
Distributed and Parallel Databases, 4, 81-99 (1996)
@ 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Extending a Multi-Set Relational Algebra to a Parallel
Environment

PAUL. W.P.J. GREF’EN grefen@cs.utwente.nl
JAN PLOKSTRA flokstra@cs.utwente.nl
University of Twente, Department of Computer Science, RO. Box 217, 7500 AE Enschede, The Netherlands

Received September 30,1994; Accepted May 18,199s

Recommended by: Patrick Valduriez

Abstract. Parallel database systems will very probably be the future for high-performance data-intensive appli-
cations. In the past decade, many parallel database systems have been developed, together with many languages
and approaches to specify operations in these systems. A common background is still missing, however. This
paper proposes an extended relational algebra for this purpose, based on the well-known standard relational alge-
bra. The extended algebra provides both complete database manipulation language features, and data distribution
and process allocation primitives to describe parallelism. It is defined in terms of multi-sets of tuples to allow
handling of duplicates and to obtain a close connection to the world of high-performance data processing. Due to
its algebraic nature, the language is well suited for optimization and parallelization through expression rewriting.
The proposed language can be used as a database manipulation language on its own, as has been done in the
PRISMA parallel database project, or as a formal basis for other languages, like SQL.

Keywords: relational algebra, multi-set, query optimization, parallel query execution

1. Introduction

Parallel database systems will very probably be the future for high-performance data-
intensive applications, as observed by many specialists in the field, e.g. [9]. In the past
decade, many designs and implementations of parallel database systems have been realized.
To describe operations to be performed by these systems, some kind of database manipu-
lation language is necessary in which parallel operations can be specified. Many different
languages have been proposed and used for this purpose, but a common background is still
hard to find. Therefore, approaches are hard to compare, semantics of operations are often
unclear, and languages and techniques are often strongly system-related.

This paper proposes an extended relational algebra for use with parallel database systems.
The language has a close connection to the standard relational algebra as originally defined
by Codd [6] and thus has a well-known and widely accepted background. The language
is formally defined and has clear semantics. Further, the language has complete DML
expressiveness, so it can either be used as a full-blown database manipulation language on
its own, or as a formal background for other languages.

The language described in this paper is based on multi-sets of tuples, as opposed to
the standard relational algebra that uses sets of tuples. The multi-set approach has three
main advantages. In the first place, duplicate tuple semantics can be handled. This is
important for supporting applications that model situations in which duplicate entities can
exist. A set-based approach requires in these situations the addition of a synthetic attribute to

82 GREFEN AND FLOKSTRA

distinguish between duplicate entities, which can be considered unnatural and complicating.
In the second place, the multi-set approach avoids duplicate elimination on intermediate
results during query processing, which is necessary in a strictly set-based environment (e.g.
after a relational projection operation). As duplicate removal is a costly operation, it should
be avoided in situations where high performance is of premier importance, as is the case with
parallel database systems. Also, the multi-set model allows for certain query optimizations
that are not correct in a set-based environment. In the third place, multi-set semantics allow
for the effective and efficient handling of aggregate functions. In set-based environments,
aggregate functions can cause problems as these functions can result duplicate values.

Note that the multi-set approach described in this paper can be used for set-based appli-
cations too. In query operations, an operator for duplicate removal can be explicitly used
(the unique operator introduced in Section 2.3). Base data can be guarded against duplicate
tuples using integrity constraints (see e.g. [141). A set-based model can thus be seen as a
special case of the multi-set model presented in this paper.

1.1. Related work

Related research on a language for parallel database systems has been performed in the
context of the Bubbaproject [3]. This project uses a sequential language called FAD that is
mapped to an extended parallel language PFAD [161. PFAD is not relational algebra based,
and is aimed specifically towards a shared nothing message-passing architecture, including
data send and receive constructs. In the HC16 project [4], relational algebra operations are
mapped to low-level primitives for execution on a parallel machine. Here, the focus is on
this mapping and the execution of the primitives, not on the formal definition of the algebra.

Research has also been performed on multi-set semantics for the relational model. Many
of these proposals tend to be of a rather practical nature, however, lacking a formal mathe-
matical background. The standard SQL definition uses multi-sets of tuples for example, but
the semantics are defined in an operational way, lacking formal background and mathemat-
ical precision. Other approaches exist with a rather formal character, e.g. the one presented
in [11, but these lack the direct connection to database practice. Further, approaches exist
that try to capture multi-set semantics within a set-based relational theory. An example
is the work in [17], where multi-sets are represented in subsets of columns of set-based
relations.

In several places, the use of use of duplicates is argued against. Often, the argumentation
is based on semantical problems with duplicate handling (as found in many SQL-based
approaches). As the proposal in this paper gives clear and formally defined semantics, this
argument doesn’t hold here. In other places, a more fundamental position is presented. An
example is The Third Manifesto [7], in which the use of duplicates is “outlawed” without
argumentation other than the explicit opinion of the authors. We believe, however, that a
well-formalized and complete multi-set relational model is a valid approach since it is a
generalization of the set-based model with clear advantages as discussed above.

1.2. Organization of this paper

This paper is organized as follows. Section 2 describes the extended relational algebra in
a sequential (centralized) database environment, giving the background for the main part
of the paper. This section is based on the work presented in [15]. Section 3 extends the

EXTENDINGAMULTI-SETRELATIONALALGEBRA 83

sequential language to a parallel language by adding concepts for data distribution and
process allocation. It is shown that these concepts nicely fit into the formal character of the
language. Section 4 discusses expression rewriting in the extended algebra, as performed
in query optimization and query parallelization. As the proof of the pudding is in the eating,
Section 5 describes experience with the language in the PRISMA parallel database system
project. This experience shows that a language with a formal basis can indeed be well used
in real-world high-performance systems.

