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Controlled Invariance for Hamiltonian Systems 

A. J. van der Schaft 

Department of Applied Mathematics, Twente University of Technology, The Netherlands 

Abstract. A notion of controlled invariance is developed which is suited to 
Hamiltonian control systems. This is done by replacing the controlled in- 
variant distribution, as used for general nonlinear control systems, by the 
controlled invariant function group. It is shown how Lagrangian or coiso- 
tropic controlled invariant function groups can be made invariant by static, 
respectively dynamic, Hamiltonian feedback. This constitutes a first step in 
the development of a geometric control theory for Hamiltonian systems that 
explicitly uses the given structure. 

1. Introduction 

In the last fifteen years the so-called geometric theory of linear systems has proved 
to be a powerful tool in the solution of various control and synthesis problems 
(see the trendsetting book of Wonham (1979)). The basic concept in this theory is 
the notion of controlled invariance or (A, B)-invariance of a linear subspace of the 
state space. Recently, due to the work of Isidori-Krener-Gori-Giorgi-Monaco 
(1981a) and Hirschorn (1981) this basic notion has been successfully generalized 
to nonlinear systems (Firstly to nonlinear systems which are affine in the inputs 
and in Nijmeijer-van der Schaft (1982b) also to general nonlinear systems). In this 
nonlinear generalization the linear subspaces are replaced by (involutive) distribu- 
tions on the state space, or their corresponding foliations. Roughly speaking, a 
distribution on the state space of a system is controlled invariant if it can be made 
invariant (in a precise geometric sense) by applying (nonlinear) feedback to the 
system. This notion of a controlled invariant distribution has already been used in 
problems like nonlinear disturbance decoupling, non-interacting control and 
invertibility. 
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Although the development of this theory has been very successful, it is clear 
that for many control and synthesis purposes it will not be possible to develop an 
adequate theory coveting all nonlinear systems. For instance the treatment of 
stability, which is missing up till now in the nonlinear geometric theory, seems 
very hard in the general case. Therefore it will also be necessary to focus on 
special types of nonlinear systems. In our opinion, a natural candidate for such a 
subclass of nonlinear systems is formed by the Hamiltonian systems, as originally 
proposed by Brockett (1977), and developed in a series of papers by the author 
and others, see e.g. van der Schaft (1981, 1982, 1983b,c). A prototype of a 
Hamiltonian system are the classical Euler-Lagrange equations with external 
forces. Although in many applications the Hamiltonian description constitutes an 
idealization (neglection of friction, dissipation etc.) it has proved to be at least a 
very natural starting point. Outstanding examples are robot manipulators, large 
space structures and in general (conservative) mechanical systems. 

The basic philosophy of this paper is that in dealing with these Hamiltonian 
systems it is worthwhile to explicitly use the Hamiltonian structure in the solution 
of control and synthesis problems, and to look for solutions which "remain 
within the Hamiltonian framework". Most importantly, the feedback which is 
applied, can and/or  should be of a Hamiltonian (and therefore physically 
interpretable!) form. Of course one could apply the nonlinear geometric theory 
immediately to Hamiltonian systems. However the feedback which is needed to 
make a controlled invariant distribution invariant will in general affect the 
Hamiltonian form of the equations. Since we want to take advantage of the 
Hamiltonian structure and not to reduce the system to an "ordinary" nonlinear 
system, this is clearly not satisfying. Therefore as a basic step in building a 
geometric theory for Hamiltonian systems we have to develop a notion of 
controlled invariance which is particularly suited to Hamiltonian systems. Pre- 
liminary work on such a concept of Hamiltonian controlled invariance has already 
been done in van der Schaft (1983a) for the case of linear Hamiltonian systems. 
In this paper this will be extended to the nonlinear case. The basic contribution 
will be the introduction of the controlled invariant function group, which will 
replace the controlled invariant distribution. We will prove, under certain condi- 
tions, that a Lagrangian controlled invariant function group can be made 
invariant by Hamiltonian feedback, i.e. feedback which leaves the Hamiltonian 
form invariant, while coisotropic controlled invariant function groups can be 
made invariant by dynamic Hamiltonian feedback, i.e. the addition of a Harnilto- 
nian compensator. From a mathematical point of view the notion of a Lagrangian 
controlled invariant function group is related to the classical concept of complete 
integrability of Hamiltonian vectorfields. 

Certainly, the theory in this paper should be seen as only a first step in the 
development of a geometric control theory of Hamiltonian systems, and so we 
will only use Lagrangian and coisotropic controlled invariant function groups in 
the solution of the somewhat ubiquitous disturbance decoupling problem for 
Hamiltonian systems. Apart from Lagrangian or coisotropic function groups also 
symplectic controlled invariant function groups are of much interest. They seem to 
be the natural tool in the Hamiltonian non-interacting control problem. This will 
be dealt with in a future paper (Nijmeijer & van der Schaft (1984c), see also 
(1984b)). 



Controlled Invariance for Hamiltonian Systems 259 

Hamiltonian systems. We will briefly review the definition of a Hamiltonian 
system, see e.g. van der Schaft (1982, 1983b, c). Let M be a 2n-dimensional 
connected manifold with symplectic form to. By Darboux's theorem there exist 

n 

local coordinates (q, p)  = ( q l  . . . .  , qn, Pl, " ", Pn) such that to = ~ dpi A dq, Such 
i=1 

coordinates are called canonical. Given a function F:  M ~ R  we define the 
Hamiltonian vectorfield X F on M by to(X F, - )  -- - dF. In canonical coordinates 

~_,(OFO OF 0) 
XF = OPi Oqi cgqi ~ i  

i=1 
(1.1) 

Given another function G: M ~ R we define the Poisson bracket { F, G } = XF(G ) 
= to(XF, Xc). In canonical coordinates 

( F , G )  = ~ ( OF OG OF OG ) (1.2) 
i=1 OPi Oqi tgqi Opi 

A (coordinate) transformation qo : M ~ M is canonical if cp preserves the Poisson 
bracket, i.e. 

{Foq0 ,Goq~)  = {F ,G}oq0  VF, G (1.3) 

An (affine) Hamiltonian system on M with internal energy H is now defined as 

m 

:c = X u ( x  ) - ~., uyXc,(X ) Yj = C2(x) (1.4) 
j = l  

with x = (q, p )  canonical coordinates, u = (u 1 . . . . .  urn) the inputs, y = (Yl . . . . .  Y,,) 
the outputs, and C = ( C  1 . . . . .  Cm) the output mapping. This constitutes a direct 
generalization of the classical Euler-Lagrange equations with external forces ui 

d l 3 L  I OL [u  i i = 1  . . . . .  m 
(1.5) 

dt~ O q i ] - - ~ i  = ~0 i = m + l  . . . . .  n 

y j =  qj j = l , . . . , m  

OL ~ OL 
or in Hamiltonian form (with Pi = -~ .  the momenta and H(q, p) = ~?1~ 

0~t 
i=1 

L(q,  :t) the internal energy) 

OH 
fti = Op i i = l , . . . ,  n 

8H 
pi = - - ~ i  + u i i = l . . . . .  m 

OH 
Pi  = cgqi i = m + 1 . . . . .  n 

yj = qj j -- 1 , . . . , m  (1.6) 
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In fact, if we take Cj(q, p ) = q j  in (1.4) we obtain (1.6), and conversely ff we 
allow for canonical coordinate transformations on (q ,p)  in (1.6), then (1.6) 
becomes of the form (1.4). 

If we interpret y -- (Yl . . . . .  Ym) as coordinates for an m-dimensional output 
manifold Y, then (Yl . . . . .  Ym, ux . . . .  , urn) can be most naturally interpreted as 
natural coordinates for the cotangent bundle T*Y.  (If (y t , . . . ,  Ym) are arbitrary 
coordinates for Y, then we define natural coordinates (Yl . . . . .  Ym, Ul . . . . .  U,~) for 
T*Y by le t t inga point (fix . . . .  , Ym, Ul . . . . .  tim) in these coordinates correspond to 

the one-form • ~jdyj on Y in the point ( f l , . . . ,  Ym)-) Being a cotangent bundle 
j = l  

T * Y  has a natural symplectic form to~. In fact, if (yx . . . .  , Ym, u~ . . . .  , u,~) are 
r/1 

natural coordinates, then o9 e equals ~ duj A dyj. So natural coordinates are 
j = l  

always canonical. Notice that if we choose another set of coordinates (y~ . . . . .  y ' )  
for Y, then the coordinates (Ul,.. . ,  u,,) have to change to (u~ . . . . .  u~) in such a 

m 

way that to e=  ~ du~ A dyj. For instance, if we transform the outputs from 
j = l  

Cartesian to angular coordinates, then the inputs change from translational forces 
to torques. 

Function groups. We briefly collect some facts about function groups and 
Poisson structures, which date back to Lie (1890) and were recently rediscovered 
by various authors (cf. Weinstein (1983), Hermann (1977)). Let M be a connected 
symplectic manifold with Poisson bracket (F ,  G ) = to(X F, XG). We call a collec- 
tion ~ of smooth functions from M to R a function space, if 

1) ~" is a linear subspace (over R) of C ~ ( M ) ,  the smooth functions on M. 
2) If F 1 . . . . .  F, ~ ~- and G : R ~ --) R is a smooth function, then G ( F  1 . . . .  , F~) 

~-. Furthermore, we call ~" a function group if also 
3) ~" is dosed under Poisson bracket, i.e. if F 1, F 2 ~ ~-, then ( F1, F 2 ) ~ ~-. 
Notice that by 2) a non-empty function space always contains R, the constant 

functions on M (actually by this fact condition 2) implies condition 1)!). Given 
some functions F 1 . . . . .  F~ on M we denote by span ( F  1 . . . . .  Fk} the smallest 
function space containing these functions. Furthermore the sum ~-1 + ~-2 of two 
function spaces ~-x, ~ 2  will be the smallest function_space containing .,~-1 as 
well as ~-2. Given a function space ~ ' ,  we denote by ~- the closure of .~- under 
Poisson bracket, i.e. the smallest function group containing ~ ' .  Furthermore we 
define 

,~" " = ( G ~ C ° ° ( M ) I ( G , F )  =O, VF  e. .~ "} (1.7) 

Let now G1, G 2 ~ . ~ "  and K:R2--*R,  then 

( K ( G , , G 2 ) , F }  = aK ~K - ~ I ( G , , G 2 ) (  G1, F ) + - ~ 2 ( G I , G 2 ) (  G2 ,F  ) = 0 

(1.8) 
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and hence #"  _L is a function space. Furthermore by the Jacobi-identity 

( (GI,G2},F} +{(G2,F),GI} +{(F, GI},G2} = 0 (1.9) 

for any GI, G 2 ~ .~_L and F ~ :. Hence (GI, G2} ~ ~-± and :'± is actually 
a function group, called the polar group. Finally :- O .~" _L is a function space 
(resp. group) if 5 is a function space (resp. group), and the elements of #- n :- ± 
are called the distinguished or Casimir functions. It is clear that for any function 
space ~- 

n c c : c (1.10) 

and for any two function spaces F I, F 2 

:-i + :'2 c :i+:-2 c (:'d- n:'2±) -~ 

:i n ~'2 c ~'1 n ~'2 c (:'~J- + ~ '2±)"  (1.11) 

For a function space ~- we define the codistribution d ~  as 

do~'(x)  = span .{  d , ~ ' ( x ) l F  ~ , ~ ' } ,  x ~ M (1.12) 

and the distribution D~- as 

Dac(x) = spana{ X F ( x ) l F  e ~  }, x ~ M (1.13) 

In order to simplify considerably the technical details of the sequel we make the 
following assumption (also dating back to Lie), which will hold throughout this 
paper. 

