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Abstract The solution of elastohydrodynamically lubri-

cated contacts at high loads and/or low speeds can be

described as a Hertzian pressure with inlet and outlet

boundary layers: zones where significant pressure flow

occurs. For the soft lubrication regime (elastic-isoviscous),

a self-similar solution exists in the boundary layers satis-

fying localized equations. In this paper, the boundary layer

behaviour in the elastic-piezoviscous regime is investi-

gated. The lengthscale of the boundary layers and the

scaling of pressure and film thickness are expressed in non-

dimensional parameters. The boundary layer width scales

as 1=
ffiffiffiffiffi

M
p

(equivalent to �k
3=8

), the maximum pressure dif-

ference relative to the Hertzian solution as 1=
ffiffiffiffiffi

M3
p

(equiv-

alent to �k
1=4

) and the film thickness as 1=
ffiffiffiffiffi

M16
p

(equivalent

to �k
3=64

) with M the Moes non-dimensional load and �k a

dimensionless speed parameter. The Moes dimensionless

lubricant parameter L was fixed. These scalings differ from

the isoviscous-elastic (soft lubrication) regime. With

increasing load (decreasing speed), the solution exhibits an

increasing degree of rotational symmetry. The pressure

varies less than 10 % over an angle less than 45 degrees

from the lubricant entrainment direction. The results pro-

vide additional fundamental understanding of the nature of

elastohydrodynamic lubrication and give physical rationale

to the finding of roughness deformation depending on the

‘‘inlet length’’. The findings may contribute to more effi-

cient numerical solutions and to improved semi-analytical

prediction methods for engineering based on physically

correct asymptotic behaviour.

Keywords Thin film flows � Elastohydrodynamic

Lubrication � Self-similarity

List of Symbols

a Contact radius a ¼ ðð3FRxÞ=ð2E0ÞÞ1=3
(m)

d Deformation (m)

E0 Equivalent Young’s modulus 2=E0 ¼
ð1� m2

1Þ=E1 þ ð1� m2
2Þ=E2 (Nm-2)

F External load (N)

h Film thickness (m)

H Dimensionless film thickness H ¼ hRx=a2

H* Dimensionless film thickness H� ¼ H �k
�3=5

HM Moes dimensionless film thickness

HM ¼ h=Rx � ððg0usÞ=ðE0RxÞÞ�1=2

H Dimensionless film thickness H ¼ H
ffiffiffiffiffi

M16
p

DH Dimensionless film thickness difference

L Moes lubricant parameter

L ¼ a E0 � ððg0usÞ=ðE0RxÞÞ1=4

M Moes load parameter point contact

M ¼ F=ðE0 R2
xÞ � ððg0usÞ=ðE0RxÞÞ�3=4

Ml Moes load parameter line contact

M1 ¼ w=ðE0RxÞ � ððg0usÞ=ðE0RxÞÞ�1=2

p Pressure (Nm-2)

P Dimensionless pressure P ¼ p=ph

P� Dimensionless film thickness P� ¼ P�k
�1=5

ph Maximum Hertzian pressure

ph ¼ ð3FÞ=ð2pa2Þ(Nm-2)
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Ph Dimensionless Hertzian pressure distribution

Ph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X2 � Y2
p

DP Dimensionless pressure difference

DP ¼ PðX; YÞ � Ph

DP Dimensionless pressure difference

DP ¼ DP
ffiffiffiffiffi

M3
p

r Dimensionless radius r ¼ signðXÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Y2
p

Rx Reduced radius of curvature in x 1=Rx ¼
1=R1x þ 1=R2x (m)

Rex Local Reynolds number (introduction)

Rex ¼ u1x=m
Ry Reduced radius of curvature in y 1=Ry ¼

1=R1y þ 1=R2y (m)

u Surface velocity (ms-1)

urms Sum velocity us ¼ ðu1 þ u2Þ (ms-1)

u1 Freestream velocity (introduction) (ms-1)

w External load per unit width (line contact)