2. A sequential extended relational algebra

This section describes in short a sequential database manipulation language based on a
multi-set relational algebra. The description is based on the work in [15], so the reader
is refered to this publication for further details. First, the background of the language is
given, and the structures of the multi-set relational model are defined. Then, as the first
step in the construction of the extended relational algebra language, relational expressions
are defined. Next, in step two of the construction, statements are added to the expressions
to obtain a sequential database manipulation language.

2.1. Background

The relational data model consists of structures, representing the data in a database, and
operations working on these structures. In the standard relational data model as orginally
defined in [6], the structures are based on set-theory. This implies that duplicate tuples
are not allowed in relations. Database practice, on the other hand, needs duplicates, both
because of application semantics and because of the high processing costs associated with
duplicate elimination. For these reasons, the algebra proposed here is based on multi-set
theory that does allow duplicates. The choice for multi-set semantics requires a redefinition
of both the relational structures (the relations) and the relational expressions. Both are
defined below.

2.2. The structures

The structures represent the static properties of the relational data model. They have been
defined originally in [6], and described thereafter in many textbooks. In this section, the
structures are redefined to capture the notion of multi-sets of tuples.

The definition of multi-set relational databases is constructed below in several steps. The
first basic notion is that of a domain.

DEFINITION 1. A domain A is a set of atomic values. The term atomic refers to the fact
that each value in the domain is indivisible as far as operators of the relational data model
are concerned.

Common types of domains are the basic data types of integer, real, boolean, and string.
More specialized types as time, date, or money are possible too; note that these domains
are also atomic in the sense of the definition above. In the definition below, domains are
combined to form relation schemas.

84 GREFENANDFLOKSTRA

DEFINITION 2. A relation schema R consists of a relation name and a list of attributes
(Al,. . . , A,). Each attribute Ai is defined on a domain dom(Ai). The type of R is defined
as dam(R) = dom(Ai) x . . . x dom(A,). A relation or relation instance R of relation
schema ‘R is a multi-set of elements in dam(R), i.e. a function R : dam(R) + ZN, where
N denotes the domain of the natural numbers. The value of R(x) is called the multiplicity
of x in R.

A relation instance consists of tuples as defined below.

DEFINITION 3. A tuple r of schema R is an element in dam(R). A tuple r is an element
of relation R if its multiplicity in R is greater than zero: r E R + R(r) > 0. The value
of the i th attribute of tuple r is denoted as r.i. The number of attributes of r is denoted as
#r . The projection rrU (r) is obtained by concatenating the attributes from r as specified by
the attribute list a! into a new tuple. In this, a! is a list of prefixed integers (%il, . . . , %in)
with n > 1 and 1 < ij 5 #r for 1 5 j 5 n. The concatenation of two tuples r1 @ rz is
defined as the concatenation of the attributes of r1 and r2 in the specified order. The equality
of two tuples t-1 = r2 is defined for tuples having the same schema; r1 = r2 holds if all
corresponding attributes of r-1 and r2 have equal values.

The operators n, and $ defined here on tuples are used in the sequel of this paper for relation
schemas as well with obvious semantics. For reasons of brevity, their formal definition is
omitted.

As stated above, relations are defined as multi-sets of tuples; this means that duplicate
tuples are allowed in a relation. Multi-sets can be denoted as a collection of individual
tuples r, possibly containing duplicates, or as a set of pairs (r, R(r)) without duplicates,
where R(r) denotes the number of occurrences of r in R. Further, attributes in a relation
schema are ordered to enable attribute addressing by index, rather than by name. This is a
notational convention that implies no restrictions with respect to the situation with explicit
attribute names, but enables addressing the attributes of anonymous relations. Attribute
numbers are prefixed in attribute lists to avoid ambiguity with normal integer constants.

DEFINITION 4. A database schema D is a set of relation schemas {RI , . . . , R, } . A database
or database instance D of database schema D is a set of relation instances {RI, . . . , R,}.
The set of all possible database instances of schema 2, is called the database universe UV,
so UD = dom(Ri) x . . . x dom(R,).

Note that a database schema is a set of relation schemas; consequently, relations in a
database are always addressed by name. A database instance is also commonly referred to
as database state.

2.3. Step one: basic RA expressions

This section introduces multi-set expressions on relational databases. The constructs in
this algebra are based on the standard relational algebra operators as they can be found in
many textbooks on database systems. Note, however, that they are modified to deal with
multi-sets of tuples.

EXTENDINGAMULTI-SETRELATIONALALGEBRA 85

The standard relational algebra for multi-sets is defined first. This algebra contains a
basic set of operators to form relational expressions. The choice of operators is closely
related to the normal set-based operators. Multiple variants of the same set-based operator,
like the union operators proposed in [11, are avoided. Similar to the notation for multi-set
relations, the multiplicity of a tuple x in a multi-set expression E is denoted as E(X).

