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With the development of global changes, researchers from all over the world increasingly pay attention
to drought detection, and severe droughts that may have resulted from climate change. In this paper,
spatial and temporal variability of drought is evaluated based on precipitation data and remotely sensed
images. The standard precipitation index (SPI) and vegetation condition index (VCI) are used to evaluate
the spatial and temporal characteristics of meteorological and vegetative drought in Tigray, Northern
Ethiopia. Based on the drought critical values of SPI and VCI defining drought, the spatial and temporal
extent of droughts in the study area is established. We processed 396 decadal images in order to produce
emote sensing
DVI
CI
ime lag

the multi-temporal VCI drought maps. The results of the SPI and VCI analysis reveal that the eastern
and southern zones of the study region suffered a recurrent cycle of drought over the last decade. Results
further show that there is a time lag between the period of the peak VCI and precipitation values obtained
from the meteorological stations across the study area. A significant agreement was observed between
VCI values with the current plus last two-months of precipitation. The study demonstrates the utility of

index
the vegetation condition

. Introduction

Although the name “Water Tower of Africa” has been given to
thiopia, the country is one of the Horn of Africa countries that is
ighly vulnerable to drought. The country’s main economic activ-

ty, agriculture, is overwhelmingly dependent on the timely onset,
mount, duration and distribution of rainfall. An incident of drought
enerally implies substantial and extended deviation from the nor-
al rainfall pattern, which affects crop production and vegetation

rowth.
In Ethiopia drought is a frequently recurring phenomenon. It is

he single most important climate related natural hazard impact-
ng on the country from time to time. Historical drought events
eveal that Ethiopia frequently faces drought and famine. In the
ast nine centuries there were about 30 major drought episodes.
f these drought episodes 13 of them are known to have covered

he entire nation and they were reported as severe. From 1970
nwards, drought hit the country at least once in every 10 years
uring the last years the event is becoming even more frequent.
t is now recurring every two or three years at different levels
f intensity (Margaret, 2003). In recent years the spatial extent
nd frequency of droughts have both increased causing significant
ater shortages, economic losses and adverse social consequences.

∗ Corresponding author. Tel.: +31 63 4467 893; fax: +31 53 4874 575.
E-mail address: gidey17146@itc.nl (T. Gebrehiwot).
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in semi-arid and arid regions.
© 2010 Elsevier B.V. All rights reserved.

Climatic conditions during drought years are characterized by
either almost total failure of rainfall or a late or too early onset of
inadequate rainfall during both the short and the main rainy sea-
sons locally known as “Belg” and “Kiremit”. A continuous dry spell
or poor rainfall in successive years hinders ground-water recharge
and imparts stress on ground-water resources leading to severe
water deficit in many parts of the region during both the wet and
the dry seasons.

The droughts of the last decades have produced a complex
impact, which spans many sectors of the economy, especially the
agriculture sector. Droughts of the year 1984–1985 took the lives
of an estimated one million people, destroyed crops, contributed to
the death of animals, and threatened the lives of millions of people
with starvation. The drought caused the then biggest famine affect-
ing an estimated 5.8 million people forcing them to be dependent
on food hand-outs or food aid (Benson, 1998). As a result, a consid-
erable part of the society proved vulnerable to famine that in turn
caused a deep-seated destitution. The recent drought of 2002–2003
with affected 13.5 million people showed once more the magnitude
and the proportion of the problem (Wagaw et al., 2005).

The chronology of Ethiopian drought history further indicates
that most of the drought and food crisis events have been geo-

graphically concentrated in two broad zones of the country. The
first consist of the central and northern highlands, stretching from
northern Shewa through Wello and Tigray, and the second consists
of low-lying agro-pastoral lands ranging from Wello in the north,
through Hararghe and Bale to Sidamo and Gamo Gofa in the south

dx.doi.org/10.1016/j.jag.2010.12.002
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
mailto:gidey17146@itc.nl
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Ramakrishna and Assefa, 2002). They indicated the eastern and
orthern parts of the country as the most vulnerable.

Major parts of Northern Ethiopia experience year-round water
eficit. Drought is frequent due to abnormally low and untimely
ainfall. Even commencement of rainfall at the right time can-
ot guarantee a drought-free season since frequency, intensity;
mount and duration of rainfall all play crucial roles in the occur-
ence of drought. Tigray region is dry for most of the year except
uring the rainy season, and exhibits a semi-arid climate. Recurrent
roughts form the major threat to rural livelihoods and food secu-
ity in the region. Almost every year, the study region experiences
ocalized drought disasters causing crop failure and jeopardizing
evelopment activities. The region’s agro-ecosystem is highly sen-
itive to rainfall fluctuations and even a slight change has a large
mpact on the socio-economic activities of the region. As a result,
ural livelihoods and agricultural systems in the region are subject
o continuous and widespread disequilibrium dynamics.

Despite the fact that drought forms the major uncertainty that
arming households have to deal with, it has attracted little sci-
ntific attention and no attempts have been made to quantify the
patial and temporal characteristics of drought within the study
egion. Furthermore, recent studies reveal that climate change in
thiopia could lead to extreme temperatures, extraordinary rain-
all events, and more intense and prolonged droughts and floods
UNDP, 2008). Thus, expected changes in spatial and temporal pat-
erns of precipitation can trigger new characteristics of drought in
ffected regions. Consequently, the need for a drought assessment
nd monitoring mechanism is crucial to minimize socio-economic
osses. This can be achieved by developing drought indices that are
apable of characterizing and timely assessing drought at different
patial and temporal scales.