(Nm-1)

x Coordinate in the direction of rolling

(freestream flow) (m)

y Coordinate perpendicular to the direction

of rolling (freestream flow) (m)

x0 Coordinate in the direction of rolling (m)

y0 Coordinate perpendicular to the direction

of rolling (m)

X; Y Dimensionless coordinates X ¼ x=a, Y ¼ y=a

X0; Y 0 Dimensionless coordinates X0 ¼ x0=a, Y 0 ¼
y0=a

X Dimensionless scaled coordinate

X ¼ �1þ ðX � 1Þ
ffiffiffiffiffi

M
p

X� Dimensionless coordinate X� ¼ ðX � 1Þ�k�2=5

z Viscosity pressure index (Roelands)

a Viscosity-pressure coefficient (N-1m2)

�a Dimensionless viscosity index �a ¼ aph

g Dynamic viscosity (Nm-2s)

�g Dimensionless viscosity �g ¼ g=g0 (Nm-2s)

g Boundary layer dimensionless coordinate

(introduction) g ¼ y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u1=ðmxÞ
p

m Kinematic viscosity (introduction)

m ¼ g=q (m2s)

/ Angle with X axis / ¼ arctanðY=XÞ
�k Dimensionless speed parameter

�k ¼ ð6g0usR
2
xÞ=ðpha3Þ

q Density (kg m-3)

�q Dimensionless density �q ¼ q=q0

m Poisson ratio

D Dimensionless mutual approach

Subscripts

0 At ambient pressure

1; 2 Surface 1, surface 2

s Sum

x In x direction

y In y direction

1 Introduction

As a result of many studies in the past decades, the

behaviour of elastohydrodynamically lubricated (EHL)

contacts is increasingly well understood. Advanced

numerical solution methods with today’s generation of

computer hardware allow the solution of many realistic

problems, including simulations of point contact problems

with dynamic loading conditions and surface roughness

passing through the contact. Based on the results of

numerical solutions, formulas have been developed to

predict, e.g. the film thickness for fully flooded conditions

[1–4] as well as the reduction due to starvation [5, 6].

Generalized traction curves have been derived [7] and

engineering models established, for the prediction of sur-

face roughness deformation based on harmonic waviness

[8–11]. These theoretical predictions were later validated

experimentally [12, 13].

One of the characteristics of EHL pressure and film

thickness profiles is that with increasing load and with

decreasing speed, the inlet and outlet regions are narrow.

This is in accordance with the fact that the solution should,

in some way, approach the Hertzian solution for the dry

contact. This also explains the increasing radial symmetry

of the pressure in circular contacts with increasing load

and/or decreasing speed [2, 14, 15]. Accurate numerical

solutions for such cases require at least locally very fine

meshes. This may still lead to increased computing times,

in spite of the efficiency of the numerical solution method,

see [16]. To optimize the computational effort, detailed

understanding of the exact way in which the inlet and outlet

regions are narrow in relation to the problem parameters

can be beneficiary. In addition, such understanding may

give new insights into modelling the transition from

lubricated to dry contact from first physical principles.

The narrowing of the inlet and outlet regions in EHL

problems resembles the behaviour of singular perturbation

problems, which in physics are successfully analysed using

the method of matched asymptotic expansions, e.g. see [17,

18]. Often there are two regions, an inner solution and an

outer solution, which have different scales. In between is a

transitional region referred to as ‘‘boundary layer’’. The

length (or width, or height, depending on the type of

problem) of this layer varies with the problem parameters.

However, in many cases, the equations can be localized

and it can be shown that there is a scaling of the variables

such that a unique non-dimensional solution exists in this
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region. When this is the case, one speaks of a self-similar

solution.

As a reminder, the terms boundary layer and self-similar

solution are most well known from the problem of the flow

near a wall in fluid mechanics, i.e the Blasius solution of

the velocity profile in the laminar flow near a flat plate with

a freestream velocity u1 in x direction. The velocity

component along the plate uðx; yÞ=u1 can be written as a

function f 0ðgÞ of only a single variable, where

g ¼ y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u1=ðmxÞ
p

, and the thickness of the boundary layer

behaves as d=x ¼ 4:9=
ffiffiffiffiffiffiffi

Rex

p
, where Rex is the local Rey-

nolds number: Rex ¼ u1x=m, see e.g [19]. However, this is

not a singular perturbation problem.

