On Circuits and Pancyclic Line Graphs

A. Benhocine
universite du maine lE MANS, FRANCE
L. Clark

UNIVERSITY OF NEW MEXICO
ALBUQUERQUE, NM
N. Köhler

GERLINGERSTRASSE 6 .
D-1000 BERLIN 47
H. J. Veldman

TWENTE UNIVERSITY OF TECHNOLOGY
ENSCHEDE, THE NETHERLANDS

Abstract

Clark proved that $L(G)$ is hamiltonian if G is a connected graph of order $n \geq 6$ such that deg $u+\operatorname{deg} v \geq n-1-p(n)$ for every edge $u v$ of G, where $p(n)=0$ if n is even and $p(n)=1$ if n is odd. Here it is shown that the bound $n-1-p(n)$ can be decreased to $(2 n+1) / 3$ if every bridge of G is incident with a vertex of degree 1 , which is a necessary condition for hamiltonicity of $L(G)$. Moreover, the conclusion that $L(G)$ is hamiltonian can be strengthened to the conclusion that $L(G)$ is pancyclic. Lesniak-Foster and Williamson proved that G contains a spanning closed trail if $|V(G)|=n \geq 6, \delta(G) \geq 2$ and deg $u+\operatorname{deg} v \geq n-1$ for every pair of nonadjacent vertices u and v. The bound $n-1$ can be decreased to $(2 n+3) / 3$ if G is connected and bridgeless, which is necessary for G to have a spanning closed trail.

1. TERMINOLOGY

We use [4] for basic terminology and notation, but speak of vertices and edges instead of points and lines. Accordingly we denote the edge set of a graph G by $E(G)$. In [7] a circuit was defined as a nontrivial closed trail. Here the following subtle variation on this definition will be more convenient. A circuit C of a graph G is a nontrivial eulerian subgraph of G. Alternatively, C is a circuit if
and only if C is a nontrivial connected subgraph such that every vertex of C has even degree in C. If C is a circuit of G, then $\beta(C)$ denotes the number of edges of G incident with at least one vertex of C. A spanning circuit, or briefly S-circuit, of a graph G is a circuit that contains all vertices of G. A dominating circuit or D-circuit of G is a circuit such that every edge of G is incident with at least one vertex of the circuit. If H is a subgraph of G, then vertices of $G-V(H)$ which are adjacent to at least one vertex of H are called neighbors of H. We denote the neighbors of $H=\{v\}$ by $N\{v\}$. A graph of order n is pancyclic if it contains a cycle of length i for each i with $3 \leq i \leq n$. A chord of a cycle C in G is an edge in $E(G)-E(C)$ whose ends are in C. A connected graph G is said to be almost bridgeless if every bridge of G is incident with a vertex of degree 1 . If x is a real number, then $\lfloor x\rfloor$ and $\lceil x\rceil$ denote, respectively, the greatest integer smaller than or equal to x and the smallest integer greater than or equal to x.

2. DOMINATING CIRCUITS AND PANCYCLIC LINE GRAPHS

In [5] the following relation between D-circuits in graphs and hamiltonian cycles in line graphs is established.

Theorem 1. (Harary and Nash-Williams [5]). The line graph $L(G)$ of a graph G contains a hamiltonian cycle if and only if G has a D-circuit or G is isomorphic to $K_{1, s}$ for some $s \geq 3$.

In [3] Clark proved that the line graph $L(G)$ of a graph G is hamiltonian if G is connected, $|V(G)|=n \geq 6$ and $\operatorname{deg} u+\operatorname{deg} v \geq n-1-p(n)$ for every edge $u v$ of G, where $p(n)=0$ if n is even and $p(n)=1$ if n is odd. The graphs showing that Clark's result is best possible all contain a bridge which is not incident with a vertex of degree 1 . If a graph G contains a bridge $u v$ with $\operatorname{deg} u \neq 1 \neq \operatorname{deg} v$, then the vertex of $L(G)$ corresponding to $u v$ is a cut vertex of $L(G)$, so that $L(G)$ is nonhamiltonian. Hence a necessary condition for $L(G)$ to have a hamiltonian cycle, and for G to have a D-circuit, is that G is almost bridgeless. Using Theorem 1 we will show how Clark's bound $n-1-$ $p(n)$ can be decreased if G is additionally required to be almost bridgeless. Before presenting our result we state two lemmas, the first of which is easily proved and frequently used in [2] and [3].

Lemma 2. Let G be a connected graph and C a circuit of G with maximum number of vertices. Then G contains no circuit C^{\prime} satisfying $V\left(C^{\prime}\right) \cap V(C) \neq$ $\emptyset \neq V\left(C^{\prime}\right) \cap V(G)-V(C)$ and $\left|E\left(C^{\prime}\right) \cap E(C)\right| \leq 1$.

Lemma 3. Let G be a connected graph, C a circuit of G with maximum number of vertices, K a component of $G-V(C)$ and u_{1} and u_{2} two neighbors of K on C. Then the following assertions hold.
a. u_{1} and u_{2} are nonadjacent.
b. If $w \in N\left(u_{1}\right) \cap N\left(u_{2}\right)-V(K)$, then none of the vertex pairs $\left\{u_{1}, w\right\}$ and $\left\{u_{2}, w\right\}$ has a common neighbor.
c. If $w_{1} \in N\left(u_{1}\right)-V(K), w_{2} \in N\left(u_{2}\right)-V(K)$ and $w_{1} w_{2} \in E(G)$, then at most one of the pairs $\left\{u_{1}, w_{1}\right\},\left\{u_{2}, w_{2}\right\}$, and $\left\{w_{1}, w_{2}\right\}$ has a common neighbor.
d. If $v \in V(K)$ and $w \in N\left(u_{1}\right) \cap N\left(u_{2}\right)-V(K)$, then v and w are nonadjacent and have no common neighbor in $G-\left(V(K) \cup\left\{u_{1}, u_{2}\right\}\right)$.
e. If $w_{1}, w_{2} \in N\left(u_{1}\right) \cap N\left(u_{2}\right)-V(K)$, then w_{1} and w_{2} are nonadjacent and have no common neighbor in $G-\left\{u_{1}, u_{2}\right\}$.

