
Annals of Mathematics and Artificial Intelligence 3 (1991) 393-428 393

T H E I N H E R I T A N C E O F D Y N A M I C A N D D E O N T I C
I N T E G R I T Y C O N S T R A I N T S

or:

D o e s the boss have more rights?

R.J . W I E R I N G A , H. W E I G A N D *, J . - J .Ch . M E Y E R * *

a n d F .P .M. D I G N U M +

Vrije Universiteit, Amsterdam, The Netherlands

Abstract

In [18,23], we presented a language for the specification of static, dynamic and deontic
integrity constraints (IC's) for conceptual models (CM's). An important problem not dis-
cussed in that paper is how IC's are inherited in a taxonomic network of types. For example,
if students are permitted to perform certain actions under certain preconditions, must we
repeat these preconditions when specializing this action for the subtype of graduate students,
or are they inherited, and if so, how? For static constraints, this problem is relatively trivial,
but for dynamic and deontic constraints, it will turn out that it contains numerous pitfalls,
caused by the fact that common sense supplies presuppositions about the structure of IC
inheritance that are not warranted by logic. In this paper, we unravel some of these
presuppositions and show how to avoid the pitfalls. We first formulate a number of general
theorems about the inheritance of necessary and/or sufficient conditions and show that for
upward inheritance, a closure assumption is needed. We apply this to dynamic and deontic
IC's, where conditions are preconditions of actions, and show that our common sense is
sometimes mistaken about the logical implications of what we have specified. We also show
the connection of necessary and sufficient preconditions of actions with the specification of
weakest preconditions in programming logic. Finally, we argue that information analysts
usually assume "constraint completion" in the specification of (we)conditions analogous to
predicate completion in Prolog and circumscription in non-monotonic logic. The results are
illustrated with numerous examples and compared with other approaches in the literature.

1. Introduction

1.1. THE PROBLEM OF DYNAMIC CONSTRAINT INHERITANCE

T h e spec i f i ca t i on o f d y n a m i c c o n s t r a i n t i n h e r i t a n c e in a t a x o n o m y c o n t a i n s

s o m e pi t fa l l s t h a t o n e m u s t b e v e r y c a r e fu l to avo id . F o r e x a m p l e , B o r g i d a et al.

[3] give the f o l l o w i n g d y n a m i c c o n s t r a i n t s (we s imp l i fy the f i rs t c o n s t r a i n t a bit) .

* Now at Tilburg University, Tilburg, The Netherlands.
** Also, University of Nijmegen, Nijmegen, The Netherlands.

+ Now at the University of Swaziland.

�9 J.C. Baltzer A.G. Scientific Publishing Company

394 R.J. Wieringa et al. / The inheritance of integrity constraints

1. A student can enroll in a course if the course is not full.
2. Undergraduate students must in addition have a permission if they want to

take a graduate course.
Adding the static constraints

3. An undergraduate student is a student,
4. A graduate course is a course

then from
John is an undergraduate trying to enroll without permission in a graduate
course that is not full,

we can infer the following:
by 3 and 4 he is a student trying to enroll without permission in a course that is
not full,
so by 1 he is permitted to enroll, for students can enroll in a course which is
not full.

This is obviously not the intention of the designers, who mean rule 2 to apply
whenever an undergraduate takes a graduate course. What has gone wrong can be
explained if we formalize the constraints in dynamic logic. Informally, read [a]q~
in the following examples as

"act ion a necessarily leads to a state where q~ holds."
Then it is tempting to formalize the constraints as follows.

Vc, s(Course(c) A ~ f u l l (c) A Student(c) ~ [enroll(c, s)]enrolled(c, s)) (1)

Vc, s (GradCourse(c) A ~ f u l l (c) A Undergrad(s) A permission(c, s)

[enroll(c, s)] enrolled (c, s)) (2)

Vs(Undergrad (s) ~ Student (s)) (3)

V c (GradCourse (c) ~ Course (c)). (4)

The formalized inference is now:

Undergrad (s) A GradCourse (c) A --1 full (c) A --1 permission (c, s) b-

Student(s) A Course(c) A ~ full (c) A ~ permission (c, s)F-

[enroll (c, s)] enrolled (c, s) A ~ permission (c, s).

The problem with the formalization (1)-(4) is that in (1)-(2), the arrows point
the wrong way. (1) says that it is a sufficient condition for enrollment that the
course is not full. But then (2) cannot be relevant for any enrollment for which
the sufficient condition in (1) is satisfied. An improved formalization, which
blocks the fallacious inference above, says that the course not being full is a
necessary condition for enrollment of a student, but it leaves open whether there
may be other necessary conditions as well. So we get

Vc, s(Course(c) A Student(s) A [enroll(c, s)]enrolled(c, s) ~ f u l l (c)) (1')

Vc, s(GradCourse (c) A Undergrad (s) A [enroll(c, s)] enrolled (c, s)

permission (c, s)). (2')

R.J. Wieringa et al. / The inheritance of integrity constraints 395

(1') says that a necessary condi t ion for enrol lment is that the course be not full,
but leaves open that there are other conditions. (2') gives one of these other
conditions, for a special case of (1'). In section 5 below we will show that this
allows us to infer
Vc, s(GradCourse(c) /x Undergrad(s) /x [enroll(c, s)] enrolled(c, s)

~ full (c) A permission(c, s)) . (3 ')
At least three other problems can be poin ted out in this example. First, (2) is

really meant as an exception to the general rule under (1). This is not captured by
the formalization above, and in general leads to a special (non-monotonic) logic.
In section 6.2, we show how exceptions can be specified in a monoton ic logic.

Second, one of the reasons that (1) looks more natural than (1') is that we tend
to read a temporal order into the implicat ion sign. This is unjustified, for the only
temporal ordering in the formulas above is implied by the moda l operator [~] for
an action a.

Third, a l though we talked informally about being allowed to enroll in a course,
we formalized the postcondi t ion enrolled(c, s) explicitly. In database applica-
tions, we often are only interested in an action being allowed by the rules and
regulations of the universe of discourse (UoD), or, weaker, of an action being
possible in the current state of the UoD, independent ly of specifying what the
exact result of the action is. In this paper, we offer a logic to specify these
modalities. We do this in a deontic variant of dynamic logic in t roduced by Meyer
[16,17] and applied to conceptual model (CM) specification in two earlier papers
[18,23]. Deontic logic is a logic of norms and is excellently suited to specifying
what is allowed in a UoD. Dynamic logic specifies what can happen and what is
the result of an action, and can be used to specify dynamic integrity constraints
(IC's). We first give some necessary background that motivates the appl icat ion of
deontic logic to CM specification.

1.2. THE UoD, CONCEPTUAL MODELS, AND INTEGRITY CONSTRAINTS

The CM is an abstraction of a UoD, and is at the same t ime a mathemat ica l
structure into which a theory (specification) Spec is interpreted, as shown in fig.
1. In section 2 we define a CM as a Kripke structure consisting of a set of
possible worlds without an explicit accessibility relation. A possible world, also

Spec CM UoD

Fig. 1. The double role of a CM.

396 R.J. Wieringa et al. / The inheritance of integrity constraints

called a state of CM, abstractly represents a possible state of the UoD. Accessi-
bility between worlds is not defined explicitly by a binary relation on possible
worlds, but by a set of actions, which are functions on the possible worlds of the
model. Details are given below. Here we want to make two claims about the
relation between IC's and the UoD.

1. Explicit knowledge about the UoD is always expressed in closed formulas in
which the variables range over classes of possible objects in the UoD.

2. All IC's express explicit knowledge about the UoD.
This means that IC's are closed sentences in the language of Spec that are true of
the CM. So they are axioms of Spec, or logical consequences of them. But then
IC's are necessary truths of the CM, for they are true in all states of CM. This
means that knowledge about what is usually the case in the U o D (empirical
knowledge), or about what ought to be the case in the UoD (deontic, i.e.
normative knowledge), cannot be added to Spec in the same way as genuine
necessary truths can. A statement like

age >1 0

is an analytic truth, i.e. it follows from the meaning of the symbols occurring in it.
It is therefore also a necessary truth and can, translated to the appropriate
language, be adopted in Spec. But assuming we are talking about the age of
persons, a statement like

age < 100

is an empirical truth which may be violated by the UoD and can therefore not be
added as a necessary truth to Spec without further qualification. Similarly,
talking about bank accounts,

balance >i 0

is not a necessary truth either but prescribes the way UoD entities should behave.
What we have now is, on the one hand, a formalism and a semantics which

allow us to express only necessary truths as IC's, and on the other two types of
knowledge, empirical and normative, which allow exceptions and cannot be
expressed in a straightforward way as necessary truths. Our solution to the
problem for empirical constraints is to simply formulate them so widely that we
do not, in the useful life of the CM, encounter any exceptions. This in itself is an
empirical prediction which may be falsified, but in this paper we ignore problems
arising from this kind of falsification. For deontic constraints, we retreat to a
kind of metalevel by stating the fact that there is a norm as a necessary truth
valid for all states of the CM. We then provide a mechanism by which deviations
from this norm in a particular world can be detected and, most importantly,
corrected.