A singular perturbation problem with a self-similar

solution well known to the physical community is

Bretherton’s study of a bubble in a narrow tube [20]. The

shape of the narrow gap between the bubble and the wall

is strikingly similar to the film thickness solutions for

EHL contacts, which were published around the same

time by Dowson and Higginson [21]: nearly uniform in

the centre and a downstream decrease in the film thick-

ness, see Fig. 1. In Bretherton’s study, the lubrication

assumption is also used and a self-similar solution is

shown to exist as is the case in many other problems in

fluid mechanics and physics [22], i.e. in this case, there is

a unique scaling of the solution in terms of a single

parameter and the coordinate scaling is the boundary

layer scale.

Several studies on elastohydrodynamic lubrication have

been published in the engineering and physics literature in

which the behaviour of the solution is described in terms of

inlet region and outlet region, e.g. by Hooke [23], Bisset

[24, 25], for line contacts, and more recently Kudish [26,

27]. In numerical studies of (harmonic) waviness passing

through the contact, it was found that the deformation of

the waviness depends on a single parameter, which was the

same for line and point contacts, see [9]. This parameter

was found to be the ratio of the wavelength of the waviness

to an inlet length of the contact, which was loosely defined

as the length of the inlet pressure sweep. In a study of the

film thickness in narrow elliptic contacts, it was found that

the ratio of the central to minimum film thickness was

governed by exactly the same parameter [28].

Intrigued by the similarity between the Bretherton

solution and the EHL solutions and the evidence of an

‘‘inlet parameter’’ governing many aspects of the behaviour

of the problem as described above, Snoeijer et al. [29]

revisited the problem of soft (highly deformed) EHL con-

tacts in the isoviscous regime. They rigorously proved that

the EHL problem can be seen as an elastic version of the

Bretherton problem and that it has two similarity solutions,

one on the inlet side and one on the outlet side. For the soft

isoviscous case, the scaling of the inlet and outlet boundary

layer is the same. For the line contact, the result generalizes

the findings of Hooke [23], Herrebrugh [30], and Bisset

[24, 25]. More importantly, it was shown that the solution

is the same for line and point contacts, thus providing a

very strong physical rationale to the empirical results of

waviness deformation discussed above. The similarity

solution is determined by an integro-differential equation,

as opposed to the ordinary differential equations encoun-

tered in most singular fluid problems [22].

Fig. 1 Shape of narrow bubble

in tube (left) (Bretherton [20])

and film shape in EHL contact

between steel surfaces (Dowson

and Higginson [21])
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With this structure of the isoviscous heavily deformed

contact clearly unraveled, the next step is to (re-)investi-

gate the strongly deformed piezoviscous problem. The

findings of the harmonic waviness deformation studies [9]

suggest self-similarity in the boundary layer behaviour in

this regime too. In this paper, the existence of scaling and

of self-similar behaviour in the inlet and outlet layers of the

piezoviscous EHL point contact problem is investigated by

means of the analysis of numerical solutions.

2 EHL Equations

The equations were made dimensionless using the Hertzian

parameters, see nomenclature. The non-dimensional Rey-

nolds equation for the steady-state two-dimensional circu-

lar contact problem reads:

o

oX

�qH3

�g
oP

oX

� �

þ o

oY

�qH3

�g
oP

oY

� �

� �k
o�qH

oX
¼ 0 ð1Þ

with �k defined as:

�k ¼ 6
g0usR

2
x

a3ph

ð2Þ

The density pressure relation is taken according to Dowson

Higginson [31] and the Roelands [32] viscosity pressure

will be used. The film thickness equation is given by:

HðX; YÞ ¼ �Dþ X2

2
þ Y2

2
þ 2

p2

Z Z

PðX0; Y 0Þ dX0dY 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX � X0Þ2 þ ðY � Y 0Þ2
q

ð3Þ

where D is the (dimensionless) mutual approach, deter-

mined by the force balance equation:

Z Z

PðX; YÞ dX dY ¼ 2p
3

ð4Þ

For an incompressible lubricant and a simple exponential

viscosity pressure equation, the only two dimensionless

parameters appearing in the equations are �a ¼ aph and �k.