Proof. Let G be a connected graph, C a circuit of G of maximum order, K a component of $G-V(C)$ and u_{1} and u_{2} two neighbors of K on C. Throughout the proof P will denote a $u_{1}-u_{2}$ path with $\emptyset \neq V(P)-\left\{u_{1}, u_{2}\right\} \subset V(K)$.
a. Suppose $u_{1} u_{2} \in E(G)$. Then the cycle with edge set $E(P) \cup\left(u_{1} u_{2}\right\}$ contradicts the assertion of Lemma 2. Hence u_{1} and u_{2} are nonadjacent.
b. Let w be a vertex of $N\left(u_{1}\right) \cap N\left(u_{2}\right)-V(K)$. If $u_{1} w \notin E(C)$ or $u_{2} w \notin$ $E(C)$ then the cycle with edge set $E(P) \cup\left\{u_{1} w, u_{2} w\right\}$ contradicts Lemma 2 . Hence $u_{1} w, u_{2} w \in E(C)$. Suppose, for example, u_{1} and w have a common neighbor v. From Lemma 2 we deduce that $v \in V(C)$ and at least one of the edges $u_{1} v$ and $v w$ is in $E(C)$. Depending on whether or not each of the edges $u_{1} v$ and $v w$ is in $E(C)$ we now define a subgraph C^{\prime} of G by specifying $E\left(C^{\prime}\right)-E(C)$ and $E(C)-E\left(C^{\prime}\right) ; V\left(C^{\prime}\right)$ will be the set of vertices of G incident with at least one edge of $E\left(C^{\prime}\right)$. In the table below there is a column for each of the edges $u_{1} v$ and $v w$; a one in such a column means that the relevant edge is in $E(C)$, while a zero means that it is in $E(G)-E(C)$.

$$
\begin{array}{ccll}
\frac{u_{1} v}{1} & \frac{v w}{1} & \frac{E\left(C^{\prime}\right)-E(C)}{E(P)} & \frac{E(C)-E\left(C^{\prime}\right)}{\left\{u_{1} w, u_{2} w\right\}} \\
1 & 0 & E(P) \cup\{v w\} & \left\{u_{1} v, u_{2} w\right\} \\
0 & 1 & E(P) \cup\left\{u_{1} v\right\} & \left\{v w, u_{2} w\right\}
\end{array}
$$

If, for example, $u_{1} v \in E(C)$ and $v w \notin E(C)$, then C^{\prime} is defined as the subgraph of G with $V\left(C^{\prime}\right)=V(C) \cup V(P)$ and $E\left(C^{\prime}\right)=E(C) \cup E(P) \cup$ $\{v w\}-\left\{u_{1} v, u_{2} w\right\}$, as indicated in the second row of the table. In all cases the fact that C is connected implies that C^{\prime} is connected. Furthermore, since all vertices of C have even degree in C, all vertices of C^{\prime} have even degree in C^{\prime}. It follows that C^{\prime} is a circuit with $\left|V\left(C^{\prime}\right)\right|=$ $|V(C) \cup V(P)|>|V(C)|$, contradicting the choice of C and completing the proof of (b).
c. Let w_{1} and w_{2} be vertices of G such that $w_{1} \in N\left(u_{1}\right)-V(K), w_{2} \in$ $N\left(u_{2}\right)-V(K)$ and $w_{1} w_{2} \in E(G)$. By Lemma 2 at least two of the edges $u_{1} w_{1}, w_{1} w_{2}$ and $u_{2} w_{2}$ are in $E(C)$. If one of the three edges is in $E(G)-$
$E(C)$, then a slight variation on the arguments used in (a) yields that the vertices incident with each of the remaining edges have no common neighbor. Hence assume $u_{1} w_{1}, w_{1} w_{2}, u_{2} w_{2} \in E(C)$. Suppose that at least two of the pairs $\left\{u_{1}, w_{1}\right\},\left\{w_{1}, w_{2}\right\}$ and $\left\{u_{2}, w_{2}\right\}$ have a common neighbor. We derive contradictions in two cases.

Case 1. There exists a vertex w of G which is adjacent to at least three of the vertices $u_{1}, u_{2}, w_{1}, w_{2}$.

From Lemma 2 and (b) we deduce that $w \in V(C)-\left\{u_{1}, u_{2}, w_{1}, w_{2}\right\}$ and w is adjacent to w_{1}, w_{2} and exactly one of the vertices u_{1} and u_{2}, u_{1} say. Lemma 2 also implies that at least one of the edges $w u_{1}$ and $w w_{2}$ is in $E(C)$. In all possible cases we now specify, like in the proof of (b), a circuit C^{\prime} of G with $\left|V\left(C^{\prime}\right)\right|>|V(C)|$, contradicting the choice of C.

$\frac{w u_{1}}{1}$	$\frac{w w_{1}}{1}$	$\frac{w w_{2}}{1}$	$\frac{E\left(C^{\prime}\right)-E(C)}{E(P)}$		$E(C)-E\left(C^{\prime}\right)$ 1
1	0		$E(P) \cup\left\{w w_{2}\right\}$	$\left\{\begin{array}{l}\left\{u_{1} w_{1}, u_{2} w_{2}, w_{1} w_{2}\right\} \\ 1\end{array}\right.$	0
1		$E(P) \cup\left\{w u_{1}, u_{2} w_{2}\right\}$			
0	1	1		$E(P) \cup\left\{w w_{1}\right\}$	$\left\{w u_{1}, w_{1} w_{2}, u_{2} w_{2}\right\}$
1	0	0	$E(P) \cup\left\{w u_{1}\right\}$	$\left\{w w_{2}, u_{2} w_{2}\right\}$	
0	0	1	$E(P) \cup\left\{w u_{1}\right\}$	$\left\{w u_{1}, u_{2} w_{2}\right\}$	
$\left\{w w_{2}, u_{2} w_{2}\right\}$					

Case 2. Each vertex of G is adjacent to at most two of the vertices u_{1}, u_{2}, w_{1}, w_{2}.

We assume that u_{i} and w_{i} have a common neighbor $v_{i}(i=1,2)$; the remaining subcases are similar. From Lemma 2 we deduce that $v_{1}, v_{2} \in V(C)$ and at least one of the edges $u_{1} v_{1}, v_{1} w_{1}, u_{2} v_{2}$ and $v_{2} w_{2}$ is in $E(C)$. Again a circuit C^{\prime} of G with $\left|V\left(C^{\prime}\right)\right|>|V(C)|$ can be specified in all possible cases. We only treat two representative cases.

$\frac{u_{1} v_{1}}{1}$	$\frac{v_{1} w_{1}}{1}$	$\frac{u_{2} v_{2}}{1}$	$\frac{v_{2} w_{2}}{0}$	$\frac{E\left(C^{\prime}\right)-E(C)}{E(P) \cup\left\{v_{2} w_{2}\right\}}$	$\frac{E(C)-E\left(C^{\prime}\right)}{\left\{u_{1} w_{1}, w_{1} w_{2}, u_{2} v_{2}\right\}}$
0	0	0	1	$E(P) \cup\left\{u_{1} v_{1}, v_{1} w_{1}, u_{2} v_{2}\right\}$	$\left\{w_{1} w_{2}, v_{2} w_{2}\right\}$

