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Abstract-This paper studies the problem of controlling the 
planar position and orientation of an autonomous surface 
vessel using two independent thrusters. It is first shown that 
although the system is not asymptotically stabilizable to a given 
configuration using a time-invariant continuous feedback, it is 
strongly accessible and small-time locally controllable at any 
equilibrium. Time-invariant discontinuous feedback laws are 
then constructed to asymptotically stabilize the system to the 
desired configuration with exponential convergence rates. 
A simulation example is included to demonstrate the results. 
0 1997 Elsevier Science Ltd. 

1. Introduction 
In the past few years, there has been a considerable amount of 
interest in the control of underactuated mechanical systems, i.e. 
systems with fewer inputs than degrees of freedom. The possibili- 
ty of controlling a system with fewer than the typical number of 
actuators is indeed appealing, for it allows to reduce cost, weight 
as well as the occurrence of component failures. However, in 
general, underactuated systems present challenges which are not 
found in systems with full control. Controllability, for instance, 
which is usually implied in systems with full control, is not easy 
to determine in an underactuated system. Control synthesis for 
an underactuated system is also more complex than it is for 
a system with full control. While many interesting techniques 
and results have been presented for underactuated systems (Ori- 
010 and Nakamura, 1991; Leonard, 1995; Egeland et al., 1996; 
Reyhanoglu et al., 1996; Spong, 1996), the control of these 
systems still remains an open problem. 

This paper considers the problem of controlling the planar 
position and orientation of an autonomous surface vessel (mar- 
ine vehicle) using two independent thrusters. The dynamics of 
this underactuated system is complex enough to yield a rich 
source of control problems, yet simple enough to permit a com- 
plete mathematical analysis. It has been shown (Wichlund et al., 
1995) that underactuated vehicles do not satisfy Brockett’s ne- 
cessary condition (Brockett, 1983) if the unactuated dynamics 
contain no gravitational field component and, hence, in this 
case, these vehicles are not asymptotically stabilizable to a de- 
sired equilibrium solution using time-invariant continuous feed- 
back laws. In this paper, it is first shown that although the 
system is not asymptotically stabilizable to a given equilibrium 
solution using a time-invariant continuous feedback, it is strong- 
ly accessible and small-time locally controllable at any equilib- 
rium and, hence, the system is asymptotically stabilizable to 
a desired equilibrium using time-invariant discontinuous feed- 
back laws. Discontinuous feedback laws are then constructed to 
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achieve asymptotic stabilization. The methodology followed in 
the construction of the discontinuous feedback laws is based on 
first transforming the system into a discontinuous one in which 
the design of feedback laws is easily carried out. Then, trans- 
forming back into the original coordinates yields discontinuous 
feedback laws which asymptotically stabilize the original system 
with exponential convergence rates. The discontinuous coordi- 
nate transformation employed here constitutes an example of 
a u-process (Arnold, 1983), which has proved useful in the 
stabilization of a special class of nonholonomic systems (Astolfi, 
1995). A preliminary version of this paper can be found in 
Reyhanoglu (1996). 

The organization of this paper is as follows. In Section 2, the 
nonlinear control system describing the dynamics of a surface 
vessel with two independent thrusters is introduced. Control- 
lability and stabilizability results are presented in Section 3. 
Discontinuous feedback laws are derived in Section 4. In Sec- 
tion 5 a simulation example is included. Finally, Section 6 con- 
sists of a summary of the main results and concluding remarks 
about future research. 

2. Mathematical model 
Consider the problem of controlling the Cartesian position 

and orientation of a surface vessel with two independent propel- 
lers as shown in Fig. 1. The kinematic model which describes the 
geometrical relationship between the earth-fixed (I-frame) and 
the vehicle-fixed (B-frame) motion is given as 

1= u,cos+ - u,sin+, (1) 

j = u,sin(I + u,cos$, (2) 

i=w*, (3) 

where (x, y) denotes the I-frame position of the center of mass of 
the vehicle, I,G denotes the orientation angle; (u,, v,,) and w, are 
the linear and angular velocities of the vehicle in the B-frame. 
For simplicity the origin of the B-frame is assumed to be located 
at the center of the mass of the vehicle. It is also assumed that the 
vehicle is neutrally buoyant. Then the dynamic equations of 
motion of the vehicle can be expressed in the B-frame as 