For the case of Roelands’ equation and a compressible

lubricant, the values of the pressure viscosity coefficient a
and the pressure viscosity index z [32] also appear. To

represent load cases, the Moes dimensionless parameters

will be used. These are defined as:

M ¼ F

E0R2
x

g0us

E0Rx

� ��3=4

L ¼ aE0
g0us

E0Rx

� �1=4

ð5Þ

They are related to the parameters appearing in the equa-

tion as:

�a ¼ L

p
3

2
M

� �1=3

�k ¼ 128p3

3M4

� �1=3

ð6Þ

The inlet zone of a highly deformed EHL contact is the

transition region between the low pressure environment

and the high pressure Hertzian disc and is, in this sense, a

boundary layer. The objective is now to determine whether

there exist a scaling for the pressure, for the film thickness

and for the length (X) coordinate such that the solutions

obtained for different parameter values can all be collapsed

on a single curve, the same similarity solution. Obviously,

this scaling should then depend on the problem parameters,

so one first needs to find out how the solution behaves in

this region as a function of these parameters.

The boundary layer can be defined as the zone where the

pressure flow is significant. In the piezoviscous regime, the

boundary layer is limited by a small pressure gradient or by

a large viscosity. No additional film variations are possible

now, as the film geometry is ‘‘frozen’’ by the piezoviscous

lubricant. Two definitions of the boundary layer were used;

the first criterion determines the zone in which the pressure

is significantly different from the Hertzian pressure:

DP ¼ P�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X2 � Y2
p

; if X2 þ Y2\1;

P; otherwise:

(

ð7Þ

In the same way, a film thickness difference DH is defined

using the Hertzian dry contact deformation:

DH will be close to the central film thickness Hc in the

Hertzian zone.

The second measure is the magnitude of the pressure flow

related quantity oP=ð�gorÞ. In the central region due to the

small film thickness and high viscosity, shear flow domi-

nates, and hence, the pressure flow must be small. On the

other hand, far ahead of the contact, the pressure gradient is

small and the viscosity ambient, so it must also be small.

DH ¼ H þ 1� r2=2� ½ð2� r2Þ arcsinð1=rÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � 1
p

�=p; if r [ 1;

H; otherwise:

(

ð8Þ

378 Tribol Lett (2014) 56:375–386

123



Hence, it is likely to be a quantity localized in small region

around the Hertzian contact circle: the boundary layer.

3 Numerical Solution

The equations were discretized on a uniform grid with

second-order accuracy. The resulting discrete system of

equations was solved using multilevel techniques [33, 34].

The application to the EHL point contact problem is

extensively described in [35]. The efficiency of the method

allows a simple and fast computation of the film thickness

and pressure with very small grid spacing in a short time on

a standard (personal) computers. Typical computing times

for a solution of 20492 points are 10 min on a standard PC.

The size of the computational domain for low loads must

be sufficiently large. In this study for medium values of the

load parameter M, the domain was taken �4:5�X� 1:5

and �3� Y � 3. For high M values, a smaller domain is

sufficient: �1:5�X� 1:5 and �1:5� Y � 1:5.

4 Elastic-Isoviscous: Boundary Layer and Self-

similarity

Figure 2, redrawn from [29], shows centreline profiles of

the dimensionless pressure PðXÞ and film thickness HðXÞ

for a series of loading cases of decreasing �k (increasing M)

in the inlet and outlet regions for an isoviscous lubricant,

i.e. �a ¼ 0 (L ¼ 0). With decreasing �k, the region over

which the solution significantly differs from the Hertzian

solution reduces to an increasingly narrow region near

X ¼ �1. Also shown are the same solutions but scaled

according to: P� ¼ P�k
�1=5

, H� ¼ H �k
�3=5

as a function of

X� ¼ ðX � 1Þ�k�2=5
for the inlet and outlet, respectively.

