,
Ij 2 �, and define the ordering relation � on ½�� such
that ðt, jÞ � ðt 0, j 0Þ if t � t 0 and j � j 0. Given two hybrid
time bases �1, �2 2 T , such that supft : ðt, jÞ 2 ½�1�g ¼
supft : ðt, jÞ 2 ½�2�g denote by ½�1, �2� � ½�1� � ½�2� any
relation, satisfying the following conditions:

. �j½�i�ð½�1, �2�Þ ¼ ½�i�, i ¼ 1, 2;

. 8ððta, jaÞ, ðtb, jbÞÞ 2 ½�1, �2�, ta ¼ tb;

. 8ððta, jaÞ, ðtb, jbÞÞ, ððt
0
a, j
0
aÞ, ðt

0
b, j
0
bÞÞ 2 ½�1, �2�, if ðta, jaÞ �

ðt 0a, j
0
aÞ then ðtb, jbÞ � ðt

0
b, j
0
bÞ and vice versa.

Remark 1: The last condition ensures that any
relation ½�1, �2� preserves the ordering relation� in
every hybrid time basis ½�1� and ½�2�.

Given two sets Z1, Z2, denote by CðZ1,Z2Þ and by
C
0
ðZ1,Z2Þ the class of functions, respectively of piece-

wise continuous functions z: Z1! Z2. The switching
system temporal evolution is then defined by means of
the notion of execution.

Definition 2: An execution � of an SLS S is a collec-
tion ð�0, �, u, d, �, yÞ with �0 ¼ ðq0, x0Þ 2 �, � 2 T , u 2
C
0
ðR
þ
0 ,UÞ, d ¼ ðv,wÞ, where v 2 CðN,V Þ,w 2 C0ðRþ0 ,

WÞ, � ¼ ðq, xÞ, where q 2 CðN,QÞ, x 2 CðRþ0 �N,
Xð�ÞÞ, y ¼ ð p, hÞ, where p 2 CðN,PÞ, h 2 CðRþ0 �N,HÞ,
such that, by setting �ðt, jÞ ¼ ðqð j Þ, xðt, jÞÞ and yðt, jÞ ¼
ð pð j Þ, hðt, jÞÞ, for all ðt, jÞ 2 ½��, the following conditions
are satisfied:

. Discrete evolution: qð j Þ ¼ q0; q jþ 1ð Þ is such that
ej ¼ ðq jð Þ, vð jþ 1Þ, q ð jþ 1ÞÞ 2 E; pð j Þ ¼ �ðqð j ÞÞ;

. Continuous evolution: x t0, 0ð Þ ¼ x0, xðtjþ1, jþ 1Þ ¼
Mðejþ1Þxðt

0
j , jÞ; moreover xðt, jÞ and hðt, jÞ, for all

t 2 Ij are respectively the unique solution and output
at time t of the dynamical system �ðqð j ÞÞ, with initial
state x tj, j Þ

�
, initial time tj, input function u and

disturbance function w.

Switching linear systems are non-deterministic since a
hybrid disturbance acts on the plant: note that even
if the discrete disturbance would be measured then
still the dynamics of the discrete variables could be
non-deterministic.

We now introduce some equivalence notions,
borrowed from the theory of concurrent processes, for
the class of SLSs. In particular we consider the notions
of bisimulation and simulation for SLSs. The proposed
definitions are obtained by merging the classical notions
for concurrent processes (e.g. Clarke et al. (2002))
with new definitions introduced in van der Schaft
(2004a, c) for the classes of linear and non-linear contin-
uous systems.

Definition 3: Consider two SLSs Si ¼ ð�i,Ui,Di,Yi,
�i, �i,Ei,MiÞ, i ¼ 1, 2 such that U1 ¼ U2. A hybrid
bisimulation between S1 and S2 is a subset R � �1�

�2 satisfying the following property. Take any ð�10, �20Þ
2 R and any input function u1 ¼ u2. Then for any
hybrid disturbance d1 and for any execution �1 ¼
ð�10, �1, u1, d1, �1, y1Þ of S1, there should exist a hybrid
disturbance d2 and an execution �2 ¼ ð�20, �2, u2, d2,
�2, y2Þ of S2 satisfying the following conditions:

(i) ð�1ðt, jÞ, �2ðt
0, j 0ÞÞ 2 R,

(ii) y1ðt, jÞ ¼ y2ðt
0, j 0Þ,
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8ððt, jÞ, ðt 0, j 0ÞÞ 2 ½�1, �2�, for some ½�1, �2�. Moreover the
same holds with d1 replaced by d2 and vice versa.

Remark 2: The introduction of the relation ½�1, �2�
allows the comparison of the hybrid state and output
time-evolutions of the executions �1 and �2 with

different hybrid time bases �1 and �2, thus generalizing
the definition of structural hybrid bisimulation
introduced in (van der Schaft 2004a, b), where �1 ¼ �2
was required, and where multiple instantaneous jumps

were not considered.

Definition 4: Two SLSs S1 and S2 are bisimilar, and
we write S1 � S2, if there exists a hybrid bisimulation

R � �1 ��2 such that the projection of R on each
hybrid space equals this hybrid space, i.e.

�j�i
ðRÞ ¼ �i, i ¼ 1, 2: ð1Þ

Remark 3: The notion of bisimulation equivalence in

the context of concurrent processes is usually given
with respect to an initial state; on the contrary
Definition 4 is given with respect to any hybrid initial
state. The generalization to subsets of initial conditions

�0
i � �i, i ¼ 1, 2 obviously can be done by relaxing (1)

to �j�i
ðRÞ ¼ �0

i , i ¼ 1, 2.

We recall that, given a set Z, a set R � Z� Z is an

equivalence relation on Z if it is reflexive, i.e.
8z 2 Z, ðz, zÞ 2 R, symmetric, i.e. 8ðz1, z2Þ 2 R, ðz1, z2Þ 2
R, and transitive, 8ðz1, z2Þ, ðz2, z3Þ 2 R, ðz1, z3Þ 2 R.
Bisimilarity between SLSs is an equivalence relation

on the space of SLSs. A weaker notion than bisimula-
tion is the so-called notion of simulation, as formalized
hereafter.

Definition 5: Consider two SLSs Si ¼ ð�i,Ui,Di,Yi,
�i, �i,Ei,MiÞ, i¼ 1, 2 such that U1 � U2. A hybrid
simulation of S1 by S2 is a subset R � �1 ��2 satisfy-
ing the following property. Take any �10, �20ð Þ 2 R and

any input function u1 ¼ u2. Then for any hybrid distur-
bance d1 and for any execution �1 ¼ ð�10, �1, u1, d1, �1, y1Þ
of S1, there should exist a hybrid disturbance d2 and an

execution �2 ¼ ð�20, �2, u2, d2, �2, y2Þ of S2 satisfying the
following conditions:

(i) �1ðt, jÞ, �2ðt
0, j 0Þð Þ 2 R;

(ii) y1ðt, jÞ ¼ y2ðt
0, j 0Þ;

8ððt, jÞ, ðt 0, j 0ÞÞ 2 ½�1, �2�, for some ½�1, �2�:

Definition 6: An SLS S1 is simulated by an SLS S2 (or
equivalently S2 simulates S1), and we write S14S2,
if there exists a hybrid simulation R � �1 ��2 of
S1 by S2 such that the projection of R along

the hybrid space �1 coincides with �1, i.e.
�j�1
ðRÞ ¼ �1.

Hybrid simulation is reflexive, transitive but not
symmetric, and hence it is not an equivalence relation
on the space of SLSs. An equivalence notion based on
hybrid simulations can be stated as follows.

Definition 7: Two SLSs S1 and S2 are similar if S14

S2 and S24S1.

2.2. Equivalent switching linear systems

Equivalence notions in the control theory usually deal
with the characterization of whether two dynamical
systems are state-space equivalent or input–output
equivalent. Aim of this section is to define those
notions for the class of SLSs and then to compare
them with the notions of bisimilarity and similarity.
The following definition extends to the class of
SLSs well known concepts of algebraic, state-
space and input–output equivalence for linear continu-
ous systems (Callier and Desoer 1991) and DESs
(Clarke et al. 2002).

Definition 8: Two SLSs S1 and S2 are algebraically
equivalent if there exists an invertible mapping
TQ: Q1! Q2 and for any q1 2 Q1, invertible linear
mappings Tq1 : X1ðq1Þ ! X2ðTQðq1ÞÞ such that,

(i) �1ðq1Þ ¼ �2ðTQðq1ÞÞ, for any q1 2 Q1;
(ii) for any e1 ¼ ðq1, v1, q

0
1Þ 2 E1, there exists v2 2 V2

such that e2 ¼ ðTQðq1Þ, v2,TQðq
0
1ÞÞ 2 E2 and vice

versa;
(iii) for any q1 2 Q1, the dynamical systems �1ðq1Þ

and �2ðTQðq1ÞÞ are algebraically equivalent
(Callier and Desoer 1991) with transformation
matrix Tq1 , i.e.

A1ðq1Þ ¼ Tq1A2ðTQðq1ÞÞT
�1
q1

,

B1ðq1Þ ¼ Tq1B2ðTQðq1ÞÞ,

G1ðq1Þ ¼ Tq1G2ðTQðq1ÞÞ,

C1ðq1Þ ¼ C2ðTQðq1ÞÞT
�1
q1

,

(iv) M1ðe1Þ ¼ T�1q 0
1
M2ðe2ÞTq1 , for any e1 ¼ ðq1, v1, q

0
1Þ 2

E1, where e2 ¼ ðTQðq1Þ, v2, TQðq
0
1ÞÞ 2 E2, for some

v2 2 V2, and vice versa.

A notion of equivalence that is less conservative than
algebraic equivalence is the notion of state-space
equivalence as formalized below. This can be obtained
by generalizing the corresponding notion given in
(Callier and Desoer 1991) for linear continuous systems.

Definition 9: Let S1 and S2 be two (not necessarily
distinct) SLSs with the same continuous control space,
i.e. U1 ¼ U2. Two hybrid states �10 2 �1 and �20 2 �2

are said to be state-equivalent if for any given input u,
for any hybrid disturbance d1, for any execution
�1 ¼ ð�10, �1, u, d1, �1, y1Þ of S1, there exists a hybrid
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disturbance d2 and an execution �2 ¼ ð�20, �2, u, d2,
�2, y2Þ of S2 such that y1ðt, jÞ ¼ y2ðt

0, j 0Þ, 8ððt, jÞ,
ðt 0, j 0ÞÞ 2 ½�1, �2�, for some ½�1, �2�. Moreover the same
holds with d1 replaced by d2 and vice versa.

