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’ INTRODUCTION

Interfacial dynamics of fluids and, in particular, drops are
important in a variety of technological processes, such as foam-
ing, flotation, emulsification, coating, ink jet printing, microen-
capsulation, detergency, distillation, microelectromechanical
systems (MEMS), hard disk drives, oil recovery, crystallization,
and catalysis.1�3 Because of the technological importance, the
dynamic properties of fluid interfaces should be understood, at
both the macro- and nanoscale. As a contribution toward this
goal, we report a new method for measuring the interfacial
dynamic properties of disturbed sessile drops.

Numerous experimental methods have been devised to in-
vestigate the dynamics of fluid interfaces. Experimental methods,
such as the Faraday wave method,4�6 oscillating barrier,7 elastic
ring methods,8�10 capillary wave method,11�14 and oscillating
bubble and drop methods,15�17 involve a variety of interface shapes,
deformations, and frequency ranges. A theoretical understanding of
the experimental measurements generally requires knowledge of the
fluid motion and boundary conditions at the solid/fluid/air contact
line.18�20 For example, during wetting or dewetting, the contact line
might be pinned or it can slip over the surface as the meniscus
advances or recedes.21

Atomic force microscopy (AFM) is typically used to image
surfaces and study the force of interaction between the AFM
probe and a surface.22,23 A few researchers have used AFM to
investigate wetting properties of AFM tips, colloidal probes,
nanowires, microrods, and surfaces.24�30 In these experiments,

the wetting force is typically measured at a particular immersion
depth and the contact angle is calculated from models of the
shape of the interface. The dynamics of the liquid interface has
not been studied using AFM.

In this work, the interface of a sessile drop is suddenly
perturbed by a microsphere touching the air/water interface,
resulting in an immediate capillary rise onto the microsphere.
Because the cantilever has such a high resonance frequency
compared to the drop, the motion of the cantilever follows the
motion of the interface once contact occurs. Even though the
microsphere volume is 6 orders of magnitude smaller than the
drop, the amplitude of the oscillation is readily measured with
AFM. Sharp resonance frequencies are observed that vary with
the volume of the drop. The two lowest resonance frequencies
are measured as a function of the drop volume. To our knowl-
edge, this is the first time that the two distinct modes of
oscillation have been simultaneously measured for a sessile drop.
A theoretical model of sessile drop vibrations quantitatively fits
the data with no adjustable parameters.

’EXPERIMENTAL SECTION

Soda lime glass microspheres (Polysciences, Inc., Warrington, PA)
were used for the measurements. AFM measurements of the surface
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ABSTRACT: A new method for studying the dynamics of a sessile drop by
atomic force microscopy (AFM) is demonstrated. A hydrophobic microsphere
(radius, r ∼ 20�30 μm) is brought into contact with a small sessile water drop
resting on a polytetrafluoroethylene (PTFE) surface. When the microsphere
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quency of hemispherical drops with no adjustable parameters. The method
may enable sensitive measurements of volume, surface tension, and viscosity of
small drops.
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roughness of a 4 μm2 area of the untreated microspheres showed a root-
mean-square (rms) roughness of 0.3 nm. The microspheres were
washed in dilute HCl solution, rinsed in distilled water, and exposed
to a UV cleaner (PSD-UV, Novascan Technologies, Inc., Ames, IA) for
10 min. A microsphere was then attached to the end of an intermittent/
tapping mode AFM cantilever (Bruker Nano, Santa Barbara, CA;
RTESPW cantilevers) using fast setting epoxy (Hardman, Royal Ad-
hesives and Sealants, South Bend, IN). Figure 1a shows a scanning
electron microscopy (SEM) micrograph of a glass microsphere attached
to the end of an AFM cantilever. Other images showing the epoxy bond
have been previously published.31 The nominal spring constant and
length of the cantilevers were 40 N/m and 125 ( 5 μm, respectively.
The placement of the microsphere on the cantilever will affect the spring
constant. However, the stiffness does not affect the oscillation frequency
that is our focus here. Consistent results were obtained with at least three
different spheres and cantilevers to check that surface roughness and
stiffness did not affect oscillation frequencies.
The mounted microsphere was exposed to a vapor of methyl