Assumption 1. Every function space satisfies 

Condition A. There exists a number of independent functions F 1 . . . . .  F k 
on M such that ~ = span{Fx, . . .  , F~} (independent means that dim 
span R { dFl(x  ) . . . . .  dFk(x)} = k, Vx).  

Ren~a'k. In applications this assumption may not be the most natural one. 
Instead, one may replace condition A by the weaker 

Condition A'. dim d°.°~(x) -- constant, Vx 
If Condition A' is satisfied, there exist locally k independent functions such 

that locally ~-  = span( F x . . . . .  F k }. However this implies that some of the follow- 
ing propositions (especially Lemma 1.2 and its consequences) hold only locally. 

With every function group satisfying Condition A we can associate a so-called 
Poisson structure. Consider a set of smooth *unctions wij, i, j - - 1  . . . . .  k on R k. 
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They define a Poisson structure if (cf. Weinstein (1983)) 

i) wq + wj~ = 0 i, j = 1 . . . . .  k 

k [ ~Wir ~Wrj ~Wji 
[ w,j-  + + ) = O i ,S,r=l ,  ,k 

By i) the rank of the matrix (wq(x))  is for every x even. If rank (wq(x))  = k, so 
k = 2n, for every x, then we speak of a symplectic structure. In fact in this case 

2n 

O) := E wiJ(x) dxi ^ dxj, where (wiJ(x)) = (wq(x))  -1, is a symplectic form on 
i,j=l 

R 2" (this follows from i) and ii)). 
Given a Poisson structure w~j on R k and a function F on R k we define the 

Hamiltonian vectorfield XF on R k by 

k OF(x) 0 (1A4) 
xp(x) = -  E ax----7, ax, 

i , j  =1 

It is easy to see that in case wq is a symplectic structure this is just the ordinary 
definition of a Hamiltonian vectorfield as in (1.1). Moreover we define a Poisson 
bracket ( , } a,  corresponding to the Poisson structure w~j on R g as follows. Let 
F, G : R k _., R, then 

OF OG 
( e , G } n k ( x )  -- E w , j ( x ) - ~  ( x ) - ~ j ( x )  (1.15) 

i,j=l 

Again it is easy to conclude that if wq is a symplectic structure then this is just 
the ordinary Poisson bracket (1.2) on R 2". It follows from i) and ii) that ( , )ak 
is anti-symmetric and satisfies the Jacobi-identity 

( ( F , G ) n k , H } a ~ + { ( G , H } n ~ , F } n ~ + ( { H , F } a ~ , G ) a ~  = 0 (1.16) 

as the ordinary Poisson bracket. 
The connection between Poisson structures and function groups satisfying 

Condition A is the following. Let ~ = span{ F 1 . . . .  , Fg } be a function group on 
(M, to), with F~ independent. Then there exist functions wq:R ~ --*R, i, j =  
1 . . . . .  k, such that 

M = w, j o ( V l  . . . .  , F k )  (1.17) 

It follows from the properties of the usual Poisson bracket on (M, 0~) that the 
functions wi] satisfy i) and ii). Hence a function group satisfying Condition A 
defines a Polsson structure! Using the theory of Poisson structures one can prove 
the following basic theorem on function groups (Lie (1890), Weinstein (1983)). 

Theor~,n 1.1. Let ~" be a function group on (M, t~) satisfying Condition A such 
that d( ~ n .~  " ) (x )  has constant dimension. Suppose dim d ~  = k and dim d ( 5  
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N ~ .L ) = r. Then locally there exist canonical coordinates (q~,..., q,, p~,. . . ,  p , )  
for M such that 

F = span(qx . . . . .  qt, P t , . . . ,  Pt, Pt+~,..., Pt+r } (1.18) 

with 2l + r = k. 

Remark. Since the above theorem is local, it remains valid if we replace 
Condition A by Condition A'. 

We will now derive some propositions which will be useful later on. First we 
derive some connections between ~ and its distribution D~. 

Lemma 1.2. Let ~ be a function space satisfying Condition A and let G : M ~ R 
be such that dG ~ d ~  (i.e. dG( x ) ~ d ~  ( x ), Vx ). Then G ~ ~ .  Also if X6 ~ D~, 
then G ~ ~ .  

Proof. By Condition A, o~" -- span(F  x . . . . .  F k ), with F/ independent functions. 
Denote the map ( F  1 . . . . .  Fk): M ~ R k by F. Then since dG ~ d ~ ,  there exists a 
1-form a~ on R k such that F*ac= dG. Hence F*(da~)= d (dG)= 0 and so 
daG=O. By Poincare's lemma there exists a function G: R k ~ R  such that 
a G = d G .  Therefore d(F* o G) = dG, or equivalently, d(G o(F1,.. . ,  Fk)-- G) = 0. 
Since M is connected (and hence pathwise connected) this implies that G = 

o(F1,. . . ,  Fk)+constant.  Since the constant functions are included in ~" we 
obtain G ~ ~ ' .  Finally, if X~ ~ D~-, then dG = - o~ (Xc,  - ) ~ d ~ ,  and hence 
G ~ .  [] 

A (general) distribution D on M is called involutive if whenever X 1 and )(2 
are vectorfields in D (i.e. Xi(x  ) ~ D(x) ,  Vx, i =1,2), then also the Lie bracket 
[X1, X2] is contained in D. We obtain 

Proposition 1.3. Let ~ be a function space satisfying Condition A. Then D~ is 
involutive i f  and only if ~ is a function group. 

Proof. Recall the basic identity concerning Lie brackets and Poisson brackets 
(cf. Abraham & Marsden (1978)): for every F, G: M ~ R 

[ Xr ,  XG] = X{F,C} (1.19) 

Let ~-  be a function group and F1, F 2 ~ o~'. Then [XF1, X~ ] = X, r ~ ,  ~ D~. 
. 2 / I t  2 /  . 

Since D~- is spanned by Hamiltonian vectorfields this implies that D~- is 
involutive. Conversely, assume that D~- is involutive, and let F1, F 2 ~ ~ .  Then 
X(15, F2}=[XF1, Xv2]~D~,  and so by Lemma 1.2 (F1, F2} ~.~ ' .  Hence ~ is a 
unction group. [] 

Now we turn attention to the inclusions (1.10) and (1.11). 

Proposition 1.4. Let ~" be a function group satisfying Condition A. Then 

= • ) ( 1 . 2 o )  
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Furthermore, let ~1, ~'~2 
~'~ + ~2 is also a function group satisfying Condition A. Then 

~a  + ~'~ = (~'1± ~ o~-2 ~- ) ± (1.21) 

Assume ~1 ± + ~'2 ± is a function group satisfying Condition A. Then 

~'1C~ o~v2 = (~-x ± + ~'2 ± ) ± (1.22) 

A. J. van der Schaft 

be function groups satisfying Condition A. Assume 

Proof. (see also Weinstein (1983), Prop. 7.1). By Condition A, o~ = span 
{ F  1 . . . . .  Fk}, with F~ independent. Let F =  (F1,. . . ,  Fk): M ~ R ~, and denote the 
foliation of M with leaves F- l (c ) ,  c ~ R ~, by ~. By Prop. 1.4. D~- is involutive 
and has constant dimension. Hence D~- integrates to a foliation of M which we 
denote by • ±. It is easy to see that ~ ± are precisely the functions which are 
constant along the leaves of • ± (Notice that ~ ± satisfies Condition A', but not 
necessarily Condition A). Moreover D~- is the orthogonal complement of D:¢ 
under the symplectic structure o~. Hence (o~-" ) ± = :,~-. 

For the proof of (1.20) we denote the foliations corresponding to :~1 and o~" 2 
by ~1 and ~2, and to ~-1 + ~-2 by ~1+2- By the first part of the proof we get 
foliations ~ ,  ~ and ~ + 2 -  It is clear that the leaves of ~ + 2  are exactly 
intersections of leaves of ¢ ~  and d ~ .  By similar reasoning as in the first part 
one concludes to (1.21). For (1.22) we notice that by (1.21), o~-lx+ ~2 ± =  
((~-_L)-  ~(~-2±)_L)±, and so by (1.20), ~-a" +~,~2 ± = (~-~ n J 2 )  j-, and .@-1 n 
o~2 = ( ~ ' 1  -k q- S'~'2± ) -1- [] 

In Proposition 1.2 we saw. that to every function group °o°~ satisfying Condi- 
tion A there corresponds an involutive distribution D~ of constant dimension. 
The converse question is answered in 

Proposition 1.5. Let D be an involutive distribution of constant dimension. By 
Frobenius' theorem there exist locally independent functions K1,. . . ,  K~ such that 
D(  x ) = Ker spanR { dKl( X ) . . . . .  dKk( x ) }. Assume that the functions K1,... , K k are 
globally defined. Then: 

There exists a function group ,@ such that D = D~ if and only if 
span{K 1 . . . . .  Kk } is a function group. Moreover if span {K 1 . . . . .  Kk } is a function 
group, then ~- = (span{ K 1 . . . . .  K~ }) ±. 