Definition 10: Two SLSs S1 and S2 are state-space
equivalent if they have the same continuous input
space, i.e. U1 ¼ U2 and for any hybrid state �1 2 �1 of
S1, there exists a hybrid state �2 2 �2 of S2 that is
equivalent to �1, and vice versa.

The following result highlights the connection between
state-space equivalence and bisimilarity.

Lemma 1: Two SLSs S1 and S2 are state-
space equivalent if and only if there exists a relation
R � �1 ��2 such that �j�i

ðRÞ ¼ �i, i¼ 1, 2 and
such that for any ð�10, �20Þ 2 R, �10 and �20 are state-
equivalent.

Another important equivalence notion in the context of
control theory is the notion of input–output equivalence
as given below.

Definition 11: Two SLSs S1 and S2 are input–output
equivalent if U1 ¼ U2 and for any �10 2 �1, for any
given control law u 2 U1, for any hybrid disturbance
d1, for any execution �1 ¼ ð�10, �1, u, d1, �1, y1Þ of S1,
there exists �20 2 �2, a hybrid disturbance d2 and an
execution �2 ¼ ð�20, �2, u, d2, �2, y2Þ of S2 such that
y1ðt, jÞ ¼ y2ðt

0, j 0Þ, 8ððt, jÞ, ðt 0, j 0ÞÞ 2 ½�1, �2�, for some
½�1, �2�. Moreover the same holds with �10 and d1
replaced by �20 and d2 and vice versa.

The above notions naturally specialize to the context of
DESs (Clarke et al. 2002) and linear dynamical systems
(Callier and Desoer 1991, van der Schaft 2004c). In
particular in the context of DESs, algebraic equivalence
is usually known as graph isomorphism and input–
output equivalence as equivalence of the generated
language. Moreover those notions easily extend to
more general hybrid systems models.
Algebraic, state-space and input–output equivalences

are equivalence relations on the space of SLSs.
Hereafter we provide some results that offer a ‘bridge’
between the control systems equivalence notions intro-
duced above and the concurrent process equivalence
notions introduced in the previous section.

Theorem 1: The following statements are true:

(i) Two algebraically equivalent SLSs are bisimilar;
(ii) Two bisimilar SLSs are similar;
(iii) Two bisimilar SLSs are state-space equivalent;
(iv) Two similar SLSs are input–output equivalent;
(v) Two state-space equivalent SLSs are input–output

equivalent.

Proof: See the Appendix. œ

The following picture highlights the relationships
between the equivalence notions introduced so far:

Algebraic E: ¼)
ðiÞ

Bisimilarity

+ðiiiÞ

¼)
ðiiÞ

Similarity

+ðivÞ

State � Space E: ¼)
ðvÞ

Input�Output E:

Remark 4: Some remarks about the converse of the
implications in the picture above are listed below.

. The converse implication of (i) is in general not true
neither for the class of DESs nor for the class of
linear continuous systems. Hence it is not true for
the class of SLSs.

. The converse implication of (ii) is true for the class of
linear dynamical systems (as shown in Proposition
5.3 of (van der Schaft 2004a) but in general not
true for the class of DESs (as shown for example
in (Clarke et al. 2002)), and hence it is not true for
the class of SLSs.

. The converse implication of (iv) is not true for the
class of linear dynamical systems (as shown in
Example 1 of (van der Schaft 2004a)) and hence it
is not true for the class of SLSs.

. The converse implication of (v) is in general not true
neither for the class of DESs (as shown in (Clarke
et al. 2002) nor for the class of linear dynamical
systems (as shown in Example 1 of van der Schaft
2004a) and hence for the class of SLSs.

Remark 5: It is interesting to check those implications
in the case of deterministic SLSs. An SLS S is said to be
deterministic if no discrete and continuous disturbances
act on the plant, i.e. V ¼Ø, W ¼ f0g. In this special
case the converse of the implications (ii), (iii), (iv), (v)
are true and hence bisimilarity, similarity, state space
and input–output equivalences are equivalent notions.
In the case of labelled transition systems the same
reasoning applies: equivalence relations such as
bisimulation, simulation and trace equivalences all
coincide.

2.3. Characterizing hybrid bisimulations of SLSs

Definition 3 of hybrid bisimulation is general enough to
be applied to more general hybrid systems than SLSs
and in fact a first step in this direction has been done
in (van der Schaft 2004a) and (van der Schaft 2004b).
On the other hand for the class of SLSs a complete
geometric characterization may be developed as this
section shows. The semantics of tuples formally defining
SLSs naturally induces a particular geometrical
structure for a set to be a hybrid bisimulation, as the
following result shows.
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Proposition 1: If R is a hybrid bisimulation between
two SLSs S1 and S2, there exists QR � Q1 �Q2 and
for any ðq1, q2Þ 2 QR suitable sets Rðq1, q2Þ � X1ðq1Þ �
X2ðq2Þ such that

q1, x1ð Þ, q2, x2ð Þð Þ 2 R()ðq1, q2Þ 2 QR and

ðx1, x2Þ 2 Rðq1, q2Þ:

Proof: The proof follows directly from the definition
of R being a subset of �1 ��2, and by the definition
of the hybrid spaces �1 and �2. œ

By the result above, any hybrid bisimulation R between
two SLSs S1 and S2 can be represented as

R ¼ ðq1, x1Þ, ðq2, x2Þð Þ 2 �1 ��2 j ðq1, q2Þ 2 QR,
�

x1, x2Þ 2 Rðq1, q2Þð
�
: ð2Þ

Moreover the linearity in the continuous dynamics and
in the continuous variables spaces, leads to a particular
structure for the set Rðq1, q2Þ for any fixed pair
ðq1, q2Þ 2 QR. More precisely we now show that if R
is a hybrid bisimulation between two SLSs S1 and
S2, then the linear closure LðRÞ of R is a hybrid
bisimulation between S1 and S2.
More formally, given a hybrid bisimulation R as

in (2), between two SLSs S1 and S2, define the linear
closure LðRÞ of R as

LðRÞ ¼ ððq1, x1Þ, ðq2, x2ÞÞ 2 �1 ��2 j ðq1, q2Þ 2 QR,
�

x1, x2Þ 2 LðRðq1, q2ÞÞð
�
,

where for any ðq1, q2Þ 2 QR, LðRðq1, q2ÞÞ is the linear
closure (Kelley and Namioka 1963) of Rðq1, q2Þ, i.e.

LðRðq1, q2ÞÞ ¼ �a � ðxa1, x
a
2Þ þ �

b � ðxb1, x
b
2Þ, 8�

a,
�
�b 2 R, 8ðxa1, x

a
2Þ, ðx

b
1, x

b
2Þ 2 Rðq1, q2Þ

�
:

By definition of LðRÞ, R � LðRÞ; moreover the
following result holds.

Proposition 2: If R is a hybrid bisimulation between
two SLSs S1 and S2, then LðRÞ is a hybrid bisimulation
between S1 and S2.

Proof: See the Appendix. œ

By Propositions 1 and 2, from now on, any hybrid
bisimulation R between two SLSs S1 and S2 can be
represented by (2) where Rðq1, q2Þ is implicitly assumed
to be a linear subspace of X1ðq1Þ � X2ðq2Þ for any
ðq1, q2Þ 2 QR.
The following result gives an algebraic characteri-

zation of hybrid bisimulations for SLSs.

Theorem 2: Given two SLSs S1 and S2, a set R of
the form (2) is a hybrid bisimulation between S1 and S2

if and only if for any ðq1, q2Þ 2 QR the following property
holds:

8q 01 2 succðq1Þ, 9q
0
2 2 succðq2Þ [ fq2g : ðq 01, q

0
2Þ 2 QR and

(i) �1ðq1Þ ¼ �2ðq2Þ and Rðq1, q2Þ is a bisimulation
relation between �1ðq1Þ and �2ðq2Þ;

(ii) diagðM1ðe1Þ, �MM2ÞRðq1, q2Þ � Rðq
0
1, q
0
2Þ, where e1 2

E1 takes q1 into q 01 and e2 2 E2 takes q2 into q 02,
and �MM2 ¼M2ðe2Þ if q

0
2 6¼ q2, �MM2 ¼ I if q 02 ¼ q2;

and vice versa, 8q 02 2 succðq2Þ, 9q
0
1 2 succðq1Þ [ fq1g:

ðq 01, q
0
2Þ 2 QR and conditions (i) and (ii) are satisfied.

Proof: (Sufficiency.) Theorem 2 (i) ensures that for any
�10, �20ð Þ 2 R and any input function u1 ¼ u2 for any
hybrid disturbance d1 and for any execution �1 ¼
ð�10, �1, u1, d1, �1, y1Þ of S1, there exists a hybrid distur-
bance d2 and an execution �2 ¼ ð�20, �2, u2, d2, �2, y2Þ of
S2, such that Definition 3 (i) and (ii) are satisfied for
any ðt, 0Þ 2 ½�1�. Finally Theorem 2 (ii) ensures that
once the switching has occurred in S1 from some
ðq1, x1Þ to some ðq 01, x

0
1Þ and in S2 from some ðq2, x2Þ

to some ðq 02, x
0
2Þ the pair of continuous states

ðx 01, x
0
2Þ 2 Rðq

0
1, q
0
2Þ. Hence by induction the result

follows.
(Necessity.) Suppose that R is a hybrid bisimulation

of the form (2) between S1 and S2. Necessity of
Theorem 2 (i) is obvious and can be proved by
contradiction. As far for the necessity of Theorem 2
(ii), for any ððq10, x10Þ, ðq20, x20ÞÞ 2 R, for any u1 ¼ u2
for any hybrid disturbance d1, consider �1 ¼ fI0, I1g,
where I0 ¼ ft0g ¼ ft

0
0g and any execution �1 ¼

ð�10, �1, u1, d1, �1, y1Þ of S1: since R is a hybrid bisimula-
tion between S1 and S2, there exists a hybrid distur-
bance d2 and an execution �2 ¼ ð�20, �2, u2, d2, �2, y2Þ of
S2 such that Definition 3 (i) is satisfied 8ððt, jÞ, ðt 0, j 0ÞÞ 2
½�1, �2�, for some ½�1, �2�. In particular by writing
Definition 3 (i) in t ¼ t1, we have

ðM1ðe1Þx10, �MM2x20Þ 2 Rðq
0
1, q
0
2Þ: ð3Þ

Since condition (3) is true for any ðx10, x20Þ 2 Rðq10, q20Þ,
then Theorem 2 (ii) is satisfied for any fixed ðq10, q20Þ 2
QR. By repeating the same proof replacing q10 with q20
and vice versa, Theorem 2 (ii) is satisfied. œ

Remark 6: Note that in the result above we do not
assume that R ¼ LðRÞ and hence Theorem 2 holds
also for hybrid bisimulations R for which R 6¼ LðRÞ.

