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Existing statistical tests for the fit of the Rasch model have been criticized, because they are 
only sensitive to specific violations of its assumptions. Contingency table methods using loglinear 
models have been used to test various psychometric models. In this paper, the assumptions of the 
Rasch model are discussed and the Rasch model is reformulated as a quasi-independence model. 
The model is a quasi-loglinear model for the incomplete subgroup x score x item 1 x item 
2 x ... x item k contingency table. Using ordinary contingency table methods the Rasch model 
can be tested generally or against less restrictive quasi-loglinear models to investigate specific 
violations of its assumptions. 
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Introduction 

Over the past decade, the Rasch (1960) model has become increasingly popular  in 
constructing and scoring psychological tests (Fischer, 1974, 1978; Hambleton, Swamina- 
tan, Cook, Eignor & Gifford, 1978; Mellenbergh, 1972; Renz & Bashaw, 1977). Its statis- 
tical properties have been studied extensively (Rasch, 1960, 1966a,b; Andersen, 1971, 1972, 
1973a; Fischer, 1974, 1981), and efficient algorithms to estimate its parameters are devel- 
oped (Gustafsson, 1970; Fischer & Scheiblechner, 1970; Wright & Mead, 1977). A 
number of statistical tests for the fit of a set of data to the Rasch model have been 
described (e.g., Andersen, 1973b; Fischer & Scheiblechner, 1970; Gustafsson, 1980; van 
den Wollenberg, 1979, 1982; Wright & Panchapakesan, 1969). Unfortunately, none of 
these tests is completely satisfactory, since they are only sensitive to specific violations of 
the assumptions of the Rasch model. 

Gustafsson (1980) has recommended that the fit of a set of data to the Rasch model 
be investigated with respect to its different assumptions and emphasizes the need for a 
more exact definition of the assumption of unidimensionality. Moreover, Lumsden (1978) 
has pointed out that deviations from unidimensionality have been seriously neglected by 
both test constructors and test theorists. 

In this paper the assumptions of the Rasch model are discussed. A general definition 
of unidimensionality is proposed that yields the assumption of local statistical indepen- 
dence as a special case. 

Loglinear models (Andersen, 1980a; Bishop, Fienberg, & Holland, 1975; Fienberg, 
1980; Goodman,  1978; Haberman,  1978, 1979) have been used for the estimation and 
testing of various psychometric models. Loglinear models, or their multiplicative equiva- 
lents, have been applied to Gut tman 's  (1950) perfect scale model (Clogg & Sawyer, 1981; 
Davison, 1980; Dayton & Macready, 1980; Goodman,  1959, 1975). They have also been 
applied to Coombs '  (1964) unfolding model (Davison, 1979) and to the model of item 
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homogeneity (Lienert & Raatz, 1981). Furthermore, Mellenbergh and Vijn (1981) use a 
logit-linear model to estimate the parameters in the Rasch model. In this paper the Rasch 
model is formulated as a quasi-loglinear model which can be tested generally or against 
less restrictive quasi-loglinear models using contingency table methods. 

T h e  Assumpt ions  o f  the Rasch  M o d e l  

An individual's responses to k test items are denoted by Xj (j = 1, . . . ,  k), which can 
take values 0 (negative, wrong, disagree) or 1 (positive, right, agree). The dichotomous 
Rasch model assumes that, for a given individual, the probability of a response xj (xj = 0, 
1) depends on one latent ability (attitude etc.) parameter ~ (Rasch, 1961): 

P ( X j  = xj l  a) = exp (x~(a - 6j))/(1 + exp (ct - ~ ) ,  (1) 

where 6j is the item parameter describing the difficulty of item j on the latent continuum. 
Equation 1 is Rasch's special logistic model. For xj = 1 it describes the ICC of item j. It 
follows from Equation ! that the ICC's of the items differ only in location. 

The second assumption of the Rasch model is the assumption of unidimensionality. 
Although it is implicit in model (1), it will be given a more precise meaning by expressing 
it as: 

P ( X j  = x i  lct; Yl . . . . .  y~) = P ( X i  = xj t 0t), (2) 

for all possible variables y~ . . . . .  yq which are not functions of x~ and ~. Equation 2 repre- 
sents Lord & Novick's (1968) interpretation of unidimensionality: 

An individual's performance depends on a single underlying trait if, given his value on that trait, 
nothing further can be learned from him that can contribute to the explanation of his performance. 
The proposition is that the latent trait is the only important  factor and, once a person's value on the 
trait is determined, the behaviour is random, in the sense of statistical independence (p. 538). 

Assumption (2) follows from the fact that (1) must hold on the individual level, i.e. 

p(x~v~ . (~> ] ~vl) = P ( X j  = x~ ~ ] ct), if # ~t ~ = ct A.j 

for all individuals v in the population of interest. But if (1) is invariant over individuals 
with the same ct, (1) must be invariant over sets of individuals with the same Yl, . . . ,  Ya and 
0~. 

Special definitions of unidimensionality emerge if the yl . . . . .  yq variables in Equation 
2 are restricted to be specific types of variables. Definition (2) contains two well-known 
assumptions of the Rasch model as a special case: local (or conditional) independence and 
invariance of the ICC's for any subpopulation. The assumption of local independence (or 
measurement independence (Lord & Novick, 1968, p. 44)), can be obtained by setting all y 
variables in Equation 2 equal to the responses to the other items xl . . . . .  xi-1, xj+ 1 . . . . .  
xk (Lord & Novick, 1968, pp. 361, 538). It means that the observed dependence among the 
item responses is wholly explained by their dependence on the latent variable ~. The 
second assumption, invariance of the ICC's over subpopulations (Lord & Novick, 1968, p. 
359), is obtained by restricting the y variables in (2) to be characteristics of individuals 
such as sex and age. 

In a discussion of the concept of local independence in the Rasch model, Goldstein 
(1980) correctly remarks that both special definitions of unidimensionality have not 
always been distinguished properly: invariance of the ICC's over subpopulations does not 
necessarily imply local independence and vice versa. 

To obtain a coherent formulation of the Rasch model both basic assumptions, logis- 
tic ICC's (1) and unidimensionality (2), must be combined into one single equation. First, 
let (Yl . . . . .  yq) = (x l  . . . . .  x j - 1 ,  x~+l . . . . .  Xk, Z~ . . . . .  Z~) in Equation 2, where zl . . . . .  zw 
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describe individuals' characteristics. An alternative but equivalent formulation of equation 
(2) is then 

k 

P ( x l  . . . . .  x k ] o~; z l  . . . . .  zw) = P(X l  . . . . .  x k ] ~t) = I-I P ( x j  ] e), (3) 
j = l  

where P(x~ . . . . .  Xk [ 0~; Z 1 . . . . .  Zw) is the joint distribution of item responses x l  . . . . .  Xk for 
given values of ct and zx . . . . .  z w and the random variable notation is dropped. The equiva- 
lence of Equation 2 and 3 follows from elementary probability calculus (Mood, Graybill, 
& Boes, 1974, sec. 3.6). Inserting Equation 1 into 3, a unitary formulation of the Rasch 
model follows: 

k exp xj 6 i 
P(X [ ~; z) = j__I~I 1 exp (xj(ct - fij)) = (4) 

• = (1 + exp (~t - fij)) k 
1-I (l + exp  (~ - ~j)) 

j = l  

where z = (zl . . . . .  zw), x = (xl . . . . .  Xk) and t = Z i  xi is the number of positive item re- 
sponses (test score). 