This paper attempts to provide a detailed analysis of seasonal
rought dynamics in order to identify the spatial and tempo-
al characteristics of drought over the last decade by employing
tandard drought index methods with meteorological and remote
ensing data. Despite the fact that in literature several indices
re used for monitoring and assessment of drought, in this study
he standardized precipitation index (SPI) and the normalized
ifference vegetation index (NDVI) are used to analyze meteo-
ological and vegetative drought respectively. Since agricultural
ctivities and ecological changes are controlled by rainfall, our
nalysis focuses on drought during the wet seasons. In this study,
rought is considered to be a meteorological phenomenon charac-
erized by prolonged periods of abnormal precipitation deficit. To
ur knowledge this paper is the first research attempt to develop
eliable drought information linking meteorological and remote
ensing indices enabling us to identify and to map spatial and
emporal aspects of droughts for Tigray region. It is our view that
evelopment of a drought monitoring system, based largely on
eteorological and remote sensing data, can be a great aid for early

ssessment of drought impacts.

.1. Calculation of the standard precipitation index (SPI)

A variety of indices using meteorological data have been used
o quantify droughts (Heim, 2002). However, the most widely used
oday is the SPI (McKee et al., 1993, 1995), which is now considered
s the most reliable index for measuring the intensity, duration
nd spatial extent of drought (Guttman, 1998; Lloyd-Hughes and
aunders, 2002). This index enjoys several advantages over the oth-
rs. Calculation of the SPI is easier than on more complex indices

uch as the Palmer drought severity index (PDSI) (Palmer, 1965),
ecause the SPI requires only precipitation data, whereas the PDSI
ses several parameters (Souleı̌, 1992). Moreover, the PDSI has
ome shortcomings in spatial and temporal comparability (Alley,
984; Karl, 1986; Guttman, 1998). However, the SPI provides a
Observation and Geoinformation 13 (2011) 309–321

comparison of the precipitation over a specified period with the
precipitation totals of the same period for all the years available in
the historical record. The SPI is comparable in both time and space,
and it is not affected by geographical or topographical factors (Lana
et al., 2002).

The SPI is a probability index that considers only precipitation.
The probabilities are standardized so that an index of zero indi-
cates the mean precipitation amount. The index is negative for
drought, and positive for wet conditions. As the dry or wet con-
ditions become more severe, the index becomes more negative or
positive. The duration of every drought appearance is determined
by negative index values. Accumulated totals of negative values of
SPI could also be used as a measure of drought severity. The rela-
tive simplicity of the SPI is one strong advantage of the index (Logan
et al., 2010). Moreover, it is spatially consistent in its interpretation
and the magnitude of the departure from zero is a probabilistic
measure of the severity of a wet or dry event that can be used for
risk assessment (Guttman, 1999). The SPI can track drought on mul-
tiple time-scales, i.e. 1-, 3-, 6-, 9-, 12-, and 48-months, but the index
is flexible with respect to the period chosen. The SPI requires differ-
ent interpretations according to its time scale. Among users there
is a general consensus about the fact that the SPI on shorter time
scales (say 3 and 6 months) describes drought events affecting agri-
cultural practices, while on the longer ones (12 and 24 months) it
is more suitable for water resources management purposes (Raziei
et al., 2009). SPI for 3 and 6 months time steps are used in this paper
to study the characteristics of drought in short and medium range
time scales.

Computation of the SPI involves fitting a gamma probability
density function to a given frequency distribution of precipitation
totals of a station. The alpha and beta parameters of the gamma
probability density function are estimated for each station and for
each time scale of interest (3-, 6-, 12-, 24-, 48-months, etc.). The
resulting parameters are then used to find the cumulative proba-
bility of an observed precipitation event for the given month and
time scale for the station in question. The cumulative probability is
transformed to the standard normal random variable Z with a mean
of zero and variance of one, which is the value of the SPI. Gamma
distribution functions are most often found to fit the precipitation
data well because the distribution of rainfall totals is not normally
distributed (US National Drought Mitigation Centre, 2010).

The gamma distribution is defined by its frequency or probabil-
ity density function:

g(x) = 1
ˇ˛� (˛)

x˛−1e−x/ˇ for x > 0 (1)

where ˛ � 0 is the shape parameter, ˇ � 0 is a scale parameter and
x � 0 is the amount of precipitation. � (˛) defines the gamma func-
tion. ˛ and ˇ are parameters to be estimated for each station for
each time step of interest. The maximum likelihood solutions are
used to optimally estimate the gamma distribution parameters ˛
and ˇ:

ˆ̨ = 1
4A

(
1 +
√

1 + 4A

3

)
(2)

and

ˆ̌ = �̄

ˆ̨
(3)

where
A = ln(�̄) −
∑

ln(�)
n

(4)

and n = number of precipitation observations. This allows the rain-
fall distribution at the station to be effectively represented by a
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athematical cumulative probability function given by:

(x) =
∫ x

0

g(x)dx = 1
ˇ˛� (˛)

∫ x

0

x˛−1e−x/ˇdx (5)

Since the gamma function is undefined for x = 0 and a precipi-
ation distribution may contain zeros, the cumulative probability
ecomes:

(x) = q + (1 − q)G(x) (6)

here q is the probability of a zero. The cumulative probability
(x) is then transformed to the standard normal distribution to
ield SPI (McKee et al., 1993). The complete procedure used for the
alculation of the SPI is reported in (Vicente-Serrano et al., 2006).

Although it is a quite a recent index, the SPI was already used
n Turkey (Komuscu, 1999; Touchan et al., 2005), Argentina (Seiler
t al., 2002), Spain (Lana et al., 2002), Korea (Min et al., 2003), China
Wu et al., 2001) Europe (Lloyd-Hughes and Saunders, 2002), Italy
Bordi et al., 2001), and South Africa (Mathieu and Richard, 2003)
or real time monitoring or retrospective analysis of droughts. It is
lso becoming an increasingly important tool for initiating drought
esponse actions at state, regional and local level (Wilhite et al.,
000). Therefore, SPI is used here to study the spatial and temporal
haracteristics of meteorological drought in the region of Tigray,
hich has a history of recurrent droughts.