Remark 7: Conditions outlined in Theorem 2 are
sufficient for characterizing hybrid bisimulations for
more general hybrid systems whose discrete transitions
depend on the continuous state x.
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By the result above, we may suppose w.l.o.g. that any
hybrid bisimulation satisfies conditions of Theorem 2.
Moreover a direct consequence of Theorem 2 is given
in the following.

Corollary 1: Two SLSs are bisimilar if and only if
there exists a set R � �1 ��2 of the form (2) satisfying
conditions of Theorem 2 and such that �j�i

ðRÞ ¼ �i,
i ¼ 1, 2.

In the next section we will show how to check the
conditions of the above result in a finite number of
steps and hence how to check bisimilarity of a pair of
SLSs.
If S1 and S2 are bisimilar with hybrid bisimulation R,

the dynamical systems �ðq1Þ and �ðq2Þ associated with
any pair ðq1, q2Þ 2 QR are not necessarily bisimilar as
the following example shows.

Example 1: Let us consider a pair of SLS S1 and S2

whose DESs DS1
¼ D1 and DS2

¼ D2 are depicted in
figure 1 and where

M1ðq, v, q
0Þ ¼

½I 0� if q ¼ q2, q 0 ¼ q3,

½IT 0T�T if q ¼ q3, q 0 ¼ q2,

I otherwise,

8><
>:

and M2ðeÞ ¼ I for any e 2 E2. Suppose that �1ðq1Þ ¼
�1ðq2Þ ¼ �2ðq4Þ ¼ �2ðq5Þ and Aðq4Þ ¼ diagfAðq3Þ,Ag,
Bðq4Þ ¼ ½Bðq3Þ

T BT�
T, Cðq3Þ ¼ ½Cðq1Þ C�, for some

matrices A, B and C of appropriate dimensions.
Consider a set R of the form (2), where

QR ¼ ðq1, q4Þ, ðq2, q5Þ, ðq3, q4Þ
� �

,

Rðq1, q4Þ ¼ ðx1, x4Þ : x1 ¼ x4
� �

,

Rðq2, q5Þ ¼ ðx2, x5Þ : x2 ¼ x5
� �

,

Rðq3, q4Þ ¼ ðx3, x4Þ : ðx3, 0Þ ¼ x4
� �

:

It is simple to check that R is a hybrid bisimulation
between S1 and S2 and �j�i

ðRÞ ¼ �i, i¼ 1, 2, thus S1

and S2 are bisimilar. However �2ðq4Þ and �1ðq3Þ are
not bisimilar.

On the other hand the following result holds.

Proposition 3: Consider two bisimilar SLSs S1 and S2

and a hybrid bisimulation R between S1 and S2 such

that �j�i
ðRÞ ¼ �i, i ¼ 1, 2. For any q1 2 Q1, there

exists q2 2 Q2 such that �1ðq1Þ � �2ðq2Þ and ðq1, q2Þ 2
QR and vice versa.

Proof: The proof follows directly from Definitions 3
and 4. œ

When formalizing hybrid bisimulations in Definition 3,
no restrictions were posed on hybrid time bases �1 and
�2 of executions �1 and �2 while in the definition of
structural hybrid bisimulation proposed in (van der
Schaft 2004c), �1 ¼ �2 was required. We now show
that by associating to any SLS S a suitable SLS S

’

bisimilar to S, there is no loss of generality into setting
�1 ¼ �2, in Definition 3.
More precisely given an SLS S ¼ ð�,U,D,Y,
�, �,E,M Þ, define the SLS

S
’ :¼ ð�,U,D,Y,�, �,E’,M’Þ,

where E’ :¼ E [ E 0 being E 0 :¼ fðq, v, qÞ, 8q 2 Q, for
some v 2 Vg and M’ðeÞ ¼MðeÞ, if e 2 E, M’ðeÞ ¼ I,
if e 2 E 0. Then the following holds.

Proposition 4: Given two SLSs S1 and S2,

. S1 and S
’

1 are bisimilar;
. R is a hybrid bisimulation between S1 and S2

if and only if R is a hybrid bisimulation between S
’

1

and S2;
. R is a hybrid bisimulation between S1 and S2 if and

only if R is a hybrid bisimulation between S
’

1 and
S
’

2 and in this last case R satisfies Definition 3 with
�1 ¼ �2.

Remark 8: By considering S
’

1 and S
’

2 , instead of S1

and S2, we implicitly force a time synchronization in
the events driving the discrete transitions in the time
evolution of each of the SLSs S

’

1 and S
’

2 .

We conclude this section by defining the sum of hybrid
bisimulations between SLSs. Given two hybrid bisimu-
lations Ra and Rb between two SLSs S1 and S2,
Rab :¼ Ra þRb is called the sum of Ra and Rb if

Rab :¼ ðq1, x1Þ, ðq2, x2Þð Þ 2 �1 ��2jðq1, q2Þ
�
2 QRab , ðx1, x2Þ 2 R

abðq1, q2Þ
�
,

where QRab :¼ QRa [QRb and

Rabðq1, q2Þ

:¼

Raðq1, q2Þ þR
bðq1, q2Þ, if ðq1, q2Þ 2 QRa \QRb ;

Raðq1, q2Þ, if ðq1, q2Þ 2 QRanQRb ;

Rbðq1, q2Þ, if ðq1, q2Þ 2 QRbnQRa :

8><
>:

Figure 1. DES D1 in the left and DES D2 in the right.
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Proposition 5: Let Ra and Rb be hybrid bisimulations
between bisimilar SLSs S1 and S2. Then R

a þRb is a
hybrid bisimulation between S1 and S2.

Proof: By applying Theorem 2 to Ra þRb the state-
ment holds. œ

Remark 9: The results presented in this section are
developed in the context of continuous-time switching
linear systems. However the results of this section
still hold when characterizing hybrid bisimulations for
discrete-time switching linear systems.

3. Maximal hybrid bisimulation

In this section we characterize the properties and
we propose a procedure for the computation of the
maximal hybrid bisimulation.
The maximal hybrid bisimulation between (bisimilar)

SLSs S1 and S2 is a hybrid bisimulation R	 between S1

and S2 such that, for all hybrid bisimulationsR between
S1 and S2, R � R

	.
The following result summarizes some properties of the
maximal hybrid bisimulation.

Theorem 3: Given two SLSs S1 and S2 and the
maximal hybrid bisimulation R	 between S1 and S2, the
following property hold:

(i) �j�i
ðR	Þ ¼ �i, i¼ 1, 2, if and only if S1 and S2 are

bisimilar.

Moreover if S1 and S2 are bisimilar then:

(ii) R	 exists and is unique;
(iii) R	 þR ¼ R	, for any hybrid bisimulation R

between S1 and S2;
(iv) R	 ¼ LðR	Þ:

Proof: See the Appendix. œ

Hereafter we propose a procedure for the compu-
tation of R	. As in the case of linear dynamical
systems, the proposed procedure is very close to
procedures for the computation of the maximal safe
set for SLSs: its main ingredient is the one devel-
oped in (De Santis et al. 2004a) which computes
inner approximations of the maximal safe set for
the class of discrete-time switching linear systems
constrained to compact sets in the continuous state
and input.
The key idea is to first compute the maximal bisim-

ulation Q	 of the discrete layers associated with the
pair of SLSs under consideration and then, to compute
the maximal hybrid bisimulation R	 on the basis of Q	.
The computation of Q	 may be performed by
using standard algorithms as for example the one in
(Clarke et al. 2002) which converges in a finite number

of steps to the maximal bisimulation relation for

DESs. Note that QR	 � Q	, since in the computation
of Q	 informations coming from the continuous

dynamics have not been considered.
The computation of R	 may be done by combining

Algorithm 2 of (van der Schaft 2004a), which com-

putes the maximal bisimulation relation for linear

dynamical systems, with Procedure Switching of De
Santis et al. (2004) for the computation of maximal

safe sets for switching systems. Computing R	

requires the analysis of the topological properties of

DESs DS1
and DS2

associated to SLSs S1 and S2.

For this purpose, it is useful to define the DES D
	,

naturally induced by the bisimulation relation Q	.

More formally, let D
	
¼ ðQ	,P	,V	,E	, �	Þ be a DES

where:

. P	 ¼ P
1
[ P2,

. V	 ¼ V1 � V2,

. E	 ¼ fððq1, q2Þ, ðv1, v2Þ, ðq
0
1, q
0
2ÞÞ : ðq1, v1, q

0
1Þ 2

E1, ðq2, v2, q
0
2Þ 2 E2, �1ðq1Þ ¼ �2ðq2Þ, �1ðq

0
1Þ ¼ �2ðq

0
2Þg,

. �	ðq1, q2Þ ¼ �1ðq1Þ ¼ �2ðq2Þ, 8ðq1, q2Þ 2 Q	.

Proposition 6: Given two bisimilar SLSs S1 and S2,
D
	 is well defined.

The computation of the maximal hybrid bisimulation

R	 exploits the topological properties of D
	.

Before explaining the basic steps of the proposed
procedure for the computation of R	, we need to

recall well known facts about DESs (Hopcroft and

Ullman 1979).
A Strongly Connected Component (SCC) of D

	 is

the maximal set of mutually reachable states. We

denote by F, the set of all SCCs associated to D
	.

SCCs determine a Directed Acyclic Graph (DAG).

