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ABSTRACT

Fuzziness is discussed in the context of multivalued logic, and a corresponding view of
fuzzy sets is given. Fuzzy random variables are introduced as random variables whose values
are pot real but fuzzy numbers, and subsequently redefined as a particular kind of fuzzy set.
Expectations of fuzzy random variables, characteristic functions of fuzzy events, probabilities
connected to fuzzy random variables, and conditional expectations and probabilities relating
to fuzzy random variables are defined as images of the fuzzy set representing the fuzzy
random variable under appropriate mappings. Several theorems, some of which relate to
independent fuzzy random variables, are proved.

1. INTRODUCTION

This paper is the first of a series of reports on fuzzy random variables.
Fuzzy random variables are random variables whose values are not real, but
fuzzy numbers. To illustrate this, we give an example of a simple type of fuzzy
random variable. Consider an opinion poll, during which a number of individ-
uals are questioned on their opinion concerning the weather in Europe in a
particular summer. The responses are classified into three categories, respec-
tively characterized as “very warm”, “warm”, and “no opinion”. Table 1
summarizes the results. Randomness occurs because it is not known which
response may be expected from any given individual. Once the response is
available, there still is uncertainty about the precise meaning of the response.
The latter uncertainty will be characterized by fuzziness, in the sense that each
of the responses very warm, warm, and no opinion will be represented by a
fuzzy set (in particular by a special type of fuzzy set called fuzzy number).
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TABLE 1
Results of a Questionnaire
Fraction of
respondents Response
04 Very warm
0.5 Warm
0.1 No opinion

In the present paper, following Gaines [1] and Bellman and Giertz [2], the
notion of fuzziness is framed in the context of multivalued logic. This view is
briefly discussed in Sec. 2 of the paper. Section 3 describes a corresponding
perspective on fuzzy sets, as well as a simple but powerful theorem. Also a
number of basic definitions are given. In Sec. 4, fuzzy random variables are
formally introduced, and subsequently redefined as a particular kind of fuzzy
set. In the following sections, the notions of the expectation of a fuzzy random
variable, probabilities connected with fuzzy random variables, characteristic
functions of fuzzy events, and conditional expectations and probabilities
connected with fuzzy random variables are introduced. In each case, these
entities are defined as images of the fuzzy set representing the fuzzy random
variable under an appropriate mapping. Several theorems, some of them
relating to independent fuzzy random variables, are proved.

The way the theory is developed makes the distinction between fuzziness
and randomness very clear. Randommness is caused by some chance
mechanism, whereas fuzziness is brought about by dimness of perception. The
theory is not directly related to other work in this area. The notion of a fuzzy
event as it emerges in the present paper is more complex than that of Zadeh [3]
(see also Negoita and Ralescu [4]). The probability measure underlying the
randomness of fuzzy random variables as defined in the present paper is not
fuzzy, in contrast to the linguistic probabilities that are treated in another
paper by Zadeh [5]. Fuzzy probabilities arise in the present paper as a result of
certain fuzzy events relating to fuzzy random variables (see Sec. 7).

The basic techniques used in the present paper will be further developed in
Part II of the paper, where algorithms are given for the evaluation of expecta-
tions and probabilities connected to discrete fuzzy random variables. These
algorithms will make it possible to work out some examples in detail and
develop a feeling for the properties and nature of fuzzy random variables.
Possible applications relate to the statistical analysis of imprecise data as well
as the solution of certain decision problems.

In the text, literature references are given as needed. Basic references for
probability theory and stochastic processes are Loéve [6] and Doob [7].
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2. FUZZY LOGIC

In this section we give a brief discussion of fuzzy logic as a special
multivalued logic. To this end, consider a complete distributive lattice L of
statements [8). The lattice is defined by a set of statements P, and the binary
operations A (“and”) and \/ (“or”). The connectives possess the usual
properties of idempotency, commutativity, associativity, and the absorption
identity [8]. Distributivity is also assumed, and moreover the lattice is supposed
to be complete, which means that statements such as

/\ ay, A\E/A ay, (2. ])

AE€EA

with @, € P for each A €A, are well defined and contained in P. Here @,, A€EA,
is an indexed subset of statements. It is noted that we do not introduce
negation as a logical operation, since it will not be needed in the sequel.

On P we define a function ¢: P-[0, 1], where for given g € P, the number
t(a) is referred to as the “truth value” of the statement a. In usual mathemati-
cal logic, ¢(a) assumes one of the two values 0 (“false”) or 1 (“true”). In
multivalued logic, of which we are considering a particular instance, #(a) may
assume intermediate values. Bellman and Giertz [2] impose the following
requirements on the function ¢:

(a) There exist functions f and g, both mapping [0, 1]X[0, 1] into [0, 1], such
that

HaN\b)=f(t(a),1(b)),
1(aVvb)=g(t(a).1(b))

22)

for allae P, beP.
(b) f(x,y) and g(x,y) are continuous and nondecreasing in x.
(©) f(x,x) and g(x,x) are sirictly increasing in x.
(d) f(x,y) < min(x,y) and g(x,y) > max(x,y) for all x €[0,1], y €[0, 1].
(e) f(1,1)=1 and g(0,0)=0.

Property (a) expresses that the truth value of a compound statement is
uniquely determined by the truth values of the component statements; this is
called strict truth functionality in multivalued logic. Property (b) expresses that
t(aAb) and t(a\/b) do not become less true if a is changed so that its truth
value increases, and that moreover the dependence is continuous. Property (c)
is equally plausible. Property (d) requires that the truth value of the statement
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a/A\b cannot be greater than the individual truth values of a and b; similarly,
the truth value of the statement a\/b is required to be at least as large as the
individual truth values of ¢ and b. Finally, property (e) expresses that if a and
b are both completely true, then also aAb is completely true, while if @ and b
are both completely false, then a\/b is also completely false.