.2. Vegetation based drought analysis

Drought indicators like the SPI assimilate information on rain-
all, but do not express much spatial detail. Furthermore, drought
ndices calculated at one location are only valid for a single loca-
ion. Thus, a major drawback of climate based drought indicators is
heir lack of spatial detail as they are dependent on data collected at
eather stations which sometimes are sparsely distributed affect-

ng the reliability of the drought assessment indices (Brown et al.,
002). In contrast remote sensing or satellite imageries have proven
o be effective tools that provide spatially continuous information
egularly in timely manner with improved detail. The vegetation
ndices developed using band combination of satellite imagery has
een used for monitoring drought over large areas since mid-1990s.
range of vegetation indices based on remote sensing have been

hus used to monitor greenness of vegetation (Bannari et al., 1995).
Satellite-derived drought indices typically use observations in

ultispectral bands, each of which provides different information
bout surface conditions. Because droughts are naturally associated
ith vegetation state and cover, vegetation indices are commonly
sed for this purpose (Tucker and Choudhury, 1987), utilizing data

n the visible red (R), near infrared (NIR), and the shortwave infrared
ands. The most commonly used vegetation index is the normalized
ifference vegetation index (NDVI) (Tucker, 1979) and is given by
he equation:

DVI = NIR − RED
NIR + RED

(7)

here NIR is reflectance in the near-infrared wavelengths and
ED is reflectance in the red wavelengths. The temporal varia-
ions in the NDVI reflect the vegetation’s response to weather
ariability (Potters and Brooks, 1998). Consequently, this index
as been widely used to monitor ecosystem dynamics, crop yield
ssessment/forecasting and to detect the spatial extent of drought
pisodes and their impact (Tucker and Choudhury, 1987; Marsh
t al., 1992; Di et al., 1994; Kogan, 1995, 1997; Groten and Octare,

002).

However, many studies report that the spatial and temporal
ariability of NDVI values is closely related to the contribution of
eographical resources to the amount of vegetation. This contri-
ution fluctuates considerably depending mainly on climate, soils,
Observation and Geoinformation 13 (2011) 309–321 311

vegetation type and topography of an area (Di et al., 1994; Ichii et al.,
2002; Li et al., 2002; Domenikiotis et al., 2004). Thus, in tropical
rainforest areas, high NDVI values could result from the lush tropi-
cal forest vegetation, whereas, in deserts, low NDVI values are to be
expected. Obviously, these differences are not due to the impact of
the weather. For this reason the NDVI is not comparable in space,
especially in non-homogeneous areas (Vicente-Serrano, 2007).

Furthermore, surface moisture and aerosol signals may limit
the accuracy of the observed NDVI in arid or semi-arid regions
(Funk and Brown, 2006). Soil formations in the most arid areas may
also play an important role in intensifying the effects of drought
on vegetation. Land degradation and specific soil erosion may in
part also prevent the development of a high amount of vegetation
cover (Guerrero et al., 1999). These vegetation indices, NDVI, are
also mainly linked to vegetation biophysical factors and problems
exist because of external factor effects, such as soil background
variations (Huete et al., 1985; Huete, 1989).

Accordingly, Huete (1988) proposed a soil-adjustment factor to
account for first-order soil background variations and obtained a
soil-adjusted vegetation index (SAVI), which reduced the influence
of the soil type below the vegetation. According to Huete (1988),
SAVI is much better than NDVI for areas with low vegetation cover
and can be used to characterize the arid zone vegetation. How-
ever, the SAVI is a method by which spectral indices requires local
calibration so that soil substrate variations are effectively normal-
ized and are not influencing the vegetation measure. Furthermore,
since it is difficult to predict how soil effects are manifested within
large pixel areas, which aggregate soils and vegetation of many
different types, each of which requires in principle, separate cali-
bration which makes the method not easy to apply for large areas.
We believe, however, that the most appealing approach to apply
in our case is to rely on NDVI as is difficult to have access to such
calibration values for our study region, which covers 53,000 km2.

Moreover, though natural vegetation has developed a great
capacity for physiological adaptation and resistance to long
droughts and soil moisture below the theoretical wilting points,
precipitation is considered as the primary limiting factor for plant
growth in semi-humid and semi-arid areas (Wang et al., 2003;
Reynolds et al., 2004). But when NDVI is used for analysis of weather
impact on vegetation, the non-weather effect must be separated.
Accordingly we applied the VCI for study.

The maximum amount of vegetation is developed in years with
optimal weather conditions, because such conditions stimulate
efficient use of ecosystem resources. Conversely, minimum veg-
etation amount develops in years with extremely unfavourable
weather, which suppresses vegetation growth directly and through
a reduction in the rate of ecosystem resources use (Domenikiotis
et al., 2004). Therefore, the absolute maximum and minimum of
NDVI, calculated over several years, contains the extreme weather
events. The resulting maximum and minimum values can be used as
criteria for quantifying the potential of geographical areas (Kogan,
1995, 1997). This is expressed by the VCI, which is given by the
equation:

VCI =
(

NDVI − NDVImin

NDVImax − NDVImin

)
× 100 (8)

where NDVI, NDVImin, and NDVImax are the smoothed 10-day NDVI,
its absolute multi-year minimum and its multi-year maximum
NDVI respectively for each pixel. The VCI, given by Kogan (1995),
has been used to estimate the weather impact on vegetation. The
method is useful to separate the short-term weather signal in the