The figure shows that using this scaling of P, H and of the

coordinate X, all solutions converge to a single curve in

the region close to the Hertzian contact edge, i.e. X� 	 0,

so there exists a single profile P�ðX�Þ and H�ðX�Þ in the

inlet and outlet regions, which contains all information:

the self-similar solution. Note that the scaling of the X

coordinate thus exactly describes the narrowing inlet and

outlet layer with decreasing �k, and hence, it is referred to

as the boundary layer length scale. For a detailed account,

the reader is referred to [29]. The (dimensionless)

boundary length scale is the same as the inlet length

proposed by Hooke [23] and as observed by Bisset [24,

25] for the line contact problem. The film thickness

solution also has the same scaling as the classic Herreb-

rugh solution [30]. The novelty in [29] is that this solution

can be obtained from a localized equation and that it is

shown to be valid for line and point contacts, so, for line

and point contact, the scaling is the same in terms of the �k
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Fig. 2 Centreline dimensionless pressure P and film thickness H in

the inlet (top left) and outlet (top right) regions with decreasing value

of �k. Scaled centreline pressure P� ¼ P�k�1=5 and H� ¼ H �k�3=5 as a

function of scaled coordinate X� ¼ X �k
�2=5

in inlet (bottom left) and

outlet (bottom right)
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parameter, which reflects the same underlying physical

mechanism.

In terms of the Moes dimensionless load parameter for

the line contact, the dimensionless boundary layer width

scales as M
�4=5
1 and the film thickness as HM / M

�1=5
1 ,

where M1 is the Moes dimensionless load parameter for the

line contact problem and HM the Moes non-dimensional

film thickness, see Nomenclature. For the point contact, the

dimensionless boundary layer width scales as M�8=15 and

the scaling of the Moes dimensionless film thickness

parameter is HM / M:�2=15. The physical mechanism is the

same, but as the Moes dimensional load parameters for the

line and point contacts is not the same, this is not imme-

diately clear from the film thickness scaling. This can now

be seen as a significant drawback of the Moes non-

dimensional load parameter(s), which needs to be looked

into further in future research. In this study, the identifi-

cation of loading cases is still done using the Moes

parameter M with L fixed, and scalings found will be

presented in terms of both M and �k.

Having clarified the nature of the elastic-isoviscous (soft

lubrication) problem, the objective of the present research

is to (re)investigate the piezoviscous EHL problem in the

regime of strong deformation and focus on boundary layer

behaviour.

5 Piezo-viscous: Inlet layer

Figure 3 shows the pressure difference DP on the square

�1:5; 1:5 for M ¼ 200 (top) and M = 2,000 (bottom).

From both figures, it can be observed that the major

differences in the pressure distribution are concentrated

around the unit circle X2 þ Y2 ¼ 1. Far from this circle and

towards its centre, the pressure difference tends to be zero.

Furthermore, it can be observed that the pressure difference

as a function of the radius r ¼ signðXÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Y2
p

is more

or less constant over an angle from / ¼ �p=4 to

/ ¼ þp=4. Note that the use of the signðXÞ allows a

negative value of r in the inlet and a positive value in the

outlet. In terms of X, in the inlet, the pressure difference

starts out positive and then becomes negative. The is also

true in the outlet: first a positive then a negative difference.

Hence, a transition zone is required to match these two

boundary layers. For simplicity, we will define this tran-

sition zone as p=4� j/j � 3p=4 and exclude it from our

study.