MC + C(v)v + D(v)v = z , (4) 

where v = (u,, uy, o,Y denotes the velocity vector, 
z = (F,,O, T,)T denotes the vector of external force and torque 
generated by the two propellers. ME [w3 X 3 is the inertia matrix, 
including hydrodynamic added mass; and C(V)E llg3 ’ 3 and 
D(v)EIW~~~ denote the Coriolis/centrifugal and the damping 
matrices, also including hydrodynamic added mass effects, re- 
spectively. The reader is referred to Fossen (1994) for the rel- 
evant concepts and the detailed formulation of the dynamics of 
marine vehicles. The following simplified model can be obtained 
by assuming that both the inertia matrix M and the damping 
matrix D are constant and diagonal: 

mllirx--22uy0,+dtlu,=Fx, 

rnZZug + m, 1u,w, + dz2uy = 0, 

m@, + h2 - mll)wy + b3a = T,, 

where mii, dii, i = 1,2,3, are positive constants. 

(5) 

(6) 

(7) 
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Fig. 1. Model of a surface vessel with two propellers. 

Remark 1. Equation (6) can be rewritten in earth-fixed coordi- 
nates as 

m,,(f sin JI - jcos II/) + (rnz2 - ml ,)$(i cos * + j sin $) 

This equation represents a nonintegrable relation involving 
not only the generalized coordinates and velocities but also the 
generalized accelerations and, hence, it can be viewed as a sec- 
ond-order nonholonomic constraint. In contrast to the first- 
order nonholonomic case (Bloch et al., 1992), a second-order 
nonholonomic constraint does not reduce the dimension of the 
state space. A set of three independent configuration variables 
and three velocity variables is required to completely specify the 
state of the system. 

Remark 2. The surface vessel considered in this paper has no 
side thruster, i.e., FY = 0, but the controllability analysis and 
control synthesis of this paper can be easily extended to the cases 
where T = (F,, F,, O)T or r = (0, F,, T,)‘. Note also that, for sim- 
plicity, both the inertia matrix M and the damping matrix 
D have been assumed to be diagonally dominant and constant. 
This assumption is satisfied, for instance, when (1) the vehicle 
body has two perpendicular axes of symmetry (e.g. an elliptic 
body), (2) hydrodynamic damping terms of order higher than 
one are negligible, and (3) changes in inertia are negligible. The 
subsequent development of this paper can be modified to ac- 
count for more complex cases. 

Define the state variables 

(x~~x~~x~,x~,x~,x~) = (ti,xcos$ + ysinti, 

- x sin + + y cos $, uyr o,, u,) 

so that the state equations are given by 

i* = xg , (8) 

i2 = x,5 + x3.$, (9) 

i3 = x4 - x2x5, (10) 

i4 = - ax4 - j?x5x6, (11) 

&=q, (12) 

is = 112, (13) 

where a = dzz/mzz, /? = mll/mzz and 

u1 = (T, - 630, + (ml1 - m~~)~,~,J/m3~~ (14) 

u2 = (F, + mZZuyuL - dl tu,)/ml I. (15) 

Note that the variables (x1, x2, x3) correspond to the orientation 
angle of the vehicle and the B-frame coordinates of the center of 

mass of the vehicle, which parameterize the three-dimensional 
configuration space of the vehicle; and the variables (x4, x5, x6) 
correspond to the B-frame velocity components. 

In the next section, we will consider the system [equa- 
tions (8)-(13)] and study its controllability and stabilizability 
properties. 

3. Controllability and stabilizability results 
Equations (8H13) define a nonlinear control system of the 

form 

i =f(x) + i &X)Ui, (16) 
i=, 

where x = (x1, x2, x3, x4, x5, X# E M = S x R’ is the state, and 
f and gi, i = 1,2, are the drift and control vector fields given by 

f = x5; + (X6 + x,xs,~ + (x4 - x*x& 
1 2 3 

a 

- (0% + Bwd-_, 
ax4 

a a 
gl=G’ gz=Y& 

Note that the set of equilibrium solutions corresponding to 
u = 0 is given by the equilibrium manifold 

It is easily verified that the linearization of equations (8)-(13) 
about an equilibrium xc has an uncontrollable eigenvalue at the 
origin. This implies that a nonlinear analysis is necessary in 
order to characterize the controllability and stabilizability prop- 
erties of the system. Note that since the linearization of 
equations (8)+3) is not stabilizable, the system cannot be expo- 
nentially stabilized at an equilibrium using smooth feedback 
(Zabczyk, 1989). Moreover, it is easy to see that the system does 
not satisfy Brockett’s necessary condition (Brockett, 1983) and, 
hence, it is not asymptotically stabilizable to a desired equilib- 
rium solution using time-invariant continuous feedback. 