DEFINITION 5. The standard relational algebra defines standard relational expressions.
A database relation is a standard relational expression. Let El, Ez, and E3 denote standard
relational expressions; El and E2 are defined on schema E, E3 is defined on schema E’.
Then the following constructs are standard relational expressions:

l The union’ Ei U E2 collects the elements of El and E2 into a multi-set with schema E:

EI k~ E2 = {(x, Et(x) + Ez(x)) (x E dam(E))

l The difference El - EZ “subtracts” the contents of E2 from the contents of El resulting
a multi-set with schema E:

El - E2 = {(x, max(O, El(x) - Ed))) x E dam(E)}

l The product El x E3 forms the Cartesian product of the elements of El and E3 resulting
a multi-set with schema E G9 E’:

El x E3 = ((x @ y, El(x) . G(Y)> I x E dam@) A Y E dom@‘)l

l The selection aP El selects elements from a multi-set that meet a condition q defined on
individual tuples in dom(&), resulting a multi-set with schema E:

@I = {(x, El (x>> lx E dam(E) A p(x)) U {(x, O>l x E dam(E) A -cp(x)}

In this definition, p can be seen as a function from dam(E) into the boolean domain.
l Theprojection n, El projects a multi-set El on the attributes in attribute list a2 , resulting

a multi-set with schema I@:

where
&El = {(n,x, EC,(,) El(y)) 1 x E dam(E)}

p(y) E y E dom(&) A n,y = n,x

l The intersection El fl Ez produces a multi-set consisting of the elements that are both in
El and Ez, having schema E:

E, I-I E2 = 1(x, minVA(x), h(x)>> I x E domW1

o The join El W, E2 produces a selection on the product of El and Ez, having schema
& @ E’:

El w, E3 = ((x $ y, El(x) . Ed) Ix E dam(E) A y E doME’) A P(X @Y>}

U{(x CD y, 0)(x E dam(E) A y E dom(E’) A Y(X CD Y))

86 GREFENANDFLOKSTRA

The intersection and join operators are not necessary from a purely functional point of view.
This is shown by expressing them in the operators of the basic relational algebra below. A
proof of the above equivalences can be found in [151.

EI n E2 = El - (El - ET)

EI W, E2 = +@I x ~52)

The standard relational algebra above can be used for the specification of standard rela-
tional algebra expressions. The algebra lacks some important expressive power however:
arithmetic expressions on attributes are not possible, duplicates cannot be removed, and
aggregates over multi-sets are not included. Therefore, we extend the standard relational
algebra below to include these features.

Before the extended relational algebra expressions can be defined, aggregate functions
are introduced in a multi-set relational context below.

DEFINITION 6. The multi-set aggregatefunctions compute an aggregate value on a speci-
fied attribute of a multi-set expression. Let E be a multi-set defined on schema E, and ,3 an
attribute of E. The multi-set aggregate functions are defined as follows:

0 The count function:

CNTBE = c E(x)
xedom(&)

l The sum function over attribute @ with a numeric domain:

SUMBE = c x$.E(x)
xcdom(E)

l The average function over attribute #I with a numeric domain:

AVGBE = SUMBE/CNTBE

0 The minimum function:,

MINpE = min{x./?] x E dom(&) A E(x) > 0)

0 The maximum function:

MAXp E = max{x.@) x E dom(&) A E(x) > 0)

Parameter /I in the count function is a dummy parameter, included only for reasons of
syntactical uniformity.

Note that the set of aggregate functions defined above is rather arbitrary; other choices
can be made, including statistical aggregate functions like standard deviation for example.
Note further that the average, minimum and maximum functions are in fact partial functions,
since they are not defined on empty multi-sets.

DEFINITION 7. The extended relational algebra expressions are defined as the standard
relational expressions extended with three additional constructs. Any standard relational
expression is an extended relational expression. Let E be an extended relational expression
defined on schema 1. Then the following constructs are extended relational expressions:

EXTENDING A MULTI-SET RELATIONAL ALGEBRA 87

l The extended projection JC~ E is similar to the normal projection defined above, but u
contains arithmetic expressions defined on the attributes of E, rather than attributes of
E only. These arithmetic expressions can be seen as functions from dam(E) into a basic
domain. Given Q! = (ei, . . . , e,) with n 2 1, the extended projection on a tuple x is
defined as3:

Here, the square brackets denote tuple construction. Given this redefinition of the tuple
projection, the definition of the extended projection operator on multi-sets is the same
as the definition of the normal projection operator given before. The normal projection
operator can be seen as a special case of the extended operator. The extended projection
is denoted with the same symbol as the normal projection for reasons of readability; in
the sequel of this paper, the n symbol denotes the extended projection.

l The unique expression SE calculates the multi-set obtained by duplicate removal on E,
having schema E:

SE = {(x, 1) 1 x E dom(&) A E(x) > 0)

U {(x, 0) (x E dam(E) A E(x) = 0)

l Thegroupby expression rcr,f,bE on an expression E with schema (Al, . . . , A,,) calculates
a multi-set aggregate function f on an attribute ,3 producing a value in domain Fper group
of tuples, where the grouping is defined by equality of the attributes in the (duplicate-free)
attribute list a! = (%a~, . . . , %ak):

r a,f,pE = {(x, 1) I x E Gl U 1(x, 0) I x E D’ AX $ Gl

where

and
G = {x E D’ I (3~ E E)(x: = nay @ Lf(m,, =x.lr\...r\~a~=x.@), B>l>}

D’ = dom(A,,) x . ‘. x dom(A,,) x F

The resulting multi-set has schema rrU& $ run(f(n#)), i.e. the schema of the grouping
attributes extended with the type of the range of the aggregate function. If the attribute list
a! is empty, the groupby expression calculates an aggregate function over the attributes
of all tuples in a multi-set; in this case, the result is one single-attribute tuple:

~o,~,pE = Lf(E, B>l

2.4. Step two: A sequential XRA

The previous section has discussed the expressions of the extended relational algebra. In
this section we add constructs that build a complete sequential data manipulation language
on this basis. Note that the language including these constructs is still called an extended
relational algebra, but that it is not an algebra in the mathematical meaning of the word
[lOI.