Bellman and Giertz [2] prove that (a) through (¢) imply that the functions f
and g are uniquely given by

f(x,y)=min(x,y),  g(x,y)=max(x,y). 23)

We shall refer to the corresponding multivalued logic as fuzzy logic [1]. It is the
logic introduced by Zadeh in his work on fuzzy sets. We observe that if the
truth function is restricted to assume the values 0 and 1 only, we obtain the
usual Boolean logic (except for the definition of negation, which is missing
here).

The interval [0, 1] together with the min and max operations forms another
complete distributive lattice. Hence, ¢ is a homomorphism. It follows that for
any subset of statements g, € P, A€ A, with A an index set,

z( A a)‘) - inf (ay), z( M\a,\) = sup 1(@). 24)

A€A

It will be helpful to use the existential quantifier 3 and the universal
quantifier V. We define the following equivalences:

A/e\A a=((VAEA)a), )l/Aax==((3)\EA)ax). (2.5)

3. FUZZY SETS

In this section we explain our view of fuzzy sets. A fuzzy set a=(X,u,a) will
be defined by the following elements. X is an ordinary set, called the basic
space. The membership function p is a map X—{0,1]. Finally a: X— P, with P
the “universe of discourse” introduced in the preceding section, assigns a
proposition a(x) to each element x € X. The corresponding value u(x) of the
membership function is the truth value of the proposition a(x), ie,
p(x)=t(a(x)). Thus, a fuzzy set is an indexed set of statements together with
the truth value of each member statement. This view is slightly but not
essentially different from the usual introduction to fuzzy sets (see e.g. [4] or

(9D
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Given a fuzzy set a=(X,p,a), let ¢ be a function mapping X-» Y, where Y
is another ordinary set. Let us consider for any y € Y the following statement:
there exists an element x € X such that a(x) holds and ¢(x)=y. This statement
can be written as

5= V. [aAE==2)], @31

where we include the statement (¢(x)=y) in P. The truth value of the
compound statement b(y) is by the properties of the truth function

(boN=1( Y, [amA@x=1)])

sup t(a()IN((x)=y))

]

sup minf 1(a(x)),4((6(x) =) ]

]

sup  p(x), (32)
XEX :¢{x)ymy

since #((¢(x) =y))=1if ¢(x)=y and #((¢(x)=y)) =0 if ¢(x)+#y. Now, defin-
ing #(b(y))=r(y), we have thus obtained a new fuzzy set (Y,»,b), which is
called the image of the fuzzy set a=(X,p,a) in Y under the mapping ¢. We
shall denote this image as ¢(a).

THEOREM 3.1. Let a=(X,p,a) be a fuzzy set, and suppose that ¢ and  are
Junctions respectively mapping ¢:X—Y, and §: Y—Z. Then y({a))=(y°¢Xa),
i.e., the image of ¢(a) in Z under  is the same as the image of « in Z under the
composite mapping y°¢: X—Z, where ({°$)x)=y(¢(x)).

Proof. Let us denote ¢(a)=(Y,»,b) and Y(¢(a))=(Z,m,c). We then have
forany z€Z

c(2)=((IEY)Y(»)=2b(»))
=(@EY)¥(»)=2z (AxEX) $(x)=y, a(x)))
=(@Ay €Y, IxEX) Y(¥) =z, ¢(x)=y, a(x))

=(@x€X) $(9(x) =2 a(x)). (33)
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which proves that y(¢(a))=(Z,n,c) is indeed the image of a=(X,p,a) in Z
under the mapping y°¢. W

This theorem will turn out to be quite helpful in the sequel. We conclude
this section with a few additional definitions. If a=(X,p,q) and B=(Y,»,b)
are two fuzzy sets, then we define the product fuzzy set a X 8 as the fuzzy set
(X X Y,pXv,a/\b), where X XY is the Cartesian product of the basic spaces
X and Y, (pXp)(x,p)=minfp(x),»(»), and (aAbXx,p)=a(x)A\b(y). A
fuzzy set a=(R,p,a) defined on the real line R such that p is piecewise
continuous will be called a fuzzy number. If a and B8 are fuzzy numbers,
expressions such as a+ 8 and af will denote the images in R of the product
fuzzy set a X 8 under the mappings (x,y)l>x+y and (x,y)}l>xy, respectively.
A fuzzy number such that the set {x € R| u(x) > a} is convex for each a €[0, 1]
is called unimodal. The membership function p of a unimodal fuzzy number is
also called unimodal. A fuzzy set (X,u,q), such that there exists an element
x € X such that p(x)=1, is called normal.

4. FUZZY RANDOM VARIABLES

The notion of a fuzzy random variable will be introduced as follows. Let
(2, %,9) be a probability triple. Suppose that U is a random variable defined
on this triple. Assume now that we perceive this random variable through a set
of windows W,, i€J, with J a finite or countable set, each representing an
interval of the real line, such that W,n W;=@ for i#j, and U,c,;W;=R.
“Perceiving” the random variable through these windows means that for each
w we can only establish whether U (w) € W, for some i€J.

Let us define the function 7;: R—[0,1] as the characteristic function of the
set W;. Also let S be the space of all piecewise continuous functions mapping
R—[0,1]. We then define the perception of the random variable U, as de-
scribed above, as the mapping X : 2— S given by

® ;\; X
with X, = I, if and only if U(w)& W,. This means that we associate with each
wEQ not a real number U(w), as in the case of an ordinary random variable,
but a characteristic function X, which is an element of S.

The map X :8-—-S described above characterizes a special type of fuzzy
random variable. The random variable U, of which this fuzzy random variable
is a perception, is called an original of the fuzzy random variable. We note that
corresponding to a given fuzzy random variable there may exist many origi-
nals.
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At this point we generalize and define a fuzzy random variable as a map
£:Q>F, where F is the set of all fuzzy numbers. Denote the image of w in F
under ¢ as {w)=(R,X,,a,), with X,ES and a,:R—P. The map X:Q2-S,
specified by

X
w—>X,,

is required to be such that for each p€(0, 1] both U and Up*, defined by

Ut (w)=inf{xER|X, (x) > p},

4.1
Up*(w)=sup{xER|X, (x) > 1},
are finite real-valued random variables defined on (2, %, %) satisfying
(VoER) X (U @)>n Xa(U*@)>p 42)
Finally, for each wE€f and each x ER, a,(x) is the statement
a,,(x)=(the original assumes the value x at the point ), 4.3)

where we refer to the original random variable of which £ is a fuzzy perception.