Proof. Let D = D~, with ~- a function group. Then for any F ~ 

{ Ki, F } = - XF( Ki)  = - dKi( Xv)  = O, i = 1 . . . . .  k 

Jacobi's identity then implies 

( ( K , , K j } , F  ) = d{  Ki, K j } (  XF) = O, VF ~ f f  , i, j = l . . . .  , k  

Hence d{ K~, Kj }(x) ~ spanR{ dKl (x )  . . . . .  dKk(x)} ,  Vx. 
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By Lemma 1.2 it follows that { Ki, K i } ~ span{ K 1 , . . . ,  K~ }. H e n c e  
span{K1, . . . ,  Kk} is a function group (even satisfying Condition A). It is clear 
that span{Ki , . . . ,  Kg} c ~- 1. Now let G ~ ~" ±. Then (G, F }  = - dG(XF) = O, 
VF G ~z-, and hence Kerspan{dKi , . . . ,  dKk)(X ) = D~-(x)c KerdG(x), or equiv- 
alently, dG E span{dK i . . . . .  dK k}. Therefore  by Lemma 1.2, G 
span{ K x . . . . .  K k }. Hence span{ Ki,. . . ,  K k } = o~" ±. Conversely, suppose that 
span{ K i . . . . .  Kk ) is a function group. Since D = Ker span{ dK 1 .... , dK k }, dim D 
= 2 n  - k. Define ~- = (span{K1,.. .  , Kk}) ±. Since span{K 1 . . . .  , g k )  is a func- 
tion group satisfying condition A it follows from Proposition 1.4 that dim dF = 
2n - k. Furthermore it is clear that Da~ c Kerspan{dKi , . . . ,  dKk} = D. Since 
d im D~  = dim do ~" = 2n - k, necessarily D = D~. [] 

2.  C o n t r o l l e d  I n v a r i a n e e  

Consider an arbitrary affine nonlinear system 

= A ( x ) +  ~ ujBj(x) (2.1) 
j = l  

with A, B 1 , . . .  , B m smooth vectorfields. Define the distribution ~ .'= 
span{B1, . . . ,  B,,} by ~ ( x )  = span(Bl(X) , . . . ,  B i n ( x ) }  , and define the sum D i + 
D 2 of two distributions D 1 and D 2 as the smallest distribution containing D 1 as 
well as D 2. 

An involutive distribution D is invariant for (2.1) if 

i) [A, X l c D  

for every X E D, j = 1 . . . .  , m 

ii) [Bj, X ] c D  

and locally controlled invariant (1.c.i.) if 

i) [ A , X ] ~ D + ~  

for every X ~ D, j = 1 . . . . .  m 

or more succinctly 

i) [ A , D ] C D + ~  
ii) [ ~ , D ] c D + ~  (2.2) 

Usually the following standard assumption is made (see Section 3) 

Assumption 2. The distributions D, ~ and D + ~ all have constant dimension. 
Roughly speaking, for a definition of local controlled invariance for Hamilto- 

nian systems, we replace involutive distributions by function groups and Lie 
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brackets by Poisson brackets. First we will state the definitions and develop the 
theory without making regularity assumptions as in Assumption 2. 

Definition 2.1. Consider a Hamiltonian system (1.4) on (M, ~o), and let o~ be a 
function group on M. Then o~" is invariant for (1.4) if 

i) (H,F}  c~" 

ii) (Cj,  F }  c 5z" 

for every F ~ ~-, j = 1 . . . . .  m 

and locally controlled invariant if 

i) ( H , F } c ~ + s p a n ( C  1 . . . . .  Cm) 

ii) (Cy, F ) c ~ + s p a n ( C 1 , . . . , C , ,  ) 

for every F ~ ~ ,  j = 1, . . . ,  m, 

or more succinctly if we define cg ..= span(Ct , . . . ,  C m ) 

( H , ~ - }  c o ~ - + ~  

( v , : }  (2.3) 

Remark. In the above definition one can replace function groups by function 
spaces, just like one can take arbitrary distributions in (2.2). However if a 
function space ~" satisfies (2.3), then so does the function group o~. In fact let 
F1, F 2 ~ o~'. Then by the Jacobi-identity 

{H, (F1 ,  F2} } = - ( F I , ( F z ,  H } } - ( F z , ( H ,  F1} ) ~ (F1, J + ~  ) 

+{F2,o~-+c6°} C o@" +cg, and similarly (c~,(F1,  F2}} c ~ + c ~ .  

The above definition is justified by the fact that a function group ~ is 
invariant, resp. locally controlled invariant, if and only if its corresponding 
distribution Ds~ is invariant, resp. locally controlled invariant: 

Proposition 2.2. Let ~ be a function group satisfying Condition A. Then ~ is an 
invariant function group if and only if D :  is an invariant distribution. Moreover 
assume that ~" + ~ satisfies Condition A. Then ,~ is a l.c.i, function group if and 
only if D~ is a Lc.i. distribution. 

Proof. Let {H, F }  c ~-, (Ci, F }  c F for any F ~ ~z-. Then [Xn, XF] = X(H,F}  
D~- and [Xc,, Xv] ~ Ds~. So D F is invariant. Conversely if [X n, Xr] = X(n,V ) 

Ds~ then by Lemma 1.2, { H, F } ~ ~r. Similarly for [ Xc,, Xv]. So ~ is invarlant. 
Analogously if ~" is 1.c.i. then for any F ~ ~-, [ Xn, Xv] ~ D~-+ ~e = D :  + D e and 
[Xc, x~]~ D~ + D~e. Therefore Ds~ is 1.c.i. (In this case ~ = D~e!). Conversely if 
[Xn, XF] = X(H,F } ~ D : +  D~e, then by Lemma 1.2, (H ,  F }  ~ .~- + ~g. Similarly 
( C , , F } ~ ' + q o  °. [] 
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So every 1.c.i. function group #" generates a 1.c.i. involutive distribution D~-. 
Conversely if D = Ker{dK 1 . . . . .  dKk} is a 1.c.i. involutive ( 2 n -  k)-dimensional 
distribution, then by Proposition 1.5 #- = (span{ K 1 . . . . .  Kg }) _t is a 1.c.i. function 
group if s pa n (K  x . . . . .  Kk) is a function group. (Under the assumption that 
~-  + cg satisfies Condition A). 

We now set up an algorithm, called the #'*-algorithm, to produce the 
maximal 1.c.i. function group contained in a given function group. This algorithm 
is completely similar to the ~*-algorithm in the linear case (Wonham (1979)), 
and the corresponding algorithm in the nonlinear case (cf. Isidori et al. (1981a)). 
We notice that the existence of a maximal 1.c.i. function group contained in a 
given function group .La is already ensured by the following reasoning. Let 
~-1, #-2 be 1.c.i. and contained in £a. Then by an easy application of the 
Jacobi-identity ~'1 + ~2 is again 1.c.i. and contained in £a. Introducing a partial 
ordering on function groups by setting #-1 ~< #-2 if d#-l(x ) c d#-2(x), Yx ~ M, 
and applying Zorn's lemma, this implies that there exists a maximal 1.c.i. function 
group #-* contained in .W. 

*-algorithm. Define 

#-~+1 = £p n ( H + C ~ ) - l ( ~ - / + c ~ )  i = 1,2 . . . .  (2.4) 

Here #'~ + ~ denotes the smallest function space containing c¢ as well as ~ ,  and 
for an arbitrary function space #-, 

( H +  c ~ ) - l ( # - ) : =  ( G ~ C ' ( M ) I { H , G  } c # -  and f f f , G }  c ~ }  

Proposition 2.3. Let #-i be defined by (2.4). Then 
a. ~-i+l  c . ~ i ,  i=1 ,2 , . . .  
b. ~-i is a function group, i =1,2 . . . .  
c. I f  for a certain k ~-k+l = ~ k ,  then #-~+1 = #-k, VI 

Proof. a. By induction. It is clear that ~'-2 C ~-1. Now assume #-i c ~ i - 1 .  Let 
F ~ # -  i+1. Then F ~ L P  and ( H , F ) c ~ i + C d c # - i - l + c ~ ,  as well as ( ~ , F )  
c #'~ + c~ c #-~-1 + ~. Hence F ~ ~ i .  

b. By induction. By definition ~ 1 =  £a is a function group. Let #-i be a 
function group, and take F1, F 2 ~ ~i+1.  

Then 

( H , ( F 1 ,  = - ( F I , ( r 2 , H } }  -(F2,(H, F1}} 
= 

since/'1, F 2 ~ #-i+1 c #-i and #-i is a function group. 
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Analogously ( rg, { Fx, F 2 } ) c ~-i + C. Hence ~- 
bracket. Now take a smooth function G: R 2 ---, R. Then 
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is closed under Poisson 

3G a G ,  F ,  F " = -~ I  ( F~, F2 ) ( H, F~ ) + -~2 ( i 2 ) ( H, F2 ) 

c #-i+l. ~ i  c #-i, 

aG 
since -0-~ (F~, F2) ~ ,~i+1 c ~ i .  

Analogously, (c~, G(F1 ' F2)} c #-i. Hence ~-i is a function group. 
c. Immediate. [] 
If there exists a k such that ~ k + l  = ~-k then by c the algorithm ends in k 

steps and we denote ~-* "-= ~-k. It follows that (H,  ~'*} c ~ *  + ~g, (~g, o~-*) c 
o~* + cg, so ~-* is a 1.c.i. function group contained in £,o. Furthermore 

Proposition 2.4. I f  the algorithm (2.4) ends in k steps, then ~ *  = o~ k is the 
maximal locally controlled invariant function group contained in .2 ~. 

Proof. Let ~" be a 1.c.i. function group contained in &a. By induction we will 
prove f f  c #-i, i =1 ,2 , . . . ,  and hence ~" a o~'*. By assumption ~" c if1.  Sup- 
pose ~ - c ~  "~. Then (H,  ~ '}  C ~- + rg c ~ i  + oK, and (oK, ~- )  c ~- + c g c  o~'~+ 
cg. Hence F c F ~+1. [] 

Just as in the case of 1.c,i. distributions (see Assumption 2) we will make some 
regularity assumptions which will hold throughout the paper. First of all we 
assume that the 1.c.i. function groups ,~  satisfy Condition A (Assumption 1). 
Furthermore in Definition 2.1 we make the following 

Assumption 3. C1,..., C,, are independent functions, so rg is a function space 
satisfying Condition A. Furthermore 5 + fg satisfies Condition A. 

With respec9 to the ~'*-algorithm (2.4) we state 

Assumption 4. The function groups ~-i and the function spaces ~ - i +  c~ all 
satisfy Condition A. 

Under Assumption 4 it is easy to conclude that the ~*-algori thm ends in a 
finite number of steps, since dim ~ ' i (x )  is a non-increasing function of i and 
dim M is finite. (For this we may in fact replace Condition A by the weaker 
Condition A'.) 

Let now ~-* be the maximal 1.c.i. function group contained in ~e. Then by 
Proposition 2.2 we know that D~-. is a l.c.i, distribution contained in Ker d& a ± 
In general however, D~. is not the maximal 1.c.i. distribution contained in 
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K e r d . ~  ±. This is only true if the maximal l.c.i, distribution contained in 
Ker dL~' ±, denoted by D* is of the form D~- for a certain function group ~" (see 
Proposition 1.5.). In fact if D* = D~-, then ~- = ~-*. Furthermore notice that if 
we write D* = Ker d,gg', then we always have ~-* c ~Y" ±, since by Proposition 2.2 
D~-. is a 1.c.i. distribution and so D~-, c D* c ker d~ ' .  