Returning to fig. 1, Spec is roughly analogous to a database (DB) schema in
that it specifies all possible states of a CM. The CM as a whole can thus be
represented in a computer by storing Spec. We do not assume anything about

R.J. Wieringa et al. / The inheritance of integrity constraints 397

how a particular state of the CM is represented in the computer. Traditionally,
relational DB's store a set of ground atoms; in the presence of Spec, though, these
allow us to infer many other facts not explicitly stored. Alternatively, we can
store a set of sentences which has the represented CM state as its preferred
model. Our goal in this paper is not to discuss the relative merits of different
ways to represent CM states, but to discuss the relative merits of certain ways to
specify, in Spec, necessary truths about all states of the CM.

1.3. STRUCTURE OF THE PAPER

In section 2 we give a brief introduction to the language LDeon defined in [23].
Section 3 then introduces types, so that in section 4 we can introduce IC's as
closed sentences in which all variables are quantified over types. We give a
classification of IC's with respect to whether they specify necessary or sufficient
conditions for static formulas, or for actions, or for deontic modalities. Section 5
then contains the main result of the paper, concerning the inheritance of neces-
sary or sufficient conditions in a taxonomy. Due to the generality of this result, it
is applicable to a large number of quite complex constraints. This is illustrated
with a number of examples. In section 6 we compare this with some non-mono-
tonic approaches and draw some methodological conclusions from this. In
particular, we show how constraints can be "completed" in a way roughly
analogous to predicate completion in Prolog and to circumscription in AI
approaches. Section 7 contains a summary of the main conclusions that can be
drawn from the paper.

2. S y n t a x a n d s e m a n t i c s o f LDeon

Our specification language consists of three parts, Lstat for static integrity
constraints, LDy n for dynamic constraints, and LDeon for deontic constraints. We
devote a brief section to each of these parts.

2.1. THE STATIC LANGUAGE Lstat

Lstat is a simple first-order language with the following syntax.
- Examples of variables are p, b, - - - . The letters x, y and z (possibly

indexed) are always used as metavariables over the variables. There are
infinitely many variables.

- Constants are A101, 1234 and the letter c (possibly indexed) is used as
metavariable over the constants. There are infinitely many constants.

- There are finitely many function symbols, with metavariables f , g ,
- There are finitely many predicate symbols, and the letters P, Q, R are used

as metavariables over the predicate symbols. Each predicate symbol has an

398 R.J. Wieringa et al. / The inheritance of integrity constraints

arity > 0. Two special predicates are the unary predicate E (existence) and
the binary predicate = (equality).

Terms and formulas are built in the usual way using A, V, --1, ~ , V, 3, and
punctua t ion symbols (,), [and]. We use infix nota t ion for =: Metavariable over
terms is t and metavariables over formulas are ~ and ~k. The existence predicate
E is used by convent ion to single out the set existing objects among the set of
possible objects. The following abbreviations are used:

Vex[q~(x)]:=Vx[E(x)=*q~(x)] and

3x[E(x) ^

In the following definition, we presuppose the usual model concept f rom first-
order predicate logic.

DEFINITION 2.1
A function symbol f of arity n > 1 is called t ransparent with respect to a

structure M of tstat if for any constants Cl , . . . , cn, there is a constant c o such that
M ~ f (c l , . . . , cn) = c o .

If f is t ransparent then if the arguments of a particular applicat ion are known
(in the sense of having a name), then the result of application is known. In any
expression, function applications to constants can thus be eliminated.

DEFINITION 2.2
For any language L,
1. the Herbrand universe UL of L is the set of constants of L. (Since we

consider only languages with t ransparent funct ion symbols, it is sufficient to
consider a Herbrand universe without funct ion symbols.)

2. The Herbrand base ~L over the universe U/. of L is the set of all ground
atoms (closed atomic formulas) of L containing no funct ion symbols.

3. A Herbrand structure ~r is a subset ~r - ~ z . Tru th in ~ z is defined for
ground atoms as

�9 /~r ~ P (C l , ' " , Cn):= P (c l , ' " , Cn) ~'/~L

and E(c ,) ~ J ~ L , i = 1 , ' . ' , n.

For an arbitrary closed q,, t ruth in ~ L is defined in the usual way (e.g. see
[13]).

4. "r is called a transparent Herbrand structure of L if every funct ion
symbol of L is t ransparent with respect to --r

Note that the use of t ransparent Herbrand structures is a technical convenience
that could be eliminated. Without t ransparent Herbrand structures, the construc-
tion would be more difficult due to the presence of the equality symbol.

R.J. Wieringa et al. / The inheritance of integrity constraints 399

DEFINITION 2.3
An $5 Herbrand-Kripke structure ~ ' i ~ of a language L is a collection of

Herbrand structures which are called the worlds or states of ~ r L. Truth of a
ground atom ih ~ L is defined as

~ , " L ~ q~ r w ~ q~ for all w ~ ~ / ' / .

Truth of a closed formula q~ in a single transparent Herbrand structure w ~ ~ ~//'/~
is defined in the usual way. The collection of all Herbrand-Kripke structures of L
is called s

We will drop the qualification "$5" from the definition from now on. In terms
of fig. 1, a CM is a Herbrand-Kripke structure and Spec is a theory of the CM.
Note that in general, theories have no unique model. We just assume that there is
an intended model of Spec. Static integrity constraints are then sentences in Lstat
that are true in the CM. An example of a static constraint is

V b (bird (b) ~ warmblooded (b)) (5)

2.2. THE DYNAMIC LANGUAGE LDy n

Lstat is extended to a variant of dynamic logic LDy n. (See [8] for dynamic
logic.) This is done by adding languages for actions and transactions, which are
defined first. For the action language LAc t we assume a fixed set A of atomic
actions.

DEFINITION 2.4
The language Lac t of actions, with typical elements o~, is given by the following

BNF:

a'.:= alal U a21al &a21~lany Ifail

where a ~ A. a I tO a 2 is a non-deterministic choice of the actions cq and a2;
al & a 2 is the parallel execut ion/performance of the actions a I and a2; ~ is the
non-performance of the action a; any denotes the unspecified action; fail denotes
the failing (empty) action.

The semantics of actions is that they are functions on ~ " / . A formal
semantics is given in [17], which is summarized in [23]. Note that if an action
changes the world (if it is not the identity function), it does so instantaneously,
i.e. there are no intermediate worlds during the execution of an action. The
execution of an action is also called a step. The action fail has no successor
worlds and the action any executed in a world has an arbitrary world as
successor, which may be the world in which it is executed.

400 R.J. Wieringa et al. / The inheritance of integrity constraints

D E F I N I T I O N 2.5

The language LT"ra,,s of transactions, with typical elements /3, is given by the
BNF:

/3::= a I/31 ;/321 clock

where a ~ LAa.

Intuitively, /31;/32 is the sequential composi t ion of the transactions/31 and /32"
In the formal semantics, sequential composi t ion of actions is interpreted as a
string of atomic actions.

clock is a transaction of the durat ion of one t ime unit. We assume that a t ime
unit has been chosen for the UoD, giving an intuitive interpretat ion to one tick of
the clock. If the time unit is one day, then clock is the passing of one day, if the
unit is one minute, then clock is the passing of one minute. Dur ing a tick of the
clock, any is executed one or more times to match the durat ion of one t ime unit.

D E F I N I T I O N 2.6

The following abbreviations are used:

/3n : = /3; , , , ; /3 (n times)

Ot(n) : = d o e k n ; ot (note: a(0 ~ = a)

a (~a) :=a (0)U . . . Ua(a)
~(n) := eloekn; ~

Ot > d : = a(~<d) = 2(0) • " " " & ~ (d)

Thus, in a library administrat ion where return is the action of returning a book
and the time unit is one calendar week, return~ ~ 3) is the action of returning the
book at the latest 3 weeks after now (= the m o m e n t that re turn~ 3) is executed).
return(3) is the action of not returning the book in the third week f rom now, and
return~ >13) is any transaction not containing the action of re turning the book
within three weeks.

D E F I N I T I O N 2.7

The language LDy n of dynamic constraints, with typical elements �9 and ,it,, is
given by the BNF:

where q~ is a formula of t s ta t . We use

as an abbreviation of ~[fl]--,~.

The intuitive semantics of [a]~ is that after the execution of a, ~ necessarily
holds. [a]~b itself is thus the weakest precondition of a with respect to the

R.J. Wieringa et al. / The inheritance of integrity constraints 401

postcondition co. If [a]q~ holds in a world and a is executed in that world, then
afterwards q~ will hold.

Just like [.] is a necessity operator, (.) is a possibility operator. Ca)q, says that
doing a may lead to a state where q~, i.e. there is at least one world in which
doing a leads to a world where q~.

An example of a dynamic logic expression is

Ve(~Employee(e) ~ [hire(e)] Employee(e)). (6)

This says that not being an employee is a sufficient condition for hire(e) to
necessarily lead to a state where e is an employee.

Note that we misuse notation slightly by parametrizing actions with variables
that also occur in the predicates. We have not provided for this in the syntax or
semantics of the language. However, this can easily be rectified, see for example
[7].

DEFINITION 2.8
The following objective modalities are introduced by definition:

- P O S (a) : = ~[a]faise ("a can possibly happen"),
- NEC(a) := [~]false ("a necessarily happens"),
- D I S (a) : = ~ N E C (a) ("a is discretionary, may not happen"), and
- IMP(a) .'= -~POS(a) ("a can impossibly happen").

These are called objective modalities to distinguish them from the deontic ones
which are introduced below. Both are dynamic in that they apply to actions, but
where objective modalities state concern what objectively can happen, deontic
ones concern what is admissible. We have

N E C (a) * * - - , P O S (~) , D I S (a) ~ P O S (~) , and I M P (a) ~ [a] f a l s e .