trichlorosilane for 2 min to make it hydrophobic. The hydrophobic
coating was necessary to prevent the fluid from wetting the entire
sphere and cantilever. Such complete wetting was observed when a
bare sphere and cantilever were cleaned in an ultraviolet plasma
cleaner prior to testing. This wetting behavior is expected, as will be
shown later.
A Dimension 3100 AFM (Bruker Nano, Santa Barbara, CA) was used

for the AFM measurements. The photodiode signal was independently
calibrated by pressing the sphere bonded onto the AFM cantilever onto a
hard silicon surface and noting the deflection of the cantilever. Because
of the large difference in stiffness between the glass microsphere and the
cantilever, the deformation effect of the sphere is expected to be small
compared to the cantilever deflection. The deflection sensitivity of the
photodiode was near 50 nm/V.

A polytetrafluoroethylene (PTFE) surface (2 mm thick) was washed
in concentrated NaOH solution, thoroughly rinsed in distilled water,
and dried. A water droplet was gently placed on the PTFE surface. The
microsphere on the AFM cantilever was centered over the midpoint of
the droplet and slowly lowered using the stepper motor of AFM, with an
average rate of approach of 2.92 μm/s. In the absence of an interaction
force between the microsphere and the sessile drop, the photodiode
signal was insensitive to the movement of the stepper motor in air. The
stepper motor was stopped once contact between the droplet and the
sphere occurred, as noted by the sudden change in the photodiode signal.
During the measurement, the laser signal was focused near the center of
the photodiode, where the photodiode was calibrated. The photodiode
signal was directly monitored by a digital recorder (data logger), which
recorded between 200 and 400 data points per second.

Deionized water with a resistivity greater than 18.2 MΩ cm (Milli-Q
Synthesis A10, Millipore, MA) and a surface tension of 72 mN/m32 was
used for the droplets. The contact angle of a water drop on the PTFE
surface was measured to be 95� using a goniometer. The experiments
were performed at 24 ( 1 �C.

’RESULTS

A diagram of the experimental configuration before contact of
themicrosphere with the droplet is shown in Figure 1b. Note that
the figure is not drawn to scale, as the droplet radius is
approximately 2 orders of magnitude larger than themicrosphere
radius. When the microsphere contacts the air/water interface,
the meniscus will climb onto it. For a macroscopic solid, the
meniscus rise onto a solid surface is the same order of magnitude
as the capillary length, c = (γlv/ΔFg)1/2, where γlv is the liquid/
vapor surface tension, ΔF is the density difference between the
liquid and the vapor, and g is the acceleration due to gravity.33 For
water, c = 2.7 mm. However, when the probe radius r , c, the
meniscus rise height z scales with the microsphere radius and
depends upon the contact angle of the liquid with the micro-
sphere. To the first order in r/c, the entire liquid/vapor interface
is given by the equation34

zðxÞ ¼ b sin Φ½ln 2x� lnðx2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2 sin2 Φ

p
Þ

þ K0ðx=cÞ� ð1Þ
where x is the horizontal distance from the central axis of the
microsphere,Φ is the angle between the tangent of the liquid/air
interface at the microsphere surface and the horizontal direction,
b is the radius of the spanning circle of the contact line on the
microsphere surface, and K0(x/c) is the modified Bessel function
of order zero. This is the general axisymmetric solution for the
interface shape and can be applied to any axisymmetric solid by

Figure 1. (a) SEM image of a glass microsphere attached to an AFM
cantilever. (b) Schematic diagram of the AFM configuration just before a
hydrophobic microsphere contacts a fluid droplet. Note that the diagram
is not drawn to scale, as the drop radius is approximately 2 orders of
magnitude larger than the radius of the microsphere.