The requirement that for each u€(0,1] the quantities U} and Up* are
random variables imposes a measurability condition on the map § The
condition that for each u€(0, 1] both Uy and U}* are finite random variables
constitutes a restriction that from a practical point of view is not very serious.
The same observation applies to the requirement imposed by (4.2).

The picture that has just been sketched of a fuzzy random variable is
complicated by the disturbing thought that the probability space (2, F,9) on
which a fuzzy random variable manifests itself may be a reduction of a richer
probability space (2, %, %), the details of which are lost by the fuzzy percep-
tion. A reduction of (,%,%) to (2,%,?) is obtained as follows. Let € be a
sub-sigma-algebra of %. Define an equivalence relation ~ on & as follows:

O~y © [(VA"eé)G:,e,«f o Hed]. (44)

Then we take @ as the quotient set of § under the equivalence relation ~, i.e.,
Q2=8/~. To define F and P, let ¢ be the canonical projection c : —{. Then
we define F as the class of subsets of £ whose inverse images under ¢ belong
to &. The probability measure & is defined as follows: if 4€%F, then
P (A)=%(c"'(A)). We shall call (2, F, ?) the reduction of (&, ¥, F) generated
by £ C9.
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Clearly, (2, %, 9) is a space with less detail than (&, %, 9). (2,9,9 ) may still
be used to carry certain random variables originally defined on @, ). Let
U be any @-measurable random variable defined on (SZ g, ?P) We first prove
that for any w€, U is constant on the set ¢ ~'(w). Suppose &, €c~'(w) and
@ Ec~'(w). Then c(@,)=c(&,) and hence &;~&,. Suppose U(&,)=x. Then
& € {®| U (@)=x}, and hence by the equivalence of &, and &, it follows that
@&, €(®|U@)=x). As a result U(w)=x=U(&,), which proves that U is
constant on ¢~ Y(w).

We now define the random variable U on (2,5, %) by U(w)= U(c~'(w)). It
is easy to verify that U and U have the same probability distributions. Given
any finite set of @-measurable random variables Uy, 0,..., U, all defined on
@ %, @’) we may obtain a set of random variables U}, U,,..., U, all defined on
(2, %,9) and having the same joint distribution as 0,,0,,..., U,.

We thus see that given a probability space (2, %, %), there may exist a richer
probability space (SZ &, $) of which (2, %,9?) is a reduction. To construct such
a richer space, we first assume that (£, ¥, ®) is minimal in the sense that it is
its own reduction with respect to . We then introduce an auxiliary probabil-
ity space (', %', 9"). For later purposes it will be enough if we choose it rich
enough so that it can carry any finite set of random variables with given joint
distribution. We now let (fl, F,H)=Ox2,FQF, P ®9"), where F®F" is the
smallest sigma algebra including all sets of the form 4 X4’ with A€ % and
A’€¥’, and where @9’ is the product measure on F®F". It is not difficult
to see that (2,%,9) is the reduction of (Q %,%) with respect to the sigma
algebra @ ¥ consisting of all cylinder sets of the form /=4 XQ' with 4 €.

Let § be a fuzzy random variable such that

0S5 (R X, a.).

Denote by o(X) the sigma algebra of subsets of 2 generated by the random
variables U}, n€(0,1], and Ur*, n€(0, 1], as defined in (4.1). For brevity we
refer to o(X) as the sigma algebra generated by X. We now account for the
fact that the probability space (€, %, %) on which § manifests itself may be a
reduction of a richer probability space by allowing any original of which {is a
fuzzy perception to be a random variable on (&, %, %) rather than (2, %,9).
For later purposes the construction of (SZ %,9) as given above will be
sufficient. We shall not admit all random variables defined on (82 g, ‘3’) as
originals, however. Any original  of ¢ will be required to be measurable with
respect to ¢(X)®F’, meaning that in the Q-direction U has to be consistent
with the available fuzzy information.

Thus the set % of all possnble originals of £ is defined as the set of all
random variables defined on (2, 9, {’P) that are o(X)® %'-measurable. For any
Ue¥X, the acceptability that it is an original is given by the truth value of the
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statement b({/), where
b(U)=(U is an original of £)

= /e\n (the original assumes the value U (w, ') at the point (v, "))

w e

= w/e\ﬂ a, (U (w,0)). @.5)

w' Y

Hence, the acceptability that IJ is an original is given by

H6(0)) = inf 1(a,(0(00))

*g=114

= inf X, (U (ww)). (4.6)

welr

We have thus defined a fuzzy set (%,#(b(-)),b) consisting of all possible
originals of the fuzzy random variable in question. With a slight abuse of
notation this fuzzy set will henceforth be indicated as X=(9€ X). Properties of
fuzzy random variables such as its expectation and probabilities in connection
with it will be defined as images of this fuzzy set under certain mappings. This
is the subject of the next sections. .

Because of the central role played by the fuzzy set X=(%X,X), we adopt in
the following the convention of calling X a fuzzy random variable, as an
alternative to calling the map ¢ a fuzzy random variable.

In the sequel we sometimes have occasion to work with fuzzy random
variables of the form X=(%,X), with % the set of all o(X)-measurable
random variables defined on (§, ¥, 9). Such fuzzy random variables are called
reduced fuzzy random variables.

A fuzzy random variable is called normal if for each wEQ there exists an
X € R such that X, (x)=1. In the sequel all fuzzy random variables will be
assumed to be normal.

5. EXPECTATION OF FUZZY RANDOM VARIABLES

In this section we define the notion of the expectation of a fuzzy random
variable X, and discuss some of its properties. The expectation of X is defined
as the fuzzy number EX, which is the image of the fuzzy set X==(‘.‘X, X) under
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the mapping E: % —R such that
E
U EU.