d. Let v be a vertex of K and w a vertex in $N\left(u_{1}\right) \cap N\left(u_{2}\right)-V(K)$. For $i=$ 1,2 , let P_{i} be a $v-u_{i}$ path with all internal vertices in K. From Lemma 2 it follows that $v w \notin E(G)$ and $u_{1} w, u_{2} w \in E(C)$. Suppose v and w have a common neighbor u in $G-\left(V(K) \cup\left\{u_{1}, u_{2}\right\}\right)$. Then $u w \in E(C)$ by Lemma 2. If w is not a cut vertex of C or if u_{1}, u_{2} and u are in the same component of $C-w$, then the subgraph C^{\prime} of G with $V\left(C^{\prime}\right)=V(C) \cup$ $V\left(P_{1}\right)$ and $E\left(C^{\prime}\right)=E(C) \cup E\left(P_{1}\right) \cup\{u v\}-\left\{u w, u_{1} w\right\}$ is connected, implying that C^{\prime} is a circuit of G with $\left|V\left(C^{\prime}\right)\right|>|V(C)|$. Hence assume that w is a cut vertex of C and, for example, u and u_{2} are in different components H_{1} and H_{2} of $C-w$, respectively. Let C_{i} be the subgraph of C
induced by $V\left(H_{i}\right) \cup\{w\}(i=1,2)$. Then C_{1} and C_{2} are subcircuits of C. In particular, C_{1} and C_{2} are bridgeless, so $C_{1}-u w$ and $C_{2}-u_{2} w$ are connected subgraphs of C. It follows that $C-\left\{u w, u_{2} w\right\}$ is connected, But then the circuit C^{\prime} with $V\left(C^{\prime}\right)=V(C) \cup V\left(P_{2}\right)$ and $E\left(C^{\prime}\right)=E(C) \cup$ $E\left(P_{2}\right) \cup\{u v\}-\left\{u w, u_{2} w\right\}$ contradicts the choice of C.
e. Let w_{1} and w_{2} be two vertices in $N\left(u_{1}\right) \cup N\left(u_{2}\right)-V(K)$. Then $u_{i} w_{j} \in$ $E(C)$ by Lemma $2(i=1,2 ; j=1,2)$. The table below shows that a circuit C^{\prime} with $\left|V\left(C^{\prime}\right)\right|>|V(C)|$ can be constructed if $w_{1} w_{2} \in E(G)$.

$\frac{w_{1} w_{2}}{1}$	$\frac{E\left(C^{\prime}\right)-E(C)}{E(P)}$	$\frac{E(C)-E\left(C^{\prime}\right)}{\left\{u_{1} w_{1}, u_{2} w_{1}\right\}}$
0	$E(P) \cup\left\{w_{1} w_{2}\right\}$	$\left[u_{1} w_{1}, u_{2} w_{2}\right\}$

Suppose w_{1} and w_{2} have a common neighbor v in $G-\left\{u_{1}, u_{2}\right\}$. Again a circuit C^{\prime} with $\left|V\left(C^{\prime}\right)\right|>|V(C)|$ can be specified. Note that in the fourth row of the table below v may be a vertex of P.

$\frac{v w_{1}}{1}$	$\frac{v w_{2}}{1}$	$\frac{E\left(C^{\prime}\right)-E(C)}{}$	$\frac{E(P)}{}$
1	0	$E(P) \cup\left\{v w_{2}\right\}$	$\frac{E(C)-E\left(C^{\prime}\right)}{\left\{u_{1} w_{1}, u_{2} w_{1}\right\}}$
0	1	$E(P) \cup\left\{v w_{1}\right\}$	$\left\{u_{1} w_{1}, v w_{1}, u_{2} w_{2}\right\}$
0	0	$E(P) \cup\left\{v w_{1}, v w_{2}\right\}$	$\left\{u_{1} w_{1}, v w_{2}, u_{2} w_{2}\right\}$
		$\left\{u_{1} w_{1}, u_{2} w_{2}\right\}$	

Theorem 4. Let G be a nontrivial connected, almost bridgeless graph of order n with $G \not \equiv K_{1, n-1}$. If $\operatorname{deg} u+\operatorname{deg} v \geq(2 n+1) / 3$ for every edge $u v$ of G, then G contains a D-circuit.

Proof. Let G be a connected, almost bridgeless graph of order n with $G \not \equiv$ $K_{1, n-1}$. Assuming that G contains no D-circuit, we will exhibit two adjacent vertices with degree-sum at most $\frac{2}{3} n$. Since G is almost bridgeless and $G \not \equiv$ $K_{1, n-1}$, deletion of all vertices of degree 1 yields a nontrivial bridgeless graph, implying that G contains a circuit. Let C be a circuit of G such that $|\mathrm{V}(C)|$ is maximum and $\beta(C) \geq \beta\left(C^{\prime}\right)$ for every circuit C^{\prime} with $\left|V\left(C^{\prime}\right)\right|=|V(C)|$. Since C is not a D-circuit, $G-V(C)$ has a nontrivial component K. From Lemma 2 and the fact that G is almost bridgeless we conclude that K has at least two neighbors on C. We distinguish three cases.

Case 1. K has two neighbors on C which are joined by a path of length 2 contained in $G-V(K)$.

Let u_{1} and u_{2} be two neighbors of K on C which are joined by the path $u_{1} w_{1} u_{2}$, where $w_{1} \notin V(K)$. Let P be a $u_{1}-w_{2}$ path with $\emptyset \neq V(P)-$ $\left\{u_{1}, u_{2}\right\} \subset V(K)$ such that $|V(P)|$ is minimum. Define v_{1} as the immediate successor of u_{1} on P. If $V(P)-\left\{u_{1}, u_{2}\right\}=\left\{v_{1}\right\}$, let v_{2} be an arbitrary neighbor of v_{1} in K, otherwise let v_{2} be the successor of v_{1} on P. Finally, let H be the
induced subgraph $\left.\left\langle V(P) \cup v_{2}, w_{1}\right\}\right\rangle$ of G. From Lemmas 2, 3(b) and 3(d) it follows that

$$
\begin{array}{r}
N\left(u_{1}\right) \cap N\left(v_{1}\right) \cap(V(G)-V(H))=N\left(u_{1}\right) \cap N\left(w_{1}\right) \cap(V(G)-V(H)) \\
=N\left(v_{1}\right) \cap N\left(w_{1}\right) \cap(V(G)-V(H))=\emptyset . \tag{1}
\end{array}
$$

We next show that

$$
\begin{equation*}
V(G)-\left(V(H) \cup N\left(u_{1}\right) \cup N\left(v_{1}\right) \cup N\left(w_{1}\right)\right) \neq \emptyset \tag{2}
\end{equation*}
$$

Since each vertex of C has even degree in C, u_{2} has a neighbor w_{2} on C with $w_{2} \neq w_{1}$. If $u_{1} w_{2} \notin E(G)$, then, by Lemmas 2 and $3(\mathrm{~b}), w_{2}$ is not adjacent to any of the vertices u_{1}, v_{1} and w_{1}, implying (2). Now assume $u_{1} w_{2} \in E(G)$. Then by Lemma 2 we have $u_{1} w_{2}, u_{2} w_{2} \in E(C)$ and $v_{2} w_{2} \notin E(G)$. There exists a vertex w in $G-V(H)$ which is adjacent to w_{2}, otherwise the circuit C^{\prime} with $V\left(C^{\prime}\right)=V(C) \cup V(P)-\left\{w_{2}\right\}$ and $E\left(C^{\prime}\right)=E(C) \cup E(P)-\left\{u_{1} w_{2}, u_{2} w_{2}\right\}$ satisfies $\left|V\left(C^{\prime}\right)\right| \geq|V(C)|$ and $\beta\left(C^{\prime}\right)>\beta(C)$, contradicting the choice of C. By Lemma 2, $w \notin V(K)$. Application of Lemmas 3(b), 3(d) and 3(e) yields that w is adjacent to none of the vertices u_{1}, v_{1} and w_{1}, implying (2).