Example 2.5. Consider a Hamiltonian system on (R 4, dpl/x dql + @2 A dq2 ) 
with H ( q , p ) =  ½eq2p2 + 1 2 1 2 1 2 ~P2 + ~ql + ~q2 and C(q, p )  = qr  We want to com- 
pute the maximal 1.c.i. function group ,~* contained in ~ ±  = span(q~,q2, P2}, 
and the maximal 1.c.i. distribution D* contained in K e r d C = k e r d q r  Since 
( H, C}  = eq2pl, and (C, ( H, C ) )  = - e q2 and so X c ( X n ( C ) )  ~ 0 it follows from 
Isidori et al. (1981a), that D* = Kerspan(dql,  d(eq:pl)} 

In fact 

D* = span , Pl  OPl Oq2 

Denote . ~  = span(q 1, eq2pl}, so D* = Kerd3¢'. Then ~-* c ~e "±. Now by Pro- 

position 1.4 (~e') ± = ( ~ ) ±  (span(q1, q2, Pl}) -L = span(q2}. However 
{ H, q2 } = P2 ~ span{ q2 } + span( ql }. Hence Jg" _L is not a 1.c.i. function group, 
and so ~-* contains only the constant functions: i f *  = R. 

Remark. Local controlled invariance of function groups has an interesting 
global aspect. Let ~- be a 1.c.i. function group satisfying Condition A. Then ~- 
defines a Poisson structure on R k, with k = dim d f f .  Now assume there exists a 
global basis Xl,. . . ,  x~ of R ~ in which the Poisson structure is linear, i.e. the 

k 
functions wij take the form wij(x) = ~ CijrX r. Then R k can b e interpreted as the 

r = l  
dual t* of a Lie algebra ~ with structure coefficients c~j r (see Weinstein (1983)). 
Denote the corresponding Lie group by G, then it follows that D~- is generated by 
a symplectic action of G on M, and that the induced map G ~ R k is the 
momentum mapping of this action. In Nijmeijer & van der Schaft (1984a) such a 
1.c.i. distribution generated by a group action is called a partial symmetry. 

3. Hamiitonian Feedback 

As is well-known (Isidori et al. (1981b), Nijmeijer (1981)) the conditions of local 
controlled invariance of a distribution as stated in (2.2) are (under Assumption 2) 
equivalent to the local existence of a feedback which makes this distribution 
invariant (hence the name local controlled invariance). Precisely, let D be an 
involutive distribution for a nonlinear system (2.1) such that Assumption 2 is 
satisfied. Then D satisfies (2.2) if and only if there locally exists a feedback 
u = a ( x ) + f l ( x ) v ,  with a: M ~ R  m, /3: M ~ R  m×m smooth maps with det/3(x) 
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0, and v = (vl , . . . ,  Vm) the new input vector, such that 

j = l  

i =  1 . . . . .  m (3.1) 

I.e., D is invariant for the feedback transformed system 

j = l  j ~ l  i =I 
(3.2) 

Let now ~ be a 1.c.i. function group for the Hamiltonian system (1.4) such that 
Assumptions 1 and 3 are satisfied. Then by Proposition 2.2 D~- is a 1.c.i. 
distribution and hence there exists locally a feedback u = a(x)  +/3 (x) v such that 
D~ is invariant for 

j ~ l  j = l  i=1  
(3.3) 

However, in general the transformed system (3.3) is not Hamiltonian anymore. 

Theorem 3.1. (van der Schaft (1981, 1983b)). Denote C := (C 1 . . . . .  Cm): M ~ Y 
for the Hamiltonian system (1.4). Then the system (3.3) is again Hamiltonian if and 
only if the feedback u = a(x)+ B(x )v  satisfies 

m 

i) There exists a function P: Y ~ R such that ~., a j (x)Xcj(X ) = Xpoc(X ) 
j = l  

iJ) There exists a regular mapping ( R t , . . . ,  Rm): Y ~  Y such that 
m 

E flji(x)Xcj(X) = XR~.c(X) j = l  . . . . .  m 
i = 1  

Such a feedback is called a Hamiltonian feedback ( P, R1,... , R,~). The feedback 
transformed system is the Hamiltonian system 

m 

= x . _ , . o c ( X ) -  E vjXR, oc 
j = l  

y] = R j o C ( x )  (3.4) 

Remark. Hamiltonian feedback has a direct physical interpretation. Part i) 
corresponds to the addition of a static Hamiltonian compensator 

OP 
uj = -O-~j(y) j = 1 . . . . .  m, (3.5) 



Controlled Invariance for Hamiltonian Systems 271 

or said otherwise, the addition of an extra "potential energy" P o C(x). In Part ii) 
we transform the outputs via the (coordinate) transformation R := (R1,. . . ,  Rm): 
Y ~ Y and the inputs in a corresponding way via 

(Vl'''''Vm) = ( U l  . . . .  'Um)[l OR~syj (y))-t (3.6) 

(The total induced mapping from T*Y to itself is a canonical transformation.) 
Pictorially 

v u I Hamiltonian 

] system 

U'= 3P 

• Y '  Y. ] 

(3.7) 
Furthermore Hamiltonian feedback is necessarily output feedback. 

I f  there exists a Hamiltonian feedback P, R 1 .... , R m )  that makes D~ in- 
variant then 

c 

(3.8) 

or equivalently since ~" satisfies Condition A (see Prop. 2.2) ( H - P o C, : } c 
~ ' ,  ( Rjo  C, ~" } c ~ ,  j = 1 . . . .  , m. Hence ~ is invariant w.r.t, the feedback 
transformed Hamiltonian system. 

Definition 3.2. A 1.c.i. function group 5 is called (locally) Hamiltonian con- 
trolled invariant ((1.)h.c.i.) if there exists (locally on Y) a Hamiltonian feedback 
(P,  R 1 . . . . .  R,~) such that 

( H - P o C ,  5 }  c , ~  

j=1 . . . .  , m .  (3.9) 

The central problem of this paper is now the following. Given a l.c.i, function 
group #-, what additional conditions does ~r have to satisfy in order that ~- is 
locally Hamiltonian controlled invariant (1.h.c.i.). One additional condition is that 
~-  also has to  be conditioned invariant, a concept which is treated in the next 
section. 
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4. Conditioned Invariance 

In this section we define conditioned invariance for Hamiltonian systems and 
treat its duality with controlled invariance. 

Definition 4.1. Let (1.4) be a Hamiltonian system, and let 6 a be a function 
group on M. Then 5 ° is conditioned invariant if 

{H,  5 0 N ~  i }  c 50 (4.1) 

The relation of Definition 4.1. with the usual definition of a conditioned invariant 
(or " (h ,  f)"-invariant) distribution is the following. An involutive distribution D 
for a general nonlinear system (2.1) is conditioned invariant if (cf. Isidori et al. 
(1981a), Nijmeijer & van der Schaft (1982a)) 

[A, D nkerdCg] c D 

[Bi, Dnkerd<g ] c D j = 1, . . . ,  m 

(4.2.a) 

(4.2.b) 

In the case of a Hamiltonian system A = X n and Bj = Xc, j = 1, . . . ,  m. Now let 
D satisfying (4.2) for a Hamiltonian system be generated 6y a function group 50, 
thus D = D~. Then (4.2.a) yields X(~,~n~e~} = [X,v, D~ N O , l ]  c 
[XH, Dee nkerd<g] c Dee, since D~ei c kerdCg. So by Lemma 1.2 (H ,  50 N ~g .L } 
c 50 (if 50 satisfies Condition A). Therefore, 50 is conditioned invariant. 
Moreover if cg is a function group satisfying Condition A then by Proposition 1.5 
kerdCg = D~e~ and it is easy to see that (4.1) is actually equivalent to (4.2.a). 
Furthermore in this case (4.2.b) is automatically satisfied since [Xc, Dee N D~e~] 

• . J . . 

c [Xc, D~e~]=0. Therefore in general the notion of a conditioned mvanant  
. J  . . 

function group is slightly weaker than that of a conditioned invariant distribution, 
but  if ~g is a function group the notions are equivalent (under the standard 
regularity assumptions)• 

We will now set up (completely similarly to the linear case) an algorithm to 
compute the minimal conditioned invariant function group containing a given 
function group, called the 50*-algorithm. The existence of such a minimal 
function group is already ensured by the following argument. Let 501, ,~2 be 
conditioned invariant function groups containing a function group ,At. Then 
501 r) 502 is again a conditioned invariant function group containing JV'. Hence 
by Zorn's lemma there exists a minimal one. 

50*-algorithm. Define for a given function group ~/" 

501 = "A/" (4.3) 
5ai+l=~4/'+{H,~,~iNC~ ± ) i =1 ,2 , . . .  

where 57~ denotes the closure of 50i under Poisson bracket and ~4/'+ 
{ H, S~  n ~ _L ) is the minimal function space containing JV" as well as { H, 5 ~i n 

± } (so by definition the 50i are function spaces). 
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Proposition 4.2. Let 6 : i  be defined by (4.3), then 
a. ~a icsd i+ l ,  i = 1 , 2  . . . .  

b. I f  for a certain k, S#k = S#k+l, then 6 :k  = 6 ~k+t, Vl. 

Proof a. By induction. 6 a l c  ~,a2 is clear. Assume 6 a~-I c 6 a~ and let S i ~ ~ i .  
Then there exists an N~.,4/" and S~-1~ b ~ - I  n (~ ± and a function G: R 2 ~ R  
such that S i = G( N, { H, s i -~  } ). Since by assumption S i-1 ~ ~,~i-1C ~ i ,  it fol- 
lows that Si ~ 6:i+ 1. 

b. Immediate. [] 
If there exists a k such that S : k  = 6 ak+l the algorithm ends in k steps by 

part  b., and we denote 6:* = S# ~. It follows that (H ,  6 ~  O (~ -~ ) c S# ~ c 67~, 
and so 6:* is a conditioned invariant function group containing N. Furthermore 

Proposition 4.3. 5¢* is the minimal conditioned invariant function group contain- 
ing ~V'. 

Proof Let 6 :  be a conditioned invariant function group with M/" c 6 a. By 
induction we prove 6 :g c 6:, Vi. Assume 6 °~ c 6 ~ c 6:. Then {H, ~ G~i n C -L } C 
{H,  S/' n ~ '±  } c 6 : ,  and so ~ i + l  c ~Q~. [] 

Again we will make the regularity assumption that the function groups 6 ~ in 
Definition 4 satisfy Condition A. With respect to the S:*-algorithm we assume 
that the function groups 67~ all satisfy Condition A. Then it is clear by 
dimensionality arguments that the S#*-algorithm always ends in a finite number 
of steps. 

We now consider the duality between (local) controlled invariance and 
conditioned invariance for Hamiltonian systems. 

Proposition 4.4. Let ~ be a l.c.i, function group. Then ~ . is a conditioned 
invariant function group. Conversely let 5a be a conditioned invariant function group. 
Assume that ~ is a function group and that 6: _L ~_ (~ is a function group. 
Furthermore let 6:,,Sa ± , ~ , d #  -L + ~ satisfy Condition A. Then ~9 ~± is a l.c.i. 
function group. 

