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1. Introduction 

Consider a mapping of the real plane onto itself 

x' = H(x) + ~, x e N .  2. (1.1) 

H (x) is a diffeomorphism, dissipative with positive constant Jacobian and has 
an attracting spiral. The extra term ~ e IR 2 can represent a time dependent 
perturbation ~ = ~ (x, n), bounded noise or a coupling to a second deterministic 
system {~ = ~ (x, v), v' = M (x, v), with v e R"}. Four  our purpose the only and 
essential property is that it is bounded, i. e. there is a positive constant c~ such that 

I~l < a. (1.2) 

where [] denotes the Euclidean norm in ~2.  
The aim of this paper is to predict the effect of the extra term ~ on the 

attractor and its basin in dependence of 6. 
As an example we take for H (x) the Henon mapping (cf. (2.1, 13)). In Fig. I a 

the basin of attraction is shown for one set of parameters values. In the presence 
of bounded noise with small enough amplitude, one expects a phase diagram as 
in Fig. I b. Around the original attractor there is a region in which noisy orbits 
are captured. This set is called A. Around this set there is a region B: all orbits 
starting in this region end up in A. There is a neighbourhood C of the original 
basin boundary, where the asymptotic state of an initial condition depends on 
the particular noise sequence: orbits may converge to A, go to infinity or stay 
in C. Orbits starting outside C always diverge. For increasing 6, both A and C 
grow. At a critical value 6 c they touch and B disappears, i.e. there are no initial 
conditions whose orbits remain bounded for all noise sequences {~}. In this 
paper a method is formulated to obtain a rigorous lower bound for tic, and 
dependent on fi < tic a "smallest" set around the origin which encloses A and a 
"largest" set which is contained in B. 

Our method relies upon the existence of a Lyapunov function in the basin 
of attraction of the spiral of H(x), which can be constructed with arbitrary 
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Figure 1 
a) Sketch of the phase portrait for the Henon mapping (2.1, 13) at parametervalues b = 0.9 and 
c = 0.3. Shown are the attractor (+) of H (x) and the saddle (e) with its stable (W s) and unstable 
(W") manifolds. W s is (part of) the boundary of the basin of the attractor. Orbits outside the region 
enclosed by W ~ diverge. Orbits within this region converge (but cf. Sect. 2). The closed contours are 
level lines of L (x). Each level line is mapped by H onto the nexts smaller one. 
b) Sketch of the phase portrait of the full map (1.1) in case that ~ represents bounded noise. Orbits 
starting near the fixed point of H remain in A. Orbits starting in B end up in A, and orbits starting 
in C diverge or converge to A, dependent on the particular noise sequence. 

accuracy for any mapping  H(x)  with a constant  positive Jacobian  [1, 2]. This 
L y a p u n o v  funct ion L (x) is defined everywhere in the basin of  the at t ractor .  It  has 
a min imum equal  to zero at the a t t rac tor  and its level lines C L are closed 
con tours  a r ound  it, where C L, encloses C L if L < E (cf. Fig. 1 a). Convergence  of 
an orbi t  to the a t t rac tor  is governed by the relat ion L (H (x)) = x /~  L (x), where 
b is the Jacobian  of H (x). 

The  estimates for A and B are based on  compar i son  of the decrease of L due 
to H (x) and the possibly counterac t ing  effect of the term ~. In fact we demon-  
strate how to obta in  estimates for a smallest L ,  and a largest L b such that  the 
region A is conta ined in CLo and the interior  of CLb is conta ined in B. Each orbi t  
start ing between these two level lines will eventually end up in Cza. 

In Sect. 2 the main elements related to the const ruct ion  of the Lyapunov  
funct ion are summarized,  and details of a par t icular  choice for H (the H e n o n  
mapping)  are given. The  way to determine L ,  and L b is t reated analytically in 
Sect. 3 and implemented numerical ly  in Sect. 4. In Sect. 5 the resulting bounds  
are compared  with the phase por t ra i t  of (1.1), where a par t icular  (and unfa- 
vourable)  choice for ~ is used. 
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2. Properties of H (x) 

815 

2.1 The Lyapunov function for H (x) 

Let H ( x )  in (1.1) have the form 

H(x) = P x  + Q(x), (2.1) 

where P and Q denote the linear and higher order terms respectively. The 
Jacobian is required to be a constant b, 0 < b < 1. P is supposed to have two 
complex eigenvalues, 2 and 2", such that 22* = b, so that the origin is a spiral 
attractor. 