Equation (1) expresses that each vertex of $G-V(H)$ is adjacent to at most one of the vertices u_{1}, v_{1} and w_{1}. Together with (2) we obtain

$$
\begin{align*}
\operatorname{deg} u_{1}+\operatorname{deg} v_{1}+\operatorname{deg} w_{1} \leq & n-|V(H)|-1+\operatorname{deg}_{H} u_{1}+\operatorname{deg}_{H} v_{1} \\
& +\operatorname{deg}_{H} w_{1} . \tag{3}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\operatorname{deg} u_{1}+\operatorname{deg} v_{2}+\operatorname{deg} w_{1} \leq & n-|V(H)|-1+\operatorname{deg}_{H} u_{1}+\operatorname{deg}_{H} v_{2} \\
& +\operatorname{deg}_{H} w_{1} . \tag{4}
\end{align*}
$$

Summation of the inequalities (3) and (4) yields

$$
\begin{align*}
& 2\left(\operatorname{deg} u_{1}+\operatorname{deg} w_{1}\right)+\operatorname{deg} v_{1}+\operatorname{deg} v_{2} \\
& \quad \leq 2\left(n-|V(H)|-1+\operatorname{deg}_{H} u_{1}+\operatorname{deg}_{H} w_{1}\right)+\operatorname{deg}_{H} v_{1}+\operatorname{deg}_{H} v_{2} \tag{5}
\end{align*}
$$

From Lemma 2, Lemma 3(a) and the minimality of $|V(P)|$ we conclude that every vertex of $H-\left\{v_{1}, v_{2}\right\}$ has degree 2 in H. Furthermore, $\operatorname{deg}_{H} v_{1}=$ $\operatorname{deg}_{H} v_{2}=2$ if $v_{2} \in V(P)$, while $\operatorname{deg}_{H} v_{1}=3$ and $\operatorname{deg}_{H} v_{2}=1$ otherwise. Observing that $|V(H)| \geq 5$ we now deduce from (5) that

$$
2\left(\operatorname{deg} u_{1}+\operatorname{deg} w_{1}\right)+\operatorname{deg} v_{1}+\operatorname{deg} v_{2} \leq 2 n
$$

It follows that either $\operatorname{deg} u_{1}+\operatorname{deg} w_{1} \leq \frac{2}{3} n$ or $\operatorname{deg} v_{1}+\operatorname{deg} v_{2} \leq \frac{2}{3} n$, settling Case 1.

Case 2. Case 1 does not apply and K has two neighbors on C which are joined by a path of length 3 contained in $G-V(K)$.

Let u_{1} and u_{2} be two neighbors of K on C which are joined by the path $u_{1} w_{1} w_{2} u_{2}$, where $w_{1}, w_{2} \notin V(K)$. Define P, v_{1} and v_{2} as in Case 1 and put $H=\left\langle V(P) \cup\left\{v_{2}, w_{1}, w_{2}\right\}\right\rangle$. By Lemma 3(c) at least one of the pairs $\left\{u_{1}, w_{1}\right\}$ and $\left\{u_{2}, w_{2}\right\},\left\{u_{1}, w_{1}\right\}$ say, has no common neighbor. In particular,

$$
\begin{equation*}
N\left(u_{1}\right) \cap N\left(w_{1}\right) \cap(V(G)-V(H))=\emptyset . \tag{6}
\end{equation*}
$$

By Lemma 2, v_{1} and w_{1} have no common neighbor outside C. Suppose v_{1} and w_{1} have a common neighbor u on C with $u \neq u_{1}$. Then Case 1 applies to the neighbors u and u_{1} of K on C, contrary to assumption. We conclude that

$$
\begin{equation*}
N\left(v_{1}\right) \cap N\left(w_{1}\right) \cap(V(G)-V(H))=\emptyset . \tag{7}
\end{equation*}
$$

Another application of Lemma 2 gives us

$$
\begin{equation*}
N\left(u_{1}\right) \cap N\left(v_{1}\right) \cap(V(G)-V(H))=\emptyset . \tag{8}
\end{equation*}
$$

From (6), (7), and (8) we deduce that

$$
\begin{equation*}
\operatorname{deg} u_{1}+\operatorname{deg} v_{1}+\operatorname{deg} w_{1} \leq n-|V(H)|+\operatorname{deg}_{H} u_{1}+\operatorname{deg}_{H} v_{1}+\operatorname{deg}_{H} w_{1} \tag{9}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\operatorname{deg} u_{1}+\operatorname{deg} v_{2}+\operatorname{deg} w_{1} \leq n-|V(H)|+\operatorname{deg}_{H} u_{1}+\operatorname{deg}_{H} v_{2}+\operatorname{deg}_{H} w_{1} \tag{10}
\end{equation*}
$$

Summation of (9) and (10) yields

$$
\begin{align*}
& 2\left(\operatorname{deg} u_{1}+\operatorname{deg} w_{1}\right)+\operatorname{deg} v_{1}+\operatorname{deg} v_{2} \\
& \quad \leq 2\left(n-|V(H)|+\operatorname{deg}_{H} u_{1}+\operatorname{deg}_{H} w_{1}\right)+\operatorname{deg}_{H} v_{1}+\operatorname{deg}_{H} v_{2} \tag{11}
\end{align*}
$$

By Lemmas 2, 3(a), 3(b) and the minimality of $|V(P)|$, every vertex of $H-\left\{v_{1}, v_{2}\right\}$ has degree 2 in H, while $\operatorname{deg}_{H} v_{1}+\operatorname{deg}_{H} v_{2}=4$. Observing that $|V(H)| \geq 6$, we deduce from (11) that

$$
2\left(\operatorname{deg} u_{1}+\operatorname{deg} w_{1}\right)+\operatorname{deg} v_{1}+\operatorname{deg} v_{2} \leq 2 n
$$

implying that either $\operatorname{deg} u_{1}+\operatorname{deg} w_{1} \leq \frac{2}{3} n$ or $\operatorname{deg} v_{1}+\operatorname{deg} v_{2} \leq \frac{2}{3} n$.
Case 3. Neither Case 1 nor Case 2 applies.
Let u_{1} and u_{2} be two arbitrary neighbors of K on C and w a vertex in $N\left(u_{2}\right)-V(K)$. Define P, v_{1} and v_{2} as in Case 1 and put $H=\left\langle V(P) \cup\left\{v_{2}, w\right\}\right\rangle$.