Moreover F0 � F denotes the set of all SCCs not
reached by any SCCs, Fi � F denotes the set of all

SCCs, reached in one step by a SCC in Fi�1 and so

on. Let nF be the maximal integer i for which Fi is
nonempty. Notice that the intersection Fi \ Fj with

i 6¼ j may be non-empty. Any SCC in F0 (resp. in
FnF ) is called a root (resp. a leaf ) of the DAG asso-

ciated to D
	. For any F 2 F, we denote by

QF � Q1 �Q2, the set of extended discrete states
belonging to F. Moreover for any extended discrete

state ðq1, q2Þ 2 QF for some F, succðq1, q2Þ denotes
the set of all extended discrete states that are succes-

sor of ðq1, q2Þ in F. Sets QF, 8F 2 F are a partition

of Q	. For any F of D
	, the set succ(F) is composed

by those SCCs, reached by F in one step and SiðF Þ,

i¼ 1, 2 denote the pair of bisimilar SLSs naturally
induced by the DES D

	 and by continuous dynamics

associated to its extended discrete states.

GðFþ,F�Þ � QFþ denotes the set of extended discrete
states of Fþ, reachable in one step by an
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extended discrete state in F�. Moreover My denotes
the Moore–Penrose pseudo-inverse of a given
matrix M and Bisimð�1ðq1Þ,�2ðq2Þ, InitÞ denotes the
maximal linear bisimulation between �1 and �2

constrained to a subspace Init (see (van der Schaft
2004c) for an algorithmic procedure computing
Bisimð�1ðq1Þ,�2ðq2Þ, Init) in a finite number of
steps).
The computation of R	 is based on Theorem 2 and is

carried out using a two step procedure:

. At the lower-level, we give a procedure for the
computation of the maximal hybrid bisimulation
between bisimilar SLSs S1ðF Þ and S2ðF Þ naturally
induced by a SCC F, constrained to a given subspace
InitðF Þ.

. At the higher-level, the computation of R	 is
proposed and based on the lower-level procedure.

We start by describing how to compute the maximal
hybrid bisimulation BisimSCCðInitðF Þ,F Þ between
SLSs S1ðF Þ and S2ðF Þ induced by the SCC F of D

	

and constrained in the hybrid subspace:

InitðF Þ ¼
S
ðq1, q2Þ2QF

ðq1, q2Þ
� �

� InitFðq1, q2Þ:

We will define an appropriate recursion that, by exploit-
ing topological structure of F, computes a sequence of
sets KðiÞ, i ¼ 0, 1, . . . , converging to the maximal
hybrid bisimulation between S1ðF Þ and S2ðF Þ.
At first we set i ¼ 0 and the initial maximal hybrid

bisimulation Kð0Þ between S1ðF Þ and S2ðF Þ as

Kð0Þ :¼
S
ðq1, q2Þ2QF

ðq1, q2Þ
� �

� Zððq1, q2Þ, 0Þ,

where Zððq1, q2Þ, 0Þ :¼ InitFðq1, q2Þ for any ðq1, q2Þ 2 QF.
For any ðq1, q2Þ 2 QF, we first update the con-
straining subspace Z0 where Bisimð�1ðq1Þ,�2ðq2Þ,Z0Þ

lies: for any ðq 01, q
0
2Þ 2 succðq1, q2Þ, by Theorem 2

(ii), Bisimð�1ðq1Þ,�2ðq2Þ,Z0Þ has to belong to
Myðe1, e2ÞZððq

0
1, q
0
2Þ, 0Þ, where e1 and e2 connect discrete

states ðq1, q2Þ to ðq
0
1, q
0
2Þ. Compute

Z0 :¼
T
ðq0

1
, q0

2
Þ2succðq1, q2Þ

Myðe1, e2ÞZððq
0
1, q
0
2Þ, 0Þ: ð4Þ

Then it is possible to compute Zððq1, q2Þ, 0Þ :¼
Bisimð�1ðq1Þ,�2ðq2Þ,Z0Þ between �1ðq1Þ and �2ðq2Þ.
Finally we update Kð0Þ :¼ [ðq1, q2Þ2QF

fðq1, q2Þg�
Zððq1, q2Þ, 0Þ and i :¼ iþ 1. By iterating this step
again the maximal hybrid bisimulation between
S1ðF Þ and S2ðF Þ corresponds to a fixed point
KðiÞ ¼ Kði� 1Þ, for some i 2 N, of the recursion above.
The proposed procedure is formalized in the following
Function.

Function 1: RðF Þ :¼ BisimSCCðInitðF Þ,F Þ

set i :¼ 0

8ðq1,q2Þ 2QF

setZððq1,q2Þ, iÞ :¼ InitFðq1,q2Þ

setKðiÞ :¼
S
ðq1,q2Þ2QF

ðq1,q2Þ
� �

�Zððq1,q2Þ, iÞ

whileKðiÞ 6¼Kði�1Þ repeat

for any ðq1,q2Þ 2QF do

computeZ0 :¼
T
ðq 0

1
,q 0

2
Þ2succðq1,q2Þ

Myðe1,e2ÞZððq
0
1,q
0
2Þ, iÞ

where ek¼ ðqk,vk,q
0
kÞ, vk 2Vk, k¼ 1,2

computeZððq1,q2Þ, iÞ ¼Bisimð�1ðq1Þ,�2ðq2Þ,Z0Þ

end do

setKðiÞ :¼
S
ðq1,q2Þ2QF

ðq1,q2Þ
� �

�Zððq1,q2Þ, iÞ

set i :¼ iþ1

end while

returnRðF Þ :¼KðiÞ

end Function

We now provide the high-level algorithm. The
computation of the maximal hybrid bisimulation starts
from the leaves F 2 FnF and going backwards, ends to
the roots F 2 F0 of the DAG associated to D

	. For any
F 2 F, Init(F) represents the constraining subspace
where the maximal hybrid bisimulation has to be
computed. Firstly we set

InitðF Þ :¼
S
ðq1, q2Þ2QF

ðq1, q2Þ
� �

� InitFðq1, q2Þ, 8F 2 F:

Any F 2 FnF has no successors. The first step consists of
computing for any F 2 FnF , the maximal hybrid bisimu-
lation BisimSCCðInitðF Þ,FÞ associated to SLSs S1ðF Þ
and S2ðF Þ, induced by F. Then we need to update the
constraining subspace InitðF�Þ of SCCs F� 2
succ�1ðFnF Þ: consider all SCCs Fþ 2 succðF�Þ and all
extended discrete states ðq1, q2Þ 2 QF� that reach in one
step the extended discrete states ðq 01, q

0
2Þ 2 GðF

þ,F�Þ �
QFþ of Fþ. By Theorem 2 (ii), for any fixed Fþ 2
succðF�Þ and for any fixed ðq 01, q

0
2Þ 2 GðF

þ,F�Þ, the set
Bisimððq1, q2Þ,Z0Þ has to belong to

�ðq 01, q
0
2Þ :¼Myðe1, e2ÞBisimððq

0
1, q
0
2Þ, InitðF

þÞÞ, ð5Þ

where e1 and e2 connect ðq1, q2Þ 2 QF� to ðq 01, q
0
2Þ 2 QFþ .

By considering all extended discrete states ðq 01, q
0
2Þ 2

GðFþ,F�Þ and all SCCs Fþ 2 succðF�Þ, the maximal
hybrid bisimulation between S1ðF

�Þ and S2ðF
�Þ, has

to belong to

InitðF�Þ :¼ InitðF�Þ
T

I0ðF�Þ
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where

I0ðF�Þ :¼
T

Fþ2succðF�Þ

T
ðq 0

1
, q 0

2
Þ2GðFþ,F�Þ�ðq

0
1, q
0
2Þ

� �
:

Finally it is possible to go backwards and consider the
SCCs of FnF�1 and so on. This procedure ends when
all SCCs are visited. The resulting set R̂R can be thought
of as being of the form (2); moreover R̂R as returned by
the procedure may contain some empty sets. For this
reason define

CleanðR̂RÞ ¼ ððq1,x1Þ, ðq2, x2ÞÞ 2 R̂R : R̂Rðq1, q2Þ 6¼ Ø
n o

,

and finally set R̂R :¼ CleanðR̂RÞ. The proposed procedure
is formalized in the following algorithm.

Algorithm 1: MAXIMAL HYBRID BISIMULATION

set i :¼ nF, R̂R :¼Ø

8F2 F

set InitðF Þ :¼
S
ðq1,q2Þ2QF

ðq1,q2Þ
� �

� InitFðq1,q2Þ

while i> 0 repeat

8F2 Fi

compute RðF Þ :¼ BisimSCCðInitðF Þ,F Þ

set R̂R :¼ R̂R[RðF Þ

8F� 2 succ�1ðF Þ

compute InitðF�Þ :¼ InitðF�Þ
T

I0ðF�Þ, i :¼ i�1

end while

R̂R :¼ CleanðR̂RÞ

end Algorithm

Remark 10: Algorithm 1 makes use of geometric
linear control theory and therefore there are various effi-
cient tools in the literature for the effective computation
of the required sets.

Convergence properties of the procedure above is now
characterized.

Theorem 4: Algorithm 1 converges in a finite number of
steps to the maximal hybrid bisimulation R̂R ¼ R	 or to the
empty set.

The result above is also important because it gives a
reformulation of Theorem 2 that is checkable in a finite
number of steps, as the following result shows.

Corollary 2: Two SLSs S1 and S2 are bisimilar if and
only if the returned set R̂R of Algorithm 1 is such that
�j�i
ðR̂RÞ ¼ �i, i¼ 1, 2.

We conclude this section by giving some results high-
lighting the computational complexity of the proposed
approach. The following results give an upper bound
on the number of steps for which the convergence of
Function BisimSCC and Algorithm 1 is ensured.

Proposition 7: Given a SCC F and an initial subspace
InitðF Þ, Function BisimSCCðInitðF Þ,FÞ converges in at
most @ðF Þ steps, where

@ðF Þ ¼ max dimX1ðq1Þ þ dimX2ðq2Þ, ðq1, q2Þ 2 QF

� �
:

Proposition 8: Algorithm 1 converges in at most @
steps, where @ ¼

P
F2F@ðF Þ.

The proof of the results above is based on the structure
of the sets involved being linear subspaces.

4. Reduction via hybrid bisimulation

Reduction via bisimulation is a well-known technique
to reduce the topological complexity of concurrent
processes (see for example (Hermanns 2002)). The
basic idea is to find a bisimulation between the process
and itself and then to factorize the state space of the
process under the equivalence relation induced by the
bisimulation. In this section, we extend results in
(Hermanns 2002) and (van der Schaft 2004a) to SLSs.

Therefore in the following we will consider an SLS S

and a copy of itself and we show how to perform a
hybrid state space reduction of S. The following obvious
facts hold.

Lemma 2: Given an SLS S, the identity relation
Rid :¼ fð�1, �2Þ j �1 ¼ �2g is a hybrid bisimulation between
S and itself.