In the latter expression, E indicates the usual mathematical expectation.

Denoting the membership function of the fuzzy number EX as (EX) (a
notation that will frequently be used), we may explicitly write EX=(R, (EX)),
where

(EX)(x)=  sup mf X, (U(wo)), x€R (.1

Jek:Ed=x 8E%

A fuzzy random variable X is called unimodal if for each w €S, the member-
ship function X,, is unimodal. The following theorem shows that if X is
unimodal, it is not necessary to extend (£, ¥, ?) to (SZ G, %) for the determina-
tion of EX. Let % be the set of o(X)-measurable random variables defined on
@, %,2).

THEOREM 5.1.  If X is unimodal, then

(EX)(m)= s inf X, (U@), xER (2
EX EUmx wEQ

Proof. Let ¢>0 be an arbitrary positive real number. Then there always
exists a random variable U* €% with EU* = x that achieves the supremum in
(5.1) with an accuracy ¢, i.e.,

(EX)(x)= inf X, (0*(w,0)) +e. (53)
e
Define the random variable
V*(w)= f U*w,)d®' (&), wER (54)

Clearly V*€ X and EV*=x. By the unimodality of X, we have

inf X, (0%0,0))<X,(V*(@) forall wER. (5.5)
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It follows that

(EX)(x)< inf X, (V@) +e< _sup  inf X, (V(@)+e. (56)

VeX EVmx ¢

On the other hand, by restricting I in (5.1) to be such that U(w,o’)= V()
with ¥V € %X, we clearly have

(EX)(x)> sup i f X, (V(w) &)

VEX EVmx wE

Combining, it follows that

su X, (V S(EX)(x)< su inf X (V +e.
VE@L:EV-): wER ( (w)) ( )() VE‘?C:gV-x wER ( (w)) ¢

(5.8)

Since £ may be chosen arbitrarily small, the proof of the theorem follows. W

The following theorem shows that when determining expectations of fuzzy
random variables, there is no loss of generality in restricting to unimodal fuzzy
random variables. For a given fuzzy random variable X, define for each w €2,

X,(x)= sup  min[X,(u),X,(v)], xER. (5.9

w,0ER U< xXxKV

It is not difficult to see that X,, is unimodal, and that if X,, is unimodal, then
X,=X,. Let us define the reduced fuzzy random variable X=(%,X).

THEOREM 5.2 EX=EX
Proof. Define for each p €[0, 1] the following subsets of R:
C,={x€R|A0eX) EU=x, (Yo,&') X, (U (,6)) > p},

(5.10)
C,={x€R|AUER) EU=x, (Yo,o') X, (U (&,0)) > p}.

We observe that Cy= C,= R. The membership functions (EX) and (EX) may
respectively be obtained from the families of sets C,, p€[0,1}, and C,
r€[0,1), by

(EX)(x)=sup{ pE[0,1]|xEC, },

(EX)(x)=sup{ p€[0,1]jx€C, }. (5.11)
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We shall prove (Vp€[0,1]) C,=C,, from which the proof of the theorem
follows. Let for each p €[0, 1]

a,=inf(C,), b,=sup(C,), a,=inf(C,), B,=sup(C,). (5.12)

It is noted that ao=a,= — 00, by= by=co. Next define for each p€(0,1] and
each wEQ

U (w)=inf{xER|X,(x) > n}, Ut (w)y=sup{xER|X,(x)> p},

U (wy=inf{xER|X, (x)>p},  T*(w)=sup{xER|X,(x)>}.

(5.13)

By the definition of X we have U*=U* and U?*=U?* and hence for each
r€@©,1]

=EU*=EU*=a, b,=EU**=EU**=b. 5.14
a, i w =Gy n " ® M

Furthermore, by the assumption (4.2) we have a,€C, as well as ,€C,. We
prove that C,=[a,,b,]. Let 0< o<1, and Ae?i' be a subset of SZ’ such that
P'(A)=o. Defme the random variable 0 €% such that

Ur(w) for o'€4,

0(‘""")={U;'(w) for W EA". (-1

Then EQ=cEU}+(1 — 6)EU** = 6a, +(1 — 0)b, E[a,,b,], while
(Vo,0) X, (0 (@,0)) > min] X, (U (@), X, (U*@))] > 1. (5.16)

It follows that aaq,+(1—0)b, €C,, and hence that C,=[q,b] for each pE
{0,1]. Similarly we may prove that C w=la, b,‘} Smce a,=a, ana‘ b =b,, the
proof that (Vp€[0,1]) C,= C is complete and the theorem is proved .

The result expressed by the preceding theorem may be viewed as follows.
The map E: %— R may be decomposed into two maps as follows. Let U €.
Then by writing

EU= f d9(w) f U (0,0)d9 (o), (5.17)
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we see that EU is the composition of the following two maps:

(i) XX specified by U T with T(w)= f U(w,0)d®" (),
(ii) X — R specified by Ul>EU.

The image of X under the first map is X; the image of X under the second map
is EX. By Theorem 3.1, the image EX of X under the composite map (5.17) is
EX, which is exactly the content of Theorem 5.2.

The next theorem follows as a corollary of the proof of Theorem 5.2.

THEOREM 5.3. EX is unimodal.

Proof. 1t follows from (5.11) and from the fact that C, decreases monotoni-
cally with increasing g that {x€ R|(EXXx)> p}={xER|sup{ &' €[0,1}|x€
b,,]} > p}=[a,,b,]. Evidently this set is convex and hence EX is unimodal.

Later we shall encounter expectations of products of fuzzy random vari-
ables. If X= (96 X)and Y=(Gy Y) are fuzzy random variables, we define EXY
as the fuzzy number that is the image of the product fuzzy set XxY==(9C><
&,X X Y) in R under the mapping (U, P)~EUV. This means that the fuzzy
number EXY =(R,(E£XY)) has membership function

(EXY)(2)= sup inf min[ X, (U (&,6)), Y. (¥ (@.¢))],
Gek, Ped:E0P=: BE8

(5.18)

for all z€E R, since the pair (U, 7)€% X % has degree of membership

i inf %, (8 (), inf Y.(P @0)]

w el w R

= inf min[ X, (U (0,&)), Y, (P (0¢))]  (5.19)

w' e

in the fuzzy set XXY.