Figure 2. Schematic diagram of a sphere partially immersed in a liquid,
showing the parameters used to calculate the meniscus rise. For the case
of a microsphere, the meniscus height decreases gradually with the
distance from the microsphere over a length scale of the order of the
sphere radius.
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properly choosing the boundary conditions b and Φ.34�36

Applying these conditions to a spherical geometry, one finds
that the maximum rise height of the meniscus above the un-
deformed fluid interface is given by34,37,38

zmax ¼ x sinΦ ln
4c

xð1 þ cos ΦÞ � γE

� �

¼ r sin j sinðj þ θÞ ln
4

ε sin jð1� cosðj þ θÞÞ � γE

� �
ð2Þ

where γE is Euler’s constant (γE = 0.577 215...),j is the spanning
angle of the contact line on the microsphere surface, θ is the
contact angle of the liquid against the microsphere, and ε = r/c
is a dimensionless number (ε2 = Bond number). A schematic
diagram of the meniscus rise onto the microsphere and the
geometric parameters used in the calculations is shown in Figure 2.
As noted above, eq 1 is a general axisymmetric solution for the
interface shape. Changing from sphere to rod to cone only affects
the relation between the boundary condition embodied by the
angle Φ at a given radius b.34�36

Figure 3 shows the maximum meniscus rise above the
undeformed fluid interface, zmax, calculated from eq 2, scaled
by the microsphere radius. The maximum meniscus rise will

occur at the three-phase line, where the liquid is in contact with
the microsphere. The curves in Figure 3 represent the max-
imum meniscus rise for various values of the dimensionless
parameter ε = r/c. For the measurements reported, the micro-
sphere was hydrophobic (advancing contact angle θa ≈ 90),
with a typical radius 20 < r < 35 μm and ε ≈ 0.01. For ε = 0.01
and a contact angle of 85�, Figure 3 shows that the meniscus is
predicted to rise to near the middle of the microsphere (0.9r).
This meniscus rise is shown schematically in Figure 4, where the
rise height and distance are scaled by the radius of the sphere.
The meniscus height in eq 2 decays slowly from the edge of the
microsphere, as shown by Figure 4, where the meniscus rise z is
approximately 0.6r at a distance 4 times the microsphere radius.
The meniscus height has fallen to 1/e of zmax at a distance 19
times the microsphere radius from the central axis. Note that,
even though the microsphere is hydrophobic, the meniscus
rises onto it.

Measurements of the force of the capillary rise were performed
using AFM. For the AFM measurements, it is important that
the meniscus does not rise to touch the epoxy layer attaching
the sphere to the cantilever,31 where the geometry and surface pro-
perties change. To avoid this condition, it is required that zmax <
1.7r, and according to Figure 3, the contact angle of the meniscus
next to the sphere should be g40�; this condition is fulfilled for
hydrophobic microspheres.

Experimentally, the meniscus rise on the microsphere is ob-
served as an abrupt change in the cantilever deflection, as measured
by the AFM photodiode signal. Once contact between the micro-
sphere and the droplet occurs, the AFMmotor is stopped. Figure 5
shows the measured cantilever deflection as a function of time as
a microsphere (r = 20 μm) is brought into contact with a 100 μL
water droplet on PTFE. Minimal deflection is seen as the sphere
is brought toward the interface. Once contact occurs, the
meniscus exerts a force on the microsphere, which pulls it toward
the droplet (at time t ≈ 1 s). Because the cantilever is relatively
stiff (spring constant k ∼ 40 N/m), the cantilever deflection is
only 72 nm. The predicted maximum meniscus rise above the
undeformed droplet interface, zmax, according to eq 2, is approxi-
mately 18 μm for a contact angle near 90�. Because the cantilever
only deflects 72 nm on contact, while the meniscus rises 18 μm
onto themicrosphere, the bottom of themicrosphere can be taken

Figure 3. Maximum meniscus rise height above the undeformed fluid
interface, zmax, scaled by the sphere radius r. The plots are shown as a
function of the contact angle for various values of the dimensionless
parameter ε = r/c, where c = (γlv/ΔFg)1/2.