A simple example is

Vp, b(Person(p) A Book(b) =~ POS(borrow(p, b)), (7)

which can be paraphrased as " I t is possible for a person to borrow a book" (of
course, other entities, like institutions, may also be able to borrow books).

2.3. THE DEONTIC LANGUAGE Lneon

We need no extensions to LDy n to be able to express deontic constraints. The
deontic concepts of obligation and permission can be reduced to the concept of
prohibition, which in turn can be reduced to the concept of an action leading to a
violation of a rule. Instead of expressing the rules explicitly, we thus state when
they are violated. We do this by defining, for each action a, one or more violation
states F, : a, one for each of the reasons why the execution of a is forbidden. For
each violation state, we usually define a corrective action which allows one to get

402 R.J. Wieringa et a L / The inheritance of integrity constraints

out of that state. The necessary reductions are then effected by the following
definition.

DEFINITION 2.9
The following abbreviations are used for deontic modalities:
- P(a) .'= - , [a] ~ : a for an i ("a is permitted"),
- O(a) := [~]V, : a for an i ("a is obligatory"),
- D(a) := --,O(a) ("a is discretionary, not obligatory"), and
- F (a) : = ~P(a) ("a is forbidden").

Note the analogy with dynamic modalities. The following equivalences are
analogous to those for objective modalities.

O (a) ~ P (~) , D (a) * P (~) , and F (a) *~ [a]Vi: a for an i.

The following interesting implications follow immediately from the definitions:

P(a) ~ POS(a), NEC(a) ~ O (a) , IMP(a) ~ F(a), and D(a) ~ DIS(a).

The first of these says that what is permitted, is possible. This is a lot weaker than
the Kantian doctrine "Ought implies can." 1) The sentence O (a) ~ P O S (a) is
not provable in LDeon. Neither is, incidentally, O (a (x) ~ P (a (x)) provable in

LDeon.
An example of a deontic constraint is

Vp, b(Person(p) A Book(b)= [borrow(p, b)]O(return(p, b)(~30))) (8)

The meaning of this is that if a person borrows a book, then (afterwards) he must
return it at most 30 days later. Note that it is not guaranteed that he returns it.
Contrast this with

Vp, b(Person(p) A Book(b)=~ [borrow(p, b)]NEC(return(p, b)(~30))), (9)

which can be paraphrased as " i f a person borrows a book, then afterwards he
necessarily returns it". As a statement about the UoD, this is patently false, and
as an IC for the DB, failure t~ re tu rn a book within 30 days would cause the DB
to be in an inconsistent stateS. The DB would still be consistent, though, when (8)
were used instead of (9y. Moreover, we can specify what should happen when a
person does not return a book:

Vp, b(V: return(p, b) =~ O(pay(p, $2, b))) . (10)

When the book is finally returned, the violation is undone,

V p , b [return (p, b)] ~ V: return (p, b) (11)
but the fine must still be paid.

1) Cf. S. KSrner, Kant (Penguin, 1955), "What ought to be must be possible, since every moral
obligation implies the (moral or nournenal) freedom to realize it." (p. 167.) The Kantian doctrine
is a rationalization of one of the central tenets of Lutheranism. The converse is the Modern
Engineer's doctrine "Can implies ought", or, freely translated, "If you can do something, you
must try it out."

R.J. Wieringa et al. / The inheritance of integrity constraints 403

3. Natural kinds and roles

If knowledge is expressed as closed statements about objects of a certain type,
as pointed out in section 1.2, then we must be able to talk about types. In this
section we add the concept of a type to LDeo,. We follow Sowa [22] in using an
explicit type predicate to declare the type of a term.

DEFINITION 3.1
Let T be a finite set of constants not occurring in LDeon. The elements of T are

called type names and ~- is used as metavariable over T. ZDeon is extended to the
typed language TLoeon as follows.

1. TLDeon contains a special binary predicate type and the set T of type names.
The only well-formed atomic formulas that can be built with type are of the
form type(t, "r) for a term t and a type name "r, and the only place where "r
can occur is as the second argument of type. type(x, "r) is called a
declaration of x.

2. We introduce the abbreviations

Vx: "r(ep(x)):=Vx(type(x, ~ -) ~ (x)) and

3x: ~-(q~(x)).'= 3x(type(x , ~') A q~(x)).

3. The language TLDeo~ is the set of all closed statements that can be built this

way and which have all their variables typed. The inference relation F- is
defined as usual for first-order logic. We only consider formulas in prenex
normal form, i.e. QIX1 . . . QnXn(~(Xl, . . . , Xn)), where xl,- �9 -, xn are all the
free variables in q~ and Q, are quantifiers. Because all variables are typed,
we can write this as

Qlxl: ~ . . . Q,x,: %(eo ' (xD. . . , x ,)) ,

with ~ ~ T.

So far, we have defined a syntax of a first-order language containing some
special predicates like type and E, and a distinguished set T of constants. We
must now give a semantics to the type names. We have a choice of keeping the
extension of a type name constant in each world, or varying it. This choice has an
intuitive meaning, for compare the types Person and Employee. Some objects can
become employees or cease to be employees without coming into existence or
ceasing to be. There is life before being hired by a company, as well as after
terminating a contract. On the other hand, there is no kind of object that can
become a person without coming into existence, or that can cease to be a person
without ceasing to exist. Apparently, being a person is an essential proper ty of
objects in the way that being an employee isn't. We will call types like Person
natural kinds and types like Employee roles. With this, we have sufficient
motivation for the following definition.

404 R.J. Wieringa et al. / The inheritance of integrity constraints

DEFINITION 3.2
1. We assume that T is partit ioned into the sets X and ~ . The constants in J'U

will be called natural kind names and those in ~ natural role names.
Metavariable over ~ is k and over ~ is r. "r is still our general metavaria-
bie over ~ ~ .

2. A typed structure ~t/'rLD~o, of TLo~o, consists of a structure ~"LOeo. of
the untyped version LDeon of TLDeon , and assignments

..U~ (ga(ULD.o.) for each world W ~ " L o e o ., and II. II w:

II. II w: ~ (~(ULoeo, n II E II w) for e a c h w o r l d w ~ ~ D e o . ,

where UL,,.o. is the universe of ~/'Loeo., and we must have:
- for each r ~ there are worlds w, W ' ~ r L O e o . with w 4 : w ' and

I l r l lw4 : II r II w',
- for each k ~ ~ and all w, w' ~ ~ ~'rLoeo. with w 4= w', we have II k II w =

II k II w,, a n d
- ULo ,oo=U~r l IT I I .
The elements of II r II are called the possible instances of ~'.

3. Truth for formulas type (c, ~') in w ~ / ' r L o . o . is defined by

w ~ type(c, "r) := c ~ II �9 II w.

Truth in ~t/'rl-oeo. is defined as usual.
We drop the index TLDeon from ~rL~,eo.

be presupposed to be clear.
when the language is clear or can

Remarks
(1) The extension of k cog" in w is independent of w. So when t has a natural

kind, it has ~that kind in all possible worlds. This formalizes the intuition
that being aLmember of a natural kind belongs to the essence of an object,
where the essence of an object can be defined as the underlying structure of
the object. (Cf. Kripke [11,12] and Putnam [19] discuss the concept of a
natural kind, Wieringa [24] applies this to object-oriented conceptual
modeling.)

(2) Our semantics requires every constant to be in the extension of at least one
natural kind.

(3) The extension of a role name in a world must fall within the extension of
the existence predicate in that world. This formalizes the intuition that
II t II w ~ II r II w if t denotes an object actually playing role r. Whereas a role
is something an object has in a certain context, a natural kind is an
underlying structure of an object independent of context.

(4) Sort names in many-sorted logic denote natural kinds, not roles. Thus, it is
wrong to formalize Student, Employee etc. as sort names.

R.J. Wieringa et al. / The inheritance of integrity constraints 405

Note that since our logic is not many-sorted, we need not define the argument
sorts of predicate symbols and the argument and result sorts of function symbols.
Thus, our syntax is unsorted. However, we must now require from every theory in
TLDeon that there are type axioms for all predicate and function symbols that it
uses. These must be of the form

P (X l , ' " , X n) ~ type(xl, ~1) A . . . A type(Xn, zn)"

So where many-sorted logic gives the argument and result sorts in the signature of
the theory, we must give them in the theory itself.

TLDeon has the advantage over many-sorted logic of being able to say that the
type of an object changes. Assuming that Person ~ ~ and Employee ~ ~ , we can
specify

Vx(type(x, Person) ,x, [hire(x)] type(x, Employee)). (12)

Since an object cannot change its natural kind, we cannot consistently specify

Vx(type(x, Person) r [die(x)]~type(x, Person)). (13)

4. Specifying necessary and sufficient conditions

We can now express knowledge about classes of objects. In order to be clear
about the role of necessary and sufficient conditions in the expression of
knowledge, we give here a classification of IC's with respect to this aspect. All
IC's we consider in this section are of the form

Vx: ~ (~ (x) ~ ~ (x))

with ~(x) , qP(x) ~ TLDeon.

DEFINITION 4.1
1. In

Vx: ~ ' (~ (x) ~ ' / ' (x)), (14)

�9 (x) is called a sufficient condition of 9 (x) for objects of type % and 'P(x)
a necessary condition of ~ (x) for objects of type ,r.

