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ABSTRACT 

Fuzziness is discussed in the context of multivalued lo&, and a corresponding view of 
fuzzy sets is given. Fuzzy random variables are introduced as random variables whose values 
are not real but fuzzy numbers, and subsequently redefined as a particular kind of fuzzy set. 
Expectations of fuzzy random variables, characteristic f~cti~ of fuzzy events, probabilities 
connected to fuzzy random variables, and conditional expectations and probabilities relating 
to fuzzy random variabIes are defined as images of the fuzzy set representing the fuzzy 
random variable under appropriate mappings. Several theorems, some of which relate to 
independent fuzzy random variables, are proved. 

1. INTRODUCTION 

This paper is the first of a series of reports on fuzzy random variables. 
Fuzzy random variables are random variables whose values are not real, but 
fuzzy numbers. To illustrate this, we give an example of a simple type of fuzzy 
random variable. Consider an opinion poll, during which a number of individ- 
uals are questioned on their opinion concerning the weather in Europe in a 
particular summer. The responses are classified into three categories, respec- 
tively characterized as “very warm”, “warm”, and “no opinion”. Table I 
summarizes the results. Randomness occurs because it is not known which 
response may be expected from any given individual. Once the response is 
available, there still is uncertainty about the precise meaning of the response. 
The latter uncertainty will be characterized by fuzziness, in the sense that each 
of the responses very warm, warm, and no opinion will be represented by a 
fuzzy set (in particular by a special type of fuzzy set called fuzzy number). 
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TABLE 1 
Results of a Questionnaire 

Fraction of 
respondents 

0.4 
0.5 
0.1 

Response 

very waml 
WarIll 
No opinion 

In the present paper, following Gaines [I] and Bellman and Giertz [2], the 
notion of fuzziness is framed in the context of multivalued logic. This view is 
briefly discussed in Sec. 2 of the paper. Section 3 describes a corresponding 
perspective on fuzzy sets, as well as a simple but powerful theorem. Also a 
number of basic definitions are given. In Sec. 4, fuzzy random variables are 
formally introduced, and subsequently redefined as a particular kind of fuzzy 
set. In the following sections, the notions of the expectation of a fuzzy random 
variable, probabilities connected with fuzzy random variables, characteristic 
functions of fuzzy events, and conditional expectations and probabilities 
connected with fuzzy random variables are iutr~uc~. In each case, these 
entities are defined as images of the fuzzy set representing the fuzzy random 
variable under an appropriate mapping. Several theorems, some of them 
relating to independent fuzzy random variables, are proved. 

The way the theory is developed makes the distinction between fuzziness 
and randomness very clear. Randomness is caused by some chance 
mecha~s~ whereas fuzziness is brought about by dimness of perception. The 
theory is not directly related to other work in this area. The notion of a fuzzy 
event as it emerges in the present paper is more complex than that of Zadeh [3] 
(see also Negoita and Ralescu [4]). The probability measure underlying the 
randomness of fuzzy random variables as defined in the present paper is not 
fuzzy, in contrast to the linguistic probabilities that are treated in another 
paper by Zadeh [S]. Fuzzy probabilities arise in the present paper as a result of 
certain fuzzy events relating to fuzzy random variables (see Sec. 7). 

The basic techniques used in the present paper will be further developed in 
Part II of the paper, where algorithms are given for the evaluation of expecta- 
tions and probabilities connected to discrete fuzzy random variables. These 
aIgo~t~ will make it possible to work out some examples in detail and 
develop a feeling for the properties and nature of fuzzy random variables. 
Possible applications relate to the statistical analysis of imprecise data as well 
as the solution of certain decision problems. 

In the text, literature references are given as needed. Basic references for 
probability theory and stochastic processes are Lo&e [6] and Doob [7f. 
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2. FUZZY LOGIC 

In this section we give a brief discussion of fuzzy logic as a special 
multivalued logic. To this end, consider a complete distributive lattice L of 
statements [8]. The lattice is defined by a set of statements P, and the binary 
operations A (“and”) and V (“or”). The connectives possess the usual 
properties of idempotency, commutativity, associativity, and the absorption 
identity [8]. Distributivity is also assumed, and moreover the lattice is supposed 
to be complete, which means that statements such as 

A aA, 
AEA 

V ah 
AEA 

(24 

with aA E P for each A E A, are well defined and contained in P. Here aA, h E A, 
is an indexed subset of statements. It is noted that we do not introduce 
negation as a logical operation, since it will not be needed in the sequel. 

On P we define a function t : P+[O, I], where for given a E P, the number 
t(a) is referred to as the “truth value” of the statement a. In usual mathemati- 
cal logic, t(a) assumes one of the two values 0 (“false”) or 1 (Wue”). In 
multivalued logic, of which we are considering a particular instance, t(a) may 
assume intermediate values. Bellman and Giertz [2] impose the following 
requirements on the function t: 

(a) There exist functions f and g, both mapping [0, I] x [0, I] into [0, 11, such 
that 

t(aAb)=f(t(a),t(b)), 
(2.2) 

t(Nb)=g(t(a),t(b)) 

for all aEP, bEP. 
(b)f(x,y) and g(x,v) are continuous and nondecreasing in x. 
(c) f(x,x) and g(x,x) are s’trictly increasing in x. 
(d) f(x,y) < min(x,v) and g(x,y) > max(x,y) for all x E[O, 11, y E[O, 11. 
(e)f(l, I)= 1 and g(O,O)=O. 