NDVI data from the long-term ecological signal and in this sense it
is a better indicator of water stress condition than NDVI (Kogan
and Sullivan, 1993; Maselli et al., 1993; Kogan, 1997). The VCI
provides accurate drought information not only for well defined,
prolonged, widespread, and intensive droughts, but also for very
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tation ten day composite Normalized Difference Vegetation (NDVI)
images (S10 product) were acquired from vgt4africa of the DevCo-
Cast project website, http://www.vgt4africa.org, for the period of
April 1998–December 2009. In this paper drought is studied using
Fig. 1. Climate distribution of monsoon rainfall, annual minimu

ocalized, short-term, and well-defined droughts (Kogan, 1995).
he VCI varies from 0 to 100 corresponding to changes in the
egetation condition from extremely unfavourable to optimal con-
ition (Kogan, 1995; Kogan et al., 2003). Based on Kogan’s (1995)
CI classification threshold, VCI values of 35% or less is consid-
red to be as an indicator of drought condition. VCI values around
0% are considered as a fair vegetation condition, while VCI values
etween 50 and 100% are judged optimal or above normal condi-
ions. The VCI algorithm was developed and tested in several areas
f the world with different environmental and economic resources
Kogan, 1990, 1995).

. Study area and data used

.1. Study area

Tigray is one of the national regional states of Ethiopia located
n the North Eastern part of the country, covering a total area of
3,000 km2. Geographically, it lies between latitudes 12◦15′N and
4◦57′N and longitudes 36◦27′E and 39◦59′E. The state is structured

nto 6 administrative zones and 34 districts. Intervening mountain
anges rise locally to 3000 m above sea level. These high eleva-
ions result in a more temperate climate than would normally be
ssociated with the latitude (Virgo and Munro, 1978).

Climatically, the region belongs to the sub-tropical region where
onsoon weather prevails throughout the year. Three distinct sea-

ons can be recognized from a climatic point of view: the dry winter
eason from October to February; the pre-monsoon hot season from
arch to May; and the rainy monsoon season which lasts from June

o September (locally called kiremt), during which 80% of the crops
re cultivated. Rainfall is distributed very unevenly in the study
egion. The data from the Ethiopian National Meteorological Ser-
ices Agency (ENMSA) reveals that the climate of the study region
s characterized by large spatial variations which range from about
000–1300 mm over some pockets areas in the Southwest to about

ess than 260 mm over the Northeast lowlands (Fig. 1). The mean
nnual rainfall of the region is estimated to be 560 mm while the

ean annual monsoon rainfall is 473 mm, 84% of the annual rain-

all. The coefficient of variation (CV) of annual rainfall is found to
e 38%, which is high compared to the national figure of 8%.

The southern and eastern zones of the region receive much
ower rainfall than other parts of the region (Fig. 1). The distribu-
d maximum temperature in the study region for the year 2008.

tion of monsoon rainfall over the region is characterized by large
spatial variation. The inter-annual variability of the monthly aver-
age minimum and maximum temperature based on the data from
Ethiopian National Meteorological Services (ENMSA) for the period
of 1979–2009 shows that the minimum temperature is highest in
May–June and reaches its lowest value in December–January, while
the maximum temperature over the region is highest in May and
reaches its lowest in August (Fig. 2). Mean temperature distribution
over the region varies from about 13.4 ◦C over the highlands of the
Southwest and East to about 28 ◦C over Western lowlands in 2008.

2.2. Data used

Historical records of monthly precipitation data for the time
period 1954–2009 were acquired from the Ethiopian National
Meteorological Services Agency for a total of 46 meteorological sta-
tions within Tigray (Fig. 3). However, the period of records for these
stations varies and some have missing records. Thus, the period
of study has been chosen as long as possible depending on the
availability of recorded data for 25 stations in the region, being
1979–2009.

Besides the above mentioned data, geo-referenced SPOT vege-
Fig. 2. Inter-annual variability of the average monthly minimum and maximum
temperature in Tigray for the period 1979–2009.

http://www.vgt4africa.org/
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Table 1
Drought classification by standardized precipitation index (SPI) value.

SPI values Drought category

<−2.00 and less Extreme drought
−1.50 to −1.99 Severe drought
−1.00 to −1.49 Moderate drought
Fig. 3. Location of rain-gauge stations in Tigray.

1 years SPOT NDVI data at 1 km × 1 km resolution data, which
overs the African continent. The NDVI product acquired is a 10-
ay synthesis. The satellite data on SPOT vegetation are applied
or several procedures in order to ensure the quality of the NDVI
roduct. The product can be used for crop and agricultural monitor-

ng; early warning of failing growing seasons; and as an indicator
nd alert function for drought events. The multi-temporal NDVI
ata was selected due to its provision of opportunities to recognize
egetation changes at a longer time span.

. Methods

.1. Drought evaluation using the SPI

In this study, the SPI series were computed for 25 weather sta-
ions of Tigray region from January 1979 to December 2009 at a
emporal scale of 3- and 6-month to study the characteristics of
rought at short and medium ranges. These scales are useful for
onitoring various drought types (Edwards and McKee, 1997). The

- and 6 months SPI is used to describe the drought events affect-
ng agricultural practices and characterize seasonal droughts due
o rainfall deficit during the main rainy season. The SPI program
eveloped by the National Drought Mitigation Centre, University
f Nebraska–Lincoln, was used to generate time series of drought
ndices (SPI) for each station in our study region and for each month
f the year at 3- and 6-month time scales. The 3-month SPI calcu-
ated for September uses the precipitation total for July, August and
eptember while the 6-month SPI calculated for September uses
he precipitation total for April to September. Since drought is a
egional phenomenon, the SPI values of the meteorological stations
ave been spatially interpolated using inverse-distance moving
verage interpolation technique in the software package ILWIS to
reate drought severity maps for the region at multiple time scales
f the year. An inverse distance moving average technique was
mployed as it is better suited for interpolation of rainfall distri-
ution over heterogeneous topographical terrain. SPI classification
hreshold values proposed by McKee et al. (1995) and explained by
dwards and McKee (1997) were used in order to map the spatial
xtent of meteorological drought intensities corresponding to the
PI value (Table 1).
.2. Drought evaluation using the VCI