First, the basic statements are introduced. The statements define constructs to be used
for querying and updating a database. Statements can be grouped into programs to specify
more complex operations against a database.

88 GRJSEN AND FLOKSTRA

DEFINITION 8. The extended relational algebra statements are defined as follows. Let R
be a database relation, and E an extended relational expression of the same schema. Then
the following constructs are extended relational algebra statements:

l The insert statement insert(R, E) adds the elements of E to relation R:

insert(R, E) 3 R + R W E

l The deEete statement deZete(R, E) subtracts the elements of E from relation R:

delete(R, E) zz R t R - E

l The update statement update(R , E, a) modifies the elements in the intersection between
R and E according to the attribute expression list u with the same schema as E:

update(R, E, a) E R c (R - E) M n,(R 0 E)

Note that 7t, is a structure-preserving extended projection operator here, i.e. it results a
multi-set of the same schema as its operand.

l The assignment R = E assigns the multi-set E to a new and implicitly defined relational
variable R :

(R=E)=RtE

l The query statement ?E sends the result of expression E as output to the user of the
database system; the statement has no effect on the database.

In this definition, the symbol c denotes replacement.

Extended relational algebra statements can be grouped into programs as defined below to
specify more complex operations on a database.

DEFINITION 9. The extended relational algebra programs are defined as follows. Let a
be an extended relational algebra statement and p an extended relational algebra program.
Then the following constructs are extended relational algebra programs:

a The single-statement program a.‘\
0 The multi-statement program p; a.

Here, the semicolon denotes sequencing, meaning that the effects of the statements on the
database and on the query output must be in the order specified by the program.

The programs as defined above can further be “encapsulated” into transactions to be able
to guarantee properties like atomicity of execution and serializability with respect to con-
currently executing operations. This topic is described in detail in [15].

EXTENDINGAMULTI-SETRELATIONALALGEBRA 89

3. A parallel extended relational algebra

This section extends the sequential extended relational algebra discussed in the previous
section to a language for parallel database systems. First, the background of distributed and
parallel databases is discussed, introducing the necessary concepts. Then, the relational
structures of Section 2 are extended to include fragmented databases. Next, step three
towards the parallel extended relational algebra is made, building on the results of steps
one and two as discussed in Section 2. This step adds data distribution and collection
primitives to the language. Finally, step four adds data and process allocation primitives to
the language resulting from step three.

3.1. Background

This section discusses the basic concepts of distributed databases. The discussion is partially
based on the work in [5].

A distributed or parallel database system consists of a number of nodes (or sites) in-
terconnected by means of a communication network. Nodes are identified by their node
number 1,. . . , n, where n,is the number of nodes in the network. The data of a distributed
database is spread over the nodes of a distributed database system. The way in which the
data is split into parts is called the data fragmentation, the way the parts are assigned to the
nodes in the system is called data allocation.

The fragmentation of a database determines how the global database is split up into
multiple parts. Each global database relation is fragmented into one or more parts, called
relation fragments or simply fragments. In general, the fragmentation of a global relation
should satisfy the following properties [5]:

l The fragmentation must be complete, meaning that all data of the relation must be
included in the fragments of the relation.

l The fragmentation should be disjoint: there should be no duplication in the storage of
the relation data.

l The global relation must me reconstructable from the fragments, i.e. the global relation
can be derived from the fragments by means of algebraic operations.

Various forms of data fragmentation are described in the literature: range-based horizon-
tal fragmentation, hash-based horizontal fragmentation, vertical fragmentation, and mixed
fragmentation [5]. In this paper, we limit ourselves to hash-based horizontal fragmentation,
since this form generally enables parallel query execution best. Range-based horizontal
fragmentation can be added easily, however. In the sequel of this paper, the term fragmen-
tation refers to horizontal hash-based fragmentation.

DEFINITION 10. A data fragmentation schema for relation schema I?. is a pair FSR =
(a, d), where a! is a duplicate-free list of attributes of R, and d E JiV+; a! is referred to as the
fragmentation attributes and d as the fragmentation degree of R. The schema FSR defines
a set of relation fragments {RI, . . . , Rd) for an instance R of schema R:

Ri = ohhash(a)modd=i-lR for 1 5 i I d

Here, hash is a system-defined function that maps an arbitary tuple to an integer, and mod
denotes the integer modulo function. The set of fragment names of a relation R is denoted

90 GREmN AND FLOKSTRA

as fragmenrs(R) , the fragmentation attributes of R as af (R) , and the fragmentation degree
of R as 6(R).

The fragmentation defined above assigns each tuple of a relation R to one relation fragment
Ri, dependent on the value of the attributes in a. Clearly, this fragmentation strategy satisfies
the three requirements listed above, since each tuple of a relation R is assigned to a relation
fragment, no tuple is assigned to more than one fragment, and relation R is obtained by
taking the union of the fragments of R:

R = RI kJ . . . &J Rd

Each relation fragment Ri is mapped to a node of the distributed database system. This
mapping is specified by a data allocation schema.

DEFINITION 11. A data allocation schema for a relation schema R and its data fragmen-
tation schema (m, d) is a list ASR = (al, . . . , ad), where ai E 8V’. Schema ASK defines
a mapping of each fragment Ri of an instance R of schema R to a node ai of a distributed
database system.

3.2. The structures

Given the fragmentation and allocation concepts introduced above, distributed relations and
distributed databases can be defined as follows.