2. In

Vx: "r(~ (x) =, [a(x)l g '(x)) , (15)

�9 (x) is called a sufficient precondition of a(x) with respect to g'(x) for
objects of type 'r.

3. In

Vx: "r([a(x)]~(x)=~ g ' (x)) , (16)

g'(x) is called a necessary precondition of a(x) with respect to ~ (x) for
objects of type ~-.

406 R.J. Wieringa et al. ,/The inheritance of integrity constraints

There is no concept of "sufficient postcondition". Postconditions are always
necessary, but this is opposed to possibility, whereas necessary preconditions are
opposed to sufficient preconditions. Thus, q~ in [a]q~ is opposed to ~k in (a) + ,
whereas [a]q~ =* ~k is opposed to q~ =, [a]q~. For example, selling a thing neces-
sarily changes ownership, but dropping it may possibly break it:

VPl, P2: Person, t: Thing([sell(pl, t, PE)lown(p:, t)) (17)

V t: Thing((drop (t)) broken (t)). (18)

Whenever ~ ~ ko, we call �9 stronger than kO and ~/" weaker than ~. The
strongest statement is false (it implies everything) and the weakest statement is
true (it is implied by everything). Thus, a sufficient precondition of [a(x)]~t'(x),
such as ~ (x) in (15), is stronger than [a(x)]~I'(x) itself. If we weaken ~b(x) in
(15) until it is equivalent with [a(x)]~(x), then it is the weakest precondition of
[a(x)]q'(x). So any statement equivalent to [a(x)]~t'(x) is a weakest precondi-
tion of a(x) with respect to ~(x) . In particular, [a(x)]~(x) itself is a weakest
precondition of a(x) with respect to '/'(x). Modulo logical equivalence, one can
speak of the weakest precondition of a(x) with respect to g'(x) [1].

On the other hand, all necessary preconditions of [a(x)] ~ (x) are weaker than
it. If we strengthen ~ (x) in (16) until it is equivalent with [a(x)]~b(x), then it is a
weakest precondition of a(x) with respect to ~(x) . Thus, if ~ (x) is the weakest
precondition of a(x) with respect to ~(x) , we must read this as

" ' / ' (x) is the weakest precondition that must hold so that a(x) necessarily
leads to ~(x) ; any weaker precondition does not guarantee that ~b(x) holds
after a(x) ."
There are five interesting types of instances of the general IC form, according

to whether �9 and q" are static or dynamic, and for the second case whether they
express objective or deontic modalities.

4.1. STATIC CONSTRAINTS

These are of the form

Vx : ~-(~(x) ~ tp(x)) ep is sufficient for tp and ~p is necessary for ~.

for ~(x), ~p(x) ~ Lstar An example is the following improvement of (5):

Vx : Animal(type(x, Bird) = warmblooded(x)). (19)

This says that for an animal, being warm-blooded is a necessary condition for
being a bird, and that for animals, being a bird is sufficient for being warm-
blooded.

R.J. Wieringa et al. / The inheritance of integrity constraints 407

4.2. DYNAMIC CONSTRAINTS

4.2.1. Postconditions
We are only interested in necessary postconditions, not in possible postcondi-

tions. An important form of this (with �9 -= true) is

Vx: ~-([a (x)] ~ (x)) a leads necessarily to q~.

for ~(x) ~ Ls, at. (We do not consider nested postconditions such as [a][fl]q~.) We
saw already sufficiently many examples of this. An interesting subcase is that of
role-changes. These are of the form

Vx : k ([a (x)] t ype (x , r) ix E (x)) .

For example,

V ep: Person([register(p)] type(p, Student)) (20)

Note that we require p to exist, so that existence need not be explicitly mentioned
as postcondition. The statement is ill-formed if Student q~ ~ .

4.2.2. Preconditions
We are interested in necessary as well as sufficient preconditions. For q~(x),

~p(x) ~ Lstat, these have the form

Vx: .c(ep(x)=~[a(x)]q~(x)) If q~(x), then a(x) necessarily leads to
~k(x). q~(x) is a sufficient precondition for
a(x) to lead necessarily to q~(x).

Vx: ~'(([a(x)]q~(x))~q,(x)) If a(x) necessarily leads to ~k(x), then
q~(x), q,(x) is a necessary precondition for
a(x) to lead necessarily to ~k(x).

For example, when the queue of book reservations has n elements, then after
reserving a book, it has n + 1 elements:

V n: integer (queue (n) =, [reserve_ book] queue (n + 1)) (21)

When after a reservation the queue has n + 1 elements, then before the reserva-
tion it has n elements:

V n: integer ([reserve_book] queue (n + 1)) =~ queue (n) (22)

A negative form of sufficient preconditions gives us the form of frame axioms:

w : (x) = (x).
For example

re1, P2: Person(--,rnarried(pl, P 2) = [marry(p1, P2)]~married(pl , P2)),
(23)

which says that marrying is the only way to get married. In other words, the state
of being married is invariant under any action but marrying.

408 R.J. Wieringa et al. / The inheritance of integrity constraints

Preconditions for objective modalities have the form

Vx: "r(POS(a(x)) ~ q~(x))

Vx: "r(~(x) = P O S (a (x)))

~ (x) is a necessary precondition for a(x) to be
possible.
q~(x) is a sufficient precondition for a(x) to be
possible.

Similar schemas exist for the other objective modalities.
For example, someone can only sell something, if he owns it:

Vp: Person, t: Thing(POS (sell(p, t)) ~ own(p, t)). (24)

If you are a person, you can borrow a book:

Vp : Person, b: Book(POS(borrow(p, b)). (25)

These are the preconditions that are often used in database research.
Preconditions for deontic modalities have the form

Vx : T(P(a(x)) ~ ~(x)) a is allowed to occur only if ~ holds.
Vx: "r(~(x) ~ P (a (x))) If ~b holds, a is allowed to occur.

Similar schemas exist for the other deontic modalities.
For example,

VPl, Pz, P3: Person, t: Thing(P(selt(pl, t, P2))

--n3ep3 : promised(p 1, t, P3)/k ~PE =P3, (26)

which can be paraphrased as "Someone can sell something only if he has not
promised it to someone else." Finally, " i f someone is a manager, he or she is
permitted to park"

V m (type(m, Manager) ~ P(park (m)). (27)

5. Inheritance of constraints

DEFINITION 5.1
TLoeon is extended to a language OTLDeon with ordered types by adding a

distinguished binary infix predicate ~<. The only well-formed atomic formulas
that can be built with ~ are of the form "r 1 ~< -r E for "rl, "rE ~ T. The semantics of
~< is:

"rl ~ "r2 := Vx(type(x , "rl)~ type(x, "rE))-

THEOREM 5.2
1. ~< is a partial ordering on T.

2. If "rl~<'r:, then II'rlllw-C-II'r=llw.
3. Ilkllw=llkllw, for all w, w' ~ 9 ~ / " L.

R.J. Wieringa et al. / The inheritance of integrity constraints 409

4. If for each role name r, there is a possible world w ~ / . ~ , . , , , with
II r II w = g and for each natural kind name k, there is a world w with
I I k I I w 4: ~, then if k ~< "r, then ~- ~ .gU.

5. k 1 < k2 iff there is a w ~ ~ / " with II ka II w _c II k2 II ~.
6. rl <~r 2 iff Ilrallwc_llr211w for all w ~ W ' .

Proof
1, 2 and 3 are trivial.
For 4, note that k ~< ~- implies Vx(type(x, k) =~ type(x, "r)), so

II k II w - II ~ II w for all w e ~ / / ' .

There is a world with II k II w 4 : ~ , and because k ~.~U, by 3 we have II k II w ~ for
all w. So II ~" II w 4: ~ for all w e ~ r . Now, if ~- would be a role, then there is a w 0
with II r II wo = ~ , and we would have

~ 4: IIk 11 w o - IIT II wo = ~ ,

which is a contradiction.
5 is trivial, and 6 follows from the definition of < and the truth definition. []

Remarks
(1) Under the weak assumptions that for each role there is at least a world

where it is not played, and that each natural kind has a non-empty
extension, we have that no role can be larger than a natural kind. This has
a practical consequence for the type hierarchy specified by the information
analyst, for it excludes certain taxonomic structures.

(2) 4 and 5 give a way how to verify, in the UoD, whether the ordering on type
names is correct. The condition on the relative ordering on role names is
quite strong. In general, if there is a world with II 1"1 II w _c II rE II w, we need
not have r 1 ~< r 2. For example, if in the current world all students are
employees, we need not have Student < Employee. On the other hand, if for
natural kinds Car and Vehicle we have II Car II w __c II Vehicle II w in at least
one world, then Car <~ Vehicle.

DEFINITION 5.3
Let Spec be a specification in OTLneo,. The partially ordered set (poset)

(T, ~<) specified by Spec is called the taxonomy specified by a specification in
OTLDeon. If "r 1 ~< "r2, then "r 1 is called a specialization of "r 2 and "r 2 a generalization
of ~'1-

5.1. DOWNWARD INHERITANCE

The basic property of taxonomies is of course that properties inherit down-
wards. We call this basic inheritance and state it in the following theorem.

410 R.J. Wieringa et al. / The inheritance of integrity constraints

"C 1

'~2 '~3

.q

Fig. 2. Inheritance relations.

THEOREM 5.4

"1"2 '~< 'i'l ~ (V X : 'TI(/)(X) ~ VX': 'T2(~(X)).