A fuzzy random variable X is called nonnegative if X,(x)=0 for x <0 and
all wef, For X=(9€ X) and Y=("y Y) given fuzzy random variables with
“unimodalized” versions X and Y, respectively [see (5.9)], the following result
may be established.
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THEOREM 54. If X and Y are nonnegative, then

(EXY)(2)= .. inf min[ X, (U@@)), ¥, (V@)], z€R

(5220
Proof. For each p€[0,1] we define the sets
C.=(z€R|A0eX, V%) EOP=;,
(Vo0,) X, (U (0,0)) > p, Yo (V (@,6)) > 1},
C,={z€R|QUEX, V€%) EUV=¢,
(Vo) X, (U (@) > 1, Yo (V (@) > 1} (5:21)

We observe that Cy=C,= R. The families of sets C_ and C, are respectively
related to EXY and the right-hand side of (5.20) by

(EXY)(z)=sup{ pE€[0,1]lz€C, },
. inf min[ X, (U (@)Y, (V@) ]=sup{ n€[0,1]z€C, }.

(522)

Let, for each p€[0,1),
a,=inf(C,), b,=sup(C,), &,=inf(C,), b,=sup(C,). (5.23)

Evidently ay=a,= — o0, by=bhy=00. Defining for each p€(0,1] and each
wE

Up (w)=inf{x ER|X, (x) > p}, Ur*(w)=sup{xER|X, (x) > p},
Vi(@)=inf(yER|Y,(¥)>p},  Vi*(w)=sup{yER|Y,(»)>u}
(529

and similarly U* U** V“ and V* by replacing respectively X with Xand Y
with ¥, we have U’ U, urt= U" V= V"‘ yat= V"‘“ and hence for each
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r€(0,1], a,= EUV¥=EUrV¥=a, b,= EU*V**=EU** V?* =b,. Furthe:-
more, by the assumption (4.2) we have a,&C, as well as b, € C,. We prove
that C, =[a,,b,]. Let c€[a,,b,], and let A €F’ and B € F’ be subsets of Q' such
that @'(4)=A, 9'(B)=0, ¥ (4N B)=Ao with A€[0,1] and c€[0,1]. We
define the random variables UE€X and V €% as

Ur(w)y if o'€A4,
ﬁ , Y= #
(ww) { l}:g(w) if w"EAC,
(5.25)

=

W' EB,

?(‘O’w’)= { V: (w) wE B°.

Vit(w)

=N

Then by the nonnegativity of U}, Ur*, V*, and V** we can always choose A
and o such that

EUV=XoEU V¥ +N1—0)EUS V**+(1~NeEU* V +

(1-N)(1-0)EU* V*=c.  (526)

Furthermore

(Vo) X, (0 (@) > min[ X, (Uf (), X, (U*@)] >
(5.27)
Yo (P (@) > min] Y, (V2 (@), Y (VE¥(@))] > .

It follows that c€C,, and hence that (Vr €[0,1])) C,=[a,,b,]. We next prove
that (Vp€[0, 1] C, =[a,,b,]=[a,,b,]= C,, which by (5.22) proves the theorem.
Let c€[a,,b,], and choose A€[0,1] and o €[0,1] such that EOV =c, where
UeX, V€% such that 0= U*+(1-NT?*, V=06V +(1-0c)V**. By the
unimodality of X and Y we have

(Vo) X.(0(@)>min[ X, (Tt @)X (T*@) ] >
(5.28)
T (

Y. (P @) > min[ 7, (72 @) (V@) | >

which shows that ¢ € C,. This concludes the proof that (Ve €[0,1]) C,=[a,,5,]
and at the same time the proof of the theorem. W
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6. INDEPENDENT FUZZY RANDOM VARIABLES

The fuzzy random variables X;=(R,X"), i=1,2,...,n, are said to be inde-
pendent if the sigma algebras o(X’), i=1,2,...,n, of subsets of  successively
generated by X%, i=1,2,...,n, are independent. At this point the following
property of independent fuzzy random variables can be established. Other
properties will follow in subsequent sections.

THEOREM 6.1. If the two nonnegative fuzzy random variables X and Y are
independent, then EXY=EXEY.

Proof. By Theorem 5.4, we may assume without loss of generality that X
and Y are unimodal. By the independence of X and Y, any random variables
Ue% and V €% are independent. It follows from Theorem 5.4 that

(EXY)(2)= sup inf min[ X, (U(w)), Y, (¥ (@))]
UEX, Ve :EUEV =2 wER

sup inf min[ X, (U(®)),Y,(V(@)]
veX, Vve%, uveR: wEQ
EU—u EV-v o=z

sup sup inf mm[ X, (U@w),Y, (V(w))]

HWOER upmz UEX, VEY EUmy, EVmyp WER

= sup min[ sup me(U(w)) sup me(V(w))]

WOER upmz UEX :EUmy wER EY EVmo

= sup min[(EX)(u),(EY)(v)]

WUER U=z
=(EXEY)(z), ©1
which concludes the proof. B

7. FUZZY PROBABILITY AND FUZZY EVENTS

Let X be a fuzzy random variable, and 4 a Borel set in R. Then the (fuzzy)
probability PrX€A) is defined as the image of X= (?X, X) in R under the map
specified by Jl>@P(U € 4). Hence we have Pr(X€ 4)= (R,(Pr(X € 4))), with

(Pr(XeA))(p)= up inf X, (U (&w)). .0

Since 0< P(Te4)< 1, (Pr(XEA))X(p)=0 for p&[0,1]. It will be helpful to
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consider Pr(X € 4) as the image of X under a composition of two maps. To this
end, we write

$(Ted)= f dP(w) f ) d9"(w), (12)
W U(ww)EA
and specify the first map: X—% by

o[ d9'(). (1.3)

:UC.0)EA
The second map: X.— R is specified by

UbEU. (74)

THEOREM 7.1. The image of X=(65€,X) in X under the map: X% given
by

O [ / d9'(v) (15)

:l?(gu')EA
is IX€4 = (%, IX€4), where

IX€4 (m)= sup inf X, ( U ’(w’)), TER, (7.6)
UVEX : (U EA)=n & EX

with X’ the set of all random variables defined on (2,5, %").