Lemma 3: Given an SLS S, for any hybrid bisimu-
lation R between S and itself, R�1 :¼ fð�2, �1Þ j ð�1,
�2Þg 2 R is a hybrid bisimulation between S and itself.

Every R � ��� naturally induces a relation on � by
saying that �1, �2 2 � are related by R if and only if
�1, �2ð Þ 2 R. For performing the hybrid state space
reduction of a given SLS, we employ an equivalence
relation on the hybrid state space � in such a way that
all hybrid states belonging to the same equivalence
class of the equivalence relation are reduced to the
same hybrid state. The following result shows that any
hybrid bisimulation naturally induces an equivalence
relation on the hybrid state space.

Proposition 9: For any hybrid bisimulation R between
an SLS S and itself there exists a hybrid bisimulation
R0 between S and itself that is also an equivalence
relation on the hybrid state space � of S.
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Proof: Denote by Q 0 the set of all ðq1, q3Þ 2 Q1�ð

Q2ÞnQR such that ðq1, q2Þ, ðq2, q3Þ 2 QR for some
q2 2 QR and set

R00 ¼ R
S S

q1, q3ð Þ2Q 0 f q1, q3ð Þg � R00 q1, q3ð Þ

� �
,

where R00 q1,q3ð Þ ¼ fðx1,x3Þ 2 Xðq1Þ �Xðq3Þ j9x2 2 Xðq2Þ:
ðx1, x2Þ 2 R q1, q2ð Þ, ðx2, x3Þ 2 R q2, q3ð Þg is a linear bisim-
ulation between � q1ð Þ and � q3ð Þ. Set

R0 ¼ R00 þ R00ð Þ
�1
þRid:

By construction R0 is an equivalence relation on the
hybrid state space � of S. We now show that R00 is a
hybrid bisimulation between S and itself, and then by
Proposition 5, that R0 is a hybrid bisimulation between
S and itself. For any ðq1, q2Þ 2 QR Theorem 2 (i) and
(ii) are satisfied. For any ðq1, q2Þ 2 Q 0, there exists
q3 2 Q such that ðq1, q2Þ, ðq2, q3Þ 2 QR. Then by defini-
tion, for any q 01 2 succðq1Þ, there exists q 02 2 succðq2Þ,
and for any q 02 2 succðq2Þ, there exists q 03 2 succðq3Þ
such that ðq 01, q

0
2Þ, ðq

0
2, q
0
3Þ 2 QR and hence ðq 01, q

0
3Þ 2 QR.

Moreover �ðq1Þ ¼ �ðq2Þ ¼ �ðq3Þ and R00 q1, q3ð Þ is a
bisimulation between �ðq1Þ and �ðq3Þ and therefore
Theorem 2 (i) is satisfied. For any ðx1, x3Þ 2 Rðq1, q3Þ
there exists x2 2 Xðq2Þ such that ðx1, x2Þ 2 Rðq1, q2Þ,
ðx2, x3Þ 2 Rðq2, q3Þ and ðM1ðe1Þx1,M2ðe2Þx2Þ 2 Rðq

0
1,

q 02Þ, ðM2ðe2Þx2,M3ðe3Þx3Þ 2 Rðq
0
2, q
0
3Þ, with appropriate

discrete transitions ei, i ¼ 1, 2, 3, and therefore
ðM1ðe1Þx1,M3ðe3Þx3Þ 2 Rðq

0
1, q
0
3Þ, i.e. Theorem 2 (ii) is

satisfied. By repeating the same proof replacing the
role of q1 by q2, the statement follows. œ

Remark 11: R0 as constructed in the proof above can
be seen as the closure of R with respect to the properties
of reflexivity, symmetry and transitivity.

Remark 12: Given a hybrid bisimulation R, the
hybrid bisimulation R0, constructed in the proof of
Proposition 9, is such that R � R0, and therefore it is
easy to see that the maximal hybrid bisimulation R	

between S and itself is also an equivalence relation.

By the result above we may assume w.l.o.g. that
the hybrid bisimulations under consideration are
equivalence relations on the hybrid state space � of S.
Given a hybrid bisimulation and equivalence relation
R, we now show how to perform a hybrid state space
reduction and how to define the reduced SLS bisimilar
to S.
Denote by �i, the equivalence class induced by QR

such that qj, qk 2 �i if and only if ðqj, qkÞ 2 QR. For
any �i choose the set of representatives �	i such that

. for any q 2 �i there exists q	i 2 �	i such that
�jXðqÞ Rðq, q

	
i Þ

� �
¼ XðqÞ,

. for any q, q 0 2 �	i , q 6¼ q 0,�jXðq 0Þ Rðq, q
0Þð Þ 6¼ Xðq 0Þ.

The existence of �	i is guaranteed by Proposition 3.
Denote by QR the set of all canonical represen-
tatives of the sequence �i, i ¼ 1, 2, . . . , i.e. QR ¼S

i�
	
i . For any q 2 QR define EðqÞ :¼ fq 0 2 Q:

ðq, q 0Þ 2 QRg, �RRðqÞ :¼ fx1 � x2 j ðx1, x2Þ 2 Rðq, qÞg and
finally

�RR :¼
S

q2QREðqÞ �
�RRðqÞ:

The hybrid state space � of the SLS S under considera-
tion may be now factorized by �RR. We write �=R to
denote the reduced hybrid state space of S, naturally
induced by �RR, i.e.

�=R ¼
S

q2QR q
� �
� XðqÞ= �RRðqÞ:

Let �R
Q

: Q! QR be the canonical projection map
associating to each element of Q its unique canonical
representative in QR, and for any q 2 QR let �Rq :

XðqÞ ! XðqÞ=RðqÞ be the canonical projection. Define
the reduced SLS:

S
R
¼ ð�R,U,D,Y,�R, �R,ER,MRÞ,

where

. XRðqÞ ¼ XðqÞ= �RRðqÞ and dimRðqÞ ¼ dimðXRðqÞÞ,
8q 2 QR;

. For any q 2 QR, �RðqÞ is given by equations

�RðqÞ :
_xxðtÞ ¼ ARðqÞxðtÞ þ BRðqÞuðtÞ þ GRðqÞwðtÞ,

yðtÞ ¼ CRðqÞxðtÞ,

�

where the dynamical systems above are defined as in
van der Schaft (2004a); for the sake of completeness,
there exists a ‘feedback’ map K(q) such that

ðAðqÞ þ GðqÞKðqÞÞ �RRðqÞ � �RRðqÞ,

and thus AðqÞ þ GðqÞKðqÞ projects to a linear map
ARðqÞ: XRðqÞ ! XRðqÞ satisfying ARðqÞ�Rq ¼
�Rq AðqÞ þ GðqÞKðqÞð Þ; BRðqÞ ¼ �Rq BðqÞ; GRðqÞ ¼

�Rq GðqÞ; C
RðqÞ is such that CRðqÞ�Rq ¼ CðqÞ;

. �R: QR!P such that �RðqÞ ¼ �ðqÞ, 8q 2 QR;

. e ¼ ðq 01, v, q
0
2Þ 2 ER if and only if there exist q1 2

E
�1
ðq 01Þ and q2 2 E

�1
ðq 02Þ such that ðq1, v, q2Þ 2 E;

. 8e ¼ ðq, v, q 0Þ 2 ER, MRðeÞ�Rq 0 ¼ �Rq MðeÞ.

The reduced SLS S
R depends on the choice of the set

QR of canonical representatives of equivalence classes
induced by QR on Q. The following holds.
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Proposition 10: Let R be a hybrid bisimulation and
equivalence relation between S and itself. Then for any
canonical representative QR,S and S

R are bisimilar and

cardðQRÞ � cardðQÞ, dimðXðR
Q
ðqÞÞÞ � dimðXðqÞÞ, 8q 2Q:

Proof: For any QR define R0 � ���= �RR such that
ððq, xÞ, ðq 0, x 0ÞÞ 2 R0 if and only if �R

Q
ðqÞ ¼ q 0 and

�Rq ðxÞ ¼ x 0. It is easily seen that R0 is a hybrid
bisimulation such that �j�ðR

0Þ ¼ � and �j�=RðR
0Þ ¼

�=R. The second part of the statement is obvious by
construction. œ

Remark 13: The second part of the statement of
Proposition 10 formalizes the intuitive idea that S

R is
in some way ‘smaller’ than S.

The following result is a direct consequence of
Proposition 10 and of the definition of reduced SLSs.

Corollary 3: LetR1 andR2 be hybrid bisimulations and
equivalence relations between S and itself such that
R2 � R1. Then,

cardðQR1 Þ � cardðQR2 Þ,

dimðXð�R1

Q
ðqÞÞÞ � dimðXð�R2

Q
ðqÞÞÞ, 8q 2 Q:

These results reveal a sort of monotony in the functions
cardðQRÞ and dimðXð�R

Q
ðqÞÞÞ, 8q 2 Q depending on R.

Moreover, in view of the result above one may think
to find the minimal bisimilar SLS of an SLS S, by
reducing S by means of R	. We now show that this
intuitive idea is true.
We formally refer to a minimal bisimilar SLS of a

given SLS S as an SLS S
0 that is bisimilar to S, and

such that the cardinality of its discrete state space Q 0

and the dimensions of its continuous state space
X 0ðqÞ, q 2 Q 0 are minimal among all other SLSs that
are bisimilar to S. Denote by minðSÞ the class of
minimal bisimilar SLSs of S. From Corollary 3 and the
definition of maximal hybrid bisimulation we derive the
following result.

Corollary 4: Let R	 be the maximal hybrid bisimula-
tion between S and itself, then S

R	
2 minðSÞ:

Remark 14: It is worth to point out that, by the
procedures illustrated in x 3, the computation of S

R	

can be done in a finite number of steps. This result is
also important because shows that the minimal bisimilar
SLS of a given SLS can be always computed, whereas
the same reasoning does not apply to the general case
of hybrid systems, as shown in (Alur et al. 2000).

We recall the following result that will be instrumental
in the subsequent developments.

Lemma 4 (van der Schaft 2004c): If �1 and �2 are

bisimilar linear dynamical systems, then any � 01 2

minð�1Þ and any � 02 2 minð�2Þ are algebraically

equivalent.

Since S
R	 depends on the set QR

	

of canonical represen-
tatives of Q, it is not unique. However, the following

result holds.