Proof Let # -  be 1.c.i. Take an F ~ # -  and an F J - ~ # - ' n ( ~ ± .  Then 
{ ( H ,  F J - } , F } = - ( { F ~ , F ) , H ) - ( ( F , H } , F ± ) ~ ( ~ - + ~ ' , F Z ) = O ,  since 
F ± ~ - _ L  n ( ~ ±  c ( ~ - + ~ ) J _  (see 1.11). Hence ( H , ~  ± n ~ ) c o  ~--L, and 
~" ± is conditioned invariant. 

Conversely let ~ be conditioned invariant. Take an S ~ ~9' n ~ ± and 
S ± ~ 6  a ± .  Then ( ( H , S ± } , S ) = - ( ( S ± , S } , H ) - ( ( S , H ) , S Z ) ~ ( 6 a ,  S ±)  
= 0. Hence ( H, 6:  ± ) c (6 :  O (~ ~ ) J- = 6 a ± + ~ ± ~ = 6:  .L + ~,  by Proposition 
1.4. Furthermore for any C ~ (~, { ( C, S "  ), S ) = - ( ( S _L, S ), C ) - ( { S, C ), S ± } 
- 0 and so (c~, 6:  ± ) c ( S a n  (K ±) J- =~9 ~j- +e~. [] 

Remark. We may also compare the ~z-*-algorithm with the 5 a* algorithm. Let 
£# ± = .A/" and define ~ i  and 5#i according to (2.4), resp. (4.3). Then 

a. ~ i  c ) i  c (*~i )  ± i =1 ,2 , . . .  

b. Assume that ~ and 5a~+ cg, i =1 ,2 , . . . a r e  function groups. Furthermore 
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assume that ~i , (~ i )±,cg , (~ i )± + ~  all satisfy Condition A. Then 5P i =  
( ~ - i ) ± ,  i = 1 , 2  . . . . .  and so S:* = (~-*) -L 

Proof a. By induction. Since ~ ± = ~4/', 5 : i  = (~- l )  ±. Assume 6 : i  ¢ ( ~ i )  ± 
Take an F ~  ~+i, i.e. F ~ £ ~  ' z  and (H,F}~F~+c~,  (__<g,F}c~'~+cg. 
Then ( ( H , , ~ '  n cg}, F}  = - ( { ~ * n c g ' , F } , H } - ( ( F , H } , 2 " n c g ± } .  

Now F ~ ~-i+ 1 c ~'~, and hence by assumption { F, S~i} = 0. Furthermore 

{(H,F},6~n~' l}  c ± } = o, since:  c 

Hence 5 ai+l c (~- i+l )  ±. 
b. By induction. Assume ~-i = (57i) ±. Then 57i c (57i) ± _L = (o ~ - i )  ± and 

therefore by part a. 6ai+1_c(~' i+1)±.  Now take an S ± ~ ( S ~ + i ) J - .  Then 
S _L ~ ~ ± and S ± ~ (H ,  5"~n :g ±} ±. This last inclusion means that for any 
S i e ~ i O ~  "1", (S±,{H,  Si}} =0. Now 

( S ± , ( H ,  Si}} = - { H , ( S i ,  S i } } - ( S i , ( S ± , H ) )  

and since owi ~ 6~ i c S~i+t this implies that ( ( H ,  S ~ }, S i ) = 0 for any S i c  g i  
(~ cg -L 

Hence ( H , ( ~  i+i) ± } c (6~i N cg ± ) ± = (57i) ± + ~ ±, by Proposition 1.4. 
Analogously {cg,(6-~i+1)± ) c (57i)± + ~g. By assumption (67i) ± = f f i  and 
hence (S~i+i) ± c ~-i+i. Together, for any i we have ~-z = (~- i )  .L ± C (5 ~i) ± C 
~-  i, and hence (5" i )  ± = ~ "  i. [ ]  

Example 4.5. We continue Example 2.5 and calculate the minimal conditioned 
invariant function group containing :g = span( ql }. 

y i  = span{ ql } 
S:2 = span( qi} + ( H, c~ A ~ ± } = span{ qi, eq2pi ) 
Hence ~ 2  ~__ span( qi, q2, P l}  and so 
S# 3 = span( qx } + span( eq=Pi, P2, ql} and 

~3 = span(qi,qz, pi, P2 } = C~(R4) .  

Therefore 6,'* = 6a 3 = C~(R 4) and ~ '*  (see Example 2.5) = (5:*)  ± = R, in 
agreement with the above remark. 

5. Invariance by Hamiltonian Feedback 

We return to the central problem of finding conditions in order that a function 
group ~" for a Hamiltonian system (1.4) is locally Hamiltonian controlled 
invariant, i.e., in order that there locally exist functions P, R t . . . . .  Rm on Y such 
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that 

{ H - P o C , . ~ }  c 

( R j o C , ~ }  c ~ -  j = l  . . . . .  m (5.1) 

We noticed already that ~" has to be at least locally controlled invariant. 
Fur thermore let ~" satisfy (5.1). Then 

{ H , ~ - ~ c g  -L} = { H - P o C , ~ N c ~  -L} c ¢j (5.2) 

Hence ~" also has to be conditioned invariant. Moreover if (5.1) is satisfied it 
follows from the Jacobi-identity that { H - P o C, ~ 1 } c ~ ".  Hence ( H, o~- ± } 
c ~ - ±  +c~ and as in (5.2) { H , ~  "-L C ~ - L } c ~  ' ' .  Similarly { R i o C , ~ - I ) c  

~-  _L and so (C, F ± } c ~ " "  + ft. Therefore if ~ is 1.h.c.i. then ~- as well as 
± have to be locally controlled and conditioned invariant. However in 

Proposition 4.4. we already derived that if ~-  is 1.c.i. then ~- ± is conditioned 
invariant, and hence if ~ " "  is 1.c.i. then J~ = ( ~  l ) • is conditioned invariant 
(see Prop. 1.4). So a necessary condition for ~- to be 1.h.c.i. is that ~- and ~- J- 
are both  locally controlled invariant. 

One may suspect that this condition (maybe under some additional integra- 
bility and regularity conditions) is also sufficient for ~" to be locally Hamiltonian 
controlled invariant. However this is not true as already shown by the linear case 
(see van der Schaft (1983a), Nijmeijer & van der Schaft (1984b)). In this case o~- 
is spanned by linear functions on R 2, and D~ corresponds to a linear subspace 
of R 2n. Moreover ~-  is 1.c.i. if and only if J~ is conditioned invariant. So the 
condition that ~ and ~-_L are 1.c.i. is equivalent to ~- being controlled and 
condit ioned invariant. This implies that there exists output feedback u = Ky 
which makes ~¢" invariant. Now output feedback u = Ky is Hamiltonian feedback 
if and only if K = K r. However in general K cannot be taken to be symmetric. 
Only in case ~" is Lagrangian or symplectic this is always possible. 

Definition 5.1. Let ~- be a function group. ~" is Lagrangian if ~" _L = ~-  and 
symplectic if .~- _L N ~ = R. Furthermore ~" is coisotropic if ~ _L C ~ .  

Remark. If ~-  is coisotropic then dim d~'(x) >1 ½ dim M. Furthermore a coiso- 
tropic ~" is Lagrangian if and only if dim d ~ ( x )  = ½ dim M. 

Therefore also in the nonlinear case for arbitrary ~" the condition that ~r  
and ~" _L are 1.c.i. may only imply that D~ can be made invariant by output 
feedback, not  necessarily Hamiltonian feedback. In fact in the nonlinear case 
there is an extra complication because controlled and conditioned invariance is 
not enough for the existence of output feedback. We need an extra integrability 
condition as shown in Nijmeijer & van der Schaft (1982a). 

In this section we shall show that also in the nonlinear case a Lagrangian 
function group ~-  which is 1.c.i. (and hence also ~-  x = ~-  is 1.c.i.) can be made 
invariant by  Hamiltonian feedback, provided the extra integrability condition for 
the existence of output feedback is satisfied. Moreover for Hamiltonian systems 
this condition can be stated in a much more concrete way than for general 
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nonlinear systems. Preliminary investigations (Nijmeijer & van der Schaft (1984c)) 
suggest that also symplectic nonlinear functions groups ~ are l.h.c.i, if #v and 
~-_L are 1.c.i., again provided the extra integrability condition is satisfied. 
Furthermore in the next section we shall show how coisotropic 1.c.i. function 
groups may be made invariant by dynamic Hamiltonian feedback, by lifting the 
function group to a Lagrangian 1.c.i. function group for an augmented Hamilto- 
nian system. 

Remark 1. In all these three cases ( o ~ - = ~ ' ± ,  ~ ± C ~ ,  ~ A ~  ± = R )  o~ 
satisfies the conditions of Theorem 1.1, so we may derive a local normal form 
for ~ .  

Remark 2. We have argued that only under severe conditions a 1.c.i. function 
group ~- is also 1.h.c.i. So in general there only exists a non-Hamiltonian 
feedback u = a ( x ) + f l ( x )  v which makes D~ invariant. Although the resulting 

m m 

transformed system ~ = X n - ~ a j X q  + ~ v i ~ flijXcj is therefore not Ham- 
j = l  i=1 j = l  

iltonian it can be made again Hamiltonian by the addition of output injection, i.e. 

= X H -  °~jXcj- E CjXetj "~- l)i ~ijXcj + 
j =I j = l  i =l i =I 

= x . -  E  jcj + 
j = l  i =1 

This is investigated in van der Schaft (1985), and gives a hint to handle 1.c.i. 
function groups which are not 1.h.c.i. in a "Hamiltonian way". 

So let ~- be a 1.c.i. Lagrangian functiongroup on (M, ~0), satisfying Condi- 
tion A. Then there exist n independent functions Fx,.. . ,  F, such that ~ = 
span{ F 1 . . . .  , F, }. As we saw in Section 1 F defines a Poisson structure on R ". In 
this case because ~ =  o~-L the Poisson structure is identically zero, i.e. 
{ G1, G2 } n n = 0, VG 1, G2: R" --, R. However the following construction works for 
arbitrary ~ .  Define F: M ~ R" as F = ( F  1 . . . .  , F,) and let z = (z 1 . . . . .  z ,)  be 
coordinates for R" such that z i o F = F/, i = 1,. . . ,  n. Let furthermore C := 
(C 1 . . . . .  Cm): M---, Y and let y = (Yl,. . . ,  Ym) be (local) coordinates for Y such 
that yj o C = Cj, j = 1,. . . ,  m. Denote by (y, u) = (Yl . . . . .  Ym, Ul,. . ., Urn) the corre- 
sponding natural coordinates for T*Y. T*Y has the canonically defined Poisson 
(in fact symplectic) structure 

( G l ( y , u ) , G z ( y , u ) } r . r =  ~ ( oGI OG2 OG10G2) (5.3) 
j = l  OUj Oyj Oyj OUj 

for G~, G2: T * Y ~  R. Therefore we can give T*Y x R" the product structure of 
the Poisson structures on T*Y respectively R": 

{ G l ( y , u , z ) , G 2 ( y , u , z ) } r * v x n "  

= { G l (y ,  u, z ) ,G2(Y ,  u, z)} T*Y + { GI (y '  u, z ) ,G2(Y ,  u, Z)}R, 

= { G l ( Y , U , z ) , G 2 ( Y , U , Z ) ) 7 .  v (5.4) 
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since the Poisson structure on R" is zero. (Notice that for  comput ing  
(Gt(y ,  u, z), G2(Y, u, z ) ) r ,  ywe  treat z as a parameter) .  Since a r  is 1.c.i. 