Proof
Trivial. []

We are generally interested in situations as in fig. 2, where ,q has several
specializations and "r 4 has several generalizations. Downward inheritance is
inheritance of properties from ,q to types smaller than ~-~. Basic inheritance says
that the number of properties increase as the types get smaller. To determine
thoughts, we fix a few concepts.

DEFINITION 5.5

The inheritance of constraints from a single source is called single inheritance,
and inheritance from multiple sources multiple inheritance. Inheritance in the
direction of the arrows is called downward and inheritance against the direction
of the arrows upward.

In fig. 2, there is single downward inheritance from ~'1 to "r 2 and "r3, and single
upward inheritance from "r 4 to "r 2 and ~'3. There is multiple upward inheritance
from "r 2 and ~'3 to ~'1, and multiple downward inheritance from ~'2 and "r 3 to ~'4-

In this section we look at the two possible cases of downward inheritance for
our standard form of constraints Vx: ~-(@(x) = '/'~(x)).

Single downward inheritance from ~'1 to ~'2 and "r 3 is trivial and is described by
the basic inheritance property. Multiple downward inheritance of necessary or
sufficient conditions is a bit less trivial but follows straightforwardly from basic
inheritance.

R.J. Wieringa et al. / The inheritance of integrity constraints 411

COROLLARY 5.6
In figure 2, if

Vx: ~ '2(~2(x)~ x/'(x)) and Vx: ,/'3((/)3(x) ~ X~(X))

then

Vx: , , (~2(x) V ~ 3 (x) ~ ~'(x)) ,

and if

VX: T2(I~(X) =~ xP2(X)) and Vx: %(~(x)=~ visa(x))

then

W: "r~(~(x)~ ~ (x) A ~(x)) .

Proof
By basic inheritance, in the first case we have

VX: "/'4(((~ID2(X) ~ X/'t(X))) A (VX: "/'4 ((/)3(X) ~ '~ (X))) .

By the laws of predicate logic, this is equivalent to

VX" 'r4(~2(X) V ~ 3 (X) = XP(X)),

and similarly for the second case. []

We can summarize this by the slogan

necessary conditions inherit downwards conjunctively, and sufficient condi-
tions inherit downwards disjunctively.

This implies that necessary conditions become stronger as we go down in the
taxonomy, and sufficient conditions become weaker. In particular, necessary pre-
conditions of actions become stronger, and sufficient preconditions weaker, as we
go to more specialized types. This is the reason why in the student example
mentioned in the introduction, where we want the precondition for enrollment for
more specialized types to be stronger, we must specify necessary and not
sufficient preconditions. This example is formalized at the end of the following
section to illustrate upward inheritance. Here we give some examples of corollary
5.6, following the classification of IC's given in section 4.

For static constraints, take StudEmp <~ Student and StudEmp <~ Emp, and

Vs: Student, n: Natural(age(s, n) =~ n > 18) (28)

Ve: Emp, n: Natural(age(s, n) ~ n> 21). (29)

Then the conjunction of these necessary conditions hold for student employees.
Assuming some natural axioms for > on Natural, we get

V se: S tudEmp, n: Natural(age(se, n) ~ n > 21). (30)

412 R.J. Wieringa et al. / The inheritance o f integrity constraints

For postconditions, the theorem implies that the effects of an action accu-
mulate as we go down the taxonomy. For example, suppose all persons have a
salary and all students and employees are persons. Let salary be defined in the
axioms as a function with argument sort Person and result sort Natural . Now let
salary increases be defined somewhat disadvantageous for students:

r e : E m p , n: Natural (s a l a r y (e , n) = * [inc - sa lary (e)] sa lary (e)= n + 10) (31)

Vs : Student , n: Natural (salary(s , n) ~ [inc-salary(s)] sa lary(s) = n - 10).
(32)

If there are student employees, we get

Vse" S tuden tEmp, n : Natural (salary(se) = n

=* [inc-salary(se)] salary(se) = n + 10

A [inc-salary(se)] salary(se) = n -- 10), (33)

which implies

Vse " EmpStuden t , n" Natural (salary(se) = n =* [inc-salary(se)] salary(se)

= n + 10 A salary(se) = n -- 10),

which, assuming the usual axioms for natural numbers, implies

Vse " EmpStuden t , n" Natura l (salary(se ,n) ~ [inc-salary(se)]false).

The result is that according to the specification, an attempt to execute inc-salary
for student employees deadlocks. This mistake in the specification could have
been avoided if common constraints are specified as high up in the taxonomic
hierarchy as possible. Because salary is a person attribute, the constraint should
have been specified there:

V p " Person, n: Natural (salary(p , n) ~ [inc-salary(p)] s a l a r y (p) = n + 10).
(34)

If exceptions must be made to this general rule, then this can be done by defining
appropriate disjoint subtypes of person. We illustrate this in section 6.3.

We can of course monotonically add more effects of an action when we
specialize. Suppose each person has an age, which is increased by the inc-age
action for all persons. For employees, an employer wants to specify as extra effect
of inc-age a bonus salary increase. This can be specified as follows:

Ve" E m p , n: Natural (sa lary(e , n) ~ [i n c - a g e (e)] s a l a r y (e) = n + 10). (35)

If this is the only extra effect specified for inc-age, then it is not derivable that

Vs: Students , n: Natural (sa lary(s , n) = , [i n c - a g e (s)] s a l a r y (s) = n + 10). (36)

R.J. Wieringa et aL , /The inheritance of integrity constraints 413

Emp I

Licence -
Manager holder

Licence -holding -
Manager

Fig. 3. Employee taxonomy.

We can also redeem our promise delivered in the introduction to show that (1')
and (2') implies (3'). We have that, with Undergrad <~ Student and GradCourse <~
Course, (1') implies

Vc: GradCourse, s: Undergrad [enroll(c, s)]enrolled(c, s) = * ~ f u l l (c) , (1")

which gives (3') with (2').
As an example concerning deontie modalities, we will try to find out whether

the boss has more rights, as asked in the subtitle of this paper. We assume
Boss <~ Emp. We then have

Ve: Emp (P a (e)) = Vb: Boss (Pa(b)) , (37)

so that the boss seems to have more permissions than the average employee. On
the other hand, the boss has also more obligations, for

Ve: Emp (O a (e)) = Vb: Boss (Oa(b)) , (38)

which may be a comfort to some.
Looking at the multiple downward inheritance of preconditions, the picture

becomes more complicated. In fig. 3, we show a taxonomy of employees,
managers, and licence holders. Licence holders are employees who have a licence
to park their car on numbered parking lots. Managers, on the other hand, have
more rights. For them, permission to park on any lot is granted if the lot is free.
These constraints are illustrated in fig. 4, where we omitted the quantifications
Vm : Manager, Wot : ParkingLot, and Vlh : Licence-holder. Clearly, multiple
downward inheritance gives us an unwanted implication, as illustrated in fig. 4.
This is not inconsistent in itself, but it would be inconsistent with any fact
representing a particular lot to be not full and unnumbered.

414 R.J. Wieringa et al. / The inheritance o f integrity constraints

full (lot) ~ P(park (man, lot)) P(park (lh, lot)) ~ numbered (lot)

.-, full(lot) ~ numbered (lot)

Fig. 4. Inconsistent multiple downward inheritance.

Before we improve this specification, note the following implication of the
constraint for licence holders:

P (p a r k (l h , l o t)) =* numbered(lot) f - ~ n u m b e r e d (l o t) =~ F (p a r k (l h , l o t)) , (39)

where we again dropped the quantifications. A licence holder is not permitted to
park on any unnumbered lot. This is reasonable, but may not be what we think
we specified with the P-form of the constraint.

The source of the problem in fig. 4 is that the sufficient condition of
P(park (man , lot)) interacts in an unwanted way with the necessary condition for
P (p a r k (l h , lot)). The more logical way to do this is to specify P(park (man,
lot)) ~ ~ full(lot). Put this way, it is just a logical necessary precondition of any
park action that the lot be empty. In accordance with the rule that constraints
should be specified as high up in the taxonomy as possible, we get fig. 5.

As a final illustration of how multiple downward inheritance can accumulate
to unwanted constraints, consider figs. 6 and 7. If factory workers are permitted

P(park (emp , lot)) ~ .-, full (lot)

P(park(lh, lot)) ~
P(park (man, lot)) =~ -, full (lot) numbered (lot) ^ -, full (lot)

P(park(lh-man, lot)) ~
numbered (lot) ^ --, full (lot)

Fig. 5. Improved specification.

R.J. Wieringa et al. / The inheritance of integrity constraints 415

Manager FactoryWorker

I FactoryManager I

Fig. 6. Another employee taxonomy.

to park on unnumbered lots, and managers are permitted to park on numbered
lots, then factory managers are forbidden to park anywhere:

V fm : FactoryManager, Vlot : ParkingLot (P(park (fm, lot))

=~ ~numbered (lot) A numbered (lot)) ~-

V fm : FactoryManager, Vlot : ParkingLot(P(park (fro, lot)) ~ |alse)

r- V fm, Vlot: ParkingLot(F (park (fm, lot))).

We fix this example after we discuss upward inheritance in the next section.

5.2. UPWARD INHERITANCE

To infer something about upward inheritance, we must add closure assump-
tions.

I F(park(fm, lot))

Fig. 7. Unintended constraint inheritance.