DEFINITION 12. A distributed relation schema is a triple RD = (R, FSR, A&), where
R is a relation schema as defined in Section 2, FSR is a fragmentation schema, and A&
an allocation schema. A distributed relation instance or distributed relation is a set of
fragments defined by FSR and allocated as specified by ASx.

DEFINITION 13. A distributed database schema DD is a set of distributed relation schemas
mf,..., Rf }. A distributed database instance or simply distributed database is a set of
distributed relation instances.

EXAMPLE 1. As an example, we use a database describing beers and brewers, having the
following simple global (unfiagmented) schema:

Beer (Name, Brewer, Alcperc)

Brewer (Name, City, Country)

Assume that we have a database system with 5 nodes. Now we can fragment relation beer
into 3 fragments based on attribute name and allocate these fragments on nodes 1 to 3.
Relation brewer can be fragmented in two fragments based on attribute name and allocated
to nodes 4 and 5. So we have a distributed database schema consisting of the following
distributed relation schema’s:

BeerD = (Beer, (Name, 3), (1,2,3))

BrewerD = (Brewer, (Name, 2), (4,5))

EXTENDINGAMULTI-SETRELATIONALALGEBRA 91

3.3. Step three: A parallel XRA with data distribution

To perform parallel data processing in a database system, data to be processed must be
available at multiple processing nodes. Two situations can occur here: either the data is
already spread over the right nodes, or it is not and has to be distributed for processing.
For the last situation, two data distribution primitives are added to the extended relational
algebra.

DEFINITION 14. The extended relational algebra statements as defined in Definition 8 are
extended as follows. Let E denote an arbitrary extended relational algebra expression as
defined before. Then the following constructs are extended relational algebra statements:

The copy statement copy(E, TI , . . . , T,,) assigns the multi-set E to each of the new and
implicitly defined relational variables Ti in a parallel fashion:

The split statement spZit(E, a, Tl, . . . , T,) distributes the elements of the multi-set E
over the new and implicitly defined relational variables Ti in a parallel fashion, where
the assignment of individual tuples t to one of the variables is determined by the value
hash&t):

TI =
T2 =

split(E, cx, Tl, . . . , T,) =

I .

~hash(a)modn=O E,

flhash(cr)modn=l E,
.

T, = ~hash(a)modn=n-1 E

The punctuation by means of commas between statements in the extended relational algebra
programs above is used to indicate simultaneous execution.

To collect the data from multiple fragments of relations or intermediate results of operations,
a multi-union is added to the expressions of the extended relational algebra.

DEFINITIONAL. Let El, Ez, E,, denote relational expressions (see Definitions 5 and 7)
defined on schema &. Then the following construct is a relational expression:

l The multi-union expression4 kJ(El, Ez, . . . , E,) collects the elements of El, Ez, . . . into
a multi-set with schema E:

kJ(El, E2, . . . , En) = {(x, El(x) + Ed + . . . + E,(x)) / x E dam(E)}

The introduction of the copy, split, and multi-union operators allows the easy construc-
tion of rooted directed acyclical graphs, the typical structures necessary for parallel query
evaluation on fragmented databases (as opposed to trees for sequential query evaluation on
non-fragmented databases). The operators have the function of send and receive operations

92 GREFEN AND FLOKSTRA

in message-passing languages like PFAD [161, but are defined on a higher level of abstrac-
tion. An example illustrating the use of the operators defined above follows in the sequel
of this paper.

3.4. Step four: A parallel XRA with process allocation

In the sections above, various types of operators have been defined that are to be used
for parallel data processing. These operators will be executed by processes in a parallel
database system. To obtain the best parallel execution, it must be possible to specify on
which processors these processes must be executed. In this way, minimal datamovement and
processor contention can be reached. For this purpose, allocation pragma’s are introduced
that can be attached to the various operators.

DEFINITION 16. An allocationpragma is either an absolute or a relative allocation pragma.
An absolute allocation pragma is defined as a prefixed integer ai with i E IN. A relative
allocation pragma is defined as a prefixed integer pi with i E N. Here N denotes the
domain of the natural numbers.

Allocation pragma’s can be defined to specify allocated relational expressions and state-
ments.

DEFINITION 17. An allocated relational expression is defined as [El,, where E is a rela-
tional expression as defined in Definitions 5,7, and 15, with the exception of the relational
constant, and a is an allocation pragma. If a is a relative allocation pragma pi, then
0 (i 5 n, where it is the number of operands of the top-level operator in E.

The meaning of an allocated expression [El, is that the top-level relational operation in E
must be executed at the node indicated by a in the following way:

l an absolute pragma czli with i > 0 indicates the node with number ((i - 1) MOD n) + 1,
where n is the number of nodes in the system;

l an absolute pragma a0 indicates a don’t care, so any node in the system is fine;
. a relative pragma pi with i > 0 indicates the node on which the ith operand of the

top-level expression of E is located or executed;
a a relative pragma p0 indicates any node on which none of the operands of the top-level

expression of E is located or executed.

So, absolute pragma’s allow process allocation with respect to the machine architecture,
relative pragma’s allow process allocation with respect to the expression structure and the
allocation of database fragments.

DEFINITION 18. An allocated relational statement is defined as [S], , where S is a copy or
split statement as defined in Definition 14 and a is an allocation pragma. If a is a relative
allocation pragma pi, then i E {0, 1).

The meaning of an allocated copy or split statement [S]= is that the operation of S must be
executed at the node indicated by a. The meaning of a is the same as described above for
allocated expressions. Note that relative allocation is with respect to the input operand of

EXTENDING A MULTI-SET RELATIONAL ALGEBRA 93

the copy or split statement. Allocation of insert, delete, and update statements is for obvious
reasons determined by the allocation of the fragments to be modified by the statements.