{H,F,} c + F,) c (5.5) 

and  hence under  Assumption 3 there exist smooth functions Kj(y,  z), Vi(y, z) 
such that 

(H, F~}(x) -- Vi(C(x), F(x)) 

( Cj, F~}(x )  = - K j ( C ( x ) , F ( x ) )  

i = 1 , . . . ,  n 

i - 1 , . . . ,  n 

j = 1 , . . . ,  m (5.6) 

or equivalent ly  

H- ~ ujCj, Fi} (x) ~- Fie(C(x),u,F(x)) 
j = l  M 

i = l , . . . , n  (5.7) 

with F/e" T*Y X R"  ~ R defined by  

Fie(y ,u , z )  = Vi(y,z)+ ~ u j K j ( y , z )  
j = l  

i = 1 , . . ,  n ( 5 . 8 )  

We now state the main theorem. 

Theo rem  5.2. Let (1.4) be a Hamiltonian system, andlet 5 = s p a n ( F  1 . . . . .  Fn} 
be a Lagrangian function group on M. Suppose 

1. ~ is l.c.i., so there exist functions Ff , . . . ,Fe:  T*Y × R " ~ R  such that 
(5.7) holds. 

Moreover suppose ~z: satisfies the integrability condition: 
2. The function space span{ F{ . . . . .  F e } on T*Y × R ~ "projects" to a function 

space on T 'Y ,  i.e. there exist functions G~ .... , Ge: T'Y---' R such that 

( (_  a e)} 
span ~ OF~ + 

i=1  ..... n j ~ l  Oyj dyj - ~ j  duj  

( ~ ( O G 7  aG7 )} 
= span ~ ~ - ~ y  dyj+ duj -- span (dGT} (5.9) 

i~ l , . . . ,n  \ j = l  \ ) " ~ J  i~1 .... ,n 

in every point (y, u, z) of T*Y XR". 
Furthermore suppose the following regularity assumptions are satisfied. 
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3. The function spaces ~ ,  ~g and ~ + ~ satisfy Condition A. 
4. The function spaces ~ e : = s p a n { F 1  e . . . . .  F e} on T*YXg~", and ~ e : =  

span{G[ . . . .  , G~ } on T*Y satisfy Condition A. 

5. The codistribution span {--~.  duj ~ on T* Y × g~ n has constant dimension. 
i = 1  ..... n \  J ] 

{ ORi\ 
Then there exist locally on Y functions P, R 1 . . . .  , R m with det~, ~ ) 4= 0, such that 

I 

(5.1) holds. Conversely, if (5.1) holds, then ~ satisfies 1. and 2. 

Remark. Since the theorem is essentially local in nature, we may replace 
Condition A by Condition A'. 

Proof. Let #" satisfy 1 up till 5. First we will prove that o~e as well as .~e are 
function groups, such that {Fie, Fje}r.rxR. = {Ge, G f } r . r =  0, i, j = l  . . . . .  n. 

Consider F1, F 2 e ~-. By application of the Jacobi-identity in every x = 
(q, p )  e M (see also van der Schaft (1983c)) 

H - . = I U j C j , { F t ,  F2} (x) 

= ( V r ( C ( x ) , u , e ( x ) ) , e ~ ( x ) } - ( e I ( C ( x ) , u , V ( x ) ) , F ~ ( x ) )  

~ oF~ or~ 
= 

j = l  i=1  

---~-{ ~, V,} 
j = l  i=1  

OF~. OF; 

j = l  j= l  "~J 

since ~-  is Lagra~gian. 

N O W  F/e = E u j g j ( y ,  z ) + V i ( y ,  z ) ,  i = 1  . . . . .  n .  Hence 
j = l  

~ Fie m i aKj av  ~ 
= Z urn7 + 79 " 

j =1 .,r 

and 

aF: (q,F,} = - K j =  Ouj- 
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Therefore 

j ~ l  

j = l  3uj Oyj 8yj 8uj ( C ( x ) , u , F ( x ) )  

= ( FI~, F2e } r ,y× n,. (5.10) 

Hence the mapping F i ~ Fie from ~ to ~ '¢  is an algebra morphism with respect 
to the Poisson bracket on M, respectively on T * Y × R L  Therefore ~-~ is a 
function group, and since ~ is Lagrangian 

( F,.~, F f  ) r , r × n .  = O, for any F / e , u  E ,,.~'e. 

Since the Poisson structure on R n is zero it follows that also fie is a function 
group with ( G[, Gf } r. v = O. 

Now turn attention to the functions F I. By condition 5. the rank of the 
matrix 

. . .  K; ' I  

[ 
. . .  1 

is constant, say r, in every point (y,  z). Hence we may take F I . . . .  , F, spanning 
~-¢ in such a way that K~(y,z)  . . . . .  Kim(y, z )= O, V(y,z) ,  i = r + l , . . . , n .  
Then, equivalently { Cj, F~ } is identically zero, j = 1 . . . . .  m, i = r + 1, . . . ,  n, and 
hence F / ~  c¢ ±, i = r + 1 . . . . .  n. Since ~" is conditioned invariant this implies that 
( H ,  F ~ ) c  .~ ,  i = r + 1 . . . . .  n. Hence V i can be taken as a function of z only, 
i = r + 1 , . . . ,  n. Since the F,. e are affine in u, the G e can be also taken affine in u, 
i.e. 

m 

a[ (y ,  u) = ~_, u jLj(y)  + Wi (y )  i = 1 ..... n (5.11) 
j = l  

Furthermore by the above reasoning we may take k independent functions 
G~,. . . ,  G~, of the form (5.11) and spanning ,~e such that 

• , ° . . ~  ° ~ k 

dim span L~iY)  L~ (y )  

It follows that the Hamiltonian vectorfields Xaf ..... Xoe on T*Y are independent 
k • • 

and project to k independent vectorfields on Y. In fact, denote the projection 
from T*Y to Y by ~r, then 

m 

 .xG7 = E Lj(y  i =  1 ....  ,k  (5.12) 
j = I  
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Since (Gf ,  Gf}  r , r  = 0, it follows that 

= 0  (5.13) 

Hence there exists a local coordinate transformation ( R ~ ( y ) , . . . , R ~ ( y ) ) =  

( y~, y,~) on ¥, with det ~ O, such that ~r, Xa~ = - s ~ ,  i = 1 . . . .  k. 
. . . .  3y i 
Since (Gf ,  Gf } = 0 and because of (5.12) we can even take (local) canonical 

coordinates (y ' ,  v) = (y~ . . . .  , y~, v 1 . . . . .  v,.) for T*Y such that 

G7 = oe i = 1 . . . . .  k (5.14) 

(This follows from Darboux's theorem. See for similar arguments van der Schaft 
(1981, Th. 3.3), (1983c, Th. 2.7)). The submanifold v 1 . . . . .  v,~=0 is a 
Lagrangia" submanifold of T ' Y ,  and therefore has a generating function 
P ( Y l  . . . .  , y,,,), i.e. 

( (y{  . . . . .  y ' ,  va, . . ., vm) lv 1 . . . . .  v m = O) 

= ( y l  . . . .  , y ~ , . 1  . . . .  , u m ) l . j = ~ ( y ) , j = l  . . . . .  m (s.15) 

In the new canonical coordinates (y ' ,  v) for T*Y the F/~ are of the form 

k 

F f ( y ' ,  v, z )  = E v jK j i ( z )  + V " ( z ) ,  (5.16) 
j ~ l  

since F~ ~ is affine in v and by condition 2 

/ -e ,} 
spa. O--g avj ) = span ( d G : )  

j i ~ l , . . . , r t  

= span(dr  1 . . . . .  dvk)  

in every point  (y ' ,  v, z). However since F f (y ' ,  v, z) is determined by 

H - P o C -  ~ v jCj ' ,F i} (x  ) = F i e ( C ' ( x ) , v , F ( x ) )  
j = l  

(5.17) 

where C'  = (C( . . . . .  C ' )  in the new coordinates (y[  . . . . .  y,~) for Y, it follows from 
(5.16) that 

( g -  e o C ,  F , ) ( x )  = V " ( e ( x ) )  

{C;, ~ ) ( x )  = - I q ' ( F ( . ) )  

i = I , . . . , n  

i = 1 , . . . ,  n 

j = l , . . . , m  (5.18) 
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or equivalently 

{H-PoC,..~} c ~" 

{ R joC, ,~ -}  c ~" j = l .... ,m (5.19) 

as was to be proved. 
Conversely, suppose that (5.19) = (5.1) holds. Then 

( g ,  Fi} = ((R-1)joRoC, Fi)= ~ O(R-1)J 
k= l  Oy~ ( R ° C ) { F k ° C ' F ~ }  

with R: Y ~  Y defined by R = (R 1 ..... Rm). Since (R k o C, Fi} = - K[, i ~ ~" it 
follows that {Cj, Fi} ~ ~- + cg, Vi, j. Also, since ( H -  P o C, F/} = V 'i ~ ~ we 
have 

{ H , F / }  = {H-PoC, Fi}+{PoC, Fi} = V'i+ ~ O(P°R-t)(RoC) 
j=~ Oyj 

and 

{RjoC,  F,.} = V"+ 
i =1 Oy] 

Hence for i = 1, . . . ,  n 

Fie(y,u,z) = Vii(z)+ ~ O(P°R-1) 
j = l  ~-Y7 (R(y))K/i(z) 

W ~ UJ( ~-~ k=l  (5.20) 

and we may define G:(y, u), i = 1, . . . ,  n as 

j=l flY7 ( R ( y ) ) +  ~ uj Oyf~ ( R ( y ) )  j=l 1 
(5.21) 

Then it is clear that condition 2 is satisfied. [] 

Remark 1. Condition 2 is a direct specialization of the integrability condition 
for output  feedback derived in Nijmeijer & van der Schaft (1982a, Theorem 3.1, 
3.2, condition iii) to Hamiltonian systems. In this reference one seeks for 
conditions to make a distribution D for a general nonlinear system 2 = 
f ( x ,  u), y = h(x)  invariant by means of output feedback. One defines the codistri- 
but ion P on M by K e r P  = D. Then the prolonged codistribution P on TM has 
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to be such that the codistribution span{ P, f * P  } n span( dh, du } is involutive. In 
the Hamiltonian case D m D~r, and if : is Lagrangian P = d~ ' .  Furthermore 

since f ( x ,  u) = X n ( x  ) -  ~_, u jXG(x )  we have for F,. ~ ~" 
j = l  

( f . ~  = 4o  X . ( x ) -  u+Xc,(x) = x , , -  ujXcj (F,l(x) 
j= 

= 14- ujCj, ~ (x) = ~"(C(x),  u, e (x ) )  
j= 

Therefore 

A span ( dh , du ) 

= span( dz, do ~'e } :3 span( dy, du }. 