Equation 4 describes the structure of a 2 k contingency table of the x~ . . . . .  x k re- 
sponses of an individual with ability ~ (cf. Goldstein, 1980). The hypothesis is that this 
structure can be explained by the marginal item response distributions, which depend 
only on the individual's ability ~ through the logistic function (1) and do not depend on 
the value of z. 

This formulation of the Rasch model has several advantages over the usual formu- 
lation (Equation 1). First, it contains the unidimensionality assumption in a more explicit 
manner. Second, it describes all variables relevant for testing the Rasch model. Third, the 
results of latent structure analysis (Andersen, 1980; Goodman, 1978; Lazersfeld & Henry, 
1968) can be applied to Formula 4, since it describes the probabilities of the manifest item 
response vector x l  . . . . .  Xk in terms of the latent ability variable ct. Furthermore, an impor- 
tant feature of model Formula 4 is that it is an exponential family distribution wherein 
the score t is a minimal sufficient statistic for the individual's ability ct (Andersen, 1980a, p. 
38). Consequently, the score t contains all information about ability ~ available in the 
data. 

A Log l inear  R a s c h  M o d e l  

Model Formula 4 defines a latent structure model. A basic concept in latent structure 
analysis is the so-called accounting equation. An accounting equation describes the prob- 
ability P(x) of an observed response x in terms of conditional probabilities P(x[  ~) and 
the distribution function F(~) of the latent variable (Lazersfeld & Henry, 1968): 

P ( x ) = f + ° ~ P ( x l c O d F ( c O . _  (5) 

To apply Equation 5 to the Rasch model (4), we must bring in the z variables. 
Assume that z 1 . . . . .  z w are categorical or categorized variables and, for simplicity, denote 
each distinct value of the joint variable z by a single index i (i = 1, . . . ,  m), which will be 
referred to as the ith "subgroup". Equation 5 is now applied to each subgroup: 

; ~ P i ( x  Pi(x) = [ ct) dFi(~),  (6) 

where Pi(x) = P(x [ z) is the conditional distribution of response x given z (or i), Pi(x [ 
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~) = P(x I ~; z) is the conditional distribution o f x  given ~ and z (or i) and Fi(~ ) = F(~ I z) 
is the conditional distribution function of ~ given z (or i). 

Inserting the Rasch model (4) into (6) yields: 

exp ( a t -  ~ x j6 j )  
P,(x) = f ~  W ---x----- t = ~ -  ---z-/ dFi(o~ ) 

- H (1 + exp (a - 6j)) 
j = l  

( k ) f + o o  exp (~t) dFi(oO" (7) = e x p  - ~ x j 6 j  k 
j= 1 - H (1 + exp (ct - 6j)) 

j = l  

From (4) it also follows that  

where 

Pi(t I ~) = ~ " "  ~ Pf(xl . . . . .  Xk I ~); X, + ' ' "  + Xk = t 
: ¢ I ' ' *  ~k 

exp (at) 
= ~ ' , ( 01  . . . . .  6k) ~ 

H(1 + exp (ct - 6j)) 
j = l  

k 

Vt(61 . . . . .  Jk) = ~ " "  ~ H exp (-xj(~j)'~ 
Xl " ' "  xk j : l  

X 1  -J¢- ' ' '  q -  X k -~- t 

are the well-known, elementary symmetric functions and P~(t I ~) is the conditional prob- 
ability of score t given ability ~ and subgroup i. The marginal  score distribution Pi(t) in 
each subgroup i is then: 

f+oo exp (~t) dF,(~) (8) 
Pi(t) = ~t(fia . . . . .  6k) k 

- I-I (1 + exp (or -- 6j) 
j = l  

Using (8), (7) can be written as 

exp xj 6j 
Pi(x) = Pi(t) (9) 

7~(61 . . . . .  6k) 

so that  

(k ) exp -- ~ xj6  i 
j= l / (10) Pi(x I t) = Pi(x)/Pi(t) = ~(c51 . . . . .  6k) 

Model  (10) is the conditional Rasch (1960) model whereas in model (9) there is no 
condit ioning on the score t. Both model (9) and model (10) can be written as a loglinear 
model. Model (9) corresponds to 

k 

In * = a* -- ~ xj6~, (11) m i t x x  .. ,  xk  
j = l  

where 

mitx~* ... xk = NiP~(x ) and a* = In (NiPi(t)/y,(c51, .. ., cSk), (12) 
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with Ni the number of subjects in subgroup i and where mu~,* ..... :,~ is the expected number 
of responses x~ . . . . .  Xk with score t in group i under model (9). Model (10) corresponds to 

k 

In mitx~ ... ~k = aa --  ~ x~6~ (13) 
j = l  

where 

mltx~ ...xk = N i t P i ( x  [ t) and tri, = In (Ni t /y , (61  . . . . .  6k)), 

with N~t the number of subjects in subgroup i having score t and where m~t~, ~ ... x~ is the 
expected number of responses x~ . . . . .  Xk with score t from group i. 

In the conditional Rasch model (13) the observed subgroup × score marginals N~t 
and the corresponding model parameters air are considered as fixed by the sampling 
design. Consequently, there are no restrictions on a~t. In the Rasch model (11) only the 
subgroup marginals N~ are considered as fixed and the parameter a~, must satisfy equa- 
tion (12). a~t depends on the distribution P~(t) of the score in each of the subgroups. 
Because in (8) the distribution P~(t) depends on an underlying latent trait distribution, it 
can be shown that P~(t), and therefore air*, must satisfy certain constraints. Cressie and 
Holland (1983) studied these constraints. Using their results it can be shown (see Appen- 
dix I) that the a*-parameters must be consistent with the inequalities. 

( * ) det. exp {ai~,+~) } _>0 
r,~=O 

( • det. exp {ai~,+s+ 1)} _> 0 
r , s=O 

i = 1 , . . . ,  m, where 

~ k / 2  if k is even, f(k - 2)/2 if k is even, 
ql = [(k - 1)/2 if k is odd, q2 = ,(k 1)/2 if k is odd, 

and H. Hq.s=o denotes a matrix with row index r and column index s both running from 
zero to q. Throughout  this paper we either assume that these constraints hold or we work 
with the conditional model (13). 

In model Formula 13 (and 11) there is an obvious overparametrisation; adding a 
constant c to each item parameter 6j and adding c. t to each subgroup x score parame- 
ter a , ,  does not change the model. This indeterminacy can be removed by setting one 
item parameter equal to zero. 

Model Formula 13 is a quasi-loglinear model for the incomplete sub- 
group x score x item 1 x -.- x item k contingency table with expected counts m,xl ... :,k if 
t = ~k= t Xl and structural (or a priori) zero cells otherwise (Bishop et al., 1975, sec. 5.4; 
Haberman, 1979, sec. 7.3). Table 1 shows the a priori pattern of expected counts and zero 
cells for k = 3 items in subgroup i. 

Quasi-loglinear models describe quasi-independence structures in incomplete contin- 
gency tables such as Table 1. The quasi-independence concept was first introduced by 
Goodman (1968). The concept is also fundamental to other scaling models (Davison, 
1979, 1980; Goodman, 1975). It means that there are no interactions between certain 
variables beyond those already imposed by the a priori incompleteness structure of the 
table, i.e. the pattern of structurally zero and structurally nonzero cells. 