416 R.J. Wieringa et al. / The inheritance of integrity constraints

DEFINITION 5.7

1. I f type(x, "q) ~ type(x, "rE) V type(x, "r3), t h e n "q is ca l l ed the cover o f o" 2
and "r3, and we wr i t e o- l = o- 2 v o- 3.

2. I f type(x, "r4) r type(x, ~ A type(x, "r3), t h e n ~'4 is ca l l ed the intersection of
~2 a n d 0-3, a n d we wr i t e T 4 = o- 2 A z3-

T h e fo l lowing t h e o r e m is o n l y s t a t ed f o r covers , b u t an o b v i o u s a n a l o g o n ho ld s
f o r in te r sec t ions . W e wr i te o- 2 tA "r 3 f o r the least u p p e r b o u n d o f "r 2 a n d "r 3 (see the
a p p e n d i x) .

THEOREM 5.8

1. I f ~'1 = '1"2 V "/'3, t h e n " / ' 1 = T2 I I T3 .

2. '/'1 = T2 VT3 i f f IITlllw=ll~E{IwUl{T3{Iw
3. O ' 2 7 O ' 3 = O ' 3 7 " / ' 2 .

f o r all w ~ ~YCP.

Proof
1. W e h a v e

Vx(type(x , "i"2))~ Vx(type(x , o-2) V type(x, 0"3))::~ Vx(type(x , '/'1)),

so 7 2 ~< o- 1, and a n a l o g o u s l y "r 3 ~< ~'1. F u r t h e r m o r e , i f t he re is a "r' ~ T w i th ~'2 ~ 0"
a n d o- 3 ~ .r ' , t hen

Vx(type(x , 0-2) V type(x, o-3) = type(x, ~")) ,

SO

Vx(type(x , T I) ~ type(x, 0- ')) ,

so "q ~< 0-'. So "q is the leas t u p p e r b o u n d o f ~'2 a n d ~'3.
2. By the t ru th d e f i n i t i o n fo r v in type(x, ~2) V type(x, T3).
3. Trivial . []

N o t e t ha t the c o n v e r s e o f 1 is n o t t rue . I f Vehicle = Car U Airplane, t h e n we

w o u l d h a v e Vehicle = Car v Airplane o n l y i f 11 Vehicle I1 w = II Car II w u

Vehicle

Car Airplane Boat

Fig. 8. A cover.

R.J. Wieringa et aL / The inheritance of integrity constraints 417

[[Airplane II w in all possible worlds. But there m a y be Boats that are Vehicles. If
all vehicles are cars, boats , or airplanes, then

II Vehicle II ~ = II Car II ~ u II Airplane II w U II Boat II w

for all w ~ ~ " . W e then have

Vehicle = Car U Airplane U Boat -- Car U Airplane = Airplane U Boat

= Car U Boat.
See fig. 8, where the arrows indicate the direct ion of inheri tance, f rom larger to
smaller types.

N o t e secondly that we can omi t the brackets in Car U Airplane U Boat, because
Car U Airplane, Airplane U Boat and Car U Boat all exist. O n a poset , U (and
rq) is in general a part ial opera tor , and we can write "11 U '12 U T 3 only if
('11 U "12) U "13 and "11 U ('r 2 U "r3) b o t h exist and are equal. In general , if these exist,
then they are equal (see appendix) , and in the example, they h a p p e n to exist. On
the other hand, we cannot wri te meaningful ly

Vehicle = Car v Airplane V Boat,

because the appropr ia te covering types Car V Airplane, Car V Boat, and Airplane
V Boat do not exist in our example 2)

THEOREM 5.9
Let in figure 2, "q = "r 2 V "13. Then, if

Vx : "12(@2(x) = g ' (x)) a n d V x ' ' 1 3 (@ 3 (x) = g ' (x))

then

VX: "11((/)2(X) /'~ t~)3(X) = xP'(X)),
and if

Vx: "12((/)(x) ~ XP2(x)) and Vx: "13((/)(x) ~ ~/'3 (x))
then

Vx: %(x) v

Proof
By rl = "12 V "13, we can conc lude

V x (t y p e (x , "11) =~ type(x, "12) V type(x , "13)).

Then we have

Vx: ^ Vx.

Vx(type(x , "r2)= ((/)2(x) = XT'(x))) A V x (type(x , "13) = (~3(x) = x/'(x)))

2) We are careful to avoid the phrase "associative operator" in the above, for "associative" can be
defined in several, non-equivalent ways for partial operators, and we don't want to commit
ourselves to any of these ways.

418 R.J. Wieringa et al. / The inheritance of integrity constraints

�9 x, Vx(type(x , z2)V type(x, z3)= (~2(x) A ~/i3(x) = g ' (x)))

�9 ~ Vx(type(x , ~1)~ (~2(x)/x ~3(x)=~ gt(x))).

The second part is analogous. []

There is no corresponding result for single upward inheritance from ~'4 to ~2
and ~'3, as shown by the following fact.

F A C T 5 . 1 0

In fig. 2, There is no upward inheritance from "r 4 to "r 2 and "r3, even if
T4 ~--- T2 A '/" 3 .

Proof
We have

V x : A

= Vx(type(x , ~'4) = (~2(x) A ~ 3 (x) = g '(x)))

r Vx(type(x , ~'2)A type(x, "r3)=~ (~b2(x) A ~3(x)=~ gt(x)))

Vx((type(x , ~2) = (tb2(x) = q(x))) /X (type(x, ~'3) =~ (~3(x) = ' / ' (x)))) .
[]

The reason for this asymmetry lies in the simple fact that inheritance is
basically the implication relation, and this is an asymmetrical relation. The reason
that we need a closure assumption for multiple upward inheritance but not for
any case of downward inheritance is that inheritance goes downwards, not
upwards.

We can summarize the theorem by the slogan

If ~1 ='f2 V ~, necessary conditions inherit upwards to ,q disjunctively, and
sufficient conditions inherit upwards to ~'1 conjunctively.

Thus, necessary conditions get weaker as we generalize, and sufficient conditions
get stronger. To illustrate this, consider fig. 7 again. The analyst probably
intended to specify sufficient preconditions instead of necessary preconditions.
Sufficient preconditions get weaker as we specialize and stronger as we generalize,
but this does not imply a contradiction in the example, as fig. 9 shows. (We
assume that all employees are factory workers or managers, using inclusive or.)

As an example of the upward inheritance of objective modalities, take the
example given in [3] which we started with in the introduction. Let

GradStudent <~ Student,
Undergrad ~ Student,

R.J. Wieringa et al. / The inheritance of integrity constraints

false ~ P(park (emp, lot))

--,numbered (lot) =~ P(park (man, lot)) I numbered (lot) ~ P(park (lh, lot))

true =~ Pfpark(lh-man, lot))

Fig. 9. Improvement of fig. 7.

419

GradCourse ~ Course, and

UnderGradCourse ~ Course, with

Student = UnderGrad V GradStudent,

Course = UnderGradCourse V GradCourse,

then the example is formalized by the following axioms.

Ms: Student, c: Course (POS(enroll(s, c)) =* ~fu l l (c))

V u: Undergrad, c: Course (POS(enroll(u,c))

(t < deadline) A (enrollments(c) < undergrad-max))

V u: Undergrad, gc: GradCourse (POS(enroll (u, gc)) ~ permission (u, gc))

(40)

(41)

(42)

Vu : UnderGrad, uc : UnderGradCourse (POS(enroll(u, uc))

=* has-preparation(u, uc)) (43)

Vg: GradStudent, uc : UnderGradCourse, n : Natural (POS(enroll(g, uc))

~ y e a r (g , n) A n > 3). (44)

We now know that the necessary enrollment condition -~full(c) is inherited
conjunctively by all types of students. All preconditions in the example are
necessary preconditions. Because they are inherited upwards disjunctively, we
also know that their upward inheritance causes no inconsistencies or impossible
preconditions for more general types.

420 R.J. Wieringa et al. / The inheritance of integrity constraints

6. Discussion

6.1. THE DISTINCTION BETWEEN NECESSARY AND SUFFICIENT PRECONDITIONS

The strange experience we had while writing this paper is that constraint
inheritance is, or should be, easy, because it concerns only the logic of the
implication sign, but that at the same time, constraint inheritance is an extremely
slippery subject, because our common sense supplies so many assumptions that
are unwarranted by formal logic. A number of unwarranted assumptions that we
have encountered are:

1. When specifying preconditions, a temporal ordering is ascribed to the
implication sign that is not there;

2. necessary and sufficient preconditions are confused;
3. an implicit, non-monotonic, completion assumption is often made.

These implicit assumptions supplied by common sense can be illustrated by the
intuitive explanation of preconditions in Khosla et al. [10], who give a correct
formal semantics of dynamic logic, but paraphrase the constraint

~Lecturer(TOM) ~ [Hire(TOM)] Lecturer(TOM)

informally as
"Tom can only be hired as a lecturer if he is not already one."

The "only if" phrase shows that what is really meant is

[Hire (TOM)] Lecturer(TOM) ~ ~Lecturer(TOM),

illustrating 2 and 3 above. Furthermore, they define a precondition as
" that assertion which must be true before the update can be applied",

which illustrates 1 above, if we assume that reading a temporal order into imply
causes us to see the formula left of it as a precondition, and the formula right of it
as a postcondition. Perhaps we should reiterate that only the box operator [a]
implies a temporal ordering.