Proposition 11: The family ofS
R	 parametrized by QR

	

,

is composed of SLSs that are algebraically equivalent.

Proof: See the Appendix. œ

Finally, using the same arguments as in the proof above,

it is simple to derive a generalization of Lemma 4 to
SLSs:

Corollary 5: If S1 and S2 are bisimilar, then

any S
0
1 2 minðS1Þ and S

0
2 2 minðS2Þ are algebraically

equivalent.

5. Simulation and abstraction

Aim of this section is to characterize the notion of
simulation as introduced in Definition 5 and to

introduce the notion of abstraction for the class of SLSs.

By specializing Theorem 2, the following result is

obtained.

Theorem 5: Given two SLSs S1 and S2, a set R of
the form (2) is a simulation of S1 by S2 if and only if

for any ðq1, q2Þ 2 QR the following property holds:

8q 01 2 succðq1Þ, 9q
0
2 2 succðq2Þ [ fq2g: ðq

0
1, q
0
2Þ 2 QR and

(i) �1ðq1Þ ¼ �2ðq2Þ and Rðq1, q2Þ is a simulation relation
of �1ðq1Þ by �2ðq2Þ;

(ii) diagðM1ðe1Þ, �MM2ÞRðq1, q2Þ � Rðq
0
1, q
0
2Þ, where e1 2

E1 takes q1 into q 01 and e2 2 E2 takes q2 into q 02,

and �MM2 ¼M2ðe2Þ if q
0
2 6¼ q2, �MM2 ¼ I if q 02 ¼ q2;

Remark 15: On the basis of the above result and by

specializing the proposed procedure for the computation

of the maximal hybrid bisimulation given in x 3, it is

possible to give a procedure for the computation of

the maximal hybrid simulation of an SLS S1 by an

SLS S2. This is done by replacing the algorithms for

the computation of the maximal bisimulation of DESs

and of linear dynamical systems (see x 3) with the ones

in (Clarke et al. 2002) and (van der Schaft 2004a), com-

puting respectively the maximal simulation of a DES D1

by a DES D2, and the maximal simulation of a dynami-

cal system �1 by a dynamical system �2. The proposed

procedure converges to the maximal simulation of S1 by

S2 in a finite number of steps.
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By combining the results on reduction of SLSs given
in x 4 with the above results on hybrid simulations:

Proposition 12: Let S1 and S2 be two SLSs, such that
S2 is simulated by S1. Let R1 and R2 be respectively
hybrid bisimulations and equivalence relations, between
S1 and itself and S2 and itself. Then S

R2

2 4S
R1

1 .

Proof: S
R2

2 4S24S14S
R1

1 . œ

The notion of simulation is very close to the notion of
abstraction. Abstraction of concurrent processes and
dynamical systems has been studied in (Henzinger
1995), (Alur et al. 2000), (Tabuada et al. 2002) and
(Pappas 2003). The main idea is to ‘simplify’ the given
process under consideration in such a way that the
resulting process simulates the original one. In other
words, we may say that abstraction is related to
simulation in the same way as reduction is related
to bisimulation. Following (Pappas 2003) and (van
der Schaft 2004c) abstractions of SLSs are defined as
follows. Let S ¼ ð�,U,D,Y,�, �,E,MÞ be an SLS
where � ¼ [q2Qfqg � XðqÞ. Define a suitable set

�A ¼
S

q2QA q
� �
� XAðqÞ,

such that QA�Q and �ðQAÞ ¼ �ðQÞ and for any q 2 QA,
let XAðqÞ be a linear subspace of XðqÞ. Define a surjective
mapM: �! �A, such that

Mðq, xÞ ¼ ðMQðqÞ,MqxÞ, 8ðq, xÞ 2 �,

where MQ: Q!QA and for any q 2 Q,Mqx is linear
in x. Suppose that for any q 2 Q, kerMq � kerCðqÞ.
The mapM naturally induces the SLS

S
A :¼ �A,U,D,Y,�A, �A,EA,MA

� �
,

where

. For any q 2 QA, �AðqÞ is given by equations

_xxðtÞ ¼ AAðqÞxðtÞ þ BAðqÞuðtÞ þ GAðqÞwðtÞ,

yðtÞ ¼ CAðqÞxðtÞ,

where AAðqÞ :¼MqAðqÞM
y
q, BAðqÞ :¼MqBðqÞ,

CAðqÞ :¼ CðqÞMyq, G
AðqÞ :¼Mq½GðqÞ

..

.
AðqÞz1ðqÞ

..

.
. . . ..

.

AðqÞzrðqÞðqÞ�, where z1ðqÞ, . . . , zrðqÞðqÞ span kerMq;
. �Aðq 0Þ ¼ �ðM�1

Q
ðqÞÞ for some q 2 Q;

. e ¼ ðq 01,w, q
0
2Þ 2 EA if and only if there exist q1 2

M
�1
Q
ðq 01Þ and q2 2 M

�1
Q
ðq 02Þ such that ðq1,w, q2Þ 2 E;

. MAðeÞ ¼ Mq0MðeÞM
y
q, for any ðq,w, q 0Þ 2 EA.

We think of S
A as an abstraction of S.

Remark 6: It is easily seen that one can associate to
any hybrid system H whose discrete transitions depend
on the continuous state x, a suitable switching system
S, whose discrete transitions are caused by external
discrete disturbances, and which is an abstraction of H.
The following result holds.

Proposition 13: S4S
A.

Proof: Define the following setR0 � ���A such that
ððq, xÞ, ðq 0, x 0ÞÞ 2 R0 if and only if MQðqÞ ¼ q 0 and
MqðxÞ ¼ x 0. It is easily seen that R0 is a hybrid
simulation of S by S

A such that �j�ðR
0Þ ¼ � and

�j�AðR
0Þ ¼ �A. œ

We conclude this section by establishing connections
between bisimulation-based reduction and simulation-
based abstraction.

Proposition 14: Given an SLS S and a hybrid
bisimulation R between S and itself, then S

R is an
abstraction of S.

Proof: Set �A :¼ �=R. By definition �ðQAÞ ¼ �ðQÞ
and XAðqÞ is a linear subspace of XðqÞ for any q 2 QA.
Finally define MQ :¼ �R

Q
and Mq :¼ �Rq , for any

q 2 Q. Since by definition for any q 2 Q,CRðqÞ�Rq ¼
CðqÞ, then for any x 2 ker�Rq , x 2 kerCðqÞ: thus,
ker�Rq � kerCðqÞ for any q 2 Q, and the statement
holds. œ

The converse of the previous statement obviously is not
true in general.

6. Connections with observability of SLSs

We outlined in x 2.2 that bisimilarity between SLSs
implies their input–output equivalence. This means
that any SLS S has the nice property that any reduced
SLS S

R of S is input–output equivalent to S. In this
section, we will analyze the preservation of the structural
property of observability under bisimulation-based
reduction and simulation-based abstraction.

The class of SLSs that we consider in this context are
characterized by deterministic continuous dynamics,
i.e. W ¼ 0f g, unconstrained input and output functions,
i.e. U ¼ R

m and H ¼ R
s,m, s 2 N, and a minimum dwell

time �m > 0 , (Morse 1996) such that for any hybrid time
basis �, 8Ij 2 �, t

0
j � tj � �m.

We recall here the definition of observability proposed
in (De Santis et al. 2003)

Definition 12: An SLS S ¼ ð�,Rm,V� f0g,P� R
s,

�, �,E,MÞ is observable if there exist a function

’: CðRþ0 �N,Rs
Þ � CðN,PÞ�C0ðRþ0 ,U Þ ! �,
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an integer j � 0 and a real number � 2 0, �mð Þ such that

8�0 2 �, 8� 2 T , 8v 2 CðN,V Þ there exists an execution

� ¼ �0, �, u, d, �, yð Þ such that ’ðyj½ðt0, 0Þ, ðt, jÞ�, uj½t0, tÞÞ ¼
�ðt, j Þ, 8t 2 ðtj þ �, t

0
j �, 8j ¼ j, jþ 1, . . . , cardð�Þ � 1, where

yj ðt0, 0Þ, ðt, jÞ½ � is the restriction of the output y(t, j) to

½tj, tj�, 0 � j � j � j S is said to be unobservable if it is not

observable. A necessary and sufficient condition for

testing observability of SLSs is given in the following.

Theorem 6 (De Santis et al. 2003): An SLS

S ¼ ð�,Rm,V� f0g,P� R
s,�, �,E,MÞ is observable if

and only if

(i) �ðqiÞ is observable, 8qi 2 Q;
(ii) 8qi, qj 2 Q, qi 6¼ qj, one of the following conditions

hold:

– �ðqiÞ 6¼ �ðqjÞ,
– 9k 2N[ 0f g : CðqiÞAðqiÞ

kBðqiÞ 6¼ CðqjÞAðqjÞ
kBðqjÞ:

The problem that we address now is the preservation

of observability under bisimulation reduction. The

following result holds.

Proposition 15: If an SLS S is observable then

S 2 minðSÞ.

Proof: Let R be any hybrid bisimulation and equiva-

lence relation between S and itself. Since Theorem 6

(ii) holds, by Theorem 2, QR ¼ fðq, qÞ : q 2 Qg.

Moreover for any q 2 Q, since �ðqÞ is observable, by

Corollary 6.4 in (van der Schaft 2004c), Rðq, qÞ ¼

fðx, xÞ : x 2 XðqÞg. Therefore any hybrid bisimulation

and equivalence relation between S and itself coincides

with Rid and then S 2 minðSÞ. œ

The converse of the result above is proved in (van der

Schaft 2004c) for the class of linear dynamical systems.

However the following counterexample shows that it is

not true for the class of SLSs.

Example 2: Let us consider an SLS S3, whose DES

DS3
¼ D3 is depicted in figure 2 and whose continuous

dynamics are such that �3ðq6Þ ¼ �3ðq7Þ ¼ �3ðq8Þ ¼

�3ðq9Þ and where M3ðeÞ ¼ I, for any e 2 E3. Suppose

that �3ðqiÞ are observable for any qi, i ¼ 6, . . . , 9.

S3 2 minðS3Þ and is unobservable since Theorem 6 (ii)

is not satisfied for q6, q7.

It is important to emphasize that unobservable SLSs
may give rise to reduced observable or unobservable
SLSs. This motivates the introduction of the following
unobservable SLSs classification.