Property (a) expresses that the truth value of a compound statement is 
uniquely determined by the truth values of the component statements; this is 
called strict truth functionality in multivalued logic. Property (b) expresses that 
t(aAb) and t(ai,/b) do not become less true if a is changed so that its truth 
value increases, and that moreover the dependence is continuous. Property (c) 
is equally plausible. Property (d) requires that the truth value of the statement 
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aA6 cannot be greater than the individual truth values of a and b; similarly, 
the truth value of the statement d/b is required to be at least as large as the 
individual truth values of a and b. Finally, property (e) expresses that if a and 
b are both completely true, then also aj/b is completely true, while if a and b 
are both completely false, then d/b is also completely false. 

Bellman and Giertz [2] prove that (a) through (e) imply that the functionsf 
and g are uniquely given by 

f(x,y) = nq-%Y )7 g(x,y) = m=(v)- (24 

We shall refer to the corresponding multivalued logic as fuzzy logic [ 11. It is the 
logic introduced by Zadeh in his work on fuzzy sets. We observe that if the 
truth fiction is restricted to assume the values 0 and 1 only, we obtain the 
usual Boolean logic (except for the definition of negation, which is missing 
here). 

The interval [0, I] together with the min and max operations forms another 
complete distributive lattice. Hence, t is a homomorphism. It follows that for 
any subset of statements uh E P, X EA, with A an index set, 

(2.4) 

It will be helpful to use the existential quant~ier 3 and the universal 
q~ntifier W. We define the following equivalences: 

3. FUZZY SETS 

In this section we explain our view of fuzzy sets. A fuzzy set o==(X,~,a) will 
be defined by the following elements. X is an ordinary set, called the basic 
space. The membership function c is a map X-+0, I]. Finally a :X-P, with P 
the “universe of discourse” introduced in the preceding section, assigns a 
proposition u(x) to each element XEX. The corresponding value p(x) of the 
membership function is the truth value of the proposition a(x), i.e., 

/J(x)= t(+)). Th us, a fuzzy set is an indexed set of statements together with 
the truth value of each member statement. This view is slightly but not 
essentially different from the usual introduction to fuzzy sets (see e.g. [4] or 

f91>- 
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Given a fuzzy set a=(X,p,a), let $ be a function mapping X+Y, where Y 
is another ordinary set. Let us consider for any y E Y the following statement: 
there exists an element x E X such that a(x) holds and +(x) =y. This statement 
can be written as 

where we inciude the statement (#(x)=y) in P, The truth v&e of the 
compound statement b(y) is by the properties of the truth function 

WY))- t( ,v, [ wqNx)=Y)]) 

I SUP P(X), 
xEX:qr(*)-y 

(3.4 

since.t((#(x)=y))=l if+(x)=y and t((+(x)=y))=Oif+(x)#y. Now, defin- 

ing 0(Y)) = V(Y), we have thus obtained a new fuzzy set (Y, Y, b), which is 
called the image of the fuzzy set a =(X, p, a) in Y under the mapping QI. We 
shall denote this image as +(a). 

THEOREM 3.1. Let a = (X, p, a) be a fkzzy set, and suppose that Q, and J/ are 
function repecti0eely mappiing cp : X4 Y, and Jt : Y-Z Then 8j&(a)) = (Jlo#o(), 
i.e., the image of +(a) in Z under tc/ is the mine a.9 the image of a in Z unak the 
cumpsite aping pf#~ :X-Z, where (~O#Xx) = ~(~(x~). 

Proof. Let us denote +(a) =( Y, Y, b) and $&(a)) = (Z, T, c). We then have 
for any z~Z 

c(z) = ((3~ E Y) J/(Y) = 2, b(y)) 

=((~Y~w(Y)= 2, ((3~ E X) H-9 =Y, 44)) 

=(@Y E Y, 3xfX) $(Y)=G +(x)=Y, a(x)) 

-((3x-) ~(#(X))~Z, +>)9 @3) 
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which proves that #(+(a)) = (Z, n,c is indeed the image of a =(X,p,a) in Z ) 
under the mapping +!+. n 

This theorem will turn out to be quite helpful in the sequel. We conclude 
this section with a few additional definitions. If a = (X, y,a) and p=( Y, v,b) 
are two fuzzy sets, then we define the product fuzzy set a x /? as the fuzzy set 
(X x Y,p x v,aAb), where X x Y is the Cartesian product of the basic spaces 

X and Y, (p x v)(xJ)= mini PW,V(_YN~ ad (0 AMw) = 4x)AW. A 
fuzzy set a =(R,p,a) defined on the real line R such that ~1 is piecewise 
continuous will be called a &zzy number. If a and /I are fuzzy numbers, 
expressions such as a + p and a/l will denote the images in R of the product 
fuzzy set a XP under the mappings (x,y)t_*x+y and (x,y)bxy, respectively. 
A fuzzy number such that the set {x E R 1 p(x) > a} is convex for each a E[O, l] 
is called unimoabl. The membership function p of a unimodal fuzzy number is 
also called unimodal. A fuzzy set (X,p,u), such that there exists an element 
x E X such that p(x) = 1, is called normal. 

4. FUZZY RANDOM VARIABLES 

The notion of a fuzzy random variable will be introduced as follows. Let 
(Sk 9,9) be a probability triple. Suppose that U is a random variable defined 
on this triple. Assume now that we perceive this random variable through a set 
of windows w, iEJ, with J a finite or countable set, each representing an 
interval of the real line, such that Win Wj= 0 for i#j, and uiE, Wi= R. 
“Perceiving” the random variable through these windows means that for each 
w we can only establish whether U (0) E Wi for some i E J. 

Let us define the function 4 : R+[O, l] as the characteristic function of the 
set Wi. Also let S be the space of all piecewise continuous functions mapping 
R+[O, I]. We then define the perception of the random variable U, as de- 
scribed above, as the mapping X : s2+S given by 

with X o = Z,. if and only if U(w) E Wi. This means that we associate with each 
o E s2 not a real number U(w), as in the case of an ordinary random variable, 
but a characteristic function X,, which is an element of S. 