Proof. Let ¥V €%. Then the degree of membership of V in the image of X
under the map (7.5) is

sup inf X,,(U (@)
l}E‘.’.)'C:(Vw) 9”(0(w,-)EA)- V(w) “‘?gg,

= inf su inf X, (U’ (")), 7.7
wER U’E@C’:@’(UPEA)-V(w) W ER ( ( )) a7

which proves the theorem. W

IX€4 is called the indicator function of the fuzzy event XE A for reasons to
be explained later. For fixed w €Q and 7 €[0, 1] the number /X< (=) indicates
the acceptability that a fraction = of the point w belongs to the fuzzy event
X€A. Clearly 1X€4(7)=0 for = not in [0,1). In general, a fuzzy random
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variable I defined on % (rather than ?‘56) with a unimodal membership function
I such that I (7)=0 for = &[0, 1] will be said to be the indicator function of a

fuzzy event.
THEOREM 7.2. Define

ryw)= :’gﬁ X, (%), ri(w)= sgg X, (x). )
X

Then the indicator function X4 may be specified by

ry{w) if 7=0,
IXSA (my={min[ry(),ri ()] if O0<w<1, 719
ry(w) if m=1,

and hence is unimodal.
Proof. The result is evident if we write

1X€4 (1) = sup min{ inf X, (U'«)),
UeX (U ed)y=n W U(W)EA

inf XG(U’(w'))], (7.10)

@ U(W)EAS

and consider the cases 7=0, 0<# <1, and 7=1 separately. B

We are now in a position to explain why J¥€4 is called an indicator
function. Suppose that X=(%, X) characterizes an ordinary, nonfuzzy random
variable, i.e., there exists a random variable Z €%, defined on (8, %, %), such

that

1 if x=Z(w),
= 7.11
X () {o if X% Z(w). a.1n
Then using Theorem 7.2 it is easily found that
IXEA(W)={‘ if w=1 } if Zwed
@ 0 oth ’
otherwise .12)

B@=() o] T Z@EA
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In this case ¥4 characterizes an ordinary indicator function.
THEOREM 7.3. Pr(X€A4)= EI*€A.

Proof. Since 3(U € 4) is the composition of the map : X—~% defined by
(7.3) and the map X —R defined by (7.4), the proof of Theorem 7.3 follows
from Theorem 3.1. W

Suppose that X=(%,X) and Y=(°?3, Y) are two fuzzy random variables,
and let 4 and B be Borel sets in R. Then we define the joint probability
Pr(X € 4, Y € B) as the fuzzy number with membership function

(Pr(XE4, YE B))(p)

- sup mf mm[X (U (w,o),7, (V(“”“’))]

.....

UeX,Fed:9(0ea, VEB)",Pwen'
(7.13)

for p €[0, 1. Evidently, Pr(X€ 4, Y € B) is defined as the image of XXY in R
under the map (U, )P (0 €4, V € B). Let us rewrite

$(Ue4,VeB)= f dP(w) f 9@ (7.14)

:U€ea,

This shows that the map (U, P>P(U €4, V €B) is the composition of the
two following maps. The first map maps X X% into £, which is the class of
random variables defined on (R,%,%) that are o(X, Y)-measurable, and is
given by

(0,7 ) f . 49, (7.15)

A, Ve

Here o(X, Y)C ¥ is the smallest sigma algebra containing both ¢(X) and o(Y).
The second map maps £ into R, and is specified by Zi»EZ.

The image of the product fuzzy set XXY in £ under the first map is the
indicator function X€4- YE2=(Z [X€4. YEE) ghere

Ig(EEA, YEB (,”,)

= sup inf min[ X,, (U'(«)), Y, (V'(«))]. (7.16)
U VEX :P(UEA, V'EB)mn wEX

Since Pr(X €4, Y € B) is the image of X4 Y<2 ynder the map £ — R defined
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by Z}>EZ, we have

Pr(XEA, YEB)= EIXc4.Y<5, (1.17)

THEOREM 7.4. Define ry(w) and ri(w) as in Theorem 6.1, and let

sp(wy=sup Y, (»), sp(w)= sup Y, (»). (7.18)
YEB yEB*
Then
max[ ry (w),sz (w) ] if #=0,
IXEAYED ()= min[ 7} (w),sp (@), max[ r{ (w),55 (w)]] i O<7<],
min{ 7} (w),55 (w) ] if #=1.
(1.19)

Proof. The proof is similar to that of Theorem 7.2. W
THEOREM 7.5. EIX€4.YEB = FIX€AYEE,

Proof. We have respectively

(EIXEA,YEB)(z) = sup i I}EA'YEB (Z (w)),
z€EZ:EZ=z wER

(1.20)
(ETXS41YEB)(2) = sup inf min[ 7X4 (U (w)),1Y<2 (V ())]-
UEX,VEY EUV=: wER
Therefore, consider the sets, defined for each p €[0, 1],
C,={zER|AZ €) EZ=2, (Vw) IX4YEP (Z(w)) > p},
D,= {zERl(HUe%, V E%) EUV =z,
(Vo) X4 (U()) > , IYS2 (V (@) > 1} (7:21)

The theorem has been proved if we can show that (Vu €[0, 1)) C,=D,. Define
for each p €(0, 1] the random variables Z¥,Z*€Z,Us, U* €%, and V1, V2*
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€% as follows:
U¥ (wy=inf{ x € R|IX= (x)> p},
Up*(w)=sup{x ER|IS4 (X) > »},
Vv (w)=inf{ yER|IYS? (») > ),
(122)
Vs (w)=sup{ y ER|IJI<# (y) > n},

XEAYEB (,\ 5 u
w ISR S
Zp*w)=sup{z ER|IF4YEE (2) 5 p}.