The quasi-loglinear Rasch model (13) then states that the item responses are quasi- 
independent of the subgroup, that the item responses are quasi-independent of the score, 
and that all item responses are quasi-independent of each other. The a priori incomplete- 
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TABLE 1 

Expected Counts and S t r u c t u r a l  Ze ro ' s  in  Subgroup 

i x Score x Item 1 x Item 2 x I tem 3 Tab le .  

Score t 

I tem Response 0 1 2 3 

Xl 

0 0 0 ~iO000 - 

I 0 0 - ~ i1100 

0 I 0 - ~ i l O l O  - - 

0 0 1 - ~ i1001 - 

1 1 0 - - ~ i2110 - 

1 0 1 - - ~ i2101 " 

0 1 1 - - ~ i2011 - 

1 1 1 - - - ~ i3111 

Note. Dashes denote s t r u c t u r a l l y  zero c e l l s .  

ness structure of the subgroup x score x item 1 x • • • x item k table is defined by the de- 
pendency t = ~ =  ~ x~ of the score variable on the item responses. Consequently, the 
quasi-loglinear Rasch model (13) states that the interactions of an item response with e.g. 
the subgroup, the score, or another item response are only explained by their contribution 
to the score. 

By Formula 3 through 13 it is proved that this quasi-independence hypothesis fol- 
lows from the hypothesis that the data satisfy the assumptions of the Rasch model. This 
becomes more obvious if we realize that the score is a minimal sufficient statistic for the 
latent ability parameter  a. Consequently, the score t contains all information about  ct 
available in a given set of data. Since the Rasch model states that the item response 
distribution varies only with the latent ability parameter  0t, the sufficiency property of the 
score t implies that for a given set of items the item response distribution varies only with 
the score t. The latter proposition, however, describes precisely what is meant  by the 
quasi-independence hypothesis (Formula 13) for the incomplete subgroup x score x item 
1 x . . .  x item k contingency table. Consequently, this table contains all information that 
is available in a set of data  to test the Rasch model. I t  will, therefore, be called: "The 
Rasch table". 
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If it is assumed that the individuals respond independently of one another, the quasi- 
loglinear Rasch model (11) describes a parametric  mult inomial  distribution of the structur- 
ally nonzero observed counts f~t~l ... xk in each subgroup i and the quasi-loglinear Rasch 
model (13) describes a mult inomial  distribution of the structurally nonzero observed counts 
in each subgroup i and scoregroup t (Andersen, 1980a; Bishop et al., 1975). Maximum 
likelihood estimates of the parameters in model (13) and likelihood ratio tests can be 
obtained by fitting the structurally nonzero expected cell counts mlt~ ...x~ to the observed 
cell countsf~tx I ... xk (Bishop et al., 1975; Goodman, 1978; Haberman, 1978, 1979). It can be 
shown (see Appendix II) that the estimates of the item parameters in model (13) are 
identical to the well-known conditional maximum likelihood (CML) estimates (Andersen, 
1973a). Algorithms to estimate the parameters in' (quasi-) loglinear models have been 
described by Baker and Nelder (1978), Goodman and Fay (1974) and Haberman (1979). 

In model (13), the effect of a negative item response is set to zero and the joint 
subgroup x score effect is parametrized as a single parameter trot. Model (13) can be re- 
written by using the ANOVA parametrisation or, equivalently, the "u-terms" parametrisa- 
tion often used in loglinear contingency table models (Bishop et al., 1975), that is, 

In m~tx 1 . . .~ = u + ul(O + u2(t) + u12(it) + u3(xl)  + "'" + Uk+ 2(Xk) (14) 

with the ANOVA constraints 

ul (+)  = u2(+) = u12(+t) = u12(i+) = us(+) . . . . .  Uk+2(+) = 0 

where u is a constant term, ul(0 is the main effect on subgroup i, U2(t ) is the main effect of 
score t, u~2(iO is the effect of the combination of subgroup i and score t, and u3(x~), . . . .  
uk+2(xk) are the effects of response x j  of item j (j = 1 . . . . .  k). A plus sign replacing an 
index means that the model parameters are summed over that index. To remove the 
indeterminacy between item parameters and score parameters one additional linear con- 
straint must be imposed on the item parameters, e.g. ua(x~) = 0. A proof of the equiva- 
lence of both parametrisations (13) and (14) can be found in Bock (1975, pp. 50, 239). 

The advantage of the u-term notation is that it allows us to specify alternative quasi- 
loglinear models for the Rasch table. The u-term notation can be used to specify alter- 
native models with a broad range of complexity for any number of variables, from the 
fully specified or "saturated" model, to a more parsimonious or "restrictive" model. For 
example, a restrictive model may be specified by adding interaction terms uta(ix~) . . . .  , 

Ut~k+2)(iXk) to the Rasch model (14), to relax the quasi-independence hypothesis for sub- 
group x item interactions. 

By comparing the fit of the Rasch model with the fit of more complex models, by the 
methods described in what follows, various hypotheses on violations of the assumptions 
of the Rasch model can be tested. 

Quasi-loglinear Mode ls  f o r  the Rasch  Table  

Fienberg (1972; see also Bishop et al., 1975, sec. 5.4) presents a general theory for the 
analysis of incomplete contingency tables by quasi-loglinear models. In this section we 
apply Fienberg's theory to the Rasch table. 

The saturated or fully specified model for the Rasch table is: 

in mit~ ,..~k = u + ul(O + U2(t) + Ua(Xl) + " ' "  + Utt~+2)(gk) 

+ u t 2(it) + u 1 a (ix ~ ) + " "  + u (k + t)(k + 2)(Xk - t X~) 

+ U123(itx1) + "'" + U123 ... ( h + 2 ) ( i t x l " ' ' X k )  (15) 
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for i = 1 . . . . .  m; xl = 0, 1; ... ; x k = 0, 1; t = ~ = 1  xj. Note that the last implies that not 
all combinations of item and score indices can occur in the parameters of model (15). 
Model (15) has constraints: 

u l ( + ) = u 2 ( +  ) . . . . .  u~k+2)(+)=u12(+t)=u12(i+)--ula(+xl)=ux3(i+) . . . .  

= u~+ 1~+ ~)(+ xk) = u~+ 1~+ 2~(x~- 1 +)  . . . . .  u 123(+ txO = u~23(i+ xO 

= u123(it+) . . . . .  U t 2 3 . . , ( k + 2 ) ( + t X  1 "." Xk) ----- U123. . .~k+2)(i+X t "'" Xk) . . . .  

= Utz3 ...~k+e)(itxl "'" Xk-1 +) = 0 (16) 

The u-terms in model (15) describe main effects and interaction effects of subgroup i, 
score t and item responses x~, . . . ,  xk. The u-terms in expression (16) denote sums of 
parameters that occur in model (15), where a plus sign replacing an index indicates that 
the summation is over the replaced index. Fienberg (1972) gives a more precise but more 
elaborate expression for the constraints (16), using indicator variables to identify parame- 
ters that occur in model (15), but expression (16) and Fienberg's expression are equivalent. 
The constraints, however, are not sufficient to ensure that all parameters in model (15) are 
estimable. Like the Rasch model, additional constraints must be imposed to obtain a 
unique solution of the model parameters. This problem will be discussed later in this 
section. 