We now consider the nonlinear control system [equations 
(8)-(13)] and employ certain results of nonlinear control theory. 
We refer the reader to Nijmeijer and van der Schaft (1990) and 
Sussmann (1987) for the relevant controllability definitions and 
results used in the subsequent development. 

The following results characterize the controllability and sta- 
bilizability properties of the underactuated vehicle dynamics 
described by equations (8H13). 

Proposition 1. The underactuated vehicle dynamics described 
by equations (8H13) is strongly accessible on M. 

Proof: Consider the system [equations (8)-(13)]. Since the vec- 
tor fields 

91. 92, CJSII, Chl, C~2rCfrgIll~ cc/tsz1,c.h11 

span a six-dimensional space at any point xeM, the strong 
accessibility Lie algebra rank condition is satisfied at any point. 
Hence, the system is strongly accessible on M. 0 

Proposition 2. The underactuated vehicle dynamics described 
by equations (8H13) is small-time locally controllable at any 
equilibrium xe E M’. 

Proof: Consider the system [equations (8H13)]. Now, following 
Sussmann (1987), let Br(X) denote the smallest Lie algebra of 
vector fields containing f,gt, and g2 and let B denote any 
bracket in Br(X). Let So(B), S’(E) and S’(B) denote the number 
of timesf, g1 and g2, respectively, occur in the bracket B. The 
degree of B is equal to the value of c&,6’(B). The Sussmann 
condition for small-time local controllability is essentially that 
the so-called bad brackets, the brackets with So(B) odd and 
al(B), P(B) even, must be a linear combination of good (i.e. not 
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of the bad type) brackets of lower degree at the equilibrium. The 
degree of a bad bracket must necessarily be odd. The only bad 
bracket of degree one is f which vanishes at any equilibrium. 
The bad brackets of degree three are brackets with 6’ = 1 and 
6’ = 2, i = 1 or 2, and all are identically zero vector fields. It 
follows that the Sussmann condition is satisfied at xe. Hence, the 
system is small-time locally controllable at xe. 

Since the system is real analytic, the above controllability 
results imply the existence of piecewise analytic feedback laws 
(Sussmann, 1979) which asymptotically stabilize the closed-loop 
system to a given xe. In the next section, guided by these results, 
we will focus on designing asymptotically stabilizing discontinu- 
ous feedback laws for the system. q 

Remark 3. Note that in the absence of damping, after a variable 
reordering, equations (8t-(l3) take the form of those used by 
Coron and Kerai (1996) for the construction of locally stabiliz- 
ing time-varying almost-continuous feedback laws for a rigid 
spacecraft with only two control torques. These time-varying 
feedback laws can be used, with minor modifications, to locally 
asymptotically stabilize the system [equations(8Hl3)]. It is also 
possible to use geometric phase ideas which proved useful for 
stabilizing mechanical systems with first-order nonholonomic 
constraints (Bloch et al., 1992; Reyhanoglu and McClamroch, 
1992). It should be remarked that the geometric phase approach 
yields discontinuous feedback laws with many control switch- 
ings. In this paper, we will consider construction of discontinu- 
ous feedback laws which yield global asymptotic stabilization 
with at most one switching. 

4. Discontinuousfeedback control laws 
In this section, we will consider the problem of designing 

feedback control laws of the form u = u(x) for the system [equa- 
tions (8t( 13)]. As discussed in the previous section, the system 
cannot be asymptotically stabilized to an equilibrium using any 
time-invariant continuous feedback. Therefore, we restrict our 
consideration to designing time-invariant discontinuous feed- 
back laws. 