6.2. CONSTRAINT COMPLETION

A number of CM specification languages, such as TAXIS [3] and A C M / P C M
[4], allow the specification of preconditions for actions. The logic of these
preconditions is such that if they are not satisfied, the action is not performed.
Thus, they implement the informal statement

1. -, g' =~ (a is not executed).
This is not formalizable in OTLDeo,,. Consider the following candidates.

2. [a]~ =* ~/'. "(If you would execute a, then afterwards, ~ necessarily holds)
implies that currently, g" holds." This is, on the one hand, saying too much,
because it mentions ~, and on the other, saying too little, because it is a
counterfactual statement, whereas 1 says that a actually occurs.

R.J. Wieringa et al. / The inheritance of integrity constraints 421

3. P O S (a) ~ q'. " I f a can be executed, then currently, g' holds." This
eliminates ~, but does not yet introduce the idea of actuality.

4. NEC(o0 =, g'. " I f a will necessarily be executed, then currently, g' holds."
This contrasts with 1, because there, a could possibly not occur, but here,
we specify that a necessarily occurs only if �9 holds.

5. P(a) ~ ~. " I f a is permitted, then currently, q" holds." This comes as close
as we can get in OTLDeon to 1, for it is equivalent to --,'/" =~ F(a). The
difference is still that 1 carries a connotation of actuality that we have not
yet captured. Instead, we have formalized only the statement that a is not
permitted to occur if '/" does not hold. What we would like is the following:

6. EXEC(a) = St. " I f a is to be executed, then currently g" holds." We simply
note here that we have not given a formal semantics to the statement that,
from the range of possible next actions, a will actually be executed. The
opposition actuality/possibility is more informative than the opposition
necessity/possibility and must await future formalization.

So far, we merely noted that we have not yet formalized the intention of some
information analysts completely, when they specify preconditions of actions.
Next, consider what we have formalized with a constraint like 5 above (or 6, if we
would have a formal semantics for it). We have specified by 5 only when a is
forbidden (when currently --1 g' holds), but not when a it is permitted. However, it
is implicitly assumed in languages like TAXIS and A C M / P C M that �9 is, not
only a necessary precondition, but the strongest necessary precondition (modulo
logical equivalence) for a to be permitted. We have shown in section 4 that the
strongest necessary precondition is actually the same as the weakest sufficient
precondition, and that both are equivalent to the weakest precondition of a
(possibly with respect to a postcondition). So the analyst apparently intends

P(a) r ko, (44)
although he or she has specified

P (a) ~ �9 (45)

Apparently there is a kind of hidden "completion" of the preconditions, analo-
gous to predicate completion in Prolog. We claim that this hidden assumption
should be made explicit, so that the intention of the analyst agrees better with
what he or she has specified. Moreover, if we do this, another type of hidden
assumption, which says whether a type covers its subtypes, is made explicit as
well, because constraint completion must be preceded by a process which we call
constraint collection. We get the following two steps.

1. After having specified a set of constraints for a taxonomic network, all
constraints that accrue to a type should be collected. This means that for
each g', the necessary a n d / o r sufficient conditions ~ specified for it for
different ~-'s should be collected using upward and downward inheritance.

2. Complete the resulting conditions for g, by replacing the implication by an
equivalence.

422 R.J. Wieringa et al. / The inheritance of integrity constraints

The aim of step 1 is to find out if what we have specified is consistent.
Syntactically, the collecting process can be carried out algorithrnically. The
semantic problem of determining to which formulas a condition is equivalent,
and of simplifying the resulting conditions, is in general undecidable. Step 1 may
require the addition of covering axioms for some types in order to facilitate
upward inheritance 3). Different sets of covering axioms will yield different
outputs. Assuming a particular set of covering axioms, the resulting constraint set
is logically equivalent (using the axioms of dynamic logic) to the input constraint
set. The result of step 1 is that we have a necessary condition and a sufficient
condition for '/',

~P=*~line c and !/is~f::*g'.

The aim of step 2 is to express the intention of the analyst more accurately.
Doing this, we really commit the fallacy known in Aristotelian logic as the fallacy
of the consequent ([9], p. 596), which consists of assuming that a condition and its
consequent are convertible. There are often situations where one wants to make
this fallacy, but when we do that, we should at least be aware of its problems.
First of all, completion leads to

l~suSC~ X~' c~ l~nec,

and this may simply be inconsistent. Secondly, even if it is consistent, it is in any
case a non-monotonic operation, for the result implies the input but not vice
versa. It is a generalization of predicate completion of Prolog [6,13] and remi-
niscent of McCarthy's [14] circumscription. In fact, predicate completion first
collects the sufficient conditions that are given for a predicate P(x) , which gives

E,(x) V . . . V E,,(x) ~ P (x) ,

and then minimizes the extension of P(x) by taking the completion

e,(x) v . . . v P(x).
This is a special case of completion as described above. Constraint completion
has the same problems as predicate completion. For example, we have ~ ~ (~ V
�9) r (7 �9 =* ~). So if �9 is any integrity constraint, then we can consistently add
--1 �9 =* �9 to the specification, saying that --1 �9 is a sufficient condition for ,~. But
then constraint completion gives us an inconsistent specification with
~ ~ .

6.3. EXCEPTION SPECIFICATION

The archetypical case of exception specification is that of non-flying penguins.
From

Penguins <~ Bird, (46)

3) The addition of covering axioms agrees with an ancient Aristotelian prescription for how to
design taxonomies, that each subdivision should be exhaustive ([9], p. 117) and ([20], p. 52).

R.J. Wieringa et al. / The inheritance of integrity constraints 423

Vb : Bird (POS(fly(b))),

Vp : Penguin (IMP(f ly(p)))

we can derive

Vp: Penguin (IMP(f ly(p)) A POS(f ly (p))) ,

(47)

(48)

(49)

which implies Vp:Penguin (false). This is inconsistent if there is at least one
penguin.

The inconsistency is caused by the fact that we view penguins as an exception
to a rule. We specify the rule (47) for all birds, whereas it is really a rule
applicable only to a subtype of birds. If we specify it as such, the inconsistency
disappears. For example, we can specify

Penguins <~ Bird,

NonPenguins <~ Bird,

V n : NonPenguin (POS(f/y(n))) ,

Vp : Penguin (IMP(f ly(p))) ,

and the inconsistency has disappeared.
However, this is unsatisfactory because we had to add a rest-category to the

taxonomy for which the problem may very well be repeated if our knowledge
about this category increases. A more elegant solution has been suggested by
McCarthy in a later paper [15]. To each rule, an abnormality predicate is added:

V b: Bird (--1AbnormalBird(b) = POS(fly(b))), (50)

Vp: Penguin (~AbnormalPenguin (p i ~ IMP(fly (p))), (51)

Vb : Penguin (AbnormalBird(b)). (52)

We then apply circumscription to minimize the extension of the abnormality
predicates. In this case it comes down to strengthening (52) to

V p (type(p, Penguin) ,x, abnormalBird (p)) . (53)

The advantage of this method is that we can easily extend the specification
without having to retract or change rules specified earlier. (The axioms implied by
the circumscription operation will of course change, but these are not explicitly
specified by the designer). So if we add

Ostrich ~ Bird,

Vp : Ostrich (AbnormalBird(p)),

to (50)-(52), then circumscription gives us that

Vb (type(b, Penguin) V type(b, Ostrich)r AbnormalBird(b))

(54)

(55)

(56)

is valid, which is not equivalent to the result (53) of circumscription on the
abnormality predicates in the original theory.

424 R.J. Wieringa et al. / The inheritance of integrity constraints

With the use of abnormality predicates, we can specify exceptions to the rules
without having to change them in the CM specification. The price is that we need
a non-monotonic operation to circumscribe the set of abnormal cases.

Instead of constraint completion as sketched above, we can apply a dynamic
variant of circumscription to specifications in OTLDeo,. Very sketchily, one would
proceed as follows. Using an abnormality predicate for each type/ac t ion pair
specified in the CM specification, we get the following canonical form for
sufficient preconditions (specified explicitly or derived non-monotonically):

Vx: T (# A ~ E X C : 7: a (x) = P(a)) ,

where EXC: "r: a stands for a predicate introduced by the analyst that should be
read as "x is not an exceptional object of type "r with respect to action a." For
example,

Vx : Student (graduate(x)/x -~EXC : student: enroll(x) = P(enrol l (x))) .

If ~, specifies an exception to this rule, we could add the axiom

Vs : Student(ep(x) ~ EXC : student: enroll (x) A F(enroll(x))).

6.4. METHODOLOGICAL CONSEQUENCES

Psychological research has shown that taxonomies are learnt neither top-down
nor bottom-up, but from the middle out [21]. When a novice starts learning the
structure of the UoD, he or she will usually start at the basic level, which is the
level at which objects have the largest number of discriminating characteristic
with respect to their neighbors in the taxonomy, or the level of the types of
objects that are most frequently handled. Only later, finer distinctions and less
frequently encountered categories of objects are added. Conversely, when UoD
specialists ("domain specialists") explain the structure of the UoD to novices,
they start with basic level objects. For example, when asked to mention a typical
piece of furniture, subjects typically mention a chair, and not "an object to sit
on" (which is more general than the concept of a chair, and includes couches as
well), nor "a kitchen chair" (which is lower down the taxonomy).