1t follows from Theorems 7.2 and 74 that

0 it r(w)>m

* =
i) {1 it r@<m
0 if sp(w)>p,
if sp(@)<s

if max[r] (@)sp(w)]>p
it max[ 7] (@), s ()] <g

-0

(.23)
0 i rh@>m
* =

W=\ it rnwom
it sh(a)<p,

t ]
R FE PR P

Z'(w)=={
worno | O i min[r(@)si@)]<w,
Zp (w) {] if nﬁn[rf,(w),s;,(w)]>p“

[Note that we need here the assumed normality of all random variables, which
implies either r; (w)=1 or rj(w)=1, as well as either sz(w)=1 or sz(w)=1. JItis
easily verified from these formulas that (Vp&(0,1]), Z2= U2V and Z*=
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Ur* Vr*. This proves that for each p€(0, 1}

inf(C,)= EZ} = EU V¥ =inf(D,),

7.24
sup(C, )= EZ}*=EU*V}*=sup(D,). (729

Since (Ve €(0,1]) both C, and D, are convex, inf(C,)E C,, sup(C,)EC, inf
(D)ED,, sup(D)ED, and fmally Co= Dy= R, we have proved (Vp€[0,1])
C.,=D, which concludes the demonstration of the theorem. W

The next result follows immediately from the previous theorem.

THEOREM 7.6. If X and Y are independent fuzzy random variables, and A
and B Borel sets in R, then Pr(X€ A4,Y € B)=Pr(X€ A)P(Y € B).

Proof. Since X and Y are independent, also IX€4 and I¥€# are independent.
It follows from the previous theorem and Theorem 6.1 that

Pr(XEA,YEB)= EFS4]Ye8 = EXAE[YSE=P(XEA)Pr(YE B). (7.25)

|
8. FUZZY CONDITIONAL EXPECTATION

In this section we shall discuss conditional expectations of fuzzy random
variables. Let X= (96 X) be a fuzzy random variable defined on (2, 9, ?), and
suppose that @ is a sub-sigma-algebra of ¥. Let @ denote the sub-sigma-alge-
bra of ¥ 73 %, generated by all cylinder sets of the form 4 X{' with A€@. Let
Ue%, and consider the conditional expectation E &0J. We claim that

ESJ=E°T ae. (9), (8.1)
where
U (0)= f U (0,0)d9'(«). (82

The conditional expectation ES( is defined by the requirements that (a) itis
an @-measurable random variable, and (b) EI;E 0 =EI; ;U for any set Aeg.
Here I; is the indicator function of 4. It is easy to see that E€U is @-measur-
able. To prove (b), we write, letting 4 =4 X&',

EL;EU=El  oE®U=ELEU=EIU

= f L (0)d P (w) f U (w,w)d P (o) = EI; U (8.3)
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for any A€@. This proves that E€U=E®U ae. (%). We consider E€ as a
function mapping % into £, which here is the class of all @-measurable
random variables defined on (2, %, %). The result just obtained shows that £ €
is the composition of two maps. The first map : X —% is characterized by U
U, while the second map : X — is the map E%

We define the conditional expectation of X= (%,X) given @ as the image
of X in € under the map E € We shall prove that E€X, thus defined, is a fuzzy
random variable E € X=(Z,(E¢X)). Since, as in the case of ordinary random
variables, conditional expectations can only be defined almost everywhere, the
definition of a fuzzy random variable has to be slightly modified at this point.
Henceforth, the degree of membership of a random variable Z €% in the
fuzzy set (Z,(E X)) will be given by

egseigf (EEX)(Z (w)). (84)

THEOREM 8.1. The conditional expectation of X=(%,X) given @ is a Juzzy
random variable E¢X=(Z,(E®X)) with

(E®X) (x)=sup{ p€[0, 1]|x € D, (w}}. (8.5

The set D,(w)C R is specified as follows. Let V., pn€(0,1], be a separable version
of the process ESU?, p€(0,1), and let V*, p.E(O 1], be a separable version of
the process E &U:*, pE€(0, 1), where

Ur()=inf{x€R|X,(x)>p}, U =sup{xER|X, (x)>p}, (86)

with X the unimodalized version of X. Then D,(w)=[V,(w), V¥*w)] for p€(0, 1},
while Dy{w)=R.

Proof. E%is the composition of the map: %% defined by 0}—>U and the
map E€. The image of X=(%,X) under the first map is X=(,X). Consider
the image of (%,X) in € under the map E® Let ¥ €Z. The degree of
membership of ¥ in the image of (%,X) under E¢ is given by

sup inf X, (U (w))- 8.7
UEX  Em y wERD

Define for p€[0, 1] the set C,CZ by

C,={VEZ(VUEX) EU=V, (Vo) X, (U(w) > 1 }. (8.8)



24 HUIBERT KWAKERNAAK

It follows from the unimodality of X that C, is convex. Furthermore, Co=%
and C, decreases with increasing u. We may write

sup 1nf X, (U(w))=sup{plVEC,}. (89)

UeX :E=y wE

By the monotonicity of the conditional expectation and the convexity of C, it
follows that

C,={VEZ|V(w)ED,(w) ae.}, (8.10)

with D, (w) defined as above. Now by separability V;(w)‘ is nonincreasing and
V;**(w) nondecreasing except on a null set contained in £, which means that
D, (w) is nonincreasing except on a null set. Hence

sup 1an (U(w))=sup{ p|VEC,}
UeX ESU=V wE

=sup{ p|V (w) ED, (w) ae.}

= es.ggf sup{ p|V (w) ED, (w)}
= essinf (E¢X)(V (@), (8.11)

with (E¢X) as defined above. This proves the theorem. W
The following fact is immediate.
THEOREM 8.2. If @ and o(X) are independent, then E¢X=EX.