Restrictive quasi-loglinear models for the Rasch table are defined by setting u-terms 
in (15) equal to zero. The only models considered here will be hierarchical, i.e. whenever a 
particular u-term is set to zero, all its higher order relatives must also be set to zero. For  
example, the loglinear Rasch model (14) is a restrictive model. It is obtained from (15) by 
setting all u-terms describing interactions with item responses equal to zero. As another 
example, consider the model 

In mitx, ...x~ = u + u l ( i  ) + u2(t  ) + ul2( i t )  + u3(Xx) + u4(x2) + " .  -4- Uk+2(Xk) + U23(txl )  

't- u24(t.x:2) -t- " ' "  Jr- U2(k+2)(tXk), (17) 

where, as before, the model parameters are constrained to sum to zero over each index. 
Model (17) is obtained from model (15) by setting all u-terms describing interactions 
between item responses, interactions between item responses and the subgroup and inter- 
actions between two or more item responses and the score equal to zero. The Rasch 
model (14) is a special case of model (17); it can be obtained by setting the parameters 
u23(txl), . . . .  Uz~k+ 2)(tXk) in model (17) equal to zero. 

If one model, say M, is a special case of another model, say M*, model M can be 
tested against model M* by the log-likelihood-ratio statistic: 

G2(m; m*) = 2 ~ m* In (m*/m), (18) 

where m and m* denote the expected counts of model M and M* respectively. In Equa- 
tion 18 indices are omitted for brevity, and the summation is over all structurally nonzero 
cells. Under the assumption of model M, G2(m; m*) is asymptotically distributed as chi 
square with degrees of freedom equal to the difference between the numbers of estimable 
parameters of both models. 

For  example, the Rasch model (14) is a special case of model (17). Testing model (14) 
against model (17) is a test for the invariance of item difficulties over scoregroups. It can 
be shown (see Appendix III) that this test is equivalent to a well-known likelihood-ratio 
test by Andersen (1973b). 

If M* is the saturated model, the expected counts m* are equal to the observed 
cou n t s f  and G 2 becomes an overall goodness of fit statistic for model M: 

G2(m;f) = 2 Y ' f l n  (f/m). (19) 



HENDRIKUS KELDERMAN 231 

In this case, an alternative, asymptotically equivalent, statistic is Pearson's goodness-of-fit 
statistic: 

Q(m) = ~ ( f  - rn)~2, (20) 
m 

which is also asymptotically distributed as chi square, with degrees of freedom equal to 
the difference between the number of structurally nonzero cells and the number of esti- 
mable parameters in model M. 

The calculation of the number of estimable parameters in quasi-loglinear models is 
considerably more complex than in ordinary loglinear models (Bishop et al., 1975, sec. 
5.4). A simple way to deal with this problem is to use the design-matrix approach to the 
analysis of incomplete tables by quasi-loglinear models (cf. Bock, 1975; Evers & Namboo- 
diri, 1979). The number of estimable parameters is then equal to the rank of the design 
matrix (Bock, 1975, p. 523), which can be evaluated by numerical methods. 

As an example of the design-matrix approach consider the model: 

In mtxlx2x3 = u + ul(t) + U2(Xl) + Ua(X2) + U4(X3) + u12(txl) (21) 

for x 1 = 0, 1 ; x 2 = 0, 1 ; x3 = 0, 1 ; and t = xt  + x2 + x3. Equation 21 describes a quasi- 
loglinear model for a table with three items and no subgroups. The pattern of structurally 
zero and nonzero counts is the same as in Table 1. Model (21) can be written in design 
matrix form as: 

z = D u  (22)  

where z' = (In moooo . . . . .  In m3111 ) is the vector of logarithms of the structurally nonzero 
expected counts, u' = (u . . . .  , u12(31)) is the vector of u-parameters obtained by using all 
values of the score and item indices in the u-terms of model (21). Table 2 shows the design 
(or incidence) matrix D. It describes the absence (0) or presence (1) of u-parameters in the 
model equations. The columns of D each correspond to a parameter in u and are denoted 
by: G, for the mean parameter u; S,, (t' = 0  . . . .  ,3), for the score parameters ut(t'); 
R~ ) (x~ = 0, 1", j = 1, . .., 3) for the item parameters uj+x(x~), and -t, ~ --x,,P(t~ (t' = 0, . . . ,  3; 
x'~ = 0, 1) for the score item x parameters u~2(t'x'O. 

The design matrix D is clearly of deficient column rank so that the parameters in u 
are not uniquely determined. 

TABLE 2 

Design Matrix D of  model (22), 
~ 

1 I 0 0 0 i 0 1 0 1 0 i 0 0 0 0 0 0 O 

i 0 1 0 O 0 1 1 0 1 0 0 0 0 0 0 i 0 0 

1 0 1 0 0 i 0 0 1 1 0 0 i 0 0 0 0 0 0 

i 0 i 0 0 i 0 i 0 0 i 0 I 0 0 0 0 0 0 

i 0 0 I 0 0 I 0 i I 0 0 0 0 0 0 0 i 0 

I 0 0 I 0 0 i 1 0 0 I 0 0 0 0 0 0 I 0 

I 0 0 i 0 i 0 0 1 0 I 0 0 i 0 0 0 0 0 

I 0 0 0 1 0 1 '0 I 0 i 0 0 0 0 0 0 0 i 
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First, there are the usual indeterminacies in u caused by the linear dependence of the 
categories of the observed variables, i.e.: 

(So + $1 + $2 + Sa) - a = 0, (R(o t) + R¢~ x)) - G = 0, 

(R~0 2) q- R(12)) - G --- 0, and (Rt0 a) + Rtl 3)) - G = 0, 

for the main effects, and 

~,(1) ~ o(1~ S3R(),~)- R(1) (S O R (l) + Sl , ,x ,  1 + + = 0, = 0, 1, --x' l  ":2 ~Xx't " 'x ' l  XI  

and 

(S,, R~o 1) + S,, R~ t)) - S,, = O, t' = 0 . . . . .  3, 

for the interaction effects. As before, these indeterminacies are removed by constraining 
the parameters to sum to zero over each index, which leaves us with 
1 + (4 - 1) + (2 - 1) + (2 - 1) + (2 - 1) + (4 - 1X2 - 1) = 10 linearly unrestricted pa- 
rameters u, u l(t'), u2(x'l), u3(x~), u4(x'3), and ul 2(t'x~) respectively. 

Second, some parameters are not estimable since they cannot occur in the model 
equations, that is, they correspond to structurally zero counts only. From model (22) it is 
seen that 

So R~ 1) = S3 R(o 1) = 0, 

since there is no zero or perfect score together with a positive or negative response respec- 
tively. The corresponding parameters u12(01 ) and u12(30) are not estimable, since there are 
no data to estimate them from. This indeterminacy can be removed by setting both pa- 
rameters equal to zero which leaves 1 + (4 - 1) + (2 - 1) + (2 - 1) + 
(2 - 1) + (2 - 1)(2 - 1) = 8 linearly unrestricted parameters. 

Third, as in the Rasch model, there is an indeterminacy between the score and item 
parameters due to the linear dependence of the number right score on the item responses: 

(OS o q- 1 S  t -F 2S  2 q- 3S3) - (R~ ~) + Rt~ 2) + Rtl 3)) - -  0. 