Note that the problem of stabilizing the system to a given 
equilibrium .xe E M’ can be reduced to the problem of stabilizing 
the system to the origin via an appropriate state transformation. 
Hence, without loss of generality, we focus only on the problem 
of feedback stabilization to the origin, i.e. xe = 0. 

We will first study the problem of stabilizing the following 
reduced-order system, which is obtained by considering the 
subsystem [equations (SHl 1)] and letting (x5, xc) be the control 
variables (l:,, L’~): 

.i- , = 1’ * , (17) 

& = 02 + Xx”,, (18) 

~~ = xq -X*“,, (19) 

,& = - axq - polu*. (20) 

4.1. Stabilization of the reduced system. The idea that will be 
employed is based on first transforming the reduced system 
[equations (17H20)] into a discontinuous one by applying a dis- 
continuous coordinate transformation, e.g. by applying a G- 
process (see Arnold, 1983). From the analytical point of view, the 
u-process, also termed as the process of resolution of singular- 
ities, consists of a rational coordinate transformation. 

Consider the reduced system [equations (17H20)]. Restrict- 
ing consideration to x1 # 0, apply the cr-process 

y=xi, z, =x2, z2=z, z3 =x4 

to obtain 
Xl Xl 

3 = c,. (21) 

il = 02 + yz,v,, (22) 

iz = z3 - 
Zl +z2 
- 01 

Y ’ 
(23) 

z3 + Ph i, = - azj - __ “1. (24) 
Y 

The feedback control law 

t‘,= -ky, (25) 

LIZ = - I; ( (26) 

where z = (z,, z2, z~)~, and k > 0 and I = (I, lz /-,) are the gains, 
yields the reduced closed-loop system 

j= -ky, (27) 

i, = - [,z, - 12z2 - I,z, - kyZzz, (28) 

i, = kzl + kz, + z3 1 (29) 

i3 = - kallzl - kfllzzz + (k - CI - kblX)z,. (30) 

The z-dynamics can be rewritten as 

i = (A, + A&))Z , (31) 
where 

(32) 

(33) 

It can be easily seen that if k # a, the spectrum of the matrix 
A1 can be assigned arbitrarily through the gain matrix 1. Clearly, 
the y-dynamics is globally exponentially stable at y = 0. More- 
over, since the matrix A,(t) given by equation (33) goes to zero as 
t+ z and 

Jo 

the z-dynamics can also be rendered globally exponentially 
stable at the origin z = 0 by selecting I = (II i2 lsj such that the 
matrix Al given by equation (32) is a Hurwitz matrix (see Slotine 
and Li. 1991, Section 4.2.2). 

Note that in the (x1,x2,x3,x4) coordinates the controls 
[equations (25) and (26)] take the form 

li,(.x,,xZ,x3,xq) = - kx, , 

02(x,, x2, x3, x4) = - 1,x2 - /q - 133 
1 I 

and the reduced closed-loop system is given by 

(34) 

(35) 

i,= -kx,, 

x3 x4 
i2 = - l,xt - /2- - i3- - kx,x,. 

,x 1 x, 

.?.3 = xq + kx,xz, 

& = - k/&x3 - (k/l/x f a)xq - kfilIx,x2. 

We now present the following result. 

(36) 

(37) 

(38) 

(39) 

Proposition 3. Consider the reduced closed-loop system [equa- 
tions (36H39)] with k > 0, k # CI, and 1 = (1, l2 13) selected 
such that the matrix A, given by equation (32) is a Hurwitz 
matrix. Let (x10,x20.xjo,x40) denote an initial condition with 
xl0 # 0. Then the following hold. 

(i) The trajectory (~~(t),x&),x&),x.,(t)) is bounded for all 
t 2 0 and converges exponentially to zero. 

(ii) The control (al(t), u*(t)) is bounded for all t 2 0 and con- 
verges exponentially to zero. 

Proof Consider the reduced closed-loop system [equations 
(36)_(39)] and let (x, o, xZo, xjo. xdo) denote an initial condition 
with xl0 # 0. 

(i) We have x,(r) = xlOe-lr. Since .x1o i 0, x1(t) # 0, 
V’te [O, r;o ). Under the stated assumptions, the reduced 
closed-loop system in the transformed coordinates is globally 
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exponentially stable. Thus, (x,(t),x,(t), x,(t)/x,(t), x&)/x1(t)) 
converges exponentially to zero. Hence, the trajectory 
(xl(t), x2(t), x3(t), x,(t)) is bounded for all t 2 0 and converges 
exponentially to zero. 