The map X: C&S described above characterizes a special type of fuzzy 
random variable. The random variable U, of which this fuzzy random variable 
is a perception, is called an originul of the fuzzy random variable. We note that 
corresponding to a given fuzzy random variable there may exist many origi- 
nals. 
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At this point we generalize and define a fuzzy random variable as a map 
E: S&F, where F is the set of all fuzzy numbers. Denote the image of w in F 
under 6 as I(o) = (R,X,,a,), with X, E S and a, : R-P. The map X : Q-+S, 
specified by 

is required to be such that for each p ~(0, l] both U: and U;*, defined by 

U,*(u)=inf{x~R~X,(x)>~(}, 

(4.1) 

are finite real-valued random variables defined on (G!, 4,9’) satisfying 

(4.2) 

Finally, for each w~fl and each x E R, a,(x) is the statement 

a,(x) = (the original assumes the value x at the point o), (4.3) 

where we refer to the original random variable of which 6 is a fuzzy perception. 
The requirement that for each ~E(O, l] the quantities q and U:* are 

random variables imposes a measurability condition on the map 1. The 
condition that for each ~E(O, I] both VJ and U;* are finite random variables 
constitutes a restriction that from a practical point of view is not very serious. 
The same observation applies to the requirement imposed by (4.2). 

The picture that has just been sketched of a fuzzy random variable is 
complicated by the disturbing thought that the probability space (Q, S,9) on 
which a fuzzy randzm viable manifests itself may be a re&crion of a richer 
probability space (52, $ ?), _the details of which are lost by the fuzzy prcep- 
tion. A reduction of (!!,9,9) to (GI,?f,9) is obtained as follows. Let 6! be a 
sub-sigma-algebra of 9. Define an equivalence relation - on fi as follows: 

Then we take Q as the quotient set of 6 under the equivalence rela$on -, i.e., 
st=sz/-. To define 9 and 9, let c be the canonical projection c : P+Q. Then 
we define S as the class of subsets of 0 whose inverse images under c belong 
to 9. TJte probability measure 9 is defined as follows: $ ,A E 5, then 
‘Y(A_)=_“(c-‘(A)). We shall call (S&9,9) the reduction of (;j,%,C?‘) generated 
by @c% 
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Clearly, (Q, S,9) is a space with less detail than (52, %, 4). (St, 9,_5pZ m,ay still 
be used to_carry certain random variables originally dcfir+ on (a,%, 9). Let 
0 be any &-measurable random variable defined on (S-J, 9,9). We first prove 
that for any we& 0 is constant on the set c-‘(w). Suppose 6, EC-‘(~) and 
ij2 EC-‘(M). Then c(;it)= c(h) and hence Btw&. Suppose ~(G,)=x. Then 
6, E {Gl o(G) = x}, and hence by the equivalence of 6, and tjz it follows that 
ijr~{tjlO(ij)=x}. As a result o(q)=x=~(ij,), which proves that ii is 
constant on c - ‘(w). 

We now define the random variable U on (SE, %,$I’) by U(w)= #(c-‘(ti)). It 
is easy to verify that rf and U have the same probably ~~butio~. Given 
a?y_fir$e set of ~-mixable random variables &, &, . . . , flR, all defined on 
(a,%, G?), we may obtain a set of random variables Vi, U,, . . ., U,, all defined on 
(Q 5,s) and having the same joint distribution as o,, &,_. ., on. 

We thus see thatd!eg a probability space (Q, 3,9), there may exist a richer 
probability space (a, 9,9) of which $2, %I,??) is a reduction. To construct such 
a richer space, we first assume that (52,5,3) is minimal in the sense that it is 
its own reduction with respect to 9. We then introduce an auxiliary probabil- 
ity space (SZ’, 9’, 9’). For later purposes it will be enough if we choose it rich 
enough so that it can carry any finite set of random variables with given joint 

distribution. We now let (~,~,T,)=(~x~~',~'QOS',~P~'), where %@f’is the 
smallest sigma algebra including all sets of the form A x A’ with A E $ and 
A’ E 9, and where 9’ @$I“ is the product rn_yurz on ?I@%‘. It is not difficult 
to see that (Q,%,9) is the reduction of (f&9,9) with respect to the sigma 
algebra & c 5 consisting of all cylinder sets of the form d= A X P' with A E 9. 

Let .$ be a fuzzy random variable such that 

2 (R,X,AJ. 

Denote by a(X) the sigma algebra of subsets of Q generated by the random 
variables U;, p ~(0, I], and q*, y ~(0, I], as defined in (4.1). For brevity we 
refer to a(X) as the sigma algebra generated by X. We now account for the 
fact that the probability space (f&S, 9) on which I manifests itself may be a 
reduction of a richer pro~b~~ space by allowing_ztnJ original of which I‘ is a 
fuzzy perception to be a random variable o,n $2z%, 9) rather than (52,5,9). 
For later purposes the construction of ($2,9,,3) as given abo% _w$ be 
sufficient. We shall not admit all random variables defined on (sl,Y,,S) as 
originals, however. Any original 0 of [ will be required to be measurable with 
respect to o(X)@%‘, meaning that in tbe &direction 8 has to be consistent 
with the available fuzzy information. 

Thus the set % of all pos+b!e _originals of 5 is defined as the set of all 
randcm variables defined on (S&9,9) that are a(X)@@‘-measurable. For any 
0 E %, the acceptability that it is an original is given by the truth value of the 
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statement b( ii), where 

= w$ (the original assumes the value 0 (0,~‘) at the point (u,w’)) 

W’EI)’ 

Hence, the acceptability that 17 is an original is given by 

= wiuxw(a(wd)). 
w’rcr 

(4.6) 

We have thus defined a fuzzy set (%,t(bc)),b) consisting of all possible 
originals of the fuzzy random variable in question. Witi, a slight abuse of 
notation this fuzzy set will henceforth be indicated as X=(%,X). Properties of 
fuzzy random variables such as its expectation and probabilities in connection 
with it will be defined as images of this fuzzy set under certain mappings. This 
is the subject of the next sections. 