First consider the linear map x' = Px ,  which describes the approach of an 
orbit to the attractor at the origin asymptotically. Let S diagonalize P and define 
a matrix A as follows 

A = S T S,  S P S -  t = diag (2", 2). (2.2) 

With this definition one readily verifies 

(P x, A P x )  = b (x, A x ) ,  (2.3) 

where (,) denotes the usual innerproduct in ]R 2. Now observe that the set 

EL = {x I (x, Ax) = L 2} (2.4) 

is an ellipse since A is symmetric and has positive eigenvalues. If S is chosen such 
that det S = 1, then E L encloses an area rcL 2. Relation (2.3) then implies that the 
linear map x' = P x  transforms the ellipse E L into a smaller ellipse E L V~, which 
is just E L scaled with v/b. 

Thus (x, A x )  is a Lyapunov function for the linearization P x  of H (x). A 
Lyapunov function for the full nonlinear map, defined on the basin Bo, can be 
constructed as follows (for details we refer to [1]). There exists a real analytic 
transformation x (u) with real analytic inverse u (x), that maps the real u-plane 
onto B 0 and which satisfies 

H (x (u)) = x (Pu), u ~ IR 2 Pu  (x) = u (H  (x)), x ~ B o . (2.5) 

This relation expresses the fact that each orbit of u' = Pu  is transformed by x (u) 
to an orbit of x' - H (x) in Bo, and vice versa by u (x). This transformation can 
be constructed with the aid of the relation 

x (u) = lim H - "  (pn u). (2.6) 
n - + o o  



A essential property is that x (u) has Jacobian equal to + 1, so that it pre- 
serves area and orientation. For small u it is approximately the identity, 
x ( u )  = u + h . o . t .  

With the aid of u (x) we now define the functional L in the basin B o 
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L ( x )  = ( u ( x ) ,  A u ( x ) )  1/2, x e B o.  (2.7) 

With (2.5) one now readily verifies the analogue of (2.3) 

L 2 ( H  (x)) = (Pu  (x) ,  A P u  (x)) = b L  2 (x) ,  x ~ B o . (2.8) 

(2.9) 

Since L 2 is nonnegative with only one critical point, a minimum at the attractor, 
(2.8) governs the convergence of an orbit in B o in a way similar to (2.3) in case 
of the linearised map. The level set C L 

= {x I(u (x), A u  (x)) = L 

Cm 

is mapped by H (x) onto the level set C L f f i .  

From the definition it is obvious that C L is the image of the ellipse E L by 
x (u). Since x (u) is area preserving, C L encloses an area equal to n L  2. Two ellipses 
E L and E L, do not have points in common and EL, encloses E L if L < E. 
Consequently the same statements hold for the contours C L and CL,,  since u (x) 
is invertible and preserves area and orientation. So we conclude: 

Each level line is a closed contour around the origin. Two level lines with 
different L cannot intersect and C L encloses C L, if L > E. 

The basin boundary can be considered as the limit of C L for L - > oe in the 
following sense: for each x on the boundary dist (x,  CL) converges to zero if L 
goes to infinity. 

Figure 2 
Schematic graph of C k and C m. The shaded 
area is the a-neighbourhood of  of C k. For each 
x in this neighbourhood it holds L (x) _-< m, 
again because of the nested structure of the 
level lines (cf. after (2.9)). The equality holds 
precisely at those x ~ C k, y ~ C m which realise 
the smallest distance. 