A 10-day composite NDVI for each month of the indicated period
as produced for the study region. The decadal composite NDVI
ata set was then divided into groups for analysis i.e. the main rain
0 to −0.99 Near normal or mild drought
Above 0 No drought

season or monsoon months (June, July, August and September) and
the dry season (March, April and May). The monsoon months was
only used for the analysis as this study was focused on drought due
to water stress during the rainy season. All negative values have
been reclassified to 0 in all data set so that scaled NDVI data contain
only positive values, which are required for further analysis.

After the production of average monsoon NDVI
(June–September), absolute NDVI minimum and maximum
maps for each monsoon season were generated for the period
1998–2009. After the production of these images VCI composite
images were produced for each year monsoon season using Eq.
(8). Accordingly 396 decadal images were processed in order
to produce the multi-temporal drought maps and determine
the relationships between average monthly precipitation and
vegetation indices at a station level. Kogan’s (1995) VCI classi-
fication threshold values were then applied in order to prepare
the annual vegetative drought maps. Pearson correlation analysis
was performed to correlate VCI values with precipitation data. In
order to investigate the time lag between the occurrence of the
precipitation and VCI response, correlation between VCI data and
various precipitation schemes including the current month and
the current month plus last two preceding months were examined.

4. Results and discussion

4.1. SPI based drought identification

4.1.1. Temporal drought pattern
Meteorological drought indicates the deficiency of rainfall com-

pared to normal rainfall in a given region. The temporal and spatial
characteristics of drought in Tigray region was identified from SPI
time series of multiple-time steps. In our study, SPI for 3- and 6-
months time steps are computed to examine the characteristics
of drought in short and medium time periods. The 3-month SPI
provides a seasonal estimation of precipitation and the 6-month
SPI indicates medium term trends in precipitation patterns (Lia
et al., 2004). The 3-month SPI is thus used to describe the mon-
soon drought for the crop growing season, while the 6-month SPI
is used to characterize seasonal droughts that occur due to rainfall
deficit in monsoon months.

Appearance of drought is happening every time when SPI is neg-
ative and its intensity comes to −1.0 or lower. Drought stops when
SPI is positive. The duration of every drought appearance is deter-
mined by negative index values. Accumulated totals of negative
values of SPI could also be used as a measure of drought sever-
ity. The regional SPI time series for all the stations selected were
calculated at 3 and 6-months time steps. A representative exam-
ple of the evolution of the SPI for Mekelle station between 1979
and 2009 with a time scale of 3- and 6-months is shown in Fig. 4.
According to the criteria of McKee et al. (1995), severe and extreme
droughts correspond to the categories of −1.99 < SPI ≤ −1.5 and

SPI ≤ −2.0 respectively. Consequently, several drought episodes
were detected from the temporal evolution of the SPI, the most
severe or extreme droughts occurred in 1984, 1985, 1986, 1987
and 1991 (Fig. 4).
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ig. 4. Values of Spatial Precipitation Index for Mekelle station (a) 3-month and (b)
-month time steps.

The analysis shows that four extreme drought event occurred
round the Mekelle station in the case of SPI-3 whereas in the
ase of SPI-6, five extreme drought events were evident during the
ecorded period. All these episodes were prolonged in time with
ritical and extreme situations. Two extreme drought events (1984
nd 1985) lasted for 3–6 months with critical and extreme situ-
tion. Especially, the annual precipitation of the year 1984 is the
mallest for the 30 years of analysis. The drought occurring in 1984
s the most severe drought ever experienced in Tigray region in
eneral. The annual minimum 3-month SPI for this drought event
ccurred in July 1984 (SPI = −2.89), whereas the annual minimum
-month SPI observed in October 1984 (SPI = −2.84). Successive
oderate drought episodes were also recorded during the period

992–2009 at the two short and medium term time scales.
Severe drought events occurred in 1982, 1983, 1985, 1987, 1988,

989, 1991, 1999, 2000 and 2009. Severe droughts are much more
rolonged drought events than the drought event of 1984. The
eriod 1985–1989 except for the year 1986 was characterized by
ainfall shortages during the rainy season. The minimum 3-month
PI was observed in October 1987 (SPI = −1.88) and a minimum
-month SPI was observed in September 1987 (SPI = −1.99). This
rolonged drought event caused exploding water demands and
ubsequent impacts in Mekelle area and Tigray region in general.
he annual minimum SPI values for the 3-month and 6-month time
cale most frequently occur during July and October. The tempo-
al analyses of 3-month and 6-month SPI values show that Tigray
egion was predominantly characterized by frequent moderate
roughts.
.1.2. Spatial characteristics of drought
Although the estimation of drought severity at a certain point

ives useful information for water management, it is important to
ssess the drought over a specified region. The regional drought
nalysis is useful for determining the spatial distribution and char-
Observation and Geoinformation 13 (2011) 309–321

acteristics of drought, and evaluating the most affected areas for a
specific drought event. In this study, the spatial analysis was per-
formed using the SPI values estimated for 3- and 6-month time
scales. Using the developed SPI database and the abilities of ILWIS
software package, one can visualize the distribution of SPI values
across the area of interest for the various time scales. As an exam-
ple, Figs. 5 and 6 show the variation of SPI across Tigray for the
period 2000–2009 for time scales of 3- and 6-month respectively.