Because of tire central role played by the fuzzy set X=(%,X), we adopt in 
the following the convention of calling X a fuzzy random variable, as an 
alternative to calling the map 6 a fuzzy random variable. 

In the sequel we sometimes have occasion to work with fuzzy random 
variables of the form X-(%,X), with 5% the set of all u(X~m~~able 
random variables defined on (52,9,9). Such fuzzy random variables are called 
reduced fuzzy random variables. 

A fuzzy random variable is called normal if for each o EO there exists an 
x E R such that X*(x)= 1. In the sequel all fuzzy random variables wil1 be 
assumed to be normal. 

5. EXPECTATION OF FUZZY RANDOM VARIABLES 

In this section we define the notion of the expectation of a fuzzy random 
variable X, and discuss some of its properties. Tire expectation of X is defined 
as the fuzxy number EX, which is the image of the fuzzy set X=(%,X) under 
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the mapping E: ‘%+R such that 

In the latter expression, E indicates the usual mathematical expectation. 
Denoting the membership function of the fuzzy number EX as (EX) (a 

notation that will frequently be used), we may explicitly write EX= (R, (EX)), 
where 

(EX)(x) = sup inf X, ( 0 (a, W’)), XfR. 
fi&:Eil~X $gj< 

(54 

A fuzzy random variable X is called z&n&l if for each w E 51, the member- 
ship function X, is unimodal. The following thFr$m shows that if X is 
unimodal, it is not necessary to extend (0, 9,s) to (G?, 9, 4) for the determina- 
tion of EX. Let ‘3, be the set of u(X)-measurable random variables defined on 

0% 599 ). 

THEOREM 5.1. If X is unimodal, then 

(EX)(x)= sup inf X6J (~(#)~, xCR. 
uEz:.w=x wf%Q 

P*2) 

Proof. Let E > 0 be an arbitrary positive real number. Then there always 
exists a random variable p E % with Eif* = x that achieves the supremum in 
(5.1) with an accuracy E, i.e., 

(EX)(x)= hf* Xw(r7+(w,o’))+~. (5.3) 
0’G-l 

Define the random variable 

Clearly V* E ‘% and EV* = x. By the unimodality of X, we have 

(5.4) 
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It follows that 

On the other hand, by restricting ci in (5.1) to be such that o(w,o’)= V(o) 
with V E Gx, we clearly have 

(J-w4 > sup inf Xl0 (I+)). 
VE%:EV-x @so 

(5.7) 

Combining, it follows that 

sup inf X,(q4)+=)(x)< v,p;v x Jt~*Xz%4>+e. 
VE%:EV=x -En : = 

c3 

Since e may be chosen arbitrariIy small, the proof of the theorem follows. H 
The following theorem shows that when determining expectations of fuzzy 

random variables, there is no loss of generality in restricting to unimodal fuzzy 
random variables. For a given fuzzy random variable X, define for each oEQ, 

x (XP sup min[X,(a),X,(o)], xER. (5.9) 
U,VER:U<X<V 

It is not difficult to see that Xw is unimodal, and that if X, is unimodal, then 
XG =X,. Let us define the reduced fuzzy random variable %=(%,X). 

THEOREM 5.2 EX- EX. 

Proof. Define for each PE[O, l] the following subsets of R: 

We observe that Co= co= R. The membership functions (EX) and (Es) may 
respectively be obtained from the families of sets C,,, pE[O, 11, and c,, 
EL q@ lb bY 

(5.11) 
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We shall prove (VP E[O, 11) C, = cl, from which the proof of the theorem 
follows. Let for each ~~10, l] 

a,=inf(c,), 9=sup(C,), l+nf(~~), b;=sup(G). (5.12) 

It is noted that a~=&= -00, foe= be=oo. Next define for each pE(O,l] and 
each o&J 

By the definition of r we have U,+ = iryr and U$* = p* and hence for each 

C.rE(O, 11 

QI(=EU;*=E~;=~~,, b,,=EUyll*=E@**=&,,. P (5.14) 

Furthermore, by the assumption (4.2) we have up E C, as well as b,, E C,. We 
prove that C, =[u,,b,,]. Let O< u < 1, and A-E%’ be a subset of Q’ such that 
9 ‘(A) = u. Define the random variable i? E % such that 

O(o,d)= ( V:(o) for ~‘64, 

q*(w) for w’EAC. 
(5.15) 

Then Eo=uEU,*+(l-a)EU;‘*=ua,+(l-o)b,,E[u,,,b,,], while 

(VW+) x~(~(~,,‘))~min[x,(~(~)),x,(~*(~))] 2~. (5.16) 

It follows that ~a,+(1 - o)bir E C,, %d hence that C,=[ar,b,] for each p E 
[O, I]. Similarly we may pro? that C,=]ii,,b;]. Since ii,=+ and b;= b,,, the 
proof that (VP E 10, 1 j) C,, = C, is complete and the theorem is proved. II 

The result_expressed by the preceding theorem may be viewed as follov 
The map E : %+R may be decomposed into two maps as follows. Let 0 E” %. 
Then by writing 

E~=ld~(w)(ii(w,w’)dY’(w’), (5.17) 
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we see that EC is the composition of the following two maps: 

(i) %i-*% specified by &~witb fl(w)= $ ~(~,w’)&“(w’), 
(ii) %+R specified by &Ea 

The image of X under the first map is X; the image of X under the second map 
is E%. By Theorem 3.1, the image EX of X under the composite map (5.17) is 
E%, which is exactly the content of Theorem 5.2. 