Figure 4. Illustration of the wetting of the microsphere. The meniscus
height, z, and horizontal distance, x, are scaled by the radius of the sphere r.
Note that z/r = 0 corresponds to the height of the undeformed fluid
interface.

Figure 5. Measured cantilever deflection as a function of time. The
microsphere is brought into contact with a 100 μL water droplet at
approximately 1 s. The data within the rectangle are expanded in Figure 6.
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to be even with the undeformed droplet interface, as shown in
Figure 4.

The meniscus force, F, found by multiplying the cantilever
deflection by the cantilever spring constant, depends upon the
meniscus height and the position of the meniscus on the micro-
sphere. The meniscus force for a microsphere of radius r for the
geometry shown in Figure 2 is given by34,35,38�40

F ¼ πΔFgr3 2ε�2 sin j sinðj þ θÞ þ zmax
r

sin2 j
�

� 1
3
ð2� 3 cos j þ cos3 jÞ

�
ð3Þ

All parameters have been previously defined or are defined in
Figure 2. The first term in the brackets represents the contribu-
tion from the liquid/vapor surface tension, and the second term
represents the contribution from the excess pressure because of
the meniscus rise. The third term is the buoyancy force resulting
from partial immersion of the microsphere in the liquid. For
micrometer-sized materials, this buoyancy force is negligible.

Immediately after the initial rise of the meniscus, the micro-
sphere oscillates about a fixed average position while partially
immersed in the liquid. Figure 6 shows an expanded section of
the data outlined in Figure 5. Because of the constant average
deflection, we can assume that the microsphere/water contact line
is pinned and the measured oscillation reflects the motion of the
sessile drop interface. For this experiment, the maximum peak to
peak oscillation amplitudewas 40 nmand the amplitude decreased
to the background vibrations within 2 s. The solid line in Figure 6
is a five-parameter damped sine wave fit to the data given by

y ¼ y0 þ A expð�t=DÞsinðC þ 2πBtÞ ð4Þ
where y is the cantilever deflection, y0 is the average cantilever
deflection, A is the oscillation amplitude, B is the frequency, C is
the phase offset, t is the time, and D is the damping time. For this
particular data set (100 μL water drop), B = 33 Hz and D = 0.9 s.
Further experiments showed that both the oscillation frequency
and the damping depended upon the volume of the drop.

Figure 7 shows results for the measured oscillation frequency
as a function of the droplet volume. For each measurement, the

data were analyzed by finding the position of peaks in the Fourier
power spectrum. Because the highest sampling rate was 400 Hz,
the highest detectable frequency was 200 Hz. In most experi-
ments, two resonance modes were found, and their frequencies
are shown in Figure 7. The amplitude of the second mode
was typically 3�8 times smaller than that of the first mode. In
all cases, the same PTFE surface was used as the substrate and
water was used as the liquid. The circles, squares, and triangles
represent the data obtained for three experiments using a
different microsphere and AFM cantilever for each experiment.
The data show an increase in the oscillation frequency as the
drop volume decreases. The measured frequency is what
would be expected if the entire drop oscillated, as will be
discussed later.

The solid curves in Figure 7 show the first and second normal
mode oscillation frequency predicted theoretically as a function
of the drop volume.41 In this theory, an inviscid hemispherical
drop (θ = 90�) is assumed to be resting on a flat surface.41 In
addition, it is assumed that the oscillation amplitude is small and
that the droplet is pinned at the three-phase line (PTFE/air/fluid
interface). Previous measurements of the small-amplitude vibra-
tion of vibrated sessile drops and the evaporation of drops on
PTFE have found that the contact line is pinned.42,43

The theoretical curve is calculated by finding the values of ω~k
that satisfy41

f ðω~kÞ � ∑
∞

l ¼ 1

l ð4l þ 1Þ
ω~2k � 4l ð2l � 1Þðl þ 1Þ

ð2l � 1Þ!!
2l l !