As before, this indeterminacy is removed by setting one item parameter, say ug(x3), 
equal to zero. The total number of estimable parameters then becomes 
1 + ( 4 -  1) + ( 2 -  1) + ( 2 -  I) + ( 2 -  1 ) (2 -  1) = 7. Since there are 23 = 8 structurally 
nonzero cells in this table, the number of degrees of freedom for the chi-square statistics 
Formula 19 and 20 is 8 - 7 = 1. Obviously if the model becomes more complex it is 
better to determine the degrees of freedom by evaluating the rank of the design matrix 
numerically. 

Finally, even if the model parameters are estimable by the structure of the model, the 
parameter estimates actually obtained from a particular set of data may not be unique. 
This phenomenon is well-known in the analysis of covariance structures (Kelderman, 
Mellenbergh, & Elshout, 1981; McDonald & Krane, 1979). Fischer (198I) has given nec- 
essary and sufficient conditions which the data must satisfy to obtain unique maximum- 
likelihood estimates of the parameters in the Rasch model. Fienberg (1972), (Bishop et aL, 
1975) has given necessary and sufficient conditions which the data must satisfy to obtain 
unique maximum-likelihood estimates of the expected cell counts in incomplete tables. 
Both Fischer and Fienberg employ graph-theoretic concepts (e.g. connectedness), whose 
treatment is beyond the scope of this paper. 

A practical method is to determine the rank of the information matrix, which should 
be equal to the number of estimable parameters for a given set of data (cf. McHugh, 1956; 
Goodman,  1974). Baker and Nelder (1978, sec. 4.3) describes a weighted least-squares 
algorithm for the analysis of contingency tables, which estimates the parameters in a 
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sequential fashion. If a parameter is linearly dependent on the preceding parameters, or if 
there are no observations to estimate it from, the parameter is removed from the model, 
thus the information matrix is of full rank. This enables us to obtain the number of 
estimable parameters in the model. The reliability of this procedure, however, depends on 
the appropriateness of the numerical methods used to estimate the parameters from a 
particular set of data (McDonald & Krane, 1979). The rank of the information matrix, 
therefore, is not completely convincing evidence on the number of estimable parameters. 
In the following, we assume that there are no indeterminacies in the model parameters 
caused by the structure of the data. 

Loglinear Rasch Model Tests 

The set of u-terms that appear in the saturated model but not in the Rasch model, 
describes all possible deviations from the assumptions of the Rasch model. Comparing the 
Rasch model with the saturated model, or equivalently with the data itself, by the GE(m; 
f )  or Q(m) statistic therefore gives an overall test for the fit of a set of data to the Rasch 
model. 

This test, however, is not very powerful against specific violations of the Rasch 
model. If one has some idea about the types of departures that are most likely to occur in 
a particular set of data, it is better to carry out a test that concentrates on these depar- 
tures (Molenaar, 1983). If the hypothesized departures can be described by a (hierarchical) 
set of u-terms, they can be tested by the likelihood ratio statistic G2(m; m*). The Rasch 
model M must then be tested against a less restrictive model M* that contains both the 
hypothesized u-terms and the parameters of the Rasch model. If the value of G2(m; m*) is 
large relative to its degrees of freedom the hypothesis that the hypothesized u-terms are 
zero must be rejected, indicating that the hypothesized departures of the Rasch model are 
present indeed. Table 3 (b through i), displays some of these hypotheses and the degrees of 
freedom of the corresponding G2(m; m*) test. 

The assumption on the special logistic form of the item characteristic curves (Formu- 
la 1) implies a single item difficulty parameter for each item. These parameters are inde- 
pendent of the individuals' scores on the latent trait. Therefore, if the item response pa- 
rameters vary with the score, which is a sufficient statistic for the latent trait, the ICC 
assumption is violated. In test b, the Rasch model is compared with Model (17) contain- 
ing parameters describing an interaction between item responses and the score, relaxing 
the quasi-independence assumption of item responses with the score. If test b is signifi- 
cant, these parameters are not zero, and the ICC assumption is clearly violated. It can be 
shown (see Appendix III) that test b is identical to the well-known conditional likelihood- 
ratio test by Andersen (1973b; 1980a, p. 253). In test i, the ICC hypothesis is tested with 
respect to only one item. Obviously, by specifying an appropriate comparison model, the 
ICC hypothesis can be tested with respect to any subset of items. 

Tests c through h in Table 3 are each sensitive to a specific violation of the unidimen- 
sionality assumption (Formula 2). In tests c and h the hypothesis of unidimensionality is 
restricted to the invariance of the ICC's over subpopulations (Lord & Novick, 1968, p. 
359). Goldstein (1980) has called this type of unidimensionality: "The unidimensionality of 
the between individuals space". If test c is significant, the items have different item difficul- 
ties in different subgroups, where the terms ula(ixl) . . . . .  Ul(k+2)(iXk) measure the depar- 
tures in each subgroup i. 

In test h this hypothesis is tested with respect to one item only. If test h is significant 
it means that the item measures a specific latent trait that is correlated with the sub- 
groups. Test h can be used to detect biased items, i.e. items that are more difficult for 
some subgroups, e.g. minority groups (cf. Rudner, Getson, & Knight, 1980). 
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TABLE 3 

Some Loglinear Rasch Model Tests. 

Test Null Hypothesis Degrees of 

freedom 

Comparison with less Restrictive Models 

a. difference with saturated model m.2~ - (k.m + k + m - I ) 

b. u23( tx1 )  = u24( tx2 )  = "'" = U2(k+2 ) ( t xk  ) = 0 

c. u13 ( i x1 )  = u 1 4 ( i x 2 )  . . . . .  u 1 ( k + 2 ) ( i x k )  = 0 

d. u34(XlX2)  :_u35(x1_x3) . . . . .  U(k+1)(k+2)(x k _ I x k  ) 

u345(XlX_2X3) . . . . .  u34. . "  k + 2 ( X l X 2 . . . X k  ) = 0 

e. u34(X lX  2) = u35(x_ix3 ) . . . .  = u (_k+l)(k__+2)(Xk-lXk 2 : 0 

( k - 2 ) ( k - I )  

(m-l)(k-l) 

k((k)s - 1) 

r=2 - 

(~) - 1 

f" ~34(~1~2) = ~45(~2~3 ) = ~56(~3~4 ) . . . .  = 

~(k+ l ) (k+2)  (~k-1~k) = O 
(k- I) 

g- ~( i+z)(s+ z ) C ~ z  ) = o 

h. u 1(~+2)(ix3_.) = 0 

i .  u 2 ( j + z ) ( t x j _ )  : o 

m-1 

(k-  2) 

Comparison with more Restrictive Models 

k.m-1 J" ~2(~) =~12 (~ ~) = 0 _ _  

k. ~ 1 2 ( i t )  = 0 k(m- l )  

I. ~3 (~ i ) = ~4 (~2) . . . .  = ~ k +2 (~k) = 0 (~- i) 

Note. Degrees of freedom are the differences in rank of the design 

matrices of both models. 

In test d through g the hypothesis of unidimensionality is restricted to the hypothesis 
of local independence (Lord & Novick, 1968, pp. 361, 538). Goldstein (1980) has called 
this: "The unidimensionality of the within individuals space". In test d the Rasch model is 
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compared with a model that contains interactions between item responses of all orders. If 
test d is significant one latent ability trait is not sufficient to explain the associations 
between the item responses. In that case, it is necessary to postulate additional latent 
traits to account for these item response interactions, and the unidimensionality assump- 
tion is violated. Note that these traits need not be correlated with the subgroups and may 
be entirely caused by the test items or conditions of test administration. For  example, if, 
by some unlucky accident, an item is administered twice in the same test, we expect their 
association to be almost perfect, violating the local independence assumption. Since all 
examinees may recognize the identity of the items the "recognition trait" need not be 
associated with the subgroups. Therefore, unidimensionality of the between individuals 
latent space need not imply unidimensionality of the within individuals latent space 
(Goldstein, 1980; see also van den Wollenberg, 1979). More realistic examples of ad- 
ditional traits are fatigue or simply additional latent abilities that are needed to solve 
some items. 