The next theorem follows as a corollary of the proof of Theorem 5.2. 

THEOREM 5.3. EX is Eli, 

Proof. It follows from (5.11) and from the fact that C’ decreases monotoni- 
cally with increasing p that (x E R j(EX)(x) > p} = {x E R Isup{ p'Ef0, l]]n E 
[a,,,&J) 2 a} =[u,,,b,]. Evidently this set is convex and hence EX is unimodal. 

l 

Later we s&all encounter _expectations of products of fuzzy random vari- 
ables. If X=(%,X) and Y -(S, Y) are fuzzy random variables, we define EwXY 
as the fuzzy number that is the image of the product fuzzy set XX Y =(% X 
'%,X X Y) in R under the mapping (0, a)c*E&? This means that the fuzzy 
number EXS'= (R, (EXY)) has membership function 

for all z E R, since the pair (r?, 0 E % x 8 has degree of membership 

in the fuzzy set XXY. 
A fuzzy random Eariable X is callld mmegufiw if X,(x)=0 for x <0 and 

all w EG?. For X=(%,X) and Y = (%, Y) given fuzzy random variables with 
“unimodalized” versions X and i?, respectively [see (5.9)J, the following result 
may be established. 
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THEOREM 5.4. Zf X and Y are nonnegufiue, then 

(EXY)(z) = sup inf min[t(U(w)),Y,(V(w))], tER. 
CJEX, VE% :EUV=r OEJ;1 

(5.20) 

Proof: For each p E [O, I] we define the sets 

c,={r~Rl(Xk%, C/E@) E;t7v=z, 

c,={r~R1(3U~%, VP%) EUV=z, 

(‘bco)x,(~(~))~P~ jTw(V(o))w}- (5.21) 

We observe that C,,= co= R. Tie families of sets C. and c. are respectively 
related to EXY and the right-hand side of (5.20) by 

SUP inf min[X~(V(u)),Y,(V(~))]=sUP( p~tO~lllzEcl}* 
u~~:,J’~?I :EUV-r OEbl 

(5.22) 

Let, for each p E [0, 11, 

Evidently a, = ir,= - 00, b,= b,= co. Defining for each l.~ ~(0, l] and each 
WESZ 

u$(u)=inf{xERIX,(x)>p}, U~*(W)=SU~{XER~X,(X)~~}, 

v~(O)=inf{yERIY,(y),EL}, V,‘*(o)=sup{yERlY,(y),~~}, 

(5.24) 

and similarly q, o;*,_v;, and pk* by replacing respectively X with f and Y 
with li; we have V;= q, L$*= U$*, Y;: = e, T* = V:*, and hence for each 
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-- 
~E(O, 1], u,,= EqVf= E~~=:zi,, bfi= EU,** V;*= Euz*e*=b;. Further- 
more, by the assumption (4.2) we have u,, E C,, as well as 6, E C,,. We prove 
that Cfi = [a,,, b,]. Let c E [ up, b,], and let A E (3‘ and B E 5’ be subsets of s2’ such 
that 9$4)-h, 9’(B)= (I, ~‘(AnB)=$ with X=[O,l] and oE[O,l]. We 
define the random variables U E % and V E % as 

0 (w,w’) = 
u;(o) if o’EA, 

U;*(w) if dEA’, 

(5.25) 

Jq#&)= y;:(u) if G’EE, 

( V”(“) if wEBE. 

Then by the nonnegativity of q, q*, T, and q* we can always choose X 
and a such that 

Furthermore 

It follows that c E C,, and hence that (VP ~[0,1]) C, = [up, b,], We next prove 
that (VP EfO, I]) cP ==[&,&] -[a,,b,]= C,,, which by (5.22) proves the theorem. 
Let CE(Z ,&], and choose XE[O, I] and a~[0, 1] such that E69-c, where 
1)~%, #~‘?1 such that tf==Aq+(l-A)@*, P=ae+(f-a)?*. By the 
unimodality of x and r we have 

which shows that c E cP. This concludes the proof that (V’p ~[0,1 j) Cfi - [(i;, bctJ 
and at the same time the proof of the theorem. H 
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6. INDEPENDENT FUZZY RANDOM VARIABLES 

The fuzzy random variables Xi=(R,Xi), i= 1,2,...,n, are said to be inde- 
pendent if the sigma algebras 0(X’), i- 1,2,.. .,n, of subsets of Q successively 
generated by X’, i = 1,2,. . . , n, are independent. At this point the following 
property of independent fuzzy random variables can be established. Other 
properties will follow in subsequent sections. 

THEOREM 6.1. If the two n~nneguti~ jkzq~ ram&m ~r~~~es X und Y are 
independent, then EXY- EXEY. 

Proof. By Theorem 5.4, we may assume without loss of generality that X 
and Y are unimodal. By the independence of X and Y, any random variables 
U E % and V E Q are independent. It follows from Theorem 5.4 that 

(EXY)(z) = SUP 
UFX, Vc9 :EUEV=r OEfJ 

=i; sup sup 
u,v~R:m-r UEZ,VE% :EU-u, EV-v oEa 

-_ sup min sup inf X, ( U (w>), 
u,oER:w-r UE%.:EU=u QEa 

which concludes the proof. n 

7. FUZZY PROBABILITY AND FUZZY EVENTS 

Let X be a fuzzy random variable, and A a Bore1 Ft in R. Then the (fuzzy) 
probability Pr@ +I) is defined as the image of X=(%,X) in R under the map 
specified by &9(0&Q. Hence we have Pr(X&4)=(R,(Pr(XEA))), with 

Since O<~(~EA)<l, (Pr(X~~))(~)~O forpB[O,lf. It will be helpful to 
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consider Pr(X 64) as the image of X under a composition of two maps. To this 
end, we write 

3yOEA)=SdJ(o)/ 
0’: r?(W’)EA 

dT(o’), (7.2) 

and specify the first map: %+% by 

(7.3) 

The second map: Gx + R is specified by 

WEI/. (7.4) 

THEOREM 7.1. The image of X=(%,X) in 5% under #he mq: %+% g&en 

bv 

(7.5) 

is IXEA =(%,ZXEA), where 

ZyA (7l) = 
(I’E&$E”)_n o’EQ 

inf x, (Ll’(@‘)), ITER, (7.6) 

with Gx’ the set of all random variables defined on (LY, 9’, 9”). 