4. Rewriting expressions and statements

The use of an algebra-based language enables the use of high-level rewrite rules for query
optimization. These rules express equivalence transformations that can be applied to algebra
expressions in order to obtain expressions that produce the same results at a lower execution
cost. Table 1 shows a number of examples of these query optimization rules, as they can
be found in many textbooks (see e.g. [5, 181).

Most of the equivalences from the set-based theory also hold in the multi-set context, but
not all of them. An example is the idempotency of the union operator, which holds in the
set-based theory, but doesn’t hold in the multi-set context:

RHR#R ifR#B

On the other hand, the multi-set algebra allows rewrite rules that are not correct in a set-based
algebra. An example is the following rule:

In a set-based context, the projection operator must remove duplicates after attribute removal
and may thus influence the result of the count function. A useful application of the above
rewrite rule is discussed in Section 5.2.

As the extension to the parallel environment presented in this paper is also algebra-based,
rewrite mechanisms can also be used for the fragmentation and parallelization of queries.
A number of example rules is shown in Table 2. These rules assume that relation R is
fragmented into m fragments, and relation S into n fragments.

The parallelization of expressions with a binary operator may lead to constructs that do
not have the form of an expression tree, but of a directed acyclic graph (DAG). Consequently,
the rewriting does not result a single expression, but an extended relational algebra program
with data distribution operators. The rewrite rule for the join in Table 2 is an example of this.

Note that the parallelization of aggregation operators as shown in rule 4 in Table 2
requires an algebra with multi-set semantics to be correct. A set-based algebra would
eliminate duplicate tuples in the intermediate results between the inner and outer group-by
operators.

Table 1. Query optimization rewrite rules.

la q,(R W+ S) -+ apR We S if attr(p) c am(R)
lb up(R W+ S) -+ R Wg, a$ if affr@) & am(S)
2a IT,(R WV S) + n,R WV S if at@(a) C attr(R) A attr(R) fl attr((o) C attr(a)
2b qy(R Ml0 S) -+ R W, n,S if atfr(cx) C attr(S) A attr(S) Cl artr(p) 2 attr(a)
3 q,(RxS)+RW,S
4 qo+ -+ qo,+R
5 RW,,(SW~T)+(RWvS)WqT

94 GREFEN AND FLOKSTRA

Table 2. Query parallelization rewrite rules.

if f E (CNT, SUM, MIN, MAX]

if f E {AVG}

EXAMPLE 2. As an example we use the beer and brewer database presented before. As-
sume we require an overview of the names of all countries in the database in which strong
beers are brewn, i.e. beers with more than 8 percent alcohol. In a non-fragmented database,
this would be the following query:

with
8naai,(Beer We Brewer)

(Y = Brewer.Country

(p = (Beer.Alcperc > 8)

@ = (Beer.Brewer = Brewer.Name)

Using optimization rule la from Table 1, we can rewrite this query into the following
equivalent query:

Sn,(a,Beer We Brewer)

Given the distributed database schema of Example 1, we can rewrite this query into a parallel
extended relational algebra program using the rewrite rules in Table 2. Assuming that we
don’t want to redistribute relation Beer, this query can be rewritten using rules 1 and 5 to
obtain the following program:

[spWBrewerl, (Name), tll, tlz, t13)1,,1;

bpWBrewer2, (Name), h.1, h t23Npl;

$1 = b$eerd,,l;

t32 = [q,$eerd,l;

h3 = [@eer31,1;

t41 = If31 w/r WI, t2dlp1;

f42 = It32 w+ w&2, t22)lpl;

t43 = [t33 w+ w139 t23Ilp1;

?[a%t[w41, t42, t43)lallpllpl

EXTENDINGAMULTI-SETRELATIONALALGEBRA 95

In the above program, the fragments of relation Brewer are refragmented to fit the frag-
mentation of relation Beer, so three local joins can be used at the location of the Beer
fragments. If the result of the multi-union in the last statement is expected to be large, this
statement can be further parallelized using rewrite rules 2 and 3 from Table 2 to obtain the
following:

t51 = r~[7w4llpllpl;

t52 = [a%t421pllpl;

t53 = bmYt43lpllpl;

26 kJ (t51, t52, t53)lal

Note that the statements of a parallel program like the one above can be executed in a
parallel fashion, provided that the sequential semantics of the effects on the database
and the query output are guaranteed [12]. Parallelism can include both parallel execu-
tion of independent statements (horizontal paruZlelism), and parallel execution of state-
ments that have a producer-consumer relationship (vertical parullelism). In the second
program in the above example, horizontal parallelism can exist between the first three state-
ments, and vertical parallelism between each of the first three statements and the fourth
statement.

Parallelization is (of course) not limited to query statements only. Statements to modify
a fragmented database can be parallelized as well, as shown in the following example.

EXAMPLE 3. Suppose we want to insert the contents of a relation NewBeers into the
Beers relation. In a non-fragmented database this would be accomplished by the following
statement:

insert(Beers, NewBeers)

Given the distributed database schema of Example 1 and assuming that relation NewBeers
is not fragmented, we can rewrite the above statement into the following parallel program:

CspWNewBeers, (Name), tll, t12, t13)lpl ;

insert(Beerl, tll);

insert(Beer2, t12);

insert(Beer3, t13)

5. The practice: PRISMADB

A dialect of the extended relational algebra presented in this paper has been used as the
main database manipulation language (DML) in the PRISMA/DB parallel main-memory
database system [2]. This language, called XRA, is described in detail in [1 l] and includes
a number of constructs not covered by this paper for reasons of brevity, such as operators
for range-based data fragmentation and recursively defined expressions, and transaction
brackets (begin and commit).