� �2
¼ 0

ð5Þ

where ω~k
2 = (Fa3/γlv)ωk

2 and a is the radius of the contact line
of the drop with the substrate surface. Because a hemispherical
drop is assumed, a= r= ((3/2π)V)1/3. For the first two resonance

Figure 6. Expanded graph of the highlighted region of data shown in
Figure 5. The solid line is a fit to the data using a five-parameter damped
sine wave equation given by eq 4. Small deviations from the fit reflect
both noise and the contribution of other normal modes.

Figure 7. First and second resonance mode oscillation frequency as a
function of the water drop volume. The contact angle of the sessile drop
on the PTFE surface was 95�. The solid circles, squares, and triangles
represent data from three experiments using a different sphere and
cantilever for each experiment. The solid curves represent the expected
resonance frequency for a water drop on a flat surface with a contact
angle of 90�, as given by eqs 5 and 6. Note that no fitting parameters are
used in the equation. The equation assumes that gravity can be
neglected, which is valid when the radius of the drop is less than the
capillary length (V < 60 μL).
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modes, a numerical solution of eq 5 (with the infinite summation
truncated at l = 1000), gives ω~k = 4.417 13 and 10.5706. The
resonance frequency is then calculated from

f ðkÞ ¼ ωk ¼ 1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γlvω~k

2

Fa3

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γlvω~k

2

6πFV

s
ð6Þ

Note that all of the parameters in eq 6 are either known quantities
(V, F, and γsl) or are directly calculated. There are no adjustable
fitting parameters in the equation.

For small volumes (V < 60 μL), Figure 7 shows that the
theoretical prediction for the first two oscillation modes quanti-
tatively fits the data. However, at larger volumes (V > 60 μL), the
theory underestimates the measured frequencies by 20�30%.

’DISCUSSION

The measurements show that AFM can be used to investigate
dynamic properties of millimeter-sized sessile drops. The contact
of a microsphere (attached to an AFM cantilever) with a sessile
drop leads to a rapid rise of the meniscus onto the microsphere.
This causes a nanometer scale oscillation of the entire drop, even
though the drop volume is approximately 6 orders of magnitude
larger than the microsphere volume.

The measured oscillation is not due to the resonance of the
cantilever, which, in air and without the attached microsphere,
was near 280 kHz. With the attached microsphere, the resonance
frequency in air decreased to near 25 kHz. For a mass, m, on
a spring with the surface tension (restoring force) of the liquid
as its spring constant, the frequency is expected to be of the
order of

f ≈
1
2π

ffiffiffiffiffiffi
γlv
m

r
≈175 kHz ð7Þ

where m is the mass of the microsphere. This frequency is
approximately 4 orders of magnitude larger than that measured
in the experiments, indicating that the “effective mass” of the
system must be much larger than the mass of the microsphere.
Rearranging eq 7 and substituting the frequency measured
(30 Hz) shows that the “effective mass” in eq 7 is approximately
2 mg, corresponding to a water volume of about 2 μL. Although
this is more than an order of magnitude smaller than the drop
volume, it indicates that much of the water is contributing to the
“effective mass”. Also, because buoyancy is extremely small with
these small spheres, the oscillations are not expected to be due to
buoyancy.

Because the natural frequency of the combined cantilever and
microsphere is so high, they can easily follow the movement of
the meniscus. Measurement of their motion with AFM allows for
the interface motion to be tracked. The cantilever and the surface
tension of the interface can be considered to be two springs in
series. The spring constant of the system is given by the spring
constant of the weakest spring, the surface tension of the inter-
face. This is shown mathematically as 1/ksystem = 1/kcantilever +
1/γlv≈ 1/γlv because kcantilever≈ 40 N/m and γlv≈ 72 mN/m.