By Lemma 2 and by assumption we have

$$
\begin{align*}
N\left(u_{1}\right) \cap N\left(v_{1}\right) \cap(V(G)-V(H)) & =N\left(u_{2}\right) \cap N\left(v_{1}\right) \cap(V(G)-V(H)) \\
& =N\left(u_{1}\right) \cap N\left(u_{2}\right) \cap(V(G)-V(H))=\emptyset \tag{12}
\end{align*}
$$

implying that

$$
\begin{aligned}
\operatorname{deg} u_{1}+\operatorname{deg} v_{1}+\operatorname{deg} u_{2} & \leq n-|V(H)|+\operatorname{deg}_{H} u_{1}+\operatorname{deg}_{H} v_{1}+\operatorname{deg}_{H} u_{2} \\
& \leq n-5+1+3+2=n+1
\end{aligned}
$$

Suppose $\operatorname{deg} u_{1}+\operatorname{deg} v_{1}+\operatorname{deg} u_{2}=n+1$. Then, putting $U_{1}=N\left(u_{1}\right) \cap$ $V(C), U_{2}=N\left(u_{2}\right) \cap V(C)$ and $V_{1}=N\left(v_{1}\right) \cap V(C)-\left\{u_{1}, u_{2}\right\}$, we have $U_{1} \neq$ $\emptyset \neq U_{2}$ and each vertex of $C-\left\{u_{1}, u_{2}\right\}$ is in exactly one of the sets U_{1}, U_{2} and V_{1}. Since C is connected, there exists an edge $u v$ of C with $u \in U_{1}$ and $v \in U_{2} \cup V_{1}$. If $v \in V_{1}$, then Case 1 applies to the neighbors u_{1} and v of K on C, contrary to assumption. If $v \in U_{2}$, then Case 2 applies to u_{1} and u_{2}, again contrary to assumption. We conclude that

$$
\begin{equation*}
\operatorname{deg} u_{1}+\operatorname{deg} v_{1}+\operatorname{deg} u_{2} \leq n \tag{13}
\end{equation*}
$$

By Lemma 2, $N\left(v_{1}\right) \cap N(w) \cap(V(G)-V(C))=N\left(u_{1}\right) \cap N(w) \cap(V(G)-$ $V(C))=\emptyset$. Assuming that $N\left(v_{1}\right) \cap N(w) \cap V(C)-\left\{u_{2}\right\} \neq \emptyset$ or $N\left(u_{1}\right) \cap$ $N(w) \cap V(C) \neq \emptyset$, we reach the contradiction that Case 1 or Case 2 applies. Hence

$$
\begin{equation*}
N\left(v_{1}\right) \cap N(w) \cap(V(G)-V(H))=N\left(u_{1}\right) \cap N(w) \cap(V(G)-V(H))=\emptyset \tag{14}
\end{equation*}
$$

Together with (12) we obtain

$$
\begin{align*}
\operatorname{deg} u_{1}+\operatorname{deg} v_{1}+\operatorname{deg} w & \leq n-|V(H)|+\operatorname{deg}_{H} u_{1}+\operatorname{deg}_{H} v_{1}+\operatorname{deg}_{H} w \\
& \leq n-5+1+3+1=n \tag{15}
\end{align*}
$$

Summation of (13) and (15) yields

$$
2\left(\operatorname{deg} u_{1}+\operatorname{deg} v_{1}\right)+\operatorname{deg} u_{2}+\operatorname{deg} w \leq 2 n
$$

so that either $\operatorname{deg} u_{1}+\operatorname{deg} v_{1} \leq \frac{2}{3} n$ or $\operatorname{deg} u_{2}+\operatorname{deg} w \leq \frac{2}{3} n$.
Corollary 5. Let G be a connected, almost bridgeless graph of order $n \geq 4$ such that $\operatorname{deg} u+\operatorname{deg} v \geq(2 n+1) / 3$ for every edge $u v$ of G. Then $L(G)$ is hamiltonian. Moreover, if $G \not \equiv C_{4}, C_{5}$, then $L(G)$ is pancyclic.

Proof. Let G be a connected, almost bridgeless graph of order $n \geq 4$ such that deg $u+\operatorname{deg} v \geq(2 n+1) / 3$ for every edge $u v$ of G. The existence of a hamiltonian cycle in $L(G)$ immediately follows from the combination of Theorems 1 and 4 . If $G \cong K_{1, n-1}$, then $L(G)$ is complete and hence pancyclic. Now assume $G \not \equiv C_{4}, C_{5}, K_{1, n-1}$ and $L(G)$ is not pancyclic. Let $k=\max \{i \mid L(G)$ does not contain C_{i} \}.

We have $\Delta(G) \geq 3$, so $k \geq 4$. Let $D=u_{1} u_{2} \ldots u_{p} u_{1}$ be a shortest cycle in G and suppose $p \geq 5$. Then every vertex of $G-V(D)$ is adjacent to at most one vertex of D, implying that

$$
p(2 n+1) / 6 \leq \sum_{i=1}^{p} \operatorname{deg} u_{i} \leq n-p+2 p
$$

so that $n \leq\lfloor 5 p /(2 p-6)\rfloor \leq 6$. However, it is easily checked that every graph of order at most 6 satisfying our assumptions has a cycle of length at most 4 . Hence, in fact, $p \leq 4$ and

$$
\begin{align*}
\beta(D) & \geq p+\sum_{i=1}^{p}\left(\operatorname{deg} u_{i}-2\right) \geq\lceil-p+p(2 n+1) / 6\rceil \\
& =\lceil p(2 n-5) / 6\rceil \geq\lceil(2 n-5) / 2\rceil=n-2 . \tag{16}
\end{align*}
$$

Observing that, for any circuit C of $G, L(G)$ contains a cycle of length i for every i with $|E(C)| \leq i \leq \beta(C)$, we conclude that $k \geq n-1$.
$L(G)$ is hamiltonian, so $k<|E(G)|$ and $L(G)$ contains C_{k+1}. Hence G contains a circuit C with $|E(C)| \leq k+1 \leq \beta(C)$. In fact $|E(C)|=k+1$, otherwise $L(G)$ contains C_{k}. Since C is a circuit, there exists edge-disjoint cycles $D_{1}, D_{2}, \ldots, D_{r}$ such that $C=\bigcup_{i=1}^{r} D_{i}$. We now derive contradictions in two cases.

Case 1. $r=1$.
Since $|E(C)|=k+1 \geq n, C$ is a hamiltonian cycle of G and $k=n-1$. Let D^{\prime} be a shortest cycle among all cycles of G that contain exactly one chord of C. Let D^{\prime} have length q. If $q=3$, then G, and hence $L(G)$ too, contains C_{n-1}, a contradiction. If $q \geq 4$, then $n \geq 6$ and as in (16) we obtain

$$
\beta\left(D^{\prime}\right) \geq\lceil q(2 n-5) / 6\rceil \geq\lceil 4(2 n-5) / 6\rceil \geq n-1,
$$

again implying the contradiction that $L(G)$ contains C_{n-1}.
Case 2. $r \geq 2$.
Let H be the graph with $V(H)=\left\{D_{1}, D_{2}, \ldots, D_{r}\right\}$ and $D_{i} D_{j} \in E(H)$ if and only if $V\left(D_{i}\right) \cap V\left(D_{j}\right) \neq \emptyset$. Since H is connected, at least two vertices of H are not cut vertices of H. Equivalently, there are at least two values of j for which $\cup_{1 \leq i \leq r, i \neq j} D_{i}$ is a connected subgraph of G and hence a circuit of G. Assume
without loss of generality that $C^{\prime}=\cup_{i=2}^{r} D_{i}$ and $C^{\prime \prime}=D_{1} \cup \cup_{i-3}^{r} D_{i}$ are circuits of G. If $E\left(D_{2}-V\left(C^{\prime \prime}\right)\right)=\emptyset$, then $\left|E\left(C^{\prime \prime}\right)\right|<|E(C)|=k+1 \leq \beta\left(C^{\prime \prime}\right)$, so that $L(G)$ contains C_{k}. Hence there exists an edge $u v$ of D_{2} with $u, v \notin$ $V\left(C^{\prime \prime}\right)$. Let E_{1} be the set of edges of D_{1} incident with at least one vertex of C^{\prime} and $E_{2}=E\left(D_{1}\right)-E_{1}$. Then

$$
\begin{aligned}
\beta\left(C^{\prime}\right) \geq & \left|E\left(C^{\prime}\right)\right|+\left|E_{1}\right|+\operatorname{deg} u-2+\operatorname{deg} v-2 \geq|E(C)|-\left|E_{2}\right| \\
& +(2 n+1) / 3-4
\end{aligned}
$$