Now the distribution span( d #  -e, dz } :3span( dy, du } on T*Y × R n is involu- 
tive if  and only if condition 2 is satisfied. This follows from the following Lemma 
which we state without proof. 

Lemma 5.3. Let x = ( x 1 . . . . .  x , ) and let f l ( x ) . . . . .  f k ( x ) be functions. Then for k, 
r <~ n: span(d f l ( x )  . . . . .  dfk(x), dxr+ 1 . . . . .  d x m } f ' ) s p a n ( d x  1 . . . . .  d x r }  is involutive, 
if and only if there exist functions gl (x l  . . . .  , Xr) . . . . .  gk( Xl . . . . .  Xr) such that 

-~ t  dx, = span -~xldX, I . 
i = 1  . . . . .  k ' l = l  i = I  . . . . .  k 

Remark 2. Condition 2 can be equivalently formulated in the following way. 
Denote the projection from T * Y × R "  to T*Y by p. Then condition 2 is 
equivalent to: D~-e~- span(XFx, . . . . .  XF, } (distribution on T*Y ×Rn!)  projects 
under p to a distribution on T*Y. In fact p.D~e should equal D~ce= 
span{ Xae, . . . .  XG, } (a distribution on T'Y).  Now we know from van der Schaft 
(1982a) t~at D~, projects to a distribution on T*Y if and only if 

[ - ~ /  X6.] (-~z i 0--~--~ 1 i = l n  ..... (5.22) 0 , c span ,..-, 0 + D : ,  j = l  . . . . .  n 

Let us give a simple (mathematical) example of the above theorem: 

Example 5.4. Consider the Hamiltonian system on 

M = ( ( q l , q 2 , p x , p 2 ) [ p a + p 2 ~ O }  
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with 

1 1 
H = (pl  + P2) + ~(ql  - q2) z + (Px + p2)sinqlcosq2 

+ ( Pl  + P2)C°S qlsin q2 

C1 = (P I  + P2)COS½(qx- q2) 

C2 -- ( P l  + P2)Sin½(ql -  q2) 

and output  manifold Y = R 2 \ ( 0 } .  Then ~'=span(ql+q2,  P l - P 2 }  is a 
Lagrangian function group. Choose new canonical coordinates P1 = ql + q2, P2 = 
P l  -- P2, Q1 = - 1 ( p l  + P2),  Q2 = -12(ql - q 2 ) -  It easily follows that °o°~ is 1.c.i. 
Furthermore o~- is also 1.h.c.i. as can be seen as follows. First apply Hamiltonian 

1 
feedback VI(y 1, Y2) = (y2 + y2)-1/2. Then Vxo C = Pl  + P-----'-~" Furthermore, since 

C1=-2QlcosQz,  CE=-2QlsinQ2, there exist R 1 and R 2 on Y such that 
R l o C = Q ,  REoC=Q2. Then it is clear that ( R I O C , ~ } c . ~ , ( R 2 o C ,  JaK)C 
o~. Finally apply feedback VE(y~, y ~ ) =  (y~)2 then ( H - V I ( C 1 ,  C2)- 
V2(R 1 o C, R E o C) ,  ~ ' }  c ,~', so ~"  is made invariant by Hamiltonian feedback. 

If there exists a Lagrangian function group 3r  satisfying (5.1) we obtain the 
following normal form for the feedback transformed Hamiltonian system. By 
Theorem 1.1. there exists local canonical coordinates (ql . . . . .  q,, Pl  . . . . .  p , )  such 
that ~" = span( Px ..... p, ). Then (5.1) implies 

O ( H - P o C )  8 ( R i o  C) i= l , . . . , n  
8qi ~ "~' 8qt ~ ~ j =1 .... , m (5.23) 

Hence H - P o C and Rj o C are of the form 

H -  P o C  = ~ hi(p)qi + h(p)  
i=1 

RjoC = ~ c[(p)qi + cJ(p) 
i=1  

j = 1 , . . . , m  (5.24) 

and the feedback transformed system equals 

71i = k Ohk(P) Oh(p) ~ vj ~ 3c~(p) 3cJ(p) 
= 1 Op-------~ q~ + Opi Op--------~ qk + Op-------'~ j = l  k =1 

p, = - h i ( p ) +  ~ vjcj(p) i =1 ..... n 
j - 1  

(5.25) 

Notice furthermore the close relationship with the notion of complete integrability 
of a Hamiltonian vectorfield Xt¢. X n is completely integrable if there exist n 
independent functions F 1 . . . . .  F, such that { H, F/) = 0 and { F/, Fj ) = 0, i, j = 
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1 , . . . ,  n. It follows that ~-. '= span{F 1 . . . .  , Fn} is a Lagrangian function group 
satisfying ( H, ~-  ) = 0. 

We remark that the construction of action-angle coordinates used in the 
context of such completely integrable Hamiltonian vectorfields can be im- 
mediately applied to Lagrangian invariant function groups. This yields a sort of 
global interpretation of the local normal form (5.25) (see Abraham & Marsden 
(1978)). 

Remark. Although we have confined ourselves to affine Hamiltonian systems 
(1.4), the developed theory of local controlled invariance can be extended to 
general Hamiltonian systems given by a generating function H(q, p, u), as treated 
in Brockett (1977), van der Schaft (1982a, b, 1983b). In this case a function group 
~-  = span{F  1 . . . . .  Fk} is called 1.c.i. if there exist functions Fi  e o n  T*Y × R  ~ such 
that 

{ H(q, p,u),F~} = Fie( - OH -~-~( q, p, u), u, F(q, p)) i = 1 , . . . , k  

where F. '= (F1, . . . ,  Fg). So the only difference with (5.7) is that the F/e need no 
longer to be affine in u. Furthermore if ~ is Lagrangian it can be proved (cf. van 
der Schaft (1984b), Theorem 5) that the mapping F~ ~ Fi e is a Poisson algebra 
morphism, and so {F/, F j}r . rxak  = 0, Vi, j ,  as in Theorem 5.2. 

6. Invar ianee  by  D y n a m i c  H a m i l t o n i a n  Feedback  

In the previous section we have seen that under an integrability condition and 
some regularity assumptions a Lagrangian function group ~" locally can be made 
invariant by Hamiltonian feedback if ~- is locally controlled invariant. In this 
section we will show how we can extend this procedure to coisotropic function 
groups. The trick is to augment the state space of the system and to lift the 
coisotropic function group to a Lagrangian function group on the augmented 
state space. Hamiltonian feedback for this augmented system corresponds to 
dynamic Hamiltonian feedback for the original system. 

D e f i n i t i o n  6 .1 .  
the  auxiliary Hamiltonian system on R 2t as 

~ i  = - v i  i = 1 , . . . , l  

~i = vi i = l + 1  . . . . .  2 l  

*b = ~ i = 1 . . . . .  2 l  

Let R 21 be endowed with its natural symplectic form. We define 

(6.1) 

where ~ = (~1 . . . . .  ~21) are the standard coordinates for the state space M au : =  

R21, !' = (Px . . . . .  v2t ) are the standard coordinates for the input space UaU: = R 2t 
and ~ = (~h . . . . .  *12t) are the standard coordinates for the output space YaU := R 2t. 

Given a Hamiltonian system (1.4) with state space (M, ~)  and output space Y 
the augmented Hamiltonian system is defined as the product Hamiltonian system 
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of (1.4) and (6.1): 

~ i == Pi 

yj = C j (x )  

i = 1  . . . . .  1 

i = 1 + 1  . . . .  ,21 

j = 1 . . . . .  m 

i = 1 , . . . ,2 l  (6.2) 

with state space M a=  M x Max, output space y a =  y × yaa, and input-output 
space T*Y a = T*Y x Y~  x U a'. Denoting x ~ = (x,  ~), ya = (y, 7/), u '~ = (u, 1'), the 
augmented Hamiltonian system has an internal energy Ha(x, ~)--n(x) and 
output maps 

c ja (x ,  ~) = C j ( x )  j = 1 . . . .  , m  

c ja (x ,~ )  = ~i j = m + l , . . . , m  +21 

Dynamic Hamiltonian feedback for (1.4) is static Hamiltonian feedback for the 
augmented system (6.2), i.e. there exist functions pa(y ,  ~1), R~(y,~I),  
. . . ,  a a . 21 ~ 2/  Rm+2l(Y,*l) , with (R~ . . . . .  Rm+2t ). Y × R  Y × R  a diffeomorphism, 
such that the augmented system is transformed into 

m m + 2 1  

~ a =  gHa_Paoca(Xa)__ E u jXR~*c" (xa)  - E vjXn;.co(x") ( 6 . 3 )  
j f f i l  j f f i m + l  

Remark. Of course, the auxiliary system (6.1) corresponds (modulo minus signs) 
to 2l independent integrators. 

The main theorem of this section reads as follows 

Theorem 6.2. Let (1.4) be a Hamiltonian system on (M, ,.,), and let ~ be a 
coisotropic function group on M, satisfying Condition A. Thus ~ - - -  
span( F 1 . . . . .  F k ), F,. independent, k >t n. Suppose ~ satisfies 

1) ~- is locally controlled invariant, so there exist functions F{ . . . . .  F[: T*Y X 
R k ~ R such that 

H -  Cj, x )  = F i e ( C ( x ) , u , F ( x ) ) ,  i = 1  . . . . .  k 

(again we denote F =  ( F  1 . . . . .  Fk): M ~ R ~) 
2) The function space . ~ - ' =  span(F{, . . . ,  F~) on T*Y X• k "'projects" to a 

function space on T 'Y ,  i.e. there are functions Gf , . . . ,  G~: T'Y---> R such that 

span ( ~  0F/e 3F~e 
dyj + - ~ j  duj ) = span (dG 7 ) (6.4) 

iffil ..... k ~ j = l  iffil .... ,k 
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in every point (y ,  u, z )  of T*Y X R  k 
3) The function spaces ~,  : + ~ satisfy Condition A 
4) The function spaces : e  and f f ~ : = s p a n { G f  . . . .  , Gek } satisfy Condition A. 

I OF: 
5) The codistribution span I duj~ on T*Y × R k has constant dimen- 

i ~ l  k k I 
sion. 