Comparing the two boundary layers for the two load

cases, it can be concluded that the width of the boundary

layer decreases with increasing M. Furthermore, the

amplitude of the pressure difference decreases with

increasing M. We will now quantify some of these obser-

vations, starting with the pressure difference as a function

of r for different angles /, see Fig. 4. This figure appar-

ently shows two curves, one thick line and one thin line (45

degrees). Both curves have a very similar evolution. For

Fig. 3 Pressure difference for M ¼ 200 (top) and M ¼ 2,000

(bottom), L ¼ 10

-0.05

0

0.05

0.1

0.15

Δ
P

r

0

0.05

0.1

0.15

0.2

-1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8

-1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8

∂
P

/
(η̄

∂
r
)

r

Fig. 4 Pressure difference DP as a function of r for / ¼
0; 5; 10; 15; 20 and 45 degrees (top) and pressure flow term as

function of r for / ¼ 0 (bottom). M = 1,000, L = 10
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r\� 1, the DP values are positive: in the inlet, the pres-

sure is positive, whereas the Hertz pressure is zero. For

r [ � 1, the DP values are negative: the total pressure is

less than the Hertz pressure. The discontinuity in the slope

is explained by the fact that the pressure difference com-

pares a continuous (lubricated) and a discontinuous

(Hertzian) pressure distribution, which is obviously dis-

continuous (at r ¼ �1).

It should be noted that the thick line is not a single line,

but the result of the proximity of the different curves for the

angles from 0 to 20 degrees. The results for 0, 5 and 10

degrees are nearly identical, and the 15 and 20 degrees can

locally be distinguished. This indicates the strong rotational

symmetry of the boundary layer.

Figure 4 also shows the evolution of the pressure flow

related term in the inlet region. It can be seen that this

function is indeed only significantly different from zero in

the region in which the pressure difference varies. It thus

provides an equally good characterization of the boundary

layer, but with the advantage that it is a continuous func-

tion. Finally, Fig. 5 shows the local deformation in the

boundary layer. Because of the positive film thickness in

the high pressure zone, the difference DH is not centred on

zero, but on the central film thickness. The deformation

difference, by its integral character, is smoother than the

pressure difference. The local trend is a film increase, due

to a local positive pressure difference.

The first boundary layer parameter that is studied is its

width. The qualitative conclusion from Fig. 3 was that the

width decreased with increasing M, keeping the value of

the L parameter fixed (L ¼ 10). The waviness amplitude

reduction theory [9, 10] suggests a (non-dimensional) inlet

length �a�3=2L2 which for circular contact is the equivalent

of ð�a�kÞ1=2
and

ffiffiffiffiffiffiffiffiffiffi

L=M
p

. For a given L, as in the present

simulations, it will behave as M�1=2: in order to define the

width of the boundary layer, the pressure flow criterion was

used, as it is more localized than the pressure difference

criterion. The layer width is defined as the length of the

region in radial direction where the pressure flow quantity

exceeds 10 % of its maximum value. The analysis is per-

formed over an angle of �p=8�/� þ p=8 with the

X axis. The results are drawn in Fig. 6.

As L is fixed, the slope should theoretically be �0:5. A

line with this slope is added for comparison. It can be

concluded that the observed slope is exactly the same as the

behaviour of the inlet length parameter previously

0.02
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0.026

0.028
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-1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8

Δ

r

H

Fig. 5 Film thickness difference DH as a function of r for

M = 1,000, L ¼ 10 and / ¼ 0 degrees
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Fig. 6 Width of the inlet boundary layer as a function of M and

L ¼ 10, the solid line is a reference with a slope of -1/2
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1

100 1000 10000 100000

Δ 

M

P

Fig. 7 Maximum pressure difference in the inlet boundary layer as a

function of M and L ¼ 10, the solid line represents a slope of -1/3
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suggested. Furthermore, using the 10 % of oP=ð�gorÞmax

criterion, the width of the inlet boundary layer can be given

as:

inlet width ¼ p

ffiffiffiffiffi

L

M

r

ð9Þ

The second boundary layer parameter studied is the max-

imum value of DP. Figure 7 shows its evolution as a

function of M. As the boundary layer becomes narrower, it

is to be expected that the pressure excursions tend to zero,

which is indeed the case. The maximum of DP seems to be

proportional to 1=
ffiffiffiffiffi

M3
p

, which is the equivalent of �k
1=4

. One

notes some ‘noise’ on the maximum pressure difference

value, most likely caused by the discontinuous nature of

DP parameter. Finally, Fig. 8 shows the value of the

maximum Poiseuille flow term as a function of M. This

graph shows that the maximum flow scales the same as the

boundary layer width and is proportional to M�1=2.