On the other hand, since $L(G)$ does not contain C_{k},

$$
\beta\left(C^{\prime}\right) \leq k-1=|E(C)|-2
$$

It follows that $\left|E_{2}\right| \geq(2 n-5) / 3$. Hence $\left|V\left(D_{1}-V\left(C^{\prime}\right)\right)\right| \geq(2 n-2) / 3$ and similarily $\left|V\left(D_{2}-V\left(C^{\prime \prime}\right)\right)\right| \geq(2 n-2) / 3$. But then

$$
\begin{aligned}
n=|V(G)| & \geq\left|V\left(D_{1}-V\left(C^{\prime}\right)\right)\right|+\left|V\left(D_{2}-V\left(C^{\prime \prime}\right)\right)\right|+1 \\
& \geq 2(2 n-2) / 3+1>n
\end{aligned}
$$

a contradiction.

We do not know any connected, almost bridgeless graph G of order n without a D-circuit such that $G \not \equiv K_{t, n-1}$ and $\operatorname{deg} u+\operatorname{deg} v \geq \frac{2}{3} n$ for every edge $u v$ of G. We conjecture that, for n sufficiently large, the bound $(2 n+1) / 3$ in Theorem 4 and Corollary 5 can be decreased to $(2 n-9) / 5$. If true, this conjecture is best possible. To see this, construct for $i \geq 3$ a graph $G(i)$ as follows: take five disjoint copies of K_{i}, label them G_{1}, \ldots, G_{5}; choose three vertices u_{1}, u_{2}, u_{3} in G_{1}, three vertices $v_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ in G_{2}, two vertices x_{1}, x_{2} in G_{3}, two vertices y_{1}, y_{2} in G_{4} and two vertices z_{1}, z_{2} in G_{5}; obtain $G(i)$ as $\cup_{j-1}^{5} G_{j}+$ $\left\{u_{1} x_{1}, u_{2} y_{1}, u_{3} z_{1}, v_{1} x_{2}, v_{2} y_{2}, v_{3} z_{2}\right\}$. Then $G(i)$ is 2 -connected and deg $u+$ $\operatorname{deg} v \geq(2|V(G(i))|-10) / 5$ for every edge $u v$ of $G(i)$, while $G(i)$ contains no D-circuit and hence $L(G(i))$ is nonhamiltonian.

Although Corollary 5 may not be best possible, it is strong enough to contain Clark's result.

Corollary 6. (Clark [3]). Let G be a connected graph of order $n \geq 6$. If $\operatorname{deg} u+\operatorname{deg} v \geq n-1-p(n)$ for every edge $u v$ of G, where $p(n)=0$ if n is even and $p(n)=1$ if n is odd, then $L(G)$ is hamiltonian.

Proof. Let G be a connected graph of order $n \geq 6$ such that $\operatorname{deg} u+$ $\operatorname{deg} v \geq n-1-p(n)$ for every edge $u v$ of G. Since $n \geq 6, n-1-$ $p(n) \geq(2 n+1) / 3$. Hence we are done by Corollary 5 if G is shown to be almost bridgeless. Suppose G contains a bridge $u_{1} u_{2}$ with deg $u_{1} \neq 1 \neq$
deg u_{2}. Let H_{i} be the component of $G-u_{1} u_{2}$ containing $u_{i}(i=1,2)$. Assume without loss of generality that $\left|V\left(H_{1}\right)\right| \leq\left|V\left(H_{2}\right)\right|$, so that $\left|V\left(H_{1}\right)\right| \leq(n-p(n)) /$ 2. Since $\left|V\left(H_{1}\right)\right| \geq 2, H_{1}-u_{1}$ contains a vertex u. If u has a neighbor v with $v \neq u_{1}$, then $\operatorname{deg} u+\operatorname{deg} v \leq 2\left(\left|V\left(H_{1}\right)\right|-1\right) \leq n-p(n)-2$, a contradiction. If u has no neighbor in $H-u_{1}$, then $u u_{1} \in E(G)$ and deg $u=1$, so that $\operatorname{deg} u+\operatorname{deg} u_{1} \leq 1+\left|V\left(H_{1}\right)\right| \leq 1+(n-p(n)) / 2$. For $n \geq 6$ we have $1+(n-p(n)) / 2 \leq n-2-p(n)$. Thus $\operatorname{deg} u+\operatorname{deg} u_{1} \leq n-2-p(n)$, again a contradiction.

The bound $(2 n+1) / 3$ in Corollary 5 can be decreased in case only hamiltonian graphs are considered.

Theorem 7. Let G be a hamiltonian graph of order $n \geq 13$. If $\operatorname{deg} u+$ $\operatorname{deg} v \geq n / 2$ for every edge $u v$ of G, then $L(G)$ is pancyclic.

For the proof of Theorem 7 we refer to [1].

3. SPANNING CIRCUITS

In [6] Lesniak-Foster and Williamson proved that a graph G contains an S circuit if $|V(G)|=n \geq 6, \delta(G) \geq 2$ and $\operatorname{deg} u+\operatorname{deg} v \geq n-1$ for every pair of nonadjacent vertices u and v. All graphs showing that this resuit is best possible contain a bridge. For a graph G to have an S-circuit it is necessary that G is connected and contains no bridges. We now show how the above result can be improved by additionally imposing these necessary conditions.

Theorem 8. Let G be a connected bridgelsss graph of order $n \geq 3$. If $\operatorname{deg} u+\operatorname{deg} v \geq(2 n+3) / 3$ for every pair of nonadjacent vertices u and v, then G contains an S-circuit.

Proof. Let G be a connected bridgeless graph of order $n \geq 3$. Assuming that G contains no S-circuit, we will exhibit two nonadjacent vertices with degree-sum smaller than $(2 n+3) / 3$. Since G is bridgeless, G contains a circuit. Let C be a circuit of G of maximum order and K a component of $G-V(C)$. By Lemma 2 and the fact that G is bridgeless, K has at least two neighbors on C. We distinguish three cases.

Case 1. K has two neighbors on C which are joined by a path of length 2 contained in $G-V(K)$.