816 
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We now introduce two functions related to their distance. Let a(k, m) 
denote the distance between C k and C,,, i.e. (k and m are nonnegative real 
numbers) 

a ( k , m ) = m i n l x - -  y l X ~ C k ,  y e C m ,  O <  k < m  k, m e R .  (2.10) 

Using the nested structure of the level lines one can immediately deduce that  
a (k, m) increases as a function of m for riced k. Typically, i.e. unless the basin is 
the complete N 2, limm-, o~ a (k, m) = a~ (k) exists and denotes the distance of C k 
to the basin boundary.  Fur thermore  a (k, m) decreases as a function of k for fixed 
m, so that  the inverse with respect to m exists. This inverse is denoted by m (k, a) 
and defined for k > 0 and 0 _< a < a~ (k). Again, if one observes that  C,, has a 
distance a (k, m) to C k, it is clear that  m (k, a) is an increasing function both of k 
and of a. F r o m  Fig. 2 one can observe that  m (k, a) satisfies 

re(k, a) = max L(y )  Ix ~ Ck, Ix -- Yl < a. (2.11) 

Finally we define d (k) which is the distance between Ck ~ and C k 

d (k) = a (k v /b ,  k) . (2.12) 

2.2 The Henon mapping 

Our  calculations are carried out  for the Henon  mapping,  which we write 
as [3] 

= , = . (2.13) 

The origin is a spiral if b > c 2 with eigenvalues 2 and 2" 

2 = c + i x/ /~ -- cZ). (2.14) 

The matrix A the reads 

The ellipses E L have their axes along the two eigenvectors of A. The ratio of their 
lengths equals e l /e2,  in which el, 2 are the eigenvatues of A. 
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The mapping has, apart from the spiral, another fixed point, a saddle at 
x = (D, O), where 

D = (b + 1)/2 - c. (2.16) 

The stable manifold of this saddle forms, for the parameter values considered 
here, (part of) the boundary B o. One way to construct such a manifold is 
described in [3]. If every orbit on the unstable manifold converges to the spiral, 
such as in Fig. 1 a, then W s is a nonfractal [5] (part of the) boundary of the basin. 
It is tempting to assume that the region of the plane bounded by W s forms the 
basin. This is not necessarily true, however. There can be other attracting 
periodic orbits (usually with very narrow basins) in this region as well. 

3. Determination of the bounds 

In this section it is shown how to determine a smallest La such that CLa 
encloses the "attractor" and a largest L b such that the region enclosed by CLb is 
in the "basin". At the same time the critical bound 5c is obtained. 

Crucial to determine these quantities is the following observation. Consider 
the mapping (1.1) and let x be on a level line C L. Clearly its image x' is in a 5 
neighbourhood of H (x). Thus we obtain immediately (cf. (2.11)) 

L(x') < m(x//bL(x),  6) if 5 < aoo(x//b L), (3.1) 

Thus the trajectories {L,} of the dynamical system defined by 

E = m (,v/b L, 5), L > 0, (3.2) 

form an upperbound on {L(x,)}. A simple example where bounded motion 
occurs is shown in Fig. 3 a. Determination of the fixed points of (3.2) yields L a 
and L b, The critical 5c is precisely the smallest value of 5 such that (3.2) has no 
fixed points. 

To obtain these values one has to determine (numerically) the function 
m (x/~ L, 5) for the given H (x). This is straightforward, but we will demonstrate 
now that essentially the same information can be obtained from d (L), which is 
more simple since it depends on only one variable. Recall that d (L) denotes (cf. 
(2.12)) the distance between two level lines CV/L and CL. Its limiting values for 
small and large values of L are known analytically 

d (L) = fl L + O (L2), (3.3 a) 

lim d (L) = 0. (3.3 b) 
L ~ o o  
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Figure 3 
Graphs of m(x/bL, 6) and of d(L) in the simplest possible case. In a) also orbits of (3.2) are 
sketched. If c~ < d,, orbits of (3.2) starting at L, < L o < Lb converge monotonically to L a. 

Since for small L the level lines CL are approximately the ellipses E L (cf. (2.4)), 
the term flL represents the distance between two ellipses E L and Ev~ L. Conse- 
quently the constant t3 can be expressed in terms of the matrix A. In fact it holds 

f l =  (1 - x/@) ~ ? c ~ 2 ) ,  (3.4) 

where ~1 and c~ 2 are the eigenvalues of A, with s t < c~ 2. Relation (3.3b) is a 
consequence of the fact that level sets C L accumulate on the basin boundary for 
L ~ oo. The most simple case is sketched in Fig. 3 b. 