Information analysts are usually novices with respect to the UoD of which they
must specify a CM. This means that in general, we tend to specify the constraints
for ~'z and "r 3 in figure 1 first, and then proceed to add zl and ~'4 to the taxonomy,
and specify their constraints. The methodological consequences of the theorems
about upward and downward inheritance are then that

1. they tell us if and how the constraints specified already must be " taken
along" to newly added types, and

2. they make clear when we should require of a type that it covers its subtypes,
viz. if we want a constraint to inherit upwards.

3. Furthermore, they allow us to deduce consequences from our specifying
preconditions as necessary or sufficient preconditions, so that we can

R.J. Wieringa et al. / The inheritance of integrity constraints 425

express more clearly and accurately what we want to specify. For example,
if we want a condition to be stronger for more specialized types, it must be a
necessary condition, and if we want it to be weaker when we go down in the
taxonomy, it should be a sufficient condition. But whichever choice we
make, this has further consequences for the way constraints interact in
multiple downward or upward inheritance.

4. Finally, we also showed that finding sufficient preconditions for actions is
usually difficult, for we can never be sure to have found all possible cases.
The methodological consequence of this is that we should avoid specifying
sufficient preconditions as far as possible, and stick to necessary precondi-
tions only. (This implies avoiding constraint completion as well.)

As an illustration of 1, we noted several times already that constraints should
be specified as high in the taxonomy as possible (but not higher, witness the
non-flying penguin example). This is an easy consequence of theorem 5.4, for if in
fig. 2

~ 1 = % V % and Vx:%tb(x) and V x : % ~ (x) ,

then we have

Vx:

The set of constraints specified for a cover should thus include the intersection of
the sets of constraints specified for its subtypes.

7. Summary and conclusions

In section 1, we motivated the usefulness of deontic logic for constraint
specification, in particular for the specification of IC's that may be violated by
the UoD. In section 2, we briefly introduced the language ZDeon , a deontic
extension of dynamic logic which can be used to specify static, dynamic, and
deontic IC's. We then introduced in section 3 types to LDeon a s special constants,
which gave us the language TLeeo~, and added an ordering on type names in
section 5, yielding the language OTLDeon. In this language, a taxonomy can be
specified.

In section 4, we classified constraints, particularly dynamic constraints, with
respect to whether they specify pre- or postconditions, and the kind of dynamic
modality for which a precondition is specified. Inheritance was studied in section
5, where it is shown that necessary preconditions for actions inherit downwards
conjunctively and, under a covering assumption, upwards disjunctively. Sufficient
preconditions for actions inherit downwards disjunctively and, under a covering
assumption, upwards conjunctively. These facts are illustrated with a large
number of examples.

426 R.J. Wieringa et al. / The inheritance of integrity constraints

The main contributions of this paper are
- the distinction between roles and natural kinds in section 4, which allows us

to specify preconditions for role changes explicitly;
- the distinction between necessary and sufficient (pre)conditions in section 4,
- an exposition of the role of type covering assumptions in upward inheri-

tance.
The discussion in section 6 is more tentative and explores the connection with

some AI approaches such as circumscription and the specification of exceptions,
as well as some implications for conceptual modeling methodology. We should
mention here that one of the topics of further research is making OTLoeon
executable.

In section 6.1 we noted that IC inheritance is at once elementary and difficult.
More in particular, the principle of basic inheritance as stated in theorem 5.4 is a
direct consequence of the logic of the implication sign, but the practice of
constraint specification is fraught with unexpected problems, because IC's do not
behave as our common sense thinks they should. This made one of us think
(Wieringa) of the advice he got from his father-in-law when renovating his house:
"Plumbing is easy, the only thing you have to know is, Water flows downwards."
Similarly, constraint inheritance is easy, the only thing you have to know is, IC's
inherit downwards. But somehow, like plumbing, practice is considerably more
difficult than this principle.

A p p e n d i x

ELEMENTARY LATTICE THEORY

The following is based on chapters 1 and 5 of Birkhoff [2]. A set A with a
partial order ~< is denoted (A , <.). Partially ordered sets are also called posets.

DEFINITION A.1

Let (A, ~<) be a poset.
1. An upper bound of a subset X C A is an a c A with x ~< a for all x c X. The

supremum (or join or lowest upper bound) of X in A, denoted U (X) , is an
a c A smaller then every upper bound of X. Dual definitions can be given
for lower bounds and the infimum (or meet or greatest lower bound) I"-1 (X)
of X.

2. (A, ~) is a join semi-lattice if any two elements ax, a 2 c A have a
supremum a 1 U a z c A , and it is called a meet semi-lattice if any two
elements aa, a 2 c A have an inf imum a I U a 2 c A . (A, ~) is a lattice if it is
a join- and meet semilattice.

3. (A, ~) is complete if every subset has a supremum and an inf imum in A.

R.J. Wieringa et al. / The inheritance of integrity constraints 427

Remarks
1. The s u p r e m u m of X ___ A does no t need to exist, even if A is finite. T a k e for

example A = {a l , a2, a3} with a 1 ~<a 2. T h e n {a 2, a3} has n o sup remum.
2. If the s u p r e m u m of X _ A exists, it is un ique (this fol lows f r o m the

an t i symmet ry of ~<).
3. Because A G A, every n o n - e m p t y comple t e lat t ice has a top e lement , de-

no ted T , and a b o t t o m element , d e n o t e d _1_.
4. Every finite lat t ice is comple te .

References

[1] J.W. de Bakker, Mathematical Theory of Program Correctness (Prentice-Hall, 1980).
[2] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publ. 25 (1967).
[3] A. Borgida, J. Mylopoulos and H.K.T. Wong, Generalization-specialization as a basis for

software specification, in: On Conceptual Modelling, Brodie et al. (eds.) (1984) pp. 87-114.
[4] M.L. Brodie and D. Ridjanovic, On the design and specification of database transactions, in

On Conceptual Modelling, Brodie et al. (eds.) (1984) pp. 277-312.
[5] M.L. Brodie, J. Mylopoulos and J.W. Schmidt (eds.), On Conceptual Modelling (Springer,

1984).
[6] K.L. Clark, Negation as failure, in: Logic and Databases, H. Gallaire and J. Minker (eds.)

(Plenum Press, 1978) pp. 293-322.
[7] F.P.M. Dignum, A language for modelling knowledge bases, Ph.D. Thesis, Department of

Mathematics and Computer Science, Vrije Universiteit, Amsterdam (1989).
[8] D. Harel, Dynamic logic, in: Handbook of Philosophical Logic, vol. 2, D.M. Gabbay and F.

Guenther (eds.) (Reidel, 1984).
[9] H.W.B. Joseph, An Introduction to Logic, 2nd rev. ed. (Oxford, 1916).

[10] S. Khosla, T.S.E. Maibaum and M. Sadler, Database specification, in: Database Semantics
(DS-1), T.B. Steel, Jr., and R. Meersman (eds.) (North-Holland, 1986) pp. 141-158.

[11] S. Kripke, Identity and necessity, in: Naming, Necesstty and Natural Kinds, S.P. Schwartz (ed.)
(Cornell University Press, 1977) pp. 66-101.

[12] S. Kripke, Naming and Necessity, 2nd ed. (Basil Blackwell, 1980).
[13] J.W. Lloyd, Foundations of Logic Programming (Springer, 1984).
[14] J. McCarthy, Circumscription - A form of non-monotonic reasoning, Art. Int. 13 (1980)

27-39.
[15] J. McCarthy, Applications of circumscription to formalizing common-sense knowledge, Art.

Int. 28 (1986), 89-116.
[16] J.-J.Ch. Meyer, A simple solution to the "deepest" paradox in deontic logic, Logique et

Analyse 30 (1987) 81-90.
[17] J.-J.Ch. Meyer, A different approach to deontic logic: Deontic logic viewed as a variant of

dynamic logic, Notre Dame J. Formal Logic 19 (1988) 109-136.
[18] J.-J.Ch. Meyer, H. Weigand and R.J. Wieringa, A specification language for static, dynamic

and deontic integrity constraints, 2nd Symp. on Mathematical Fundamentals of Database
Systems, J. Demetrovics and B. Thalheim (eds.), Springer Lecture Notes in Computer Science
364 (1989) pp. 347-366.

[19] H. Putnam, Is semantics possible?, in: Language, Belief, and Metaphysics, H.E. Kiefer and
M.K. Munitz (eds.) (University of New York Press, 1970) pp. 50-63.

[20] N. Rescher, Introduction to Logic (St. Martin's Press, 1964).

428 R.J. Wieringa et al. / The inheritance o f integrity constraints

[21] E. Rosch, Principles of categorization, in: Cognition and Categorization, E. Rosch and B.B.
Lloyd (eds.) (Lawrence Erlbaum, 1978) pp. 27-48.

[22] J.F. Sowa, Knowledge representation in databases, expert systems and natural language,
Artificial Intelligence in Databases and Information Systems (DS-3), R.A. Meersman, Zongzhi
Shi and Chen-Ho Kung (eds.) (North-Holland, 1990) pp. 17-43.

[23] R.J. Wieringa, J.-J. Ch. Meyer and H. Weigand, Specifying dynamic and deontic integrity
constraints, Data and Kvowledge Eng. 4 (1989) 157-189.

[24] R.J. Wieringa, Algebraic foundations for dynamic conceptual models, Ph.D. Thesis, Depart-
ment of Mathematics and Computer Science, Vrije Universiteit, Amsterdam (May 1990).