Proof. Let V E Gx. Then the degree of membership of V in the image of X 
under the map (7.5) is 

sup inf X0( ZQWJ)) 
fi&:(Vu’w) 9*(fi(W,.)EA)=Y(o) oEo @‘ED 

= inf sup inf X, ( V’(w’)), 
WEo U’EGX’:S’(U’EA)= V(0) lJEo 

(7.7) 

which proves the theorem. n 

IXEA is called the indicator function of the fuzzy event X E A for reasons to 
be explained later. For fixed WEQ and r E[O, l] the number ZzEA (rr) indicates 
the acceptability that a fraction r of the point w belongs to the fuzzy event 
XEA. Clearly ZzEA (7~) -0 for II not in [O, I]. In general, a fuzzy random 
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variable I defined on % (rather than %) with a unimodal membership function 
Z such that Z,(r)=0 for 1r6![0, l] will be said to be the indicator function of a 
fuzzy event. 

%FiOREM 7.2. Define 

r; (a) = sup x, f-q, rA” (w) = sup x, (X)’ (7.8) 
XEA XEA’ 

7’hen the j~ic~for unction Ix EA may be specified by 

1 G (4 if s=o, 
ZwXEA(71)= rnin[r;(w),r;((w)] if O<a<l, (7.9) 

4 (4 if 7r=l, 

and hence is unimodal. 

Proof. The result is evident if we write 

zy (n) = sup mm inf X, ( vl(w’)), 
U’fz5.C‘: ?‘(U’EA)-9l 0’: U‘(o’) E A 

and consider the cases n = 0,O < 7t < 1, and n = 1 separately. l 

We are now in a posit@ to explain why IXEA is called an indicator 
function. Suppose that X=(%,X) characterizes an ordinary, nonfuzzy random 
variable, i.e., there exists a random variable 2 E %, defined on (52, ‘3, ??), such 
that 

x&d (4 = 1 1 if x=Z(W), 

0 if x#Z(w). 

Then using Theorem 7.2 it is easily found that 

ZXEA (7r)=( ’ if m=.1 ) 0 0 otherwlse 
if Z(o)EA, 

(7.11) 

(7.12) 

zx- (R) = ( ; 0 fth;$te ) if Z(w)BA. 
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In this case IXEA characterizes an ordinary indicator function. 

T~nonnrvr 7.3. Pr(X&4)= EIXfA. 

Proof. Since @(O&4) is the composition of the map : %4X defined by 
(7.3) and the map %+R defined by (7,4), the proof of Theorem 7.3 follows 
from Theorem 3.1. m 

Suppose that X=(%,X) and Y = (6, Y) are two fuzzy random variables, 
and let A and B be Bore1 sets in R. Then we define the joint probability 
Fr(XEA, YE B) as the fuzzy number with membership function 

(7.13) 

forpE[O,l].Evidently,PrJXEA, YEB)isdefinedastheimageofXXYin R 
under the map (0, pjW?( # EA, p E B). Let us rewrite 

(7.14) 

This shows that the map (0, I+& 0 E A_, P E B) is the composition of the 
two following maps. The first map maps %X % into 55, which is the class of 
random variables ddined on (f&S, 9) that are o(X, Y)-measurable, and is 
given by 

Here a(X, Y) c 9 is the smallest sigma algebra containing both o(X) and u( Y). 
The second map maps % into R, and is specified by ZfiEZ. 

The image of the product fuzzy set X XY in E under the first map is the 
indicator function IxEA*YEB=(~,lXEA~ YEB), where 

ZXE.4 YEB (m) 
w 

il sup inf min[ x, (qw’)), Y, ( I+‘))]. 
tJ’,Y’t?%‘:T((I’64, Y’EB)_n @‘En 

(7.16) 

Since &(X&4, YEB) is the image of IXEA*YEB under the map 43+R defined 
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by ZbEZ, we have 

P~(XEA,YEB)=EI~~“,~-. (7.17) 

THEOREM 7.4. Define ri (a) and r:(u) us in Theorem 6.1, und let 

(7.18) 

Then 

ZXEA,YCB (m)= 0 1 
m=[ ri (w),d (41 if 7r=O, 

min[r;(o),s;,(w),max[r~(o),s~(w)]] if O<a<l, 

mq rA (a)& (u)] if s=l. 

(7.19) 

Proof. The proof is similar to that of Theorem 7.2. n 

THEOREM 7 5 . . EIXE”, v-= EI=“I”=J. 

Proof. We have respectively 

(EIx-yEB)(Z)= syiz z ~J”;‘,‘-“‘““‘” (Z(w)), 
. - 

(7.20) 

(EIXEAIYEB)(z)= SUP inf min[ I:=” (u(W)),z:- (V(w))]. 
lJ~%,V~9 :EUV-z OEi-4 

Therefore, consider the sets, defined for each p E[O, 11, 

(Vco) IoX=” (U(u)) > P, CEB (V(4) > cc}. (7.21) 

The theorem has been proved if we can show that (V,a E[O, 11) C,, = D,,. Define 
for each p ~(0, l] the random variables Z,*, Z,S* E E, q, q* E Xx, and c, v* 
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(7.22) 

It follows from Theorems 7.2 and 7.4 that 

vl:w== 
i 

0 if sj(w)>cL, 

1 if s;(w)<& 

ztf (4 = 
0 if max[ r,fl(4+4i(~)] > P, 

1 if max[r~(o),G(~)]<P9 
(7.23) 

q*(@) = 
0 if r$((w),II, 

1 if JA(w)>P, 

v;‘(w) = 
i 

0 if s;P(w)<jb 

1 if s@)>p, 

z,**(w) = 1 0 if min[ r’A(O)&(~)] <P, 

1 if min[ r~(o),&(@)] 2 P. 