Now observe that the image of x e B o is in a 6-neighborhood of H (x). Then 
since H (x) e CV/L and because of the nested structure of the level lines CL, it is 
obvious that 

L(x') = L(H(x)  + ~)) < L(x) if 6 < d(L(x)). (3.5) 

Now consider Fig. 3 b. If 6 < din, d (L) = 6 has two solutions, La and L b. Conse- 
quently points x e CL are mapped onto points in the region enclosed by CL if 
L,  < L < L b. One tentatively concludes that the orbits of such a point finally 
ends up in CLo. Such a conclusion, however, can be drawn in the base of (3.5) 
only by its relation to (3.1). 

This relation is obtained in a straightforward manner. Since m (k, 6) is an 
increasing function of 6, we have 

6 < d ( L )  iff m(x /~L ,  6 ) < m ( ~ b L ,  d(L)), for 0 < 6 - < a o o ( L ) .  (3.6) 

Because of the definition of m and d one readily sees that m (x/@ L, d (L)) = L, so 
that we obtain 

6 < d (L) iff m (~,/Fb L, 6) < L. (3.7) 



820 Ruud van Damme and Theo P. Valkering ZAMP 

a 

L b L a" L b' 

b 

L b L b, 
Figure 4 
Possible graphs of m (,~/b L, 5) and of d(L). In a) also orbits of (3.2) are sketched. 

Now observe that one knows all about the relevant properties of the dynamical 
systems (3.2) if one knows the fixed points and the values of L where 
m(w/bL, 5) < L. Consequently (3.7) demonstrates that it is sufficient to deter- 
mine d (L). 

To interpret these results, consider the simple case of Fig. 3. For 5 < d,, 
the dynamical system (3.2) has two fixed points: L = L a and L = L b. A trajec- 
tory starting at Lo < La increases monotonically and converges to L,. A 
trajectory starting at L a < L o < L b decreases monotonically and also converges 
to  L a. If Lo > Lb a trajectory diverges. Correspondingly for orbits of (1.1) we 
have 

L(x,) < L,  < La if L(xo) < L a, (3.8a) 

L(x,) < L,  -- > L,, if L~ < L(xo) < L b. (3.8 b) 

In words, all orbits of (1.1) starting between CLo and CLb converge to the area 
enclosed by CLa. An orbit starting within CLo does not leave the enclosed area 
and nothing is known about orbits starting outside CLb. In the case of Fig. 4 
similar conclusions can be drawn. Note however, that the only conclusion we 
can draw for orbits of (1.1) starting between CL~ and CLa, is that they remain 
within CLa,. In practical cases it may well occur that these orbits also converge 
to CLo. 

4. Implementation of the method 

The method described in the previous Sections is implemented for the case 
that H (x) is the Henon mapping. The parameters c and b are chosen to be fixed: 
c = 0.1 and b = 0.7. We discuss several ways to calculate d(L). 
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To calculate a level line CL one starts with an ellipse E L (2.4), applies P n 
times and then H-1  again n times, with n sufficiently large (cf. (2.6) and [1]). The 
distance function d (L) can then be computed straightforwardly, searching the 
minimum of [x - y[ with x ~ C L and y ~ Cv~ L. 

This process to determine d (L) is simple, in principle at least, but some 
practical problems arise, particularly for values of L larger than Lm. In that case 
the level lines can have very long tentacles [1]. Consequently the number of pairs 
of points x and y one has to take grows disproportionally with L. Furthermore 
even if one starts with an even distribution of points on the initial ellipse EL, the 
distribution of the resulting points on CL is very irregular. This makes the direct 
calculation of d (L) time consuming and complicated. 

To circumvent these difficulties we develop an approximate method, which 
uses a Taylor expansion in terms of ~ of the right hand side of (3.2). It holds 

LZ(H(x) + ~) = L2(H(x)) + (~, VLa(H(x)) + 1/2(~, VVL2(H(x)~) + 0(~3). 