Let u_{1} and u_{2} be two neighbors of K on C which are joined by the path $u_{1} w_{1} u_{2}$, where $w_{1} \notin V(K)$. Let P be a $u_{1}-u_{2}$ path with $\emptyset \neq V(P)-\left\{u_{1}, u_{2}\right\} \subset$ $V(K)$ such that $|V(P)|$ is minimum and let v be an arbitrary vertex in $V(P) \cap$ $V(K)$. We distinguish two subcases.

Case 1.1. $\quad u_{1}$ and u_{2} have a common neighbor $w_{2} \in V(G)-\left(V(K) \cup\left\{w_{1}\right\}\right)$.
Put $H=\left\langle V(P) \cup\left\{w_{1}, w_{2}\right\}\right\rangle$. Lemmas 2, 3(d) and 3(e) imply that $\left\{v, w_{1}, w_{2}\right\}$ is an independent set and each vertex of $G-V(H)$ is adjacent to at most one of the vertices v, w_{1}, and w_{2}. Together with the minimality of $|V(P)|$ we obtain

$$
\begin{aligned}
\operatorname{deg} v+\operatorname{deg} w_{1}+\operatorname{deg} w_{2} & \leq n-|V(H)|+\operatorname{deg}_{H} v+\operatorname{deg}_{H} w_{1}+\operatorname{deg}_{H} w_{2} \\
& \leq n-5+2+2+2=n+1
\end{aligned}
$$

It follows that at least one of the nonadjacent vertex pairs $\left\{v, w_{1}\right\},\left\{v, w_{2}\right\}$ and $\left\{w_{1}, w_{2}\right\}$ has degree-sum at most $2(n+1) / 3$, settling Case 1.1.

Case 1.2. $\quad u_{1}$ and u_{2} have no common neighbor in $V(G)-\left(V(K) \cup\left\{w_{1}\right\}\right)$.
Put $H=\left\langle V(P) \cup\left\{w_{1}\right\}\right\rangle$. By Lemmas 2, 3(b) and 3(d), each vertex of $G-$ $V(H)$ is adjacent to at most one of the vertices u_{1}, u_{2}, v, w_{1}, so that

$$
\begin{aligned}
\operatorname{deg} u_{1} & +\operatorname{deg} u_{2}+\operatorname{deg} v+\operatorname{deg} w_{1} \leq n-|V(H)|+\operatorname{deg}_{H} u_{1}+\operatorname{deg}_{H} u_{2} \\
& +\operatorname{deg}_{H} v+\operatorname{deg}_{H} w_{1} \leq n-4+2+2+2+2=n+4
\end{aligned}
$$

It follows that at least one of the nonadjacent vertex pairs $\left\{u_{1}, u_{2}\right\}$ and $\left\{v, w_{1}\right\}$ has degree-sum at most $(n+4) / 2$. If $n>6$, then $(n+4) / 2<(2 n+3) / 3$ and we are done. Now assume $n \leq 6$. Since $\operatorname{deg}_{c} u_{i} \geq 2, u_{i}$ has a neighbor v_{i} on C with $v_{i} \neq w_{1}(i=1,2)$. By assumption v_{1} and v_{2} do not coincide, so that $n \geq 6$ and hence $n=6$. By Lemmas 2 and $3(\mathrm{~b}),\left(N(v) \cup N\left(w_{1}\right)\right) \cap$ $\left\{v_{1}, v_{2}\right\}=\emptyset$. Thus $\operatorname{deg} v=\operatorname{deg} w_{1}=2$, so that $\operatorname{deg} v+\operatorname{deg} w_{1}=4<5=$ $(2 n+3) / 3$.

Case 2. Case 1 does not apply and K has two neighbors on C which are joined by a path of length 3 contained in $G-V(K)$.

Let u_{1} and u_{2} be two neighbors of K on C which are joined by the path $u_{1} w_{1} w_{2} u_{2}$, where $w_{1}, w_{2} \notin V(K)$. Define P and v as in Case 1 and put $H=$ $\left\langle V(P) \cup\left\{w_{1}, w_{2}\right\}\right\rangle$. By Lemma 3(c) at least one of the following three subcases applies.

Case 2.1. $\quad N\left(u_{1}\right) \cap N\left(w_{1}\right)=N\left(u_{2}\right) \cap N\left(w_{2}\right)=\emptyset$.
By Lemma 2 and the fact that Case 1 does not apply, each vertex of $G-V(H)$ is adjacent to at most one of the vertices u_{1}, v and w_{1}. Hence

$$
\begin{align*}
\operatorname{deg} u_{1}+\operatorname{deg} v+\operatorname{deg} w_{1} & \leq n-|V(H)|+\operatorname{deg}_{H} u_{1}+\operatorname{deg}_{H} v+\operatorname{deg}_{H} w_{1} \\
& \leq n-5+2+2+2=n+1 \tag{17}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\operatorname{deg} u_{2}+\operatorname{deg} v+\operatorname{deg} w_{2} \leq n+1 \tag{18}
\end{equation*}
$$

Assuming without loss of generality that $\operatorname{deg} w_{1} \leq \operatorname{deg} w_{2}$ we deduce from (17) and (18) that

$$
\begin{aligned}
2\left(\operatorname{deg} v+\operatorname{deg} w_{1}\right)+\operatorname{deg} u_{1}+\operatorname{deg} u_{2} \leq & 2 \operatorname{deg} v+\operatorname{deg} w_{1}+\operatorname{deg} w_{2} \\
& +\operatorname{deg} u_{1}+\operatorname{deg} u_{2} \leq 2 n+2 .
\end{aligned}
$$

Hence one of the nonadjacent vertex pairs $\left\{v, w_{1}\right\}$ and $\left\{u_{1}, u_{2}\right\}$ has degree-sum at most $(2 n+2) / 3$.

Case 2.2 $N\left(u_{1}\right) \cap N\left(w_{1}\right)=N\left(w_{1}\right) \cap N\left(w_{2}\right)=\emptyset$.
Similar arguments as used in Case 2.1 now yield

$$
\operatorname{deg} u_{1}+\operatorname{deg} v+\operatorname{deg} w_{1} \leq n+1
$$

and

$$
\operatorname{deg} v+\operatorname{deg} w_{1}+\operatorname{deg} w_{2} \leq n+1
$$

implying that

$$
2\left(\operatorname{deg} v+\operatorname{deg} w_{1}\right)+\operatorname{deg} u_{1}+\operatorname{deg} w_{2} \leq 2 n+2
$$

Hence either $\operatorname{deg} v+\operatorname{deg} w_{1} \leq(2 n+2) / 3$ or $\operatorname{deg} u_{1}+\operatorname{deg} w_{2} \leq(2 n+2) / 3$.
Case 2.3. $\quad N\left(u_{2}\right) \cap N\left(w_{2}\right)=N\left(w_{1}\right) \cap N\left(w_{2}\right)=\emptyset$.
This case is symmetric to Case 2.2.
Case 3. Neither Case 1 nor Case 2 applies.
Let u_{1} and u_{2} be two neighbors of K on C and, for $i=1,2, w_{i}$ a vertex in $N\left(u_{i}\right)-V(K)$. Define P and v as in Case 1 and put $H=\left\langle V(P) \cup\left\{w_{1}, w_{2}\right\}\right\rangle$. By Lemma 2 and the fact that neither Case 1 nor Case 2 applies, each vertex of $G-V(H)$ is adjacent to at most one of the vertices u_{1}, v and w_{2}. Hence

$$
\begin{aligned}
\operatorname{deg} u_{1}+\operatorname{deg} v+\operatorname{deg} w_{2} & \leq n-|V(H)|+\operatorname{deg}_{H} u_{1}+\operatorname{deg}_{H} v+\operatorname{deg}_{H} w_{2} \\
& \leq n-5+2+2+1=n .
\end{aligned}
$$