[Note that we need here the assumed normality of all random variables, which 
implies either r,!,(w)= 1 or r;(w) = 1, as well as either s;(w)- 1 or s$(o) = 1.1 It is 
easily verified from these formulas that (VP ~(0, I]), Z: = Vp T and Zz* = 
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Uz* V:*, This proves that for each y E (0, I] 

inf( C,, ) = EZ; = EUZ v;1= inf( D,, ), 

sup( C@) = EZ,** = EUG+* I$‘* =sup(D,). 
(7.24) 

Since (VP ~(0,l J) both C,, and Dp are convex, inf(C,,)E C,, sup(C,,)~ C, inf 
(0,) E Ofi, sup(D,,) E D,, and finally C,= Do = R, we have proved (VP E [0, 1 J) 
Cp= D,,, which concludes the demonstration of the theorem. n 

The next result follows immediately from the previous theorem. 

THEOREM 7.6. Zf X and Y are j~~e~ent fuzzy random txriables, and A 
and B Borelsets in R, then Pr@EA,YEB)=Pr(XXA)Pr(YEB). 

Proof. Since X and Y are independent, also IXEA and IYEB are independent. 
It follows from the previous theorem and Theorem 6.1 that 

Pr(XEA,YEB)=EI XEAIYEB=EIXEAEIYEB=Pr(XEA)Pr(YEB). (7.25) 

n 

8. FUZZY CONDITIONAL EXPECTATION 

In this section ye shall discuss conditional expectations of fuzzy random 
variables. Let X=(%,X) be a fuzzy random variable defined on @I,%, 9”), and 
suppose_that & is a sub-sigma-algebra of 9. Let 6! denote the sub-sigma-alge- 
bra of 9, generated by all cylinder sets of the form A X 51' with A E 8. Let 
0 E %, and consider the conditional expectation E&o. We claim that 

EGO= E&u a.e. @), 

where 

B(o)=lii(w,~‘)d~‘(~‘). (8.2) 

The conditional expectation E’-% is defined by the requirements that (a) it is 
an &measurable random variable, and (b) EZiE @o= EZi 0 for any set A” E b. 
Here Ii is the indicator function of A”. It is easy to see that E @o is kmeasur- 
able. To prove (b), we write, letting A = A X Q', 

=lI, (w)dT(w)/~(w,w’)d9’f(ti’)= EZ,- (8.3) 



FUZZY RANDOM VARIABLES 23 

for any A” E b. This proves that E@= E% a.e. (4). We consider E i as a 
function mapping % into Z, which here is the class of all &-measurable 
random variables defined on (Q, 9,9). The rest+ just obtained shows that E @ 
is the composition of two maps. The first map : %A% is characterized by & 
g, while the second map : %,+-I is the map E @. 

We define the conditional expectation of X=(%,X) given & as the image 
of X in % under the map E &. We shall prove that E’ X, thus defined, is a fuzzy 
random variable E~X=(~,(E~X)). S me, as in the case of ordinary random 
variables, conditional expectations can only be defined almost everywhere, the 
definition of a fuzzy random variable has to be slightly modified at this point. 
Henceforth, the degree of membership of a random variable 2 E 41: in the 
fuzzy set (%,(E&X)) will be given by 

efsii(E@X)(Z(w)). (84 

THEOREM 8.1. Be conditionai expectation of X = (a, X) given & is a fkzy 
random txariabk EeX=(E,(EaX)) with 

Tke set D,(w) c R is specified as follows. Let T, p ~(0,1], be a separable version 
of the process E “q, p ~(0,1], and let v*, p E(0, I], be a separable version of 
the process Eeq*, p E (0, 11, where 

U~(w)=inf{xER~~~(x)> p}, v;**(o)=sup{x~R]~,(x)> p), (8.6) 

wjth~t~~i~~ed~rsjonof~. 7kn D,&)=[V,(w), ~*(~)]for~~(O,l], 
while D,,(G) = R. 

Proof. E&is the composition of the map: %,+!I% defined by @+oand the 
map E@. The image of X=(%,X) under the first map is X-(%,%). Consider 
the image of (%,f) in Z: under the map E‘? Let GEE. The degree of 
membership of V in the image of (%,F) under E@ is given by 

Define for pE[O,l] the set C,c!I5 by 
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It follows from the unimodality of x that C,, is convex. Furthermore, C,= I 
and C,, decreases with increasing p. We may write 

By the monotonicity of the conditional expectation and the convexity of C,, it 
follows that 

C,={ VE~lV(w)ED,(w) a.e.}, (8.10) 

with D,,(w) defined as above. Now by separability v;*(m) is nonincreasing and 
V:*(w) nondecreasing except on a null set contained in G?, which means that 
D,,(o) is nonincreasing except on a null set. Hence 

= sup { ~1 V(w) E D,, (a) a.e. } 

= etsi$sup{ ~1 V(w) ED,, (a)) 

= e;$r$(E@X)J V(w)), (8.11) 

with (E@ X) as defined above. This proves the theorem. n 

The following fact is immediate. 

THEOREM 8.7. Zf 6! and o(X) are independent, then E&X= EX. 