In tests e and g the Rasch model is compared with models describing more specific 
departures form the local independence assumption. In test e the violation is restricted to 
pairwise dependence between all item responses and in test g the violation is restricted to 
an interaction between one pair of items. Because of its greater statistical power, test e 
may be preferred to test d, especially if higher order interactions between item responses 
are unlikely. In test f the violation of local independence is restricted to pairwise depen- 
dence of consecutive item responses (cf. Kempf, 1974). Obviously, other specific violations 
of the local independnece assumption may be tested by specifying an appropriate com- 
parison model. Furthermore, several specific violations of the ICC assumption and the 
unidimensionality assumption may be combined into a single test. 

If the Rasch model fits the data, we may go on further and compare it with more 
restrictive models, to test the hypothesis that one or more of its u-terms are equal to zero. 
Table 3 gives some of these tests (j, k and 1). 

In j and k the hypothesis tested concerns the distribution of the score. Therefore we 
may not use the conditional Rasch model (13), but we must use the Rasch model (11), 
where the score is considered as a random variable depending on an random latent ability 
variable ~ through Equation (8). 

Test j is the most important one. In test j the Rasch model is compared with the 
model 

In muxt ...xk = u + ul(i) + u3(xl) + " "  + Uk+2(•k) (24) 

which can be obtained from the Rasch model (14) by setting its score parameters u2(t) and 
u12(i 0 equal to zero. Model (24) is the complete independence model, where the item 
responses are independent of the subgroups and independent of each other. It represents 
the situation described by Wood (1978) where the item responses are generated by the 
tossing of k (biased) coins. Wood showed that the Rasch model fits simulated coin-tossing 
data very well. This is not very surprising since the complete independence model (24) is a 
special case of the Rasch model (14). 

To test whether Rasch homogeneity can be distinguished from purely random re- 
sponses we must, therefore, use test j. If test j fails to reach significance we must reject the 
hypothesis that the items measure a common latent trait. Consequently, it is not enough 
to test whether any of the assumptions of the Rasch model are violated, but it must also 
be tested against the null model (24). 

In tests k and 1, the Rasch model (14) is compared with more restrictive Rasch 
models. In test k the Rasch model is compared with a restricted Rasch model where the 
subgroup x score interaction u12(it ) is assumed to be zero. 
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TABLE 4 

Observed and Expected Frequencies for the Lazersfeld- Stouffer data. 

Item response Expected frequencies 

Observed Rasch Equal i t e m  complete 
Score ~1~2~3~4 frequency di f f icul ty independence 

0 0 0 0 0 299 299.0(0.0) 299.0(0.0) 153.1(11.8) 

1 i 0 0 0 199 199.6(0.0) 73.0(14.8) 228.8(-2.0) 

i 0 1 0 0 52 43.8(1.2) 73.0(-2.5) 82.3(-3.3) 

I 0 0 1 0 25 28.0(-0.6) 73.0(-5.7) 59.7(-4.5) 

1 0 0 0 1 16 13.6(0.7) 73.0(-3.7) 32.0(-2.8) 

2 1 1 0 0 96 97.1(-0.I) 39.2(9.1) 123.0(-2.4) 

2 1 0 1 0 60 62.0(-0.3) 39.2(3.3) 89.2(-3.1) 

2 0 1 1 0 45 45.9(-0.1) 39.2(0.9) 71.2(-3.1) 

2 0 1 1 0 16 13.6(0.7) 39.2(-3.7) 32.1(-2.8) 

2 0 1 0 1 8 10.1(-0.6) 39.2(-5.0) 25.6(-3.5) 

2 0 0 1 1 10 6.4(1.4) 39.2(-4.7) 18.6(-2.0) 

3 1 1 1 0 69 73.0(-0.5) 42.3(9. i )  47.1(3.0) 

3 1 1 0 1 55 54.0(0.1) 42.3(2.0) 38.3(2.7) 

3 i 0 1 1 42 34.5(1.3) 42.3(-0.0) 27.8(2.7) 

3 0 1 1 1 3 7.6(-1.7) 42.3(-6.0) 10.0(-2.2) 

4 1 1 1 1 75 75.0(0.0) 75.0(0.0) 14.9(15.6) 

Note. Standardized residuals are between brackets. 

If test k yields a significant outcome, it may be concluded that the score distributions 
are not the same in each subgroup. Using Equation (8), this implies that the distributions 
of the latent trait are not the same in each subgroup. Note that test k does not require 
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any assumptions on the distributional form of the latent trait. A more powerful test, 
assuming a normal distribution in each subgroup, is described by Andersen (1980b). 

Finally in test 1, the Rasch model is compared with a restricted Rasch model where 
item parameters u3(xl) . . . . .  U{R + 2)(XR) are assumed to be equal. Since there is one indeter- 
minacy in the item parameters we may specify this model by setting all item parameters 
equal to zero. This restricted Rasch model is identical to Lienert and Raatz' (1981) model 
of item homogeneity. If test 1 is significant it is concluded that the item difficulties are not 
equal. In what follows some of the tests in Table 3 are applied to real data. 

An Application 

Table 4 shows the observed frequencies of response patterns by noncommissioned 
officers responding to four dichotomous items on attitudes towards the army (Lazersfeld, 
1950; Stouffer, 1950). 

Davison (1980) and Goodman (1975) reanalyzed this data using quasi-independence 
models to test Guttman's (1950) perfect scale model. Davison fitted a model describing 
two groups of subjects: one group whose responses are consistent with a perfect scale and 
one group responding randomly to the items. The model did not fit the data 
(Q(m) = 26.09, df= 7, G2(m;f) is not reported). 

Goodman fitted a quasi-independence model (his H4) describing several groups of 
subjects responding on different Guttman scales and one subgroup responding randomly 
to the items. The model fits the data (G2(m;f) = 5.86, Q(m) = 5.47, df= 3). 

The Rasch model also fits the data very well (G2(m;f) = 10.93, Q(m) = 9.91, df= 8). 
Moreover, it is more parsimonious and much easier to interpret. It may therefore be 
concluded that the item responses have a probabilistic rather than a deterministic relation 
with the latent trait. 

Table 4 shows that the expected frequencies of the Rasch model are close to the 
observed frequencies. Table 5 gives the G2(m; m*) values and degrees of freedom of some 
tests on specific violations of the Rasch model (test a through m). None of these tests 
show deviations from the Rasch model. Note that there are no data on subgroups, so that 
subgroup differences cannot be tested. 

In tests n and o, the Rasch model is compared with more restrictive models. In test n 
the Rasch model is compared with the complete independence model. The corresponding 
GZ(m; m*) statistic is very large relative to its degrees of freedom, indicating a strong 
relation between the item response and the latent attitude trait, or equivalently, indicating 
steep ICC's. Moreover, Table 4 shows that the expected frequencies of the complete inde- 
pendence model differ substantially from the observed frequencies. 