Definition 13: An SLS S is said to be

. Non-properly unobservable if it is unobservable
and there exists a hybrid bisimulation R between
S and itself, such that the reduced SLS S

R is
observable,

. Properly unobservable if it is unobservable and for
any hybrid bisimulation R between S and itself
the reduced SLS S

R is unobservable.

Example 3: Let us consider an SLS S2, whose DES
DS2
¼ D2 is depicted in figure 2 and whose continuous

dynamics are such that �2ðq3Þ ¼ �2ðq4Þ ¼ �2ðq5Þ and
observable and where M2ðeÞ ¼ I, for any e 2 E2. S2 is
unobservable since Theorem 6 (ii) is not satisfied for
q3, q5 It is simple to check that any minimal bisimilar
SLS S

0
2 2 minðS2Þ of S2, whose DES is algebraically

equivalent to D1, with �QR
	 ðq3Þ ¼ �QR

	 ðq5Þ ¼ q2,
�QR

	 ðq4Þ ¼ q1, is observable. Then S2 is nonproperly
unobservable.

Example 4: Let us consider an SLS S3, whose
DES DS3

¼ D3 is depicted in figure 2 and whose
continuous dynamics are such that �3ðq6Þ ¼ �3ðq7Þ ¼
�3ðq8Þ ¼ �3ðq9Þ and where M3ðeÞ ¼ I, for any e 2 E3.
Suppose that �3ðqiÞ are observable for any qi,
i ¼ 6, . . . , 9. S3 is unobservable since Theorem 6 (ii) is
not satisfied for q6, q7. Moreover it is simple to
check that S3 2 minðS3Þ. Since the only hybrid bisimu-
lation between S3 and itself is the identity relation
Rid, S

Rid

3 is unobservable and hence S3 is properly
unobservable.

Non-proper and proper unobservability can be charac-
terized as follows.

Proposition 16: An SLS S is non-properly unobservable
if and only if S is unobservable and any S

0
2 minðSÞ is

observable.

Proof: Sufficiency holds by definition. For the
necessity part, suppose by contradiction that S is
observable or 9S 0 2 minðSÞ unobservable. If S is

Figure 2. DESs D1, D2, D3 and D4.
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observable a contradiction holds. Now suppose
9S
0
2 minðSÞ unobservable. If S

0 is unobservable,
by Theorem 6 and Corollary 6.4 in (van der
Schaft 2004c), there exist q1, q2 2 QR

	

, such that
�R

	

ðq1Þ ¼ �
R	ðq2Þ and �R

	

ðq1Þ � �R
	

ðq2Þ. It is simple to
check by definition of S

0, that any pair ðq 01, q
0
2Þ 2

��1Q ðq1Þ ���1Q ðq2Þ � Q�Q is such that for any hybrid
bisimulation and equivalence relation R between S

and itself, ðq 01, q
0
2Þ =2QR, and then the reduced SLS S

R

will have two discrete states �Qðq
0
1Þ, �Qðq

0
2Þ 2 QR such

that �Rð�Qðq
0
1ÞÞ ¼ �

Rð�Qðq
0
2ÞÞ and �Rð�Qðq

0
1ÞÞ �

�Rð�Qðq
0
2ÞÞ; then S

R is unobservable for any R, and
hence S is not nonproperly unobservable. œ

Proposition 17: An SLS S is properly unobservable if
and only if S is unobservable and any S

0
2 minðSÞ is

unobservable.

The proof of the result above is an easy consequence of
Definition 13 and Proposition 16, and is therefore
omitted.

Remark 16: Conditions of Propositions 16 and
17 may be easily checked by constructing the
minimal bisimilar SLS of the given SLS S. As pointed
out in Remark 14, this construction reduces to the
computation of the maximal hybrid bisimulation
between the SLS S and itself, as formalized in
Corollary 4.

In view of the discussion above, reduction via hybrid
bisimulation is a good tool to extract the observable
dynamics of any non-properly unobservable SLS.
This result clearly links to the well known Kalman
decomposition of linear dynamical systems, that has
been recently extended to the class of SLSs (see (De
Santis et al. 2003, 2004b)). However if one wants to
extract the observable dynamics of a properly unobserv-
able SLS, reduction is not the right tool as shown by
Example 4. Therefore the key idea is to use abstraction
instead of reduction. The following result formalizes
that idea.

Proposition 18: For any properly unobservable SLS S,
there exists an abstraction S

A of S which is observable
and which simulates S.

Proof: Define QA such that 6 9qi, qj 2 QA, qi 6¼ qj such
that �ðqiÞ ¼ �ðqjÞ and for any q 2 Q set Mq :¼ �R

	

q

and �R
	

q : XðqÞ ! XðqÞ=R	ðqÞ, R
	ðqÞ being the maximal

linear bisimulation between �(q) and itself, for any
q 2 Q. Since, as shown in the proof of Proposition
14, kerMq � kerCðqÞ, the SLS S

A is an abstraction
of S. By construction �AðqÞ is observable for any
q 2 Q (see van der Schaft (2004c)) and then S

A

satisfies conditions of Theorem 6: therefore S
A is

observable and finally by Proposition 13 the
statement holds. œ

The following example shows an application of
Proposition 18.

Example 5: Consider SLS S3 of Example 4. Define an
SLS S4, whose DES DS4

¼ D4 is depicted in figure 2
and where �4ðq10Þ ¼ �4ðq11Þ ¼ �4ðq12Þ :¼ �3ðq6Þ and
M4ðeÞ ¼ I, for any e 2 E4. S4 is observable, is an
abstraction of S3 and simulates S3:

7. Some possible extensions

Aim of this section is to briefly discuss some possible
extensions of the proposed methodology for reducing
the complexity of the class of switching linear systems.
In fact the proposed results are easily extendable to
switching systems where the continuous dynamics are
governed by non-linear control systems or by linear
systems in pencil forms.

The key results to be generalized in these new
frameworks are:

. Theorem 2, characterizing the algebraic properties
for a set to be a hybrid bisimulation for the class
of switching systems under consideration,

. The procedures described in x 3 for computing the
maximal hybrid bisimulation,

. The definition of reduced switching systems as
formalized in x 4.

In the following we offer some remarks for generalizing
these key results in the case of switching non-linear
systems and of switching systems in pencil form.

We refer to a switching non-linear system, respectively
to a switching linear system in pencil form, as a tuple
ð�,U,D,Y,�, �,E,MÞ as in Definition 1 where � is
replaced by the following function that associates to
any discrete state q 2 Q, the non-linear dynamical
system

�ðqÞ :
_xxðtÞ ¼ aðq, xðtÞÞ þ bðq, xðtÞÞuðtÞ þ gðq, xðtÞÞwðtÞ,

hðtÞ ¼ cðq, xðtÞÞ, t � 0;

�

að�, �Þ, bð�, �Þ, gð�, �Þ and cð�, �Þ being sufficiently smooth
vector fields, respectively by the following function
associating to any discrete state q 2 Q, the linear
dynamical system in pencil form

�ðqÞ:
LðqÞ _xxðtÞ ¼ AðqÞxðtÞ,

wðtÞ ¼ HðqÞxðtÞ,

�

with Lð�Þ, Að�Þ and Hð�Þ being matrices of appropriate
dimensions. The notion of executions of switching
non-linear systems and switching linear systems in
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pencil form can be easily generalized from Definition 2
and is therefore omitted.
It is worth to point out that Theorem 2 is still true

both for the class of switching non-linear systems and
for the class of switching linear systems in pencil form.
In particular note that Theorem 2 (i) implicitly requires
that Rðq1, q2Þ is a bisimulation relation between the pair
of dynamical systems �1ðq1Þ and �2ðq2Þ. An algebraic
characterization of bisimulations for non-linear
systems can be found in Proposition 7.9 of (van der
Schaft 2004c) and an algebraic characterization of
bisimulations for linear dynamical systems in pencil
form can found in Theorem 3.2. of (van der Schaft
2004b).
As far as for the computation of the maximal hybrid

bisimulation, it can be done by generalizing procedures
described in x 3, where the operator Bisimð�, �Þ should
be replaced by Algorithm 7.5 of (van der Schaft
2004c) in the case of switching non-linear systems, and
by Algorithm 3.3 of (van der Schaft 2004b), in the
case of switching linear systems in pencil forms.
Finally in view of the remarks above showing how

to compute the maximal hybrid bisimulation, the
reduced switching non-linear system and the reduced
switching linear system in pencil form may be defined
following the guidelines of x 4; we leave the details to
the reader.

8. Conclusions and outlook

In this paper we studied bisimulation for the class of
switching linear systems. The proposed definition is
mainly inspired by the classical notions given for
concurrent processes (Park (1981), Milner (1989),
Clarke et al. (2002), Hermanns (2002)) and by the
definitions introduced in (van der Schaft 2004a, b, c).
The definition considers the general case where the
switching mechanisms in the switching linear systems
may be asynchronous. Moreover the definition includes
more general frameworks of hybrid systems as for
example the case of discrete transitions depending on
the continuous state x.
A complete algebraic characterization of bisimulation

has been developed by combining tools from the theory
of concurrent processes (Clarke et al. (2002), Hermanns
(2002)) with those from control theory (De Santis et al.
(2004a), van der Schaft 2004a)). Moreover an algori-
thmic procedure converging to the maximal hybrid
bisimulation relation in a finite number of steps has
been developed: this procedure allows the computation
of the minimal bisimilar SLS of a given SLS and offers
some interesting links to the analysis of observability
of SLSs as given in (De Santis et al. 2003).

The proposed approach easily extends to the case of
discrete-time switching linear systems. Moreover, x 7
gives some guidelines for generalizing the results of
this paper to the case of switching non-linear systems
and switching systems in pencil form. The presented
results give also sufficient conditions for characterizing
hybrid bisimulations for more general hybrid systems
models with x-dependent discrete transitions. For
instance an SLS S can be easily constructed to mimic
the behaviour of a hybrid system H whose discrete
transitions are x-dependent in such a way that S is an
abstraction of H; therefore a preliminary sub-optimal
state space reduction of H can be pursued by reducing
S: this last approach is important also in view of the
results shown in (Alur et al. 2000) that proves the
non-decidability of bisimulation-based reduction for
general hybrid systems.