For small volumes (V < 60 μL), the theoretical prediction for
the first and second oscillation modes quantitatively fits the data.
However, at larger volumes (V > 60 μL), the theory under-
estimates the measured frequencies. The theory assumes that the
drop shape is hemispherical. The drop profile can be determined
by the Young�Laplace equation for given values of the capillary

length c, drop radius R, and contact angle of the droplet on the
surface, θs. If R, c, the gravitational effects are negligible and the
drop assumes a hemispherical shape to minimize the surface
energy. When R ∼ c, the drop becomes flattened because of the
effects of gravity.44,45 For the measurements reported, R ∼ c for
V = 60 μL. Optical measurements of the height of sessile drops
on a hydrophobic paraffin surface (θs = 107�) are shown in
Figure 8. The solid curve is the theoretical prediction for the
height of a spherical drop with a contact angle of 107�. The
measured drop height increases with drop volume until the drop
volume exceeds 60 μL. At larger volumes, even though the drop
volume increases, the drop height remains nearly constant. The
maximum measured drop height was found to be 3.2 mm, which
is near the capillary length of 2.7 mm. Because the theory for
sessile drop oscillations discussed above assumes a hemispherical
drop shape (θs = 90�), it is reasonable to expect a small
discrepancy between the theory and the data at larger volumes,
as was observed. A further difference between theory and
experiment is expected because the contact angle of water on
PTFEwas 95� instead of 90�. A similar theory for drop resonance
supported on a spherical cap (as opposed to a flat surface) has
been shown to be applicable for contact angles greater than 90�,
although different eigenvalues must be calculated for each
contact angle.46,47

Fourier transform analysis of the data show that two different
modes of oscillation are present. The ability to detect a
resonance mode by Fourier transform depends upon the data
collection rate, and because the sampling rate was 200�400
points/s, we were limited to detecting resonance frequencies
less than 200 Hz. It is possible that higher normal modes are
also excited and underdamped, but the data collection rate must
be increased before they can be observed.

Note that the calculation of droplet resonance frequency in
eq 6 is independent of the size and chemistry of the probe, i.e.,
the contact angle of the liquid with the probe. This has been
confirmed by preliminary experiments. Oscillations have been
observed for the wetting of both hydrophilic and hydrophobic
microrods (r = 50 μm),24 as well as hydrophobic microspheres.

Figure 8. Measured drop height of a sessile drop of water placed on a
paraffin surface. The contact angle was measured to be 107� ( 2�. The
solid line is the predicted drop height for a hemispherical drop having a
contact angle of 107�. The data rise less rapidly for drop heights
exceeding the capillary length of 2.7 mm.
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However, oscillations have not been observed during the wetting
of nanowires (r < 200 nm), presumably because of the relatively
small perturbation.

The oscillation frequency of the droplet is determined by the
droplet volume, fluid density, surface tension, contact angle of the
droplet on the substrate, and mode of oscillation. Because the first
three are generally known, it should be possible to obtain the contact
angle of a sessile drop on a solid surface bymeasuring the oscillation
frequency and fitting to theoretical predictions. Unfortunately, no
theories exist that properly account for oscillation frequencies for
contact angles other than 90�. We are currently investigating other
surfaces, liquids, surface tensions, and contact angles to better test
the current theories and limits of the measurement.

’CONCLUSION

A new method for studying the dynamics of a sessile drop by
AFM is demonstrated. The droplet interface was perturbed by
the contact of amicrosphere with the liquid and immediate rise of
the meniscus onto the microsphere. Fourier transform analysis
of the data shows that two different modes of oscillation of the
droplet are present. To our knowledge, this is the first time that
two distinct modes of oscillation have been simultaneously
measured for a sessile drop. The measured frequencies corre-
sponded to the small amplitude vibration of the entire drop and
were fitted to theories for resonance vibrations of a sessile droplet
with no adjustable parameters. This method can be used to study
droplet dynamics or to determine the volume, surface tension of
the fluid, or contact angle of the sessile drop on the surface.
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