Finally the fit of the Rasch model is compared with the restricted Rasch model with 
equal item difficulties (test o). As can be seen from Table 5, the Ga(m; m*) value of this test 
is also very large relative to its degrees of freedom, indicating substantial differences in 
item difficulty. Moreover, Table 4 shows that the expected frequencies of this restricted 
Rasch model are very different from the observed frequencies. The estimates for the item 
parameters (and standard errors) in the Rasch model are 0.76(0.06), 0.98(0.06) and 
1.13(0.06), for a negative response on item 2, 3 and 4 respectively, where the parameter of 
the first item is set to zero to fix the origin of the latent scale (the usual item difficulty 
parameters 6j are twice uo+ 1)(0)). We may conclude that the item difficulty parameters are 
considerably different and can be measured with small standard errors. In sum, the La- 
zersfeld and Stouffer data fit a perfect Rasch scale rather than Guttman's perfect scale. 
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TABLE 5 

Loglinear Rasch Model Tests for Lazersfeld-Stouffer data. 

Tests Null Hypothesis _G2(m;m_ *) Degrees of freedom 

Comparison with less Restriced Models 

a. u 1 2 ( t x 1 )  = .°. = u 1 5 ( t x 4 )  = 0 8.98 6 

b. u 1 2 ( t x l )  : O 4.28 2 

c. u 1 3 ( t x 2 )  : 0 4.27 2 

d. u 1 4 ( t x 3 )  = 0 .71 2 

e. u 1 5 ( t x 4 )  = 0 1.73 2 

f. u23(XlX_2 ) = u_24(XlX3) = ...  = 

u45 (x3x  4) = 0 5.27 5 

g. u 2 3 ( X l X 2 ) =  O .67 i 

h. u24(_XlX3)= 0 .10 1 

i .  u25(_XlX4)= 0 2.72 I 

j .  u 3 4 ( x 2 x 3 ) =  0 1.25 1 

k. u 3 5 ( x 2 x  4) = 0 1.10 1 

"i. u 4 5 ( x 3 x  4) : 0 1.64 I 

m. u 2 3 ( X l X 2 ) =  u 3 4 ( x 2 x 3 )  = 

u45 (x3_x 4) = 0 2.7 3 

Comparison with More Restricted Models 

_u1(!) = O 377.97 3 

~2 (~I)  = ~3(~2 ) = ~ 4 ( ~ 3  ) = 

~5(~4)  = O 458.57 3 

n° 

O. 

Note. The computations are made by the GLIM programme. 
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Discussion 

This paper shows that the Rasch model can be formulated as a quasi-loglinear- 
incomplete contingency table model. Quasi-independence models have already been ap- 
plied to other scaling models by Davison (1979, 1980) and Goodman (1975). Furthermore, 
quasi-loglinear models have been applied to the Bradley-Terry model for paired compari- 
sons (Fienberg, 1980). 

Some of the results of this paper, i.e. Equation 7, are similar to results derived inde- 
pendently by Tjur (1982). Following a different line of reasoning, Tjur shows that the 
Rasch model can be formulated as a multiplicative Poisson model. The model can also be 
formulated as a loglinear model (Andersen, 1980a, p. 147). Tjur, however, does not use 
Fienberg's incomplete table methodology and Goodman's (1968) concept of quasi inde- 
pendence to describe the Rasch model. 

Cressie and Holland (1983) do not formulate the Rasch model as a quasi-loglinear 
model but as an ordinary loglinear model for the complete item 1 x ...  x item k table. 
Their model includes interaction terms for every level of interaction which are subject to 
complicated constraints. As noted before, Cressie and Holland work with the "un- 
conditional" model (11) rather than the conditional Rasch model (13). It can be shown 
that the conditional model is equivalent to their "generalized Rasch model". 

The concept of quasi independence, accounting for the linear dependence of the item 
responses and the score, is fundamental in the application of loglinear models to the 
analysis of Rasch homogeneity. Mellenbergh and Vijn (1981) and Baker and Subkoviak 
(1981) use loglinear models with a score x i tem# x response table to analyze the fit of a 
set of data to the Rasch model. Their parameter estimates are very close to the CML 
estimates, but the table cannot be used for testing purposes, since the cell counts are 
statistically dependent by the linear dependence between the item responses and the score. 
Consequently, the cell counts do not follow a multinomial distribution so that the usual 
goodness-of-fit statistics may not be used with the score x item # x response table (Vijn & 
Mellenbergh, 1982). 

In this paper we work with an incomplete table having 2 k structurally nonzero cells. 
If the number of items is large the table becomes very large and many cells will be empty. 
Most present day computer programs for the analysis of contingency tables by loglinear 
models (Baker & Nelder, 1978; Goodman & Fay, 1974) require the internal storage of the 
observed and expected table of counts, which is virtually impossible if the number of 
items is large. In principle, however, this is unnecessary. The table need only exist in 
theory. First, the data can be stored in an ordinary N x k data matrix, which avoids 
storage of structural and nonstructural zero's. Second, the parameter estimates may be 
calculated by solving the likelihood equations in terms of the minimal set of sufficient 
marginal tables (see e.g. Appendix II). Third, if the fit of two models is compared, the 
likelihood-ratio statistic may be calculated from the parameter estimates and their mini- 
mal sufficient statistics (see e.g. Appendix III). 

Goodman (1964, 1968) describes an algorithm for the analysis of incomplete two way 
tables that calculates the parameter estimates from their sufficient statistics. The algo- 
rithm is easily generalized to analyze multi-way tables, but convergence is slow. For the 
case of the Rasch model, very efficient algorithms solving the likelihood equations (Ap- 
pendix II, Equation 11.4) in terms of minimal sufficient marginals are already developed 
by Fischer (1974, chapter 14) and Gustafsson (1977). These algorithms only compute the 
item parameters, but from Equation 11.3 (Appendix II) the subgroup x score parameters 
in the loglinear Rasch model can be calculated directly. The Fiseher-Gustafsson algo- 
rithms can also be used with models (e.g. 17) that can be broken down into a set of 
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separate Rasch models e.g. models with different item parameters, within each subgroup 
or within each scoregroup (see also Andersen, 1980a, p. 251) or both. For other models, 
e.g. models with parameters describing interactions between item responses the algorithm 
is useless. 

Another problem in the analysis of large Rasch tables concerns the approximation of 
the overall goodness-of-fit statistics G2(m;f) and Q(m) to the chi-square distribution. If 
the expected cell counts become small, this approximation is known to be bad (Lancaster, 
196t). A standard way to deal with this situation is to perform a grouping procedure 
(Andersen, 1980a, p. 94), that is, to add cells together to obtain a grouped table with 
higher expected counts. Although grouping procedures improve the agreement of the 
goodness-of-fit statistics with the chi-square distribution, this is achieved at the cost of a 
considerable loss of information about the structure of the data. Therefore, the statistics, 
being only sensitive to specific violations, may no longer be used as an overall test. 