Similarly,

$$
\operatorname{deg} u_{2}+\operatorname{deg} v+\operatorname{deg} w_{1} \leq n
$$

Assuming without loss of generality that deg $w_{1} \leq \operatorname{deg} w_{2}$, we obtain

$$
2\left(\operatorname{deg} v+\operatorname{deg} w_{1}\right)+\operatorname{deg} u_{1}+\operatorname{deg} u_{2} \leq 2 n
$$

Hence either $\operatorname{deg} v+\operatorname{deg} w_{1} \leq \frac{2}{3} n$ or $\operatorname{deg} u_{1}+\operatorname{deg} u_{2} \leq \frac{2}{3} n$.

The graph $K_{2,3}$ is the only known example of a connected bridgeless graph of order $n \geq 3$ without an S-circuit such that $\operatorname{deg} u+\operatorname{deg} v \geq(2 n+2) / 3$ for every pair of nonadjacent vertices u and v. We conjecture that the bound in Theorem 8 , too, can be decreased to $(2 n-9) / 5$ if n is sufficiently large. Such an improvement would be best possible in view of the graphs $G(i)$ defined in Section 2.

Theorem 8 implies the result of Lesniak-Foster and Williamson mentioned above.

Corollary 9. (Lesniak-Foster and Williamson [6]). Let G be a graph with $|V(G)|=n \geq 6$ and $\delta(G) \geq 2$. If $\operatorname{deg} u+\operatorname{deg} v \geq n-1$ for every pair of nonadjacent vertices u and v, then G contains an S-circuit.

Proof. Let G be a graph with $|V(G)|=n \geq 6$ and $\delta(G) \geq 2$ such that $\operatorname{deg} u+\operatorname{deg} v \geq n-1$ for every pair of nonadjacent vertices u and v. It is easily seen that G must be connected. Since $n \geq 6, n-1 \geq(2 n+3) / 3$. In view of Theorem 8 it remains to be shown that G is bridgeless. Suppose G contains a bridge $u_{1} u_{2}$. Let H_{i} be the component of $G-u_{1} u_{2}$ containing u_{i} $(i=1,2)$. Since $\delta(G) \geq 2, H_{i}$ is nontrivial, say that $v_{i} \in V\left(H_{i}\right)-\left\{u_{i}\right\}$ $(i=1,2)$. Then $v_{1} v_{2} \notin E(G)$ and $\operatorname{deg} v_{1}+\operatorname{deg} v_{2} \leq\left|V\left(H_{1}\right)\right|-1+$ $\left|V\left(H_{2}\right)\right|-1=n-2$, a contradiction.

4. DOMINATING CIRCUITS REVISITED

A slight variation on the proof of Theorem 8 gives us the following counterpart of Theorem 4.

Theorem 10. Let G be a connected, almost bridgeless graph of order $n \geq 3$. If deg $u+\operatorname{deg} v \geq(2 n+1) / 3$ for every pair of nonadjacent vertices u and v, then G contains a D-circuit.

Proof outline. Let G be a connected, almost bridgeless graph of order $n \geq 3$. We will exhibit a nonadjacent vertex pair with degree-sum smaller than $(2 n+1) / 3$ under the assumption that G contains no D-circuit. Let C be a circuit of G of maximum order and K a nontrivial component of $G-V(C) . K$ has at least two neighbors on C.

Distinguish the same cases as in the proof of Theorem 8. In each case define P as a shortest $u_{1}-u_{2}$ path with $\emptyset \neq V(P)-\left\{u_{1}, u_{2}\right\} \subset V(K)$ and v_{1} as the successor of u_{1} on P. If $V(P)-\left\{u_{1}, u_{2}\right\}=\left\{v_{1}\right\}$, let v be an arbitrary neighbor of v_{1} in K, otherwise let v be the successor of v_{1} on P. Now all upper bounds on degree-sums in the proof of Theorem 8 can be decreased to obtain a vertex pair as desired.

Without proof we mention that the corresponding counterpart of Corollary 5 also holds.

Corollary 11. Let G be a connected, almost bridgeless graph of order $n \geq 3$ such that $\operatorname{deg} u+\operatorname{deg} v \geq(2 n+1) / 3$ for every pair of nonadjacent vertices u and v. Then $L(G)$ is hamiltonian. Moreover, if $G \neq C_{4}, C_{5}$, then $L(G)$ is pancyclic.

Again we conjecture, as a best possible improvement of Theorem 10 and Corollary 11 , that the bound $(2 n+1) / 3$ can be decreased to $(2 n-9) / 5$ for n sufficiently large.

Note added in proof. A graph G is cyclically 2 -edge-connected if no two cycles of G can be separated by the removal of at most one edge. Suppose G has order $n \geq 5$ with deg $u+\operatorname{deg} v \geq(2 n+1) / 3$ for every edge $u v$ of G. Then G is connected and almost bridgeless if and only if G is cyclically 2-edge-connected and has no isolated vertices. Consequently, a corollary of Theorem 4 is the following: Let G be a nontrivial cyclically 2 -edge-connected graph of order n with no isolated vertices. If $\operatorname{deg} u+\operatorname{deg} v \geq(2 n+1) / 3$ for every edge $u v$ of G, then G contains a D-circuit. Here the bound $(2 n+1) / 3$ is best possible, as the following example shows. Let u be any vertex in $K_{\left(n^{\prime 3}\right)-1}, v$ the center of the star $K_{1,(2 n / 3)-2}$ and $G=\left(K_{(n / 3)-1} \cup K_{1 .(2 n / 3)-2}\right)+u v$. Then G satisfies the above conditions with $(2 n+1) / 3$ replaced with $2 n / 3$ but G has no D-circuit, since $L(G)$ is not hamiltonian.

References

[1] A. Benhocine, Problèmes hamiltoniens et pancyclisme dans les graphes adjoints. Thesis, Paris XI, France (1986).
[2] R. A. Brualdi and R.F. Shanny, Hamiltonian line graphs. J. Graph Theory 5 (1981) 307-314.
[3] L. Clark, On hamiltonian line graphs. J. Graph Theory 8 (1984) 303-307.
[4] F. Harary, Graph Theory. Addison-Wesley, Reading, Mass. (1969).
[5] F. Harary and C. St. J. A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs. Canad. Math. Bull. 8 (1965) 701-710.
[6] L. Lesniak-Foster and J. E. Williamson, On spanning and dominating circuits in graphs. Canad. Math. Bull. 20 (1977) 215-220.
[7] H. J. Veldman, Existence of spanning and dominating trails and circuits. To appear in J. Graph Theory.