(4.1) 
Here we propose the following approximation for an upperbound of the right 
hand side. Define 

R(L) = max ]VL(x)]. (4.2) 
x~C  ~/b L 

Then we clearly have 

L2(x ') =< b LZ(x) + aR(L)  + 1/262 a(H(x)) + 0 (c~3), (4.3) 

where a (x) denotes the largest eigenvalue of VVL 2 (x). An example of the be- 
haviour of[VL (x)] along a leve line is shown in [5]. Let the maximum in (4.2) be 
attained at x o. Then define 

S(L) = a(Xo), ]VL(xo)[ = R(L).  (4.4) 

Now instead of (3.2) one can use trajectories of the dynamical process 

E 2 = bL  2 + 6R(L)  + �89 (4.5) 

as an upper bound for L 2 (x,). Obviously, this upper bound is no longer rigorous. 
It can be improved if a (in (4.3)) is also maximized on CV~ L. However since 
VVL 2 (x) = A + O (x), this is not a large improvement for small values of L. For 
large values of L, the meaning of (4.5) is more doubtful because of the unknown 
effect of the omitted terms. 

The analysis above is used in two ways. Firstly the distance between x o and 
C L is determined numerically. This function, denoted by d o (L) is shown in 
Fig. 5 a. Secondly we use (4.5) directly. To this end a function d(L) is introduced 
as the positive root of 

(1 - -  b ) L  2 = dR(L)  + 1/2 ~-2 S(L), (4.6) 
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Figure 5 
"Distance"  functions d o (L) (cf. (4.2-4))  and at(L) for the Henon mapping at b = 0.7 and c = 0.1 ; 
o denotes the distance function obtained with the quadratic norm (x, Ax). Some directly calculated 
values of d(L) are indicated with e. These graphs predict t ha t  there is bounded motion for ~ < 0.04. 
Observe that  there is almost no difference between d o and d. For  L up to ~ 0.9 L,, the calculated 
values of d(L)  coincide with d o (L), which is in agreement with the inequality d o > d. For  L bigger 
than that,  however, these values exceed d o which seems to contradict this inequality. This demon- 
strates the difficulty in calculating d as mentioned. In b) level lines at L = b "/2 L m with In[ < 3 are 
shown. The thick central line corresponds to the maximum d,,. 

which is given 

d(L) = ( - R  + x/(R 2 - 2S(b - 1)LZ))/S. (4.7) 

Clearly now the analogue of (3.7) holds 

f i < d ( L )  iff L 2 > b L  2 + f i R ( L ) + c ~ z S ( L ) .  (4.8) 

Comparing do (L) and d(L) in Fig. 5, one observes that these curves almost 
coincide. For sake of comparison we also show in this graph a few values of d (L) 
obtained by direct calculation as mentioned at the beginning of this Section. For 
L < L,, this method yields value on de graphs do (L) and d(L). 

For the interpretation of the bounds found with d o (L) recall that, by its 
definition, d ( L ) <  d o (L). This implies that the values calculated with do (L), 
indicated with a subscript c, always satisfy L,c < L,, rice > fi~ and Lbe > L b. 

The analysis above is based on the "best" Lyapunov function for the basin, 
incorporating fully the nonlinear aspects of the mapping. In principle one can 
apply the same method on the basis of the quadratic norm (x, Ax) 1/2, related to 
the linearisation of the map. This however gives results which are inferior to 
those above. In that case one starts with an ellipse, (x, Ax) is constant, and 
determines the maximum value of (H (x) + ~, A (H (x) + ~)) for ~ < ft. In this way 
one obtains a relation similar to (4.5), with L representing the value of the 
quadratic norm. The resulting function distance function is shown in Fig. 5 a. 
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We conclude that both d o (L) and d(L) are expected to yield useful approx- 
imations for L~, L b and 6c. Values obtained with the quadratic norm are obvi- 
ously inferior. 