(ii) From the above discussion, each term in the control 
D given by equations (34) and (35) consists of bounded terms 
which converge exponentially to zero. Hence, the result follows. 

Remark 4. The above result demonstrates that for initial condi- 
tions satisfying xl0 # 0, the feedback control law [equations (34) 
and (35)] is well defined for all t t 0. Moreover, it drives the 
system [equations (36)-(39)] to the origin, while avoiding the set 

Note that one can use a finite-time feedback control law 
(Haimo, 1986) to move the system away from N. 

4.2. Stabilization of the complete system. We now return to 
the problem of asymptotic stabilization of the system [equations 
(8)-(13)] with u1 and u2, instead of xs and x6, as control inputs. 
Since u1 = IS and u1 = &, the problem corresponds to the 
classical situation where integrators are added at the input level. 
It should be remarked that the integrator back-stepping ap- 
proach developed for smooth systems (Krstik et al., 1995) cannot 
be directly applied here due to the discontinuous nature of the 
system. 

Again restrict consideration to x1 # 0 and consider the fol- 
lowing controller: 

u1(x) = - K(% - G,,%,%,x4)) + s*(x), (40) 

Q(X) = - Ux, - U2(x1,xZIx37x4)) +s,(x), (41) 

where u1(x,,x2,xs,x4) and u2(x1,xZ,xJ,xq) denote the feedback 
controls [equations (34) and (35)] for the reduced system; and 
sl(x) and s2(x) correspond to their time derivatives along the 
trajectories of the system [equations (8H13)] 

sl(x) = - kx,, 

Q(X) = - 11(X6 + x3x5) - 12y= + l3 
ax4 + Pxsx6 

Xl 

+/2x3xJ+13xqxg. 
x: x: 

Now assume that the control parameters are selected such that 
k, II, l2 and I3 satisfy the conditions of Proposition 3 and 
K > k, L > 0. The main idea behind the proposed control law is 
to implement the control law [equations (34) and (35)] through 
the integrators by choosing the gains K and L appropriately, 
while avoiding the set 

N’={xEMIx~=O,X#O}. 

Consider the coordinate transformation 

(42) 

x3 
y=x1, 21 =x2, 22=-, z3=xq, 

x1 x1 

WI = xs + kxl, w,=x,+I,x,+1~~+1$-. 

It can be shown that in the above coordinates the closed-loop 
system can be written as 

3= -ky+wl, (43) 

i = (A, + A,(t))2 + h(t), (44 

vi+ = - KWl, (45) 

ti*= -LWz, (46) 

where Al is the matrix given by equation (32) and 

( 
0 r&l 0 

a,(t) = -r,(t) r2(d 0 1 

Bhr2(t) @2r2@) (Bh - W2(t) 1 

r,(t) = eTkryo + 
e-kr _ e-Kr 

K-k wlo > 

( 
ke-k’ _ Ke-K’ 

x - ke-l’yo + 
k-K 

w10 1 
1 

r,(t) = e-“yo + 
e-kt _ e-Kr 

K-k w1o > 
-le-KrwlO, 

h(t) = (1 0 j?(k - r,(t))Te-L’w20. 

The (y. wlr w,)-dynamics is globally exponentially stable at 
(y. wl, w2) = (O,O, 0). Moreover, it can be easily shown that if 
yaw,, 2 0 (or, equivalently, xlo(x5o + kx,,) 2 0), then A,(t) and 
h(t) go to zero as t -+ co and 

s m 

llAz@)lld~ < 0~) 1 IINQII dt < a~ 
0 

Thus, for any initial condition (yo,zo, wlo, w20) satisfying y. # 0 
and yowl0 2 0, both the trajectory (y(t), z(t), w &), w&)) and the 
control (I&U&)) are bounded for all t > 0 and converge 
exponentially to zero. 

We now present the following result. 

Proposition 4. Consider the system [equations (8)-(13)] with 
the feedback controls (40) and (41), where the control param- 
eters are selected such that k, [Ir l2 and l3 satisfy the conditions 
of Proposition 3 and K > k, L > 0. Let (x1o,x2o,x3o,x4o, 
x~~,x~~) denote an initial condition satisfying xIo # 0 and 
x1o(x5o + kxlo) 2 0. Then the following hold. 