The spatial analysis of moderate drought occurrences indicates
that they tend to occur in the eastern and south zones of Tigray at
a 3-month time step, while the northwest and western parts are
characterized with the lowest frequencies at the same time step
(Fig. 5). In other words, the majority of the historical droughts that
occurred in the eastern and southern zones of the study region were
of moderate severity in short-time steps. At a 3-month time step,
moderate droughts occurred more frequently and covered nearly
two-thirds of the study region during the worst drought of 2002. As
the time step increases to 6-month, severity of drought increased
in some pocket areas.

Severe to extreme drought occurred during 2000–2009 in
discrete pockets in two seasons. During 2002, 2004, and 2009
monsoon, most parts of the region suffered drought conditions.
In the years 2000, 2001, 2003, 2006 and 2007 years, the mon-
soon period was mostly drought-free. Severe drought was observed
in the year 2002, when the eastern and southern zones of the
regions were affected by severe to extreme drought. During 2002,
the monsoon was poor and as a result the whole region suffered
drought conditions. During 1999–2009, just within a span of 10
years, monsoon-drought appeared throughout the Tigray region
five times.

In 2002, 62% of the study area was affected by drought, among
which, 3% was affected by severe droughts and 24% was by mod-
erate monsoon drought. In 2004, 2005, 2008 and 2009, the whole
study area was affected by drought. About 67% of the area in 2004
and 63% of the area in 2009 was affected by mild drought.

The spatial extent of the 6-month SPI shows that in 2002, almost
64% of the study area was affected by drought, with almost 29% of
the area affected by moderate drought for the 6-month time scale
(Fig. 6). In 2004, about 65% of the area was affected by drought,
with almost half of the region affected by mild drought. The spa-
tial extent of both 3- and 6-month SPI’s show that in most of the
drought years the eastern and southern zones had an SPI less than
−1.0. Drought is persistent for more than four seasons particu-
larly in the southern and eastern zones of the region over the last
five years (Figs. 5 and 6). The spatial distributions of drought for a
3-month and 6-month time step are shown in Figs. 5 and 6 respec-
tively.

The SPI maps indicate that meteorological drought in the study
region appears continuously in the monsoon seasons. The analysis
of drought at the 3-month and 6-month time-steps further indi-
cates that southern and eastern zones of Tigray are most vulnerable
to droughts. Besides, certain pockets particularly in the northwest
zone of the region have also suffered from water stress. From the
two time scales it can also be concluded that droughts in Tigray
are of a more seasonal than a long-lasting character. Based on the
standard precipitation index the southern and eastern zones of the
region can be delineated as a drought prone zone.

However, Tigray is one of the Ethiopian regions where meteoro-
logical stations are generally inadequate and the networks are not
well-developed. Weather stations are sparsely located from each
other and hence the spatial resolution of rainfall data derived from

these weather station data has been approximately 100–150 km .
Besides, continuous rainfall records are scarce or difficult to obtain
in a timely fashion for all weather stations as infrastructural net-
works are very low. Consequently, SPI assimilated information on
rainfall does not express much spatial detail and could have draw-
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Fig. 5. Spatial distribution of 3-month standard precipitation

acks in identifying localized drought at a regional level, which
n turn hinders the possible prediction, monitoring and mitigation
ffects of drought disaster.

.2. Vegetation based drought identification

.2.1. Mean vegetation and rainfall patterns
The average rainfall for the monsoon season gives an overview

f the general distribution of rainfall as the main crops are culti-
ated during June–September in the whole part of the region. Fig. 7
rovides a visual comparison of average monsoon rainfall and NDVI
or the period 1998–2009. During the monsoon season, the south-
rn and eastern zones of the study region receive low rainfall as
ompared to the other zones of the region. The figure shows an
ncreasing rainfall pattern from southern zone to western region.
he spatial pattern of NDVI for the growing season of the period
998–2009 correspond well with the monsoon rainfall pattern with
he most pronounced vegetation signal for the northwest and west-
rn zones of the Tigray region. The above normal greening of this
egion obviously is associated with high rainfall during the months
f June–September in the area. We performed a correlation analysis

n average monsoon rainfall and NDVI for the period (as discussed
n Section 4.1.4). The average monsoon precipitation and NDVI/VCI
attern for the whole study region for the period 1998–2009, reveal
hat there is a positive correlation between monsoon NDVI/VCI and
ainfall (see Fig. 11). The high similarity in spatial pattern of both
computed for the month of September for five drought years.

NDVI and rainfall illustrates the impact of rainfall on vegetation
condition.

4.2.2. Spatial extent of vegetative drought
The annual cycle of vegetation in Tigray region is basically uni-

modal similar to the rainfall regime. As discussed before, a monsoon
drought was analysed using time series VCI. Based on Kogan’s
VCI threshold of 35% or less as extreme drought condition, VCI
time series data was used to determine the drought. At a VCI of
around 50%, fair or normal vegetation conditions exist. When VCI
values are close to 100%, the brightness vegetation for the mon-
soon/September is equal to the long-term Maximum for the pixel.
Low VCI values indicate drought period in that year. A consistently
low VCI value over several consecutive time intervals indicates
drought development. Accordingly, VCI indicates that the study
area was affected by drought condition in the monsoon year 2002,
2004, 2005, 2008 and 2009 (Fig. 8). During the monsoon of 2002,
the vegetation experienced stress and loss of vegetation health. The
region experienced an exceptionally continuous drought spell from
the monsoon of 2002 until 2009 particularly in the southern and
eastern zones of the region due to poor rainfall in the last consecu-

tive monsoon seasons (Fig. 8). The worst situation was encountered
during the year 2004, 2008 and 2009 monsoon when 20.1%, 18.1%
and 17.4% of the region suffered drought condition respectively;
having VCI values less than 35%. In the year 1999–2001, most of the
study area except for some pocket areas had VCI values higher than
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5 and thus there were normal conditions. Agricultural practices, in
articular in times of sowing and harvesting have significant bear-

ng in shaping the NDVI patterns. Agriculture was severely affected
uring the year 2004, since crops could not be sown due to failure
f rainfall commencement particularly in the southern part of the
egion.