6 Piezo-viscous: Outlet Layer

The analysis of the outlet boundary layer is slightly more

difficult due to the pressure spike phenomenon. The height

of this pressure spike has been the subject of many debates.

Several researches have estimated that the spike is an

artefact of overly simplistic numerical models. It was

argued that if correct rheological and thermal models

would be used, the spike height would be significantly

reduced. However, Biboulet et al. [15] demonstrated that at

least for conditions close to pure rolling, the measured

spike height is close to the value predicted by Newtonian

isothermal calculations. In [36], it is shown that for the case

of a compressible lubricant using the Roelands equation for

quite a number of cases, it could be shown that the spike

had continuous derivative. The reason the spike occurs in

the outlet and not in the inlet resides in the fact that in the

outlet, the Poiseuille flow and the Couette flow are in the

same direction, whereas they counteract one another in the

inlet. Furthermore, the piezoviscous behaviour of the

lubricant increases the pressure gradient even more in the

outlet.

In Fig. 9, the pressure difference DP in the outlet is

shown. It can be seen that the variation is very similar to

the variation in the inlet, see Fig. 4. It is only because this

nearly similar difference is added to the Hertzian pressure

profile at different locations relative to the centre that the

resulting lubricated pressure distribution appears to differ

so much more from the Hertzian pressure profile. In the

inlet, the DP singularity cancels the Hertz pressure singu-

larity and a continuous pressure distribution results. In the

outlet, the DP singularity occurs inside the Hertzian disc,

where the Hertz pressure is still continuous, having a much

stronger effect on the solution: the ensuing pressure spike.

The exit boundary layer is analysed in the same way as

the inlet, and however, because of the unclear exact

behaviour of the pressure spike, the DPmax analysis is

omitted. Figure 9 again reveals two curves, one thick line,

which is in fact composed of several lines: the different

curves representing the angles from 0 to 20 degrees. The

results for 0, 5 and 10 degrees are very close, and the 15

and 20 degrees can locally be distinguished. The thin line is

the result for 45 degrees which is clearly separated from the

other curves. For r\0:97, the DP values are positive: this

is the pressure spike zone. For r [ 0:97, the DP values are

negative: the total pressure is less than the Hertz pressure.

Finally, a small zone of positive values exits for r [ 1:0;

the outlet where the pressure and its derivative tend to zero,

to satisfy the Reynolds cavitation condition.

0.01

0.1

1

100 1000 10000 100000

∂
P

/
(η̄

∂
r
)

M

Fig. 8 Maximum pressure flow term in the inlet boundary layer as a

function of M and L = 10, the solid line represents a slope of -1/2
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In order to facilitate the comparison of the pressure

difference in the inlet and exit zone, the horizontal scale in

Fig. 9 was chosen half that of Fig. 4, whereas the vertical

scale was doubled in the outlet. A first conclusion is that

the two curves are qualitatively very similar: a positive

‘spiky’ first part followed by a second negative ‘rounded’

part. The main differences are that the exit pressure dif-

ference excursion is larger (roughly twice) and that the

width of the excursion is smaller (roughly half). Further-

more, the negative rounded pressure difference in the exit

has a larger amplitude compared with the inlet zone.

Figure 10 shows that the exit boundary layer is equally

well described by the pressure flow criterion and that even

though the pressure difference is discontinuous (due to the

pressure spike), the pressure flow quantity oP=ð�gorÞ

remains continuous. Please note the different axes com-

pared with inlet pressure flow criterion shown in Fig. 4.

Figure 11 shows the local deformation in the boundary

layer. Please note that the value for r ¼ 0:8 is identical to

the value in the inlet for r ¼ �0:8 (Fig. 5). Finally, the

overall deformation difference is negative, contrary to the

inlet, generating the well-known minimum film thickness

zone.