Proof. Since Uy and U* are o(X)-measurable, V! = EU} and V}*=EU}*,
which proves the theorem. W

With these results in hand we can consider various questions involving
conditional expectations. Let us for example study the conditional expectation
E(X|Y€ A), with X and Y fuzzy random variables, and 4 C R a Borel set. We
define E(X|Y € A) as the i image of the product fuzzy set XXY in R under the
map: % x Y—>R defined by (U, ") E(U|V € B).

THEOREM 8.3. E(X|Y € B) is the fuzzy number defined by
(E(XIYE B))(2)

=  sup inf min[ X, (U(@)),LY<*(II(w))], z2€R. (8.12)
E(UH)/EI'I(%;y-z “€
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Proof. We write

[[ U(ww)d¥w)d? ()

E(0|VeB)=Y<2
[f d%(w)d? ()

veB

_ U(we)d¥®' ()

ves Iy
fd??(w) f T f,, Eﬂd{’]’ )
res

f 4P (w) fV Ead@’(w')

f U (0)I(w)d P ()
- f (w)d P ()

(8.13)

where .
II(w)= f,, _ 49w, (8.14a)

1 7 ’ 4 : Px)
U ()= ﬁ(—«’)fveaﬁ(w’w)d@ @) it T@=0 (8.14b)

arbitrary but finite if II(w)=0.
Let us now intrnduce the probability measure & on © defined by

II(w)d P (w)

d®(wy= .
© f (w)dF ()

(8.15)

Denoting the expectation with respect to this measure as E, we may write
U () (w)d P (w)

E(UPeB)y=LU=E (B 0)=£U=
(UlveB) ( U)=EU fn(w)d@(w)

, (8.16)

where

Us=E°®0. .17
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The image of Y in % under the map : % —% defined by (8.14a) is IY<2. We
shall prove that the image of X under the composite map: %% defined by
(8.14b) and (8.17) such that Ui Ui U is given by X (for each ¥ and each B).
Then it follows from (8.16) that E(X|Y € B) is the image in R of XxIY<#
under the map: X X% - R defined by (U,II)>EUII/EII, and that hence
(8.12) is correct.

It remains to demonstrate that the image of X under the map Ui U U is
X. It is not difficult to see that the image of X in & [here ¥ is the class of
random variables defined on (&, ¥, ¥) that are o(X, Y)-measurable] under the
map defined by (8.14b) is given by X"=(Z,X™), where

X, (x) if Hw)>0,

S e (3.18)
i if II{w)=0.

we=|
{

We determine E°@®XT with the aid of Theorem 8.1. It is not difficult to
establish that

lﬂ{xeRan(x)>p}={m°£“) i; gg:;:g (8.19)
_ **(w) if II(w)>0,
sup{xER!Xwn(x)}p.}={ i“w(w) g HE:;:O, (8.20)

with U¥ and U* defined as in Theorem 8.1. Evidently mf{xERIX (x) > p}
-U"‘(w) a.e. w1th respect to the measure 6? and sup{xER|X(x)> p}=
U*}(w) a.e. with respect to the measure $. Since both Ut and Ur* are
o(X)-measurable, we obtain V}=Uf ae. and Vi*=U}* ae, both with
respect to 9, so that

(BEeOxXm =X,  ae (9). (8:21)
This result is implied if we set
(E"a(z\’ )X‘H )w= "_,w’ (8.22)

which concludes the proof. W

CorOLLARY of Theorem 8.3.  If X and Y are independent, then E (X|Y € A)
=EX.
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The proof is immediate. Given the notion of conditional expectation,
conditional fuzzy probabilities are easily defined. For X and Y given fuzzy

random variables, and 4 and B given Borel sets contained in R, we define
Pr(X€ A|YE B) as the image of XXY in R under the map (U, V)l—-)@(l?e
A|V € B). We hence have

Pr(X€A|YEB)(p)
= sup inf min[ X, (0 (&), Y. (V(@))] (823)
ek, ped: USh
‘?(UEA{&EB)-}:

We write

$(Uec4, VeB) fd@(“’)f,,a st @)
F(VEB) fd@(w)ﬁ d?'(«")
VeB

$(0ealPeB)=

f ¥(w0)I(w)dP ()
B f TI(w)d P («)
f V(W) (w)d P ()
= E¥=EE ¥ =E¥= ., (824)
f TI(w)d 9 (w)
where

(w)= fy Esd@'(w'),

Y(w)= n(‘") ’];JEA Ve;r;ﬂ’éP «) it T©)>0 (8.25)
arbitrary but finite if I(w)=0,

¥ = Fo000y,

and E has the same meaning as in the proof of Theorem 8.2. The image of X in
% under the map U ¥V is I¥€4, while the image of Y in % under the map
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VioII is IYS2, It follows from (8.24) that

Pr(XEA|IYEB)(p)=  sup inf min[ IX<4(¥(w)), 1y <* (I(w)) ].
YEX, NeY: wED
E(YID)/ENl=p

(8.26)

This immediately shows that if X and Y are independent, then PrX € A4|Y € B)
=Pr(X € 4).

9. CONCLUSIONS

In this paper we have extended the notion of random variables to fuzzy
random variables. The extension consists in allowing impreciseness in the
values that are assumed by the random variable. The vehicle that is used to
carry this impreciseness is fuzzy set theory and the corresponding multivalued
logic. Many properties that are well known for ordinary random variables are
reencountered in the context of fuzzy random variables. Not all properties
carry over, however. For instance, the well-known property EXY= EXEY for
independent random variables only applies to nonnegative fuzzy random
variables.

Clearly, many properties of fuzzy random variables remain to be investi-
gated. At this point, however, enough theory is available to consider simple
applications of fuzzy random variables. In order to handle these applications,
there is a need for various algorithms for the computation of expectations of
fuzzy random variables and fuzzy probabilities. These algorithms will be
developed in a subsequent paper.

1t is a pleasure to acknowledge helpful discussions with Dr. A. Bagchi.
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