Furthermore, a high intensity of drought condition occurred in
004, 2005 and 2008 due to failure of rainfall during the last crop
rowing period, mostly around September as is illustrated in Fig. 9.
ig. 9 indicates the VCI of September 1999–2009, the severity of

rought in 2004, 2005 and 2008 appeared relatively higher.

Our result of vegetative drought analysis illustrates that the
patial and temporal analysis of drought using vegetation condi-
ion index were found useful in characterizing spatial patterns and

Fig. 7. Multi-year average monsoon rainfall (MRF) and the mult
computed for the month of September for five drought years.

temporal aspects, and in evaluating drought proneness across the
spatial units. Multi-temporal VCI maps are useful in assessing the
severity of droughts at spatial details, implying the utility of the
Vegetation condition index in semi-arid and arid regions.

4.2.3. Precipitation, NDVI and VCI variations
Inter-annual variability of the monthly average NDVI and pre-

cipitation is shown in Fig. 10 for six sample stations reflecting
monthly average values. The figure shows that the average monthly

NDVI reaches its maximum value in September for the sample sta-
tions. The temporal pattern of the NDVI has high similarity with
the temporal pattern of rainfall, which is relatively high in the rainy
period from June to September. Fig. 10 also shows that there is no
agreement between the peak NDVI and current month precipita-

i-year average monsoon NDVI for the period 1998–2009.
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ion values rather it shows that there is a time lag between the
eriod of the peak NDVI and precipitation values.

.2.4. Correlation analysis
Although, the variations in vegetation indices can aid to recog-

ize the effect of climatic factors on local vegetation, the variations
ill be of little practical value when planning for large-scale miti-

ation. Hence, determining the associations between precipitation
nd vegetation indices on a regional scale would provide better

nsight into drought onset and severity.

Thus, the statistical relationships between various time lag
eriods and NDVI/VCI were investigated by performing a Pearson
orrelation analysis between the values of vegetation indices and
recipitation data for 28 meteorological stations (Table 2). For the
I for monsoon season, 1999–2009.

Alamta and Maichew stations the VCI values are correlated with
the current month precipitation. However, the VCI exhibited signif-
icant correlations with current plus last two-month precipitation
in nearly all the stations (Table 2). This shows that vegetation is
responsive to rainfall over a three-month period indicating a brief
time–lag in the vegetation response to rainfall.

In the case of NDVI, NDVI values are correlated with the current
month precipitation at Adigudom, Alamata, Hagereselam and Waja
stations. Significant correlations are observed with the current plus

two-month precipitation data for 21 stations. In general, nearly in
more than half of the meteorological stations, highest correlation
coefficients are obtained when NDVI or VCI values are correlated
with the current plus last two-month precipitation data. Our result
further reveals that VCI has a higher correlation than NDVI for the
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ndividual stations indicating that VCI can provide more accurate
nformation on the impact of weather on vegetation, and can be
sed as good indicator of vegetation changes and in turn, as indi-
ators of drought conditions for individual stations in the study
rea.

Moreover, the relationships between precipitation and vegeta-
ion indices on a regional scale would also provide better insight
nto drought onset and severity. Therefore, average NDVI and VCI
alues of all 28 meteorological stations in the study area were

etermined as “average NDVI” and “average VCI” and their corre-

ation with average precipitation data were observed. Because the
esults of individual stations showed better correlations between
DVI/VCI values and multi-month precipitation, only the average
the month of September, 1999–2009.

of three-month precipitation of all stations in the entire study area
for the period 1999–2009 was used (Fig. 11). It can be clearly seen
from the scatter plots that VCI values responded well to precipita-
tion. The correlation coefficient (r) for this relationship was found to
be 0.85 at 0.01 level of significant, which indicates a strong positive
linear relationship between three-month precipitation and VCI.

A similar trend is observed when the average NDVI of the study
area is plotted versus three-month precipitation. An agreement is
easily observed which is confirmed by a good r-value of 0.78. The

correlation was found to be significant at 0.01 level.

Generally, a very good agreement is observed between NDVI/VCI
values and average three-month precipitation. Thus, the general
agreement between VCI values and precipitation data clearly shows
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Fig. 10. Inter-annual variability of monthly NDVI for sample stations, 1999–2009.

Table 2
Pearson correlation coefficient between NDVI/VCI and precipitation.

No. Station name NDVI VCI

Current month Current + preceding two months Current month Current + preceding two months