Proof. Since U;C and U:* are u(X)-measurable, V$ = Eq and y* = Eq*, 

which proves the theorem. n 

With these results in hand we can consider various questions involving 
conditional expectations. Let us for example study the conditional expectation 
E(XIY EA), with X and Y fuzzy random variables, and A c R a Bore1 set. We 
define-E (XJY E A) as the image of the product fuzzy set XX Y in R under the 
map:%XQ+R defined by (~,~)I~-E(~IPEB). 

THEOREM 8.3. E(XJY E B) is the j&y number defined ly 
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Proof. We write 

JJ q(W,W’)&!P(o)d9’(60’) 

E(qtEB)= fEB 
IJ dS(u)dC?‘(w’) 
F'EB 

I ir(+I(w)d4P(o) = 
I II(w ’ 

(8.13) 

1 

i?(W)’ -I %9 FEE 
il(u,w’)dY(o’) if I--@)#o, 

(8.14b) 

arbitrary but finite if II(o)=O. 

Let us now introduce the probability measure 3 on D defined by 

(8.15) 

Denoting the expectation with respect to this measure as I??, we may write 

where 
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The image of Y in % under the map : 4 -&I defined by (8.14a) is Iyae. We 
shah prove that the image of X under the composite map: %+% defined by 
(8.14b) and (8.17) such that & 0~ U is given by X (for each P and each B). 
Then it follows from (8.16) that E(XIY E B) is the image in R of X XIYEB 
under the map: ‘5% x 9 +R defined by (~,II)+EUII/EII, and that hence 
(8.12) is correct. 

It remains to demonstrate that the image of X under the map I%+ tit-+ U is 
X. It is not difficult to see that the image of X in E [here Z is the chtss of 
random variables defined on (S&5,9) that are o(X, Y)-measurable] under the 
map defined by (8.14b) is given by Xn = (Z, Fn), where 

ew= * i 
_S?* (x) if II(o) > 4 

if II(w)=O. 
(8.18) 

We determine @*J?@’ with the aid of Theorem 8.1. It is not difficult to 
establish that 

inf{xERl%~(x)>~)= 
i.$ (u) if II(w) >4 

if E(w)=O, 
(8.19) 

with U; and U;* defined as in Theorem 81,Evidently inf{x E R IF,(x) 3 1) 
= U,*(w) a.e. with respect to the measure b, and sup{xE RI.??(x) 2 p} = 
U*f(o) a.e. with respect to the measure 9. Since both q and U,** are 
a(X)-meas:rable, we obtain V$ = Us a.e. and v;Z*= i/j;* a.e., both with 
respect to 9, so that 

This result is imphed if we set 

(8.2 1) 

which concludes the proof. n 

COROLLARY of Theorem 8.3. If X and Y are independent, then E (XlY E A) 
=EX. 
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The proof is immediate. Given the notion of conditional expectation, 
conditional fuzzy probabilities are easily defined. For X and Y given fuzzy 
random variables, and A and B given Bore1 sets contained in R, we-define 
Pr(XEAIYEB) as the image of XXY in R under the map (o,p>~??(~E 
A 1 p E B). We hence have 

We write 

i?‘(k4If%B)= 
5yk4, PEB) 

S(PEB) = 

where 

if l-I(w)>O, 
(8.25) 

if II(w) -0, 

and ,?? has the same meaning as in the proof of Theorem 8.2. The image of X in 
5% under the map @+*b* is IXEA, while the image of Y in % under the map 
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l?+II is IYEB. It follows from (8.24) that 

(8.26) 

This immediately shows that if X and Y are independent, then Pr(K E A fY E B) 
=Pr(xEA). 

9, CONCLUSIONS 

In this paper we have extended the notion of random variables to fuzzy 
random variables. The extension consists in allowing impreciseness in the 
values that are assumed by the random variable. The vehicle that is used to 
carry this impreciseness is fuzzy set theory and the corresponding multivalued 
logic. Many properties that are well known for ordinary random variables are 
reencountered in the context of fuzzy random variables. Not all properties 
carry over, however. For instance, the well-known property EXY= EXEY for 
independent random variables only applies to nonnegative fuzzy random 
variables. 

Clearly, many properties of fuzzy random variables remain to be investi- 
gated. At this point, however, enough theory is available to consider simple 
applications of fuzzy random variables. In order to handle these applications, 
there is a need for varions algorithms for the computation of expectations of 
fuzzy random variables and fuzzy probabilities. These algorithms will be 
developed in a subsequent paper. 

REFERENCES 

1. B. R. Gaines, Stochastic and fuzzy logic+ Electron. Letters 11 (9), 188-189 (1975). 
2. R. Bellman and M. Gicrtz, On the analytic formalism of the theory of fuzzy sets, 

hjh7wron sci. 5, 149-W (1973). 
3. L. A. Zadeh, Probability measurea of fuzzy events, J. Math. Anal. Appl. 23 (2), 421-427 

ww. 
4. C. V. Negoita and D. A. Rabx, Applicatiom of Fs.zg Sets to JLstem Ane&sLv, 

Biridksr, BaseI, 1975. 



FUZZY RANDOM VARIABLES 

5. L. A. Z&h, The concept of a linguistic variable and its application to approximate 
reasoning-III, h&mution Sci. 9 (I), 43-80 (1975). 

6. M. tie, Probability Tlreory, 3rd cd., Van Nostrand, Princeton, NJ., 1963. 
7. J. L. Doob. Stochavtic Pmcemes, Wiley, New York, 1953. 
8. D. E. Rutherford, Introduction to Luttice Theory, Oliver and ISoyd, London, 1965. 
9. A. Kaufmam, Intmhction ci la 27brie des Sour-Enwmbles Flour, Masson, Paris, 1973. 

Receivexi Jkember 1977 