This section describes the use of the algebra-based XRA language in the PRISMA/DB
system in short; some issues are covered more extensively in [2]. First, an overview of

96 GREFEN AND FLOKSTRA

the use of XRA in PRISMAiDB is given. Next, attention is paid to query rewriting in
PRISMA/DB. Finally, the execution of XRA constructs is described.

5.1. XRA in PRISMALDB

In PRISMA/DB, the XRA language has been used both as an external DML to express
user queries and transactions in, and as an internal means of communication between the
various modules of PRISMA/DB [2]. This algebra-based approach throughout the system
has resulted in a high degree of expressiveness and flexibility, opening ways to both complete
functionality including e.g. integrity control [131 and high performance through parallel
query execution [191.

Figure 1 depicts the (simplified) basic architecture of PRISMA/DB [2]. It consists of a
user interface (UI), query compiler (QC), query optimizer (QO), transaction manager (TM),
data manager (called one-fragment-manager in PRISMA/DB, hence OFM), data dictionary
(DD), and concurrency controller (CC).

The user at the user interface can either use XRA as data manipulation language, or
choose SQL or PRISMAlog (a logic query language like DataLog). As PRISMA/DB
offers complete fragmentation and location transparency [5], all queries are stated in terms
of global relations. So users never need to be aware of the constructs introduced in Section 3.
These are generated by the system as explained below.

The query compiler module translates all queries in languages other than XRA into
XRA. This allows XRA to be further used as interface language in the system. It is so used
between query compiler and query optimizer, between query optimizer and transaction
manager, and between transaction manager and data manager. Further, for integrity control
purposes, integrity constraints are stored in XRA format in the data dictionary for use by
the transaction manager [131.

QC DD

QO 4
A

cc

Figure 1. PRISMA/DB basic architecture.

EXTENDINGAMULTI-SETRELATIONALALGEBRA 97

5.2. XRA rewriting

After being processed by the query compiler, queries in XRA are processed by the query
optimizer. This module has two main tasks: optimizing a given query to an equivalent query
that can be executed at lower cost, and resolving fragmentation transparency. The latter is
performed by replacing global relations by relation fragments and operations on relations
by operations on relation fragments (both for base relations and intermediate query results).

PRISMA/DB employs the data fragmentation and allocation schemes and the data re-
distribution operators described in the previous section to obtain flexible mechanisms for
the use of parallelism in query execution [2, 191. This means that the degree of parallelism
can be specified per relational operator, as opposed to approaches where the degree of par-
allelism is fixed by the system architecture, e.g. as in the GAMMA database machine [8].
In optimizing fragmented queries, the query optimizer uses relative allocation pragma’s to
control inter-node data transport. It needs not be concerned with physical data allocation.

Due to the algebra-based approach, both the optimization and parallelization tasks of the
query optimizer can be performed by the same algebra rewrite engine. For this purpose, the
engine is equipped with a set of query optimization rules and a set of query fragmentation
rules, as they are discussed in the previous section. The use of a single algebra rewrite engine
results in a high-level design of the query optimizer, and flexible optimization strategies.

The use of a multi-set model allows for certain optimization transformations that cannot
be safely performed in a set-based environment. An important example is the insertion of
projection operators in query trees to decrease the amount of data transport between nodes
in the parallel machine. In the multi-set case, the projection operator does not affect the
cardinality of its operand, but in the set-based case it does (as a consequence of duplicate
removal). This is illustrated in the example below.

EXAMPLE 4. Using the example database schema introduced before, we want to compute
the number of beers brewn outside the Netherlands. This can be accomplished by means
of the following query:

Now suppose that the join operations are to be executed on the nodes where the Brewer
relation resides. This means that the tuples of the Beer relation have to be transported to these
nodes. To compute the query, only the attribute Brewer of relation Beer is necessary. This
means that we can optimize the query to save on data communication costs by inserting a
projection operation that removes irrelevant attributes. The resulting query is the following:

In the set-based model, the projection operation would affect the cardinality of its operand
(assuming there are brewers that brew more than one beer type), thus causing an incorrect
query result.

In a set-based environment, duplicate removal operations are necessary after each operation
that may produce duplicate tuples. If the data is fragmented (as usually the case in a parallel
database system), costly inter-node data comparison may be necessary. Clearly, this is not
desirable in a high-performance parallel environment.

98 GRJSEN AND FLOKSTRA

5.3. XRA execution

After being rewritten, queries are sent to the transaction manager, which controls query exe-
cution. This module has among others the following tasks: resolving location transparency
such that data managers can be addressed at the various nodes of a parallel system, and
scheduling of parallel query execution. Resolving location transparency is performed by re-
placing relative allocation pragma’s in the XRA programs by absolute allocation pragma’s.
This process is performed by analyzing the programs starting with the fixed locations of
the fragments of the base relations.

The algebra-based approach enables easy analysis of XRA programs for high-level graph-
based scheduling as described in [121. This scheduling is necessary to be able to execute
multiple XRA statements in paralel without violating the sequential semantics of the pro-
gram. This approach avoids the inclusion of detailed scheduling information within the
XRA programs.

Vertical parallelism in query execution is enabled by inserting channeZs for tuple transport
in a pipelined fashion between operations that have a producer-consumer relationship. This
is both the case for operations within one statement and operations in different statements.
In the last case, the channel replaces the relational variable shared by both operations.