5. Comparison with experiment 

Here we make a special, unfavourable, choice for ~ and compare the values 
of L, ,  L b and 6 c that are obtained in Sect. 4 with the results for this particular 
map. H is the Henon mapping (2.13). 

Write ~ in (1.1) as 

= 6(cos ~0, sin ~0) (5.1) 

and consider the mapping 

x'  = H (x) + (  Oo), (5.2a) 

where ~o o is chosen in such a way that 

L (H (x )  + ~(~o)) < L ( H ( x )  + ~(~0o) ) for 0 < (0 < 2re, (5.2b) 

i.e. after each step L is a large as possible within the restriction ]~1 < ~ (cf. (1.2)). 
Note  that ~00 is not necessarily unique for each x. In that case we pick one of the 
maximizing values at random. 

First we test the meaning of Cr, and CLb as obtained from Fig. 5 a. Choose 
6 = 0.03, somewhat smaller than the maximumvalue of d. To determine the 
region A, i. e. the "attractor" of the mapping, choose a set of initial points evenly 
distributed on the contour CLo. The orbits of these initial points all appear to 
end upon the contour C A shown in Fig. 6. The same holds for orbits starting 
close to the origin. The value of L(x) for x ~ C a varies from 0.6 L,  to 0.7 L a. We 
conclude that CLo gives a safe upper bound for the "attracting" set A. 

Then, for the same value of ~, choose initial conditions on radii x = e (cos ~,, 
sin ~u). For fixed gt the smallest value of c~ for which the orbit does not converge 
to CA was determined. Doing this for several ~ the contour CB shown in Fig. 6 
was obtained. Actually every orbit within C B converges to C A. Now L(x)  varies 
from 1.25 L b to 1.5 L b for x ~ CB. Consequently CLb gives a safe lower bound for 
C B �9 

Secondly the largest value of 6 such that there is bounded motion about  the 
origin was obtained as follows. Let a, denote the n th iterate of the origin. 
Determine for given ~ the smallest N (6) such that l au] is bigger than a suitably 
chosen large number M. Here M is such that an orbit which comes outside the 
circle with radius M runs of to infinity. The result was that orbits starting at the 
origin remain bounded for ~ ~ < 0.06. Observe that this is well above the 
critical value 0.04 predicted by Fig. 5. 
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Comparison of the predictions in Sect. 4 with the actual orbits of the mapping (5.2) for 6 = 0.03. 
The two bounds of the shaded area are CL~ and C[b, as obtained from Fig. 3. Each orbit in this area 
certainly ends up within CL,, i.e. independent of the choice for 4- The contours C a and C,  are 
obtained directly from the mapping (5.2). An orbit within C a converges to C A . Each orbit within 
these two contours ends up on C A. Outside C~ there are orbits that diverge. 

To conclude, the present method yields not very sharp but safe predic- 
tions for the "attracting set" A near the attractor of the "undisturbed" system 
x' = H (x) and for the "basin of attraction" B. A safe lower bound is given for the 
maximally allowed value of the "perturbation" strength 6, so that the extended 
system still has a stable "asymptotic state" containing the original one. In 
practice, in many cases, such as bounded noise, the decrease if L at each step is 
bigger than the one as chosen in this Section. Consequently the predictions are 
less sharp but even safer. In the case of Gaussian noise the predictions are no 
longer rigorous. But one must expect that this method yields useful results as 
long as the terms do not exceed our critical value 6c. 
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Abstract 

We consider a dissipative map of the plane with a bounded perturbation term. This perturba- 
tion represents e.g. an extra time dependent term, a coupling to another system or noise. The 
unperturbed map has a spiral attracting fixed point. We derive an analytical/numerical method to 
determine the effect of the additional term on the phase portrait of the original map, as a function 
of the bound 6 on the perturbation. This method yields a value 6c such that for e$ < 6c the orbits 
about the attractor are certainly bounded. In that case we obtain a largest region in which all orbits 
remain bounded and a smallest region in which these bounded orbits are captured after some time 
(the analogue of "basin" and "attractor" respectively). 

The analysis is based on the Lyapunov function which exists for the unperturbed map. 

(Received: May 6, 1988; revised: June 20, 1988) 