In conclusion, the loglinear model provides an overall test of the Rasch model if the 
number of items is not too large, and it provides a flexible parametric way of stating and 
testing several important departures from the Rasch model by comparing it with less 
restrictive quasi-loglinear models. Obviously, the class of quasi-loglinear models does not 
exhaust all possible alternative models against which one might want to test the Rasch 
model. For example, models with discrimination and guessing parameters cannot be for- 
mulated as quasi-loglinear models. It should, however, be noted that the quasi-loglinear 
model permits various generalisations of the Rasch model. For example, the Rasch table 
may have multiple subgroup variables, polychotomously scored item responses, there may 
be a linear structure on the item parameters (as in the linear logistic test model, see 
Fischer, 1983), or several Rasch scales may be analyzed simultaneously, e.g., to test wheth- 
er the scales measure the same trait (Goldstein, 1980, sec. 4). Furthermore, Fienberg's 
incomplete table methodology seems preeminently suited to analyze Rasch tables with a 
priori missing entries, e.g. data where groups of individuals have made different but over- 
lapping sets of items. Consequently, incomplete table methodology may be used with item 
sampling (Shoemaker, 1973), used for the vertical equating of Rasch scales (Loyd & 
Hoover, 1980), and other practical applications of the Rasch model. 

let 

A P P E N D I X  I:  Constraints on the a*-parameters in Model 11 

Inserting (8) in (12) and taking exponentials we have 

f ~ o  exp (~tt) dF,(~t) 
exp (a~) = n~ k 

- I-~ (1 + exp (0c -- 6j)) 
j = l  

q~=exp(a) and e s = e x p ( - 6 J ) ,  j = l  . . . . .  k 

and let H(q~) be the distribution of 4~ on the interval (0, oo), then 

f0 ~' exp ( ~ )  = n~ k dIIi(d~) 

1-I(1 + ~.j) 
j = l  

Cressie and Holland (1981) show that the differential element 

dGi(dp) = dHi Pi 1 + c~ej 
. =  

(I.l) 

(I.2) 

(I.3) 
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defines a new distribution function G~(~b). From (1.2) and (1.3) we have 

fo exp (a~) = n~ Pl(0) 4/dG,(dp) = ni P,(0)#,(t) (I.4) 

where #~(t)is the tth moment of distribution Gi(4~) in subgroup i. Following Karlin and 
Studden ((1966) Theorem 10.1, chapter V), Cressie and Holland (1983) show that the 
moment #~(t) of an arbitrary positive random variable must satisfy the inequality con- 
straints 

det. (A,e) > 0, (1.5) 

where 

11//2 

#i(r + s) . . . .  o if d is even, 

Ai~,  

l#i(r + s + 1) odd, 
( ¢ - 1 ) / 2  

i fd  is 
r , $ = O  

i = 1 . . . . .  m; d = 1, . . . ,  k. That is all matrices Ai~ must be positive semi-definite. The set 
of restrictions 1.5, however, are redundant for d < k - 1 since det. (A~te_2)) is a principal 
minor of A~e and if A~e is positive semi-definite every principal minor of Aie is non- 
negative (see Ayres, 1974, chapter 17, theorem XIII). Furthermore multiplying each ele- 
ment of Aie by the positive numbers n~ P~(0) and using (I.4) gives the result, since in if Y is 
positive 

det. (Y.An×n) = Y" det. (Anx,) >_ 0 is equivalent to det. (A,×_._,) > 0. 

APPENDIX  II: CML Estimates in the Loglinear Rasch Model 

Using Haberman (1979) we can write the maximum likelihood equations of the 
loglinear Rasch model (13) as: 

f~t+...+ = m~r+...+ and f+...+xj+...+ = m+...+xl+...+ 

for i = 1 . . . . .  m; t = 0 . . . . .  k and xj = 0, 1 ; j = 1 . . . . .  k, w h e r e  a plus sign is defined as 
before. Expressing this in terms of the model parameters (13) yields: 

[ x l  . . .  x~l ' j 

= exp {tri,} • E • "" E I~ exp {--xjfij}; E x j = t  
Ix1 .. .  xkl J j 

= exp {ait}~t(6 ~ . . . . .  50 (ILl) 

f o r / =  1 . . . .  , m ; t = O  . . . .  ,k,  And, f o r x j =  1: 

• [ x l  ' "  x,~ I I 
t>~l  

= E E exp {(rit} exp {--5j} E " "  E 1-] exp {--x,5,}; E x, = t -- 1; d ¢:j  
i t [Xl ""Xk] 1 1 
t~> l  

= ~ E exp {tri,} exp {-Sjiyt_t(5~ . . . . .  5j_~, t~j+~ . . . . .  5k) (II.2) 
i t 
t>~ l  

for j = 1 . . . . .  k, where 7t(61 . . . . .  5k) and 7t_~((f~ . . . . .  tfj_~, 5j+1 . . . . .  5k) are elementary 
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symmetric functions. Solving o', from (ILl), i.e., 

a~t = In f ,+. . .+ - In 7,(6x . . . . .  fix) 

and using it in (II.2) we get 

f+... + 1, +... + = exp { -- 6j} E Y'. f ,  +... + 
i t 

7,-1(61 . . . . .  6g-1, 6i+1 . . . . .  fix) 
7,(6, . . . . .  ak) 

(II.3) 

(II.4) 

fo r j  = 1 . . . . .  k; which is identical to the C M L  equations (Andersen, 1973a). The estimates 
of item parameters in the loglinear Rasch model are therefore identical to the C M L  esti- 
mates. 

APPENDIX III: Andersen's Conditional Likelihood Ratio Test 

For  reasons of comparabil i ty we write the loglinear Rasch model and the comparison 
model (17) of test b, Table 3, as: 

In n~im ...:,, = 6 , , -  E xJ°~J (III.1) 
J 

and 

In rfii,~, ... ~k = 6,, - Y. xj 6~ ') (III.2) 
J 

respectively, where (III.2) is an equivalent parametrisat ion of model (17) with 65!) the esti- 
mated difficulty of item j in scoregroup t. The likelihood equations of model (III.2) are 
(Haberman, 1979): 

and 

)hi, + = f , +  (111.3) 

n~+t+xj+ =f+,+xj+ (Ill.4) 

From (111.2) and (III.3), it follows (analogously to (II.1) and (11.3)) that  

6 ,  = In f,+ -- In 7,(~ (')) (111.5) 

The likelihood-ratio statistic (19) can now be written as: 

= 2 E E E In 
i t x 

= 2 2 2 2 rfi/,.[(8i,- 2 x,a} °) - ( d , -  Y. x, $,)] 
t i x j j 

= 2 E E E rn,,=E(-In 7,(8 (')) - E a!') j ) - ( - I n  7,(8) - Z aJ)] 
t i x j J 

-- 2 ~ [(--f+,+ In 7,(8 (°) ~f+,+l ,+ ~,  
t j 

-- (--f+,+ In 7t(g) -- Y.f+,+, ,+aj)]  
J 

= 2 Y' [(ln L~')(8 (')) - In L~')(8)] = Zc 
l 

where the first equation follows by substitution of (III.1) and (III.2), the second equation 
follows by substitution of (III.5) the third follows by substitution of (III.3) and (III.4). The 
fourth equat ion proves the equality with Andersen's conditional likelihood ratio test, 
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where  

and 

L(/)(8(')) = 

e x p ( - - ~ i f + t ÷ l j ÷ f ~ t '  ) 

y,(8(0) i +,, 

L~*)(8) = 

exp  ( - ~ f+t+ 1~+ 6j) 
1 

~,,(8) :+'÷ 

are Andersen's  (1980, sec. 6.6) condi t ional  l ike l ihood functions and Z c his condi t ional  
l ikel ihood ratio statistics with (k - 2)(k - 1) degrees of  freedom. 
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