1 Abi-adi 0.516 0.364 0.220 0.529*

2 Adigudom 0.495** 0.586* 0.356 0.670*

3 Adiremese 0.270 0.406 0.133 0.375
4 Adidaero 0.056 0.105 0.366 0.531**

5 Adigrat 0.242 0.689* 0.007 0.580*

6 Adwa 0.362 0.026 0.209 0.264
7 Agebe 0.119 0.408** 0.142 0.517*

8 Alamata 0.650* 0.827* 0.579* 0.759*

9 Axum 0.216 0.092 0.034 0.346
10 Aynalem 0.083 0.563* 0.157 0.622*

11 Dengolat 0.026 0.490** 0.113 0.717*

12 Edagahamus 0.070 0.439** 0.212 0.443**

13 Endabaguna 0.232 0.167 0.146 0.428*

14 Enticho 0.141 0.832* 0.147 0.867*

15 Feresemay 0.159 0.592* 0.208 0.768*

16 Hagereselam 0.484** 0.650* 0.364 0.630*

17 Hawezen 0.254 0.533* 0.202 0.603*

18 Korem 0.194 0.687* 0.093 0.663*

19 Maichew 0.187 0.384 0.433** 0.677*

20 Maykenetal 0.070 0.656* 0.052 0.710*

21 Mekelle 0.155 0.525* 0.208 0.620*

22 Ramma 0.225 0.308 0.282 0.587**

23 Selekeleka 0.292 0.523* 0.217 0.615*

24 Sheraro 0.275 0.575** 0.307 0.650*

25 Shire Endaselassie 0.135 0.157 0.100 0.515*

26 Waja 0.407** 0.614* 0.326 0.556*

27 Wedisemero 0.217 0.277 0.263 0.247
28 Wukero 0.189 0.562* 0.337 0.726*

** Correlation is significant at 0.05 level (2-tailed).
* Correlation is significant at 0.01 level (2-tailed).
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Fig. 11. Average NDVI and VCI versus average

hat the maximum and minimum NDVI values used to determine
he VCI at a station level have been influenced by the weather con-
ition. Drought area dynamics studied by VCI images represent
he negative impact of adverse meteorological conditions on veg-
tation and show a more useful way to monitor regional drought
volution in time and space.

. Conclusion

The spatial and temporal characteristics of droughts in Tigray
egion were examined using standard precipitation index and veg-
tation condition index. Drought potential mapping is one of the
ajor steps in drought mitigation and planning. The study reveals

hat the eastern and southern zones of Tigray are most likely to
uffer from drought. The SPI maps indicate that meteorological
rought appears in the southern and eastern zone in most of the
onsoon seasons over the past decade. It is observed that there

s strong relation between the rainfall distribution and drought
otential zones in the region. The meteorological drought condi-
ions change continuously with seasons depending upon rainfall
mount and its spatial distribution.

The result of vegetative drought analysis further illustrates sig-
ificant correlations between VCI values and precipitation data for

ndividual stations. Therefore, VCI indices can be used to detect
nfavourable environmental conditions, particularly the current
rought status as well as to analyze the characteristics of the
rought at a regional scale. The study further indicated that VCI
alues have strong correlation with precipitation as compared to
he NDVI. This indicates that rainfall characteristics may not be the
nly factor to influence NDVI values. Other local factors, such as soil
haracteristics, stress in previous years, and land cover character-
stics of the area could also have an influence on vegetation.

From the SPI and VCI drought dynamics pattern analysis we con-
lude that the identification, classification, and analysis of drought
ynamics are highly influenced by the monitoring parameters. SPI
onitors precipitation deficit, the primary cause for drought devel-

pment but takes no account of the impact. A region could be free
rom water-stress and might maintain normal vegetation despite
f negative SPI. Negative SPI anomalies therefore not always corre-
pond to drought (Bhuiyan et al., 2006). SPI classification scheme
ely on the assumption of drought to follow the scale of probability
nd normal statistics which is debatable. Drought area dynam-
cs studied by VCI, however, characterize the negative impact of
nfavourable meteorological conditions on vegetation and show a
ore useful way to monitor regional drought evolution in time and

pace, and therefore represent a better picture of drought than the
PI.

Furthermore, in developing countries like Ethiopia meteorolog-

cal stations are generally inadequate and the networks are not

ell-developed. Weather stations are sparsely located far from
ach other and hence the spatial resolution of rainfall data derived
rom these weather stations has been approximately more than
00 km2. Besides, continuous rainfall records are scarce or difficult
month precipitation for the whole study area.

to obtain in a timely fashion as infrastructural networks are very
low in developing countries. Consequently, SPI assimilated infor-
mation on rainfall does not express much spatial detail and could
have drawbacks in identifying drought proneness across the spa-
tial units, and thereby affects the reliability of the drought indices.
Similar findings were reported by Brown et al. (2002).

However, the result from the satellite derived vegetation con-
dition indices indicates that VCI are useful to identify the spatial
diversity of drought conditions over large areas, offering the pos-
sibility for early prediction of droughts as is necessary for drought
risk management. Similar studies in Africa, South America, and Asia
by Kogan and others (Kogan, 1995, 1997; Liu and Kogan, 1996;
Unganai and Kogan, 1998) also reveal that drought area dynam-
ics studied by VCI images demonstrated more clearly the intensity
of droughts at a regional scale and showed to be an effective tool to
detect regional drought evolution in time and space than those by
other types of drought delineation. However, Bajgirana et al. (2008)
found VCI values to be unreliable in Northwest Iran. This is mainly
explained due to the short time span, 5 years, of the satellite data
used for their study, which is difficult to make a firm comment on
the applicability of the VCI index.

Developing countries like Ethiopia can therefore benefit from
the remote sensing tools that provide better real time and spatially
continuous data that can be used for rigorous analysis of drought
proneness over large areas. The use of satellite based monitoring
of vegetation also plays an important role in drought monitoring,
early warning and mitigating the effects of drought disaster. Cog-
nizant with this we are able to detect the spatial diversity of drought
in Tigray by employing a rich database. Our result further indicates
that detailed studies at a regional level will support for appropriate
spatial identification and regionalization of the drought phenom-
ena. This in turn provides evidence for policy makers to tailor
appropriate policies to local conditions in order to mange the risks
of drought. Thus, it is hoped that our study has demonstrated the
importance of vegetation condition index in assessing the severity
of droughts in semi-arid and arid region, indicating the utility of the
tool in assisting policy makers in guiding the operational responses
in drought risk reduction.
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