Following the guidelines of the proposed approach an
extension of the present results would be the study
of bisimulation theory for hybrid systems with
x-dependent discrete transitions.
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Appendix: Technical proofs

Proof of Theorem 1: (Proof of (i)). With reference to
Definition 8, given two SLSs S1 and S2 let
R � �1 ��2 be such that ððq1, x1Þ, ðq2, x2ÞÞ 2 R if and
only if q2 ¼ TQðq1Þ and x2 ¼ Tq1ðx1Þ. By construction
R is a hybrid bisimulation between S1 and S2, such
that �j�i

ðRÞ ¼ �i, i¼ 1, 2.
(Proof of (ii)). Obvious by definition.
(Proof of (iii)). Since S1 and S2 are bisimilar there

exists a hybrid bisimulation R � �1 ��2 such that
�j�i
ðRÞ ¼ �i, i¼ 1, 2 and that therefore satisfies

conditions of Lemma 1.
(Proof of (iv)). For any given control law u 2 U1,

for any �10 2 �1, consider a hybrid state �20 2 �2 such
that ð�10, �20Þ 2 R for some hybrid simulation R of S1

by S2. By definition for any hybrid disturbance d1, for
any execution �1 ¼ ð�10, �1, u, d1, �1, y1Þ of S1, there
exists a hybrid disturbance d2 and an execution �2 ¼
ð�20, �2, u, d2, �2, y2Þ of S2 such that y1ðt, j Þ ¼ y2ðt

0, j 0Þ,
8ððt, j Þ, ðt 0, j 0ÞÞ 2 ½�1, �2�, for some ½�1, �2�. Moreover the
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same holds with �10 and d1 replaced by �20 and d2 and
vice versa and hence the statement holds.
(Proof of (v)). For any given control law u 2 U1, for

any �10 2 �1, consider a state-equivalent hybrid state
�20 2 �2. By definition for any hybrid disturbance d1,
for any execution �1 ¼ ð�10, �1, u, d1, �1, y1Þ of S1, there
exists a hybrid disturbance d2 and an execution
�2 ¼ ð�20, �2, u, d2, �2, y2Þ of S2 such that y1ðt, j Þ ¼
y2ðt

0, j 0Þ, 8ððt, j Þ, ðt 0, j 0ÞÞ 2 ½�1, �2�, for some ½�1, �2�.
Moreover the same holds with �10 and d1 replaced by
�20 and d2 and vice versa and hence the statement
holds. œ

Proof of Proposition 2: By construction, for any
ð�10, �20Þ 2 LðRÞ, where �10 ¼ ðq10, x10Þ and �20 ¼
ðq20, x20Þ, there exists �a, �b 2 R and ðxa10, x

a
20Þ,

ðxb10, x
b
20Þ 2 Rðq10, q20Þ such that ðx10, x20Þ ¼ �aðxa10,

xa20Þ þ �
bðxb10, x

b
20Þ. Take any input function u1 ¼ u2 ¼ u

and any hybrid disturbance d1 ¼ ðv1,w1Þ. Choose some
ua1, u

b
1 2 C

0
ðR
þ
0 ,U1Þ and some wa

1,w
b
1 2 C

0
ðR
þ
0 ,W1Þ such

that

u1 ¼ �
aua1 þ �

bub1, w1 ¼ �
awa

1 þ �
bwb

1:

For any execution �1 ¼ ððq10, x10Þ, �1, u1, ðv1,w1Þ, �1, y1Þ
of S1, there exists executions �a1 ¼ ððq10, x

a
10Þ, �1, u

a
1,

ðv1,w
a
1Þ, �

a
1, y

a
1Þ and �

b
1 ¼ ððq10, x

b
10Þ, �1, u

b
1, ðv1,w

b
1Þ, �

b
1, y

b
1Þ

of S1, such that

x1ðt, jÞ ¼ �
axa1ðt, jÞ þ �

bxb1ðt, jÞ,

h1ðt, jÞ ¼ �
aha1ðt, jÞ þ �

bhb1ðt, jÞ, 8ðt, jÞ 2 ½�1�,
ð6Þ

where �1 ¼ ðq1, x1Þ, �
a
1 ¼ ðq

a
1, x

a
1Þ, �b1 ¼ ðq

b
1, x

b
1Þ, y1 ¼

ð p1, h1Þ, y
a
1 ¼ ð p

a
1, h

a
1Þ, y

b
1 ¼ ð p

b
1, h

b
1Þ. Moreover, since

ðxa10, x
a
20Þ, ðx

b
10, x

b
20Þ 2 Rðq10, q20Þ, there exist hybrid

disturbances da2 ¼ ðv2,w
a
2Þ 2 D2 and db2 ¼ ðv2,w

b
2Þ 2 D2

and executions �a2 ¼ ððq20, x
a
20Þ, �2, u

a
2, ðv2,w

a
2Þ, �

a
2, y

a
2Þ

and�b2 ¼ ððq20, x
b
20Þ, �2, u

b
2, ðv2,w

b
2Þ, �

b
2, y

b
2Þ of S2, such that

�a1ðt, jÞ, �
a
2ðt
0, j 0Þ

� �
2 R, ya1ðt, jÞ ¼ ya2ðt

0, j 0Þ,

�b1ðt, jÞ, �
b
2ðt
0, j 0Þ

� �
2 R, yb1ðt, jÞ ¼ yb2ðt

0, j 0Þ,
ð7Þ

8ððt, jÞ, ðt 0, j 0ÞÞ 2 ½�1, �2�, for some ½�1, �2�. By choosing a
hybrid disturbance d2 ¼ ðv2,w2Þ where w2 ¼ �

awa
2þ

�bwb
2, there exists an execution �2 ¼ ððq20, x20Þ, �2, u2,

ðv2,w2Þ, �2, y2Þ of S2 such that

x2ðt, jÞ ¼ �
axa2ðt, jÞ þ �

bxb2ðt, jÞ,

h2ðt, jÞ ¼ �
aha2ðt, jÞ þ �

bhb2ðt, jÞ, 8ðt, jÞ 2 ½�2�, ð8Þ

and hence by combining (6), (8) and (7),

ðx1ðt, jÞ, x2ðt
0, j0ÞÞ ¼ �a � ðxa1ðt, jÞ, x

a
2ðt
0, j0ÞÞ

þ �b � ðxb1ðt, jÞ, x
b
2ðt
0, j0ÞÞ

2 LðRðq1ð j Þ, q2ð j ÞÞÞ,

h1ðt, jÞ ¼ h2ðt
0, j0Þ, 8ððt, jÞ, ðt0, j0ÞÞ 2 ½�1, �2�, for some ½�1, �2�:

Therefore �1ðt, jÞ, �2ðt
0, j 0Þð Þ 2 LðRÞ and y1ðt, jÞ ¼

y2ðt
0, j 0Þ, 8ððt, jÞ, ðt 0, j 0ÞÞ 2 ½�1, �2�, for some ½�1, �2�.

By repeating the same proof with d1 replaced by d2
and vice versa the statement holds. œ

Proof of Theorem 3: We only have to prove Theorem
3 (ii) since the other properties follow directly by the
definition of R	. Let R	 be a hybrid bisimulation such
that QR	 is of maximal cardinality and R	ðq1, q2Þ is of
maximal dimension for any ðq1, q2Þ 2 QR	 and satisfying
hypotheses of Theorem 2 (note that R	 exists since the
cardinality of the state spaces Q1 and Q2 are finite and
the dimensions of the linear spaces X1ð�Þ and X2ð�Þ are
finite). We now show that any hybrid bisimulation R
between S1 and S2 is such that R � R	. Suppose by
contradiction that R 6
 R	. Then QR 6
 QR	 or there
exists ðq1, q2Þ 2 QR � QR	 such that Rðq1, q2Þ 6

R	ðq1, q2Þ. If QR 6
 QR	 then RþR	 6
 R	 and by
Proposition 5, RþR	 is a hybrid bisimulation: there-
fore a contradiction holds in the maximal cardinality
of QR	 . Suppose now that QR � QR	 and that there
exists ðq1, q2Þ 2 QR � QR	 such that Rðq1, q2Þ 6

R	ðq1, q2Þ. If Rðq1, q2Þ 6
 R

	ðq1, q2Þ then RþR
	 6
 R	

and by Proposition 5, RþR	 is a hybrid bisimulation:
therefore a contradiction holds in the maximal dimen-
sion of R	ðq1, q2Þ. The uniqueness of R	 can be easily
proved by contradiction. œ

Proof of Proposition 11: Consider two sets QR
	

1 and
QR

	

2 of canonical representatives of equivalence classes
induced by QR	 on Q and the corresponding reduced
SLSs S

R	

1 and S
R	

2 . By construction S
R	

1 and S
R	

2 are
bisimilar and therefore there exists a hybrid bisimulation
R0 between S

R	

1 and S
R	

2 such that �j�i
ðR 0Þ ¼

�i, i ¼ 1, 2. By definition of QR
	

1 and QR
	

2 , the relation
QR0 � QR

	

1 �QR
	

2 is one-to-one, i.e. there exists an
invertible mapping TQ : QR

	

1 ! QR
	

2 such that
ðq1, q2Þ 2 QR0 if and only if TQðq1Þ ¼ q2. It is easily
seen that TQ satisfies Definition 8 (i) and (ii).
Moreover for any ðq1, q2Þ 2 QR0 , the dynamical systems
�R

	

1 ðq1Þ and �R
	

2 ðq2Þ are bisimilar and since �R
	

1 ðq1Þ 2
minð�R

	

1 ðq1ÞÞ, �R
	

2 ðq2Þ 2 minð�R
	

2 ðq2ÞÞ, by Lemma 4,
they are algebraically equivalent, i.e. there exists an
invertible matrix Tq1 such that Definition 8 (iii) is
satisfied and ðx1, x2Þ 2 R

0ðq1, q2Þ if and only if

x1 ¼ Tq1x2: ð9Þ
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Finally by rewriting Theorem 2 (ii) for R0, one obtains

8ðx1, x2Þ 2 Rðq1, q2Þ, ðM1ðe1Þx1,M2ðe2Þx2Þ 2 Rðq
0
1, q
0
2Þ,

ð10Þ

where TQðq1Þ ¼ q2,TQðq
0
1Þ ¼ q 02 and ei, i ¼ 1, 2 are

appropriate discrete transitions. By condition (9),
condition (10) can be rewritten as M1ðe1ÞTq1x2 ¼
Tq 0

1
M2ðe2Þx2, 8x2 2 Xðq2Þ and then

M1ðe1ÞTq1 ¼ T0q1M2ðe2Þ: ð11Þ

By combining condition (11) with Definition 8 (ii),
Definition 8 (iv) holds. œ
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