Then, there exists locally a Lagrangian function group : t i n  on the augmented 
space M × R 2t, with 1 = k - n, such that if the projection M >(R 2t ~ M is denoted 
by ~r, then 

~r.D~, = D ~ , D ~ ,  n ( T M  ×O) = D ~  

dim d : ~ t  = dim d :  (6.5) 

( T M  × 0  is the distribution on M × R  2t with zero-components in the R2t-direction). 
: ra t  is called the lift of : .  Moreover there exists locally a dynamic Hamiltonian 
feedback ( p a ( y ,  ~), R~(y, 4), . . - ,  ga+Et(Y, ~)), with ~ E R 21 such that 

{ H a -  p a  o c a ,  ,~yfft } C :lift 
( R ~ o C , : r a t }  c : u , t  j = 1 , . . . , m  + 21 (6.6) 

Conversely, i f  (6.6) holds, then conditions 1 and 2 are satisfied. 
In order to construct the function group : ~ t  we need the following lernma, 

which follows from Theorem 1.1. but also can be proved directly. 

Lemma 6.3. Let ~ be a coisotropic function group on (M, o~), with dim d : ( x )  = 
k >~ n -- ½dim M,  Vx.  Then there exist local canonical coordinates 
(qz . . . . .  q,, P l , . . . ,  P,) for M such that locally : = span(q  z . . . .  , qk - , ,  P l , . . - ,  Pn}" 

Proof Consider the function group : I .  Take 2 n -  k independent functions 
Pk-n+z . . . . .  p ,  such that : l  = span{ pk_ ,+  z . . . .  , p ,} .  Since : _L c : we have 
{Pi, Pj} = 0 for every i, j=-  k - n +1  . . . . .  n. 

Hence Pk-n+l . . . . .  p ,  are a set of partial canonical coordinates. By Darboux 's  
theorem (see the proof in Weinstein (1983)) we can extend the set ( p k _ , +  X . . . . .  P,)  
to a set (q, p ) =  (qz . . . . .  q,, P z , - " ,  P,)  of canonical coordinates. Now consider a 
function F(q,  p )  contained in : .  Since : "  = span( pk_ ,+  z, . . . ,  P~ ) we have 

0 = - ( F , p ~ } = - ~ , i = k - n + l , . . . , n .  Hence F is only a function of 

( q l , . . . ,  q k - , ,  P z , ' ' . ,  P,)- Since dim d :  = k it follows that  : = 
span(q×,-- . ,  q~ - , ,  Px,-. . ,  P~}- [] 

Proof of Theorem 6.2. Let : be a coisotropic function group for which 
conditions I up till 5 are satisfied. Choose local canonical coordinates for ~" as in 
L e m m a  6.3,  i.e. : = span{q I . . . . .  qt, Px,. . . ,  Pn}, with 1 = k - n .  The state space 
of the auxiliary Hamiltonian system will be R 2t with its usual symplectic form. 
Define locally the lifted function group : t ~ t  on M × R 2l a s  

: u f t  = span{qz+~t+z  . . . . .  qt+~2, ,P~+~x . . . . .  Pt+~,,Pt+~ . . . . .  P , )  (6.7) 
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with ~ = (~1 . . . . .  ~21) E ~2 l .  S i n c e  

( q , + l : ; t + i , P i + f ; i } m × a 2 '  = {qi ,  P , ) M  + ( } t + , , } i } a  2' = - 1  + 1 = 0, 

i = 1 . . . .  , l, it follows that  for any  Fz, F 2 ~ : n i t  

(Fz ,  F 2 ) m × a 2 ,  = 0 (6.8) 

Since d im d# 'n f  t = n + l = ½dim(M × R 2t) this implies that  ~-nft is a Lagrangian 
func t ion  g roup  on  M × R 2t (Of  course o~'1~ t is only def ined in a ne ighborhood  of 
every po in t  in M) .  Since #"  is locally controlled invar iant  it follows that  

{Ha,# 'nf t}  c ~-nft + cga 

{(~a ,  ~"lift ) C O~'lift "~- (~ a (6.9) 

Hence ,  ~ur t  is locally control led invar iant  for  the augmented  Hami l ton i an  
system. F u r t h e r m o r e  we have 

H a - ujC~ - ~_, VkC~, qi + !~1+~ 
j =1 k =1 

= H -  ujCj - ~ ,  Vkl:;k, qi + I:;t+, 
j = l  k =1 

= H -  u j C j , q i -  vk(}k,}t+i} 
k=l  

= { H -  ~ - ~ . u j C j , q i } + g  i i = 1  . . . . .  l (6.10) 
j = l  

and  

H ° -  u+q a -  E ,'kCLPi+~, = H -  u+q,p, - E ~k{~k,},} 
j =1 k =1 j = l  k =1 

i = 1 . . . . .  1 (6.11) 

and 

{ 2 ,  }{ 
Ha - ujCj' - Y'. PI, C,~, Pt+i = 

j = l  k =I 
H _  ~ ujCj, Pl+i} 

j = l  

i = 1  . . . .  , n - I  (6.12) 
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The functions { H -  ~ ujCj, qi }, i=  1 . . . . .  l and ( H -  ~ ujCs, p/}, i =  1 . . . . .  n 
j =1  j = I  

are all contained in o ~-~. It is now easily seen that conditions 2,3,4,5 imply 
conditions 2,3,4,5 of Theorem 5.2. for the augmented Hamiltonian system. 
Hence  by Theorem 5.2. there exist (locally on Y × R 2l) functions 
P~(Y,~I), R~(y,  ~l),..., R~+2t(Y,~I), where the Jacobian of (R~ . . . . .  R~m+2t) has 
full rank, such that (6.6) is satisfied. The proof of the converse statement follows 
the same lines as the proof of the converse statement in Theorem 5.2. [] 

Example 6.4. Consider the Hamiltonian system from Example 2.5 with H ( q , p )  
1 2 1 2 1 2 C = t T / /  

= ½eq2P 2 + ~P2 + -~ql + ~qz, (q, P) = qP Consider the velocity 0~ ~ = 

eq2pl. Define  ~-  := ( span(eq2Pl} )± = span{q2, P: + qlPl ,  P l} .  Since 
span(eq2pl} c ~ ,  ~ is coisotropic. Furthermore since ~ +span(q1}  = 
span(ql ,  q2, Pl, Pa), ~ is 1.c.i. Let us therefore try to construct a dynamic 
Hamiltonian feedback which makes ~- invariant. First we have to choose 
canonical coordinates (Q1, Q2, P1, P2) such that ~- = span{Q1, el, P2 )" Since the 
Poisson structure (1.17) associated with ~ is 

(wij)  = t! lp10 p00x/ 
we take Q1 = q2, Px = P2 + qlPl, P2 = logpl  + q2, Q2 = qlp l  (assume Pl > 0). 
The augmented state space will be Q1, Q2, P1, P2, 41, ~2 and ~uft = span(Q1 + 
~2, P1 + ~1, P2}. However although ~aft is 1.c.i. and Lagrangian, it cannot be 
made invariant by Hamiltonian feedback. This is because the integrability condi- 
tion 2 is not  satisfied (because of the qlpl- term in ~,~, while C --- ql) 

7. Application to Disturbance Decoupling 

Probably the easiest application of controlled invariance is the problem of 
disturbance decoupling. Consider a Hamiltonian system (1.4) with additional 
disturbances 

m 1 

= X. (x ) -  E uiXc,(x)- E dkek(x) 
j • l  k = 1  

yj = C j ( x )  j = 1  . . . . .  m (7.1) 

The disturbances d 1 . . . .  , d t enter the equations via the (known) vectorfields 
E 1 . . . . .  E r Suppose one has furthermore a set of functions of the state 

zj = G j ( x )  j = 1 , . . . , r  (7.2) 

where z l , . . . ,  z r are the so-called to-be-regulated variables. 
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One now wishes to apply Hamiltonian feedback to (7.1) such that after 
feedback the disturbances do not influence the to-be-regulated variables. This can 
be done, using Theorems 5.2 and 6.2, if there exists a locally controlled invariant 
function group ~ ' ,  contained in the function group ~ ±  = ( s p a n ( G  1 . . . . .  Gr) ) ±, 
which is Lagrangian or coisotropic, and such that the distribution span{ El , . . .  , E t } 
is contained in D~l  (Recall the construction of ~-lift in (6.5)!). In case ~ is 
Lagrangian, static Hamiltonian feedback is sufficient; otherwise dynamic Ham- 
iltonian feedback is needed. Notice that a necessary condition for the existence of 
such an ~- is that f¢ _L itself has to be coisotropic. Indeed let .~  c ~ _L with 
~ ' "  c ~ ' ,  then ~ c ( c ~ ' )  ± c ~ ' "  c ~ ' c ~  ±. 

A computational procedure for solving the disturbance decoupling problem 
by Hamiltonian feedback may be the following: 

1. Compute the maximal 1.c.i. function group .~* contained in ff " ,  using the 
~-*-algorithm (2.4). 

2. Check if span{ E 1 . . . . .  E I } is contained in D~, ~. 
3. Check if .~-* is Lagrangian or coisotropic. 
4. Check if ~-* satisfies conditions 2,3,4,5 of Theorem 5.2 or 6.2. 

Remark. It maybe easier to use the 5~*-algorithm (4.3) to compute the minimal 
conditioned invariant function group 5"* containing N. Then one may check if 
(5,'*) ± is locally controlled invariant (see Proposition 4.4.) 

A particularly nice situation arises if the disturbance vectorfields Ek are given 
as the Hamiltonian vectorfields of the functions Gj, i.e. 

E k ( x  ) = Xck(x), k = 1 , . . . , r  (7.3) 

In this case if a function group .~" satisfies ~ c ~ ±, then automatically ff c 
( ~  ± ) ± c o~ ±, and so span{E 1 . . . .  , Er} = D~ c D~-. Hence if o~- is coisotropic 
we are done (apart from conditions 2, 3, 4, 5 of Theorem 6.2). In the linear case 
one can even prove that in this situation disturbance decoupling by general 
dynamic feedback is possible if and only if there exists a coisotropic ~ with 

c ~ ± and so if and only if disturbance decoupling by dynamic Hamiltonian 
feedback is possible. 

8. Conclusion 

The notion of a locally controlled invariant distribution is specialized to 
Hamiltonian systems by introducing the concept of a locally controlled invariant 
function group. It is shown that 1.c.i. Lagrangian function groups can be made 
invariant by Hamiltonian feedback provided an extra integrability condition 
necessary for the existence of output feedback, is satisfied. This also appears :o be 
the case for symplectic functions groups. Other classes of function groups ~" with 
~" and f f  ± 1.c.i. in general cannot be made invariant by Hamiltonian feedback. 
However one expects that a "generalized type" of Hamiltonian feedback might 
work. This is strongly related to the nature of the mapping F, ~ F /  in (5.7), 
which in this paper is only investigated in the (easy) Lagrangian case. 
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Furthermore, it is shown that coisotropic 1.c.i. function groups which satisfy 
the integrability condition can be made invariant by dynamic Hamiltonian 
feedback. 

The developed notion of controlled invariant function groups is only a first, 
although basic, step in a geometric theory of Hamiltonian control systems. For 
instance it seems fruitful to combine this notion with the stabilization procedure 
for Hamiltonian systems as proposed in van der Schaft (1984b). 
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