(i) The trajectory (xl(t), x2@), x&),~&), x,(t), x,(t)) is 
bounded for all t 2 0 and converges exponentially to zero. 

(ii) The control (u,(t), u2(t)) is bounded for all t 2 0 and con- 
verges exponentially to zero. 

Remark 5. Note that the above choice of the feedback control 
guarantees that 

xl(t)= eektxiO + 

e-k'_e-K' 

K _ k (xso + kxlo). 

It can be easily seen that if xl0 # 0 and x10(x50 + kxlo) 2 0, 
then x1(t) # 0, Vt E , [0, co ). Thus, for all initial conditions sat- 
isfying x1o # 0 and xlo(xso + kxlo) 2 0, the feedback control 
law [equations (40) and (41)] is well defined for all t 2 0. More- 
over, it drives the system [equations (8)-(13)] to the origin, while 
avoiding the set [equation (42)]. Clearly, one can use a finite- 
time feedback control law to move the system to a state satisfy- 
ing the conditions of Proposition 4, e.g. 

u, = - Ix, - ~1’ s&(x1 - E) - (xjlb sign(x,), (47) 

ll2 =o, (48) 

where bc(O, l), a > b/(2 - b) and E # 0 are constants, can be 
used to transfer the system to a state satisfying the conditions of 
Proposition 4 in finite time. 

5. Example 
We illustrate the results of the paper with a simulation 

example of a surface-vessel model with two independent propel- 
lers as shown in Fig. 1. The model parameters are given by 

m,, = 200 kg, mZ2 = 250 kg, ma3 = 80kgm2, 

dll = 70 kgs-‘, dzz = lOOkgs-‘, d13 = 50kgm’s-’ 
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A computer implementation of the discontinuous feedback con- 
trol law specified in Proposition 4 was used to asymptotically 
stabilize the origin. The results of the simulation for a sample 
initial condition given by x,, = (0, 1, l,O, 1,O) (or equivalently 
(x, y, JI, u,, vy, w,) = (1, l,O,O, 0,l)) are shown in Figs. 2-5. Note 
that this initial condition does not satisfy the conditions of 
Proposition 4. Thus, the controls given by equations (47) and 
(48) with E = 0.5 and a = b = 3 were first used to move the 
system to a state satisfying the conditions of Proposition 4. 

Then, at t = 5.25 s, the controls were switched to those specified 
in Proposition 4 with 

k = 0.5. I = (5.00,2.50, - 7.25) K = 1, L = 1. 

Note that the above choice of the gain matrix 1 locates the 
eigenvalues of the matrix Al given by equation (32) at 
( - 0.5, - 0.5, - 0.5). Figure 2 shows the time responses of the 
configuration variables x, y and $. The time responses for the 

-1 ’ I I 1 I I I 

0 5 10 15 20 25 30 
t (set) 

Fig. 2. Time responses for configuration variables. 

1 

% 
(m/see) 0 

'UY 

WW 
wz -0.5 

(rad/sec) 

-1.5 I I I I 

0 5 10 15 20 25 30 
t (set) 

Fig. 3. Time responses for velocity variables. 

O- 

(xkq -20 - 

(k) -40 - 

-60 - 

-80 -\ 

-100 ’ 
0 

I 

5 

I I I I I 
10 15 20 25 30 

t (set) 

Fig. 4. Controls F, and T,. 



2254 Brief Papers 
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1 

0.8 
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-0.4 

-1 -0.5 0 0.5 1 
x (4 

Fig. 5. Surface vessel configuration. 

velocities u,, uy and w, and the controls F, and T, are shown 
in Figs. 3 and 4, respectively. Exponential convergence of 
the closed-loop state and control trajectories can be observed. 
Figure 5 illustrates the configuration of the surface vessel 
for a sequence of time instants. The motion until the control 
switching occurs is a pure yaw motion, which changes the 
orientation of the vehicle from $ = 0 to 0.5 while keeping 
the I-frame position of the vehicle constant. After the control 
switching, the vehicle approaches the origin with monotonically 
decreasing $. 
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