6. Conclusions

This paper presents a formal approach to the construction of a multi-set extended relational
algebra for parallel database systems with fragmented relations. This approach has a firm
theoretical background with a close connection to the standard relational algebra, ensuring
a clear semantics of the developed language. The approach has also a close connection to
the practice of parallel database systems, as it can handle fragmentation and parallelism
in query processing and is defined in terms of multi-sets, as required by most practical
environments.

The algebra-based approach as described in this paper provides a good basis for expression
rewriting that can be used for query optimization and query parallelization. The multi-set
model allows for certain optimization transformations that cannot be safely applied in set-
based environments.

The experience in the PRISMA project has proven that the approach is a viable one.
The PRISMADB parallel main-memory database system uses a dialect of the language
described in this paper as its main database manipulation language. The use of the language
has been one of the factors in creating a system with both flexible parallel query execution
strategies and a high performance. The performance of PRISMADB has proven to be
in the range of the fastest parallel database machines available. A detailed performance
evaluation is described in [19].

Acknowledgments

Annita Wilschut and Care1 van den Berg are acknowledged for their contributions to the
design and implementation of the XRA language in PRISMA/DB. Rolf de By is thanked
for his help with the formal aspects of multi-sets.

EXTENDING A MULTI-SET RELATIONAL ALGEBRA 99

Notes

1. The U symbol is used here for the multi-set union to avoid confusion with the set union, denoted by the usual
symbol U. Both types of unions are used in this paper; for other operators, only the multi-set type is used.

2. Here the summation Qx)f(x) is to be interpreted as the sum of f(x) for all x satisfying q(x)

3. As for the normal projection, the extended projection operator is used for relation schemas as well.

4. Note that we use the same symbol for the standard two-operand union and the multi-union, This overloading
does not cause any problems, since the syntax of expressions clearly indicates which operator is meant.

References

1. J. Albert, “Algebraic Properties of Bag Data Types,” Proceedings 17th International Conference on Very
Large Data Bases, Barcelona, Spain, 1991.

2. P.M.G. Apers, C.A.v.d. Berg, J. Flokstra, P.W.P.J. Grefen, M.L. Kersten, andA.N. Wilschut, “PRISMA/DB: A
Parallel, Main-Memory Relational DBMS,” IEEE Transactions on Knowledge and Data Engineering, vol. 4,
no. 6, 1992.

3. H. Boral et al., “Prototyping Bubba, a Highly Parallel Database System,” IEEE Transactions on Knowledge
and Data Engineering, vol. 2, no. 1, 1990.

4. K. Bratbergsengen, “Relational Algebra Operations,” Proceedings Workshop on Parallel Database Systems,
Noordwijk, The Netherlands, 1990.

5. S. Ceri and G. Pelagatti, Distributed Databases, Principles and Systems, McGraw-Hill, New York, USA,
1984.

6. E.F. Codd, “A Relational Model for Large Shared Data Banks,” Communications of the ACM, vol. 13, no. 6,
1970.

7. H. Darwen and C.J. Date, “The Third Manifesto,” SIGMOD Record, no. 3, 1995.
8. D.J. Dewitt et al., “The GAMMA Database Machine Project,” IEEE Transactions on Knowledge and Data

Engineering, March 1990.
9. D. Dewitt and J. Gray, “Parallel Database Systems: The Future of High Performance Database Systems,”

Communications of the ACM, vol. 35, no. 61992.
10. A. Gill, Applied Algebra for the Computer Sciences, Prentice-Hall, Englewood Cliffs, USA, 1976.
11. P.W.P.J. Grefen, A.N. Wilschut, and J. Flokstra, PRISMA/DB 1.0 User Manual, Memorandum INF91-06,

University of Twente, The Netherlands, 1991.
12. P.W.P.J. Grefen and P.M.G. Apers, “Dynamic Action Scheduling in a Parallel Database System,” Procs. Conf.

on Parallel Architectures and Languages Europe 1992, Paris, France, 1992.
13. P.W.P.J. Grefen, “Combining Theory and Practice in Integrity Control: A Declarative Approach to the Speci-

fication of a Transaction Modification Subsystem,” Procs. 19th bit. Conf. on Very Large Data Bases, Dublin,
Ireland, 1993.

14. P.W.P.J. Grefen and P.M.G. Apers, “Integrity Control in Relational Database Systems-An Overview,” Data
and Knowledge Engineering, North-Holland. vol. 10, no. 2, 1993.

15. P.W.P.J. Grefen and R.A. de By, “A Multi-Set Extended Relational Algebra-AFormal Approach to a Practical
Issue,” Procs. 10th Int. Conf. on DataEngineering, Houston, Texas, USA, 1994.

16. B.E. Hart, S. Danforth, and P. Valduriez, “Parallelizing aDatabase Programming Language,” Procs. Int. Symp.
on Databases in Parallel and Distributed Systems, Austin, Texas, USA, 1988.

17. A. Klausner and N. Goodman, “Multirelations-Semantics and Languages,” Proceedings 1 lth International
Conference on Very Large Data Bases. Stockholm, Sweden, 1985.

18. J.D. Ullman, Principles of Database Systems, Second Edition, Computer Science Press, Rockville, USA,
1982.

19. A.N. Wilschut, J. Flokstra, and P.M.G. Apers, “Parallelism in a Main-Memory System: The Performance of
PRISMA/DB,” Proceedings 18th International Conference on Very Large Data Bases. Vancouver, Canada,
1992.