In order to quantify different boundary layer parameters,

the analysis is performed over an angle of

�p=8�/� þ p=8. This means that, as in the inlet ana-

lysis, the 45 degree results are not included!
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Fig. 10 Pressure flow quantity oP=ð�gorÞ as a function of r for

M = 1,000, L = 10 and / ¼ 0 degrees
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boundary layer as a function of M and L, the solid line represents a

slope of -1/2
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The first boundary layer parameter that is studied is the

width. The qualitative conclusion from Fig. 3 was that the

width decreased with increasing M. The prediction from

the amplitude reduction theory [9, 10] is that the width of

the boundary layer is proportional to
ffiffiffiffiffiffiffiffiffiffi

L=M
p

.

The theoretical slope of Fig. 12 should be -0.5. A

straight line with this slope is added for comparison. It can

be concluded that the theoretically predicted slope is

indeed obtained numerically. Furthermore, the exit

boundary layer is roughly six times narrower than the inlet

layer, using the pressure flow criterion.

outlet width ¼ 0:56

ffiffiffiffiffi

L

M

r

ð10Þ

In the same way as for the inlet, also in the outlet, the

maximum value of the pressure flow quantity oP=ð�gdrÞ has

been measured. Figure 12 shows the exit boundary layer

width as a function of M. With increasing M, the boundary

layer narrows, and the pressure excursions should tend to

zero, which is indeed the case, as shown by Fig. 13.

A last point concerning the exit boundary layer is that it is not

exactly positioned on the unit circle, both its radius and centre

may differ from 1.0 and 0.0, respectively. Figure 14 shows the

evolution of the radius (of the DPmax position) as a function of

M. The radius value changes from 0:92 for low M values to 1:0

for high values. For even lower M values, the inlet and exit

zones become large and the boundary layer concept gradually

looses its interest. In fact, this is a separate regime, which can be

characterized as small deformation and piezoviscous.

7 Quantitative Inlet Boundary Analysis

It has been shown in the previous sections that the pressure

and film thickness distributions are radial functions in the

neighbourhood of the X axis. As such, we will only study

PðX; Y ¼ 0Þ and HðX; Y ¼ 0Þ. We will start with a film

thickness study. From the literature [2], it is known that the

film thickness in the Piezoviscous Elastic regime is inver-

sely proportional to
ffiffiffiffiffi

M16
p

.

In order to quantify the dimensionless film thickness in

the inlet, one uses the inlet layer width information gained

in earlier sections and an H parameter defined using
ffiffiffiffiffi

M16
p

:

X ¼ �1þ ðX þ 1Þ
ffiffiffiffiffi

M
2
p

ð11Þ

H ¼ H
ffiffiffiffiffi

M
16
p

ð12Þ

Figure 15 shows all film thickness profiles to be superim-

posed using the HðXÞ inlet description.

To study the pressure perturbation, a similar local

pressure (difference) is defined

DP ¼ DP
ffiffiffiffiffi

M
3
p

ð13Þ

Applying these two parameters, the pressure perturbation

in the inlet is plotted in Fig. 16. The pressure excursion is

of order 1, whereas the width of the boundary layer is also

order one. Using these local parameters, all pressure per-

turbations curves coincide. Figure 16 shows the results of

M ¼ 200, 500, 1,000, . . ., 20,000. These results clearly

suggest the existence of a self-similar solution in the limit

of sufficiently large M. The differences for lower M values

in the inlet are explained by the fact that at such low M

values, the behaviour is not (yet) in the asymptotic regime.

In terms of �k, one thus finds that for a series of results

obtained for fixed L parameter, one finds a (dimensionless)

boundary layer width of �k
3=8

, a dimensionless pressure

difference scaling DP / �k
1=4

and a dimensionless film
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Fig. 14 Best fit radius for DPmax as a function of M and L ¼ 10
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Fig. 15 Dimensionless film thickness difference H as a function of

the inlet boundary layer parameter X as a function of M, M ¼ 100,

200, 500 . . . 10,000 and 20,000 and L ¼ 10
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thickness scaling DH / �k
3=64

. The boundary layer width

and pressure scaling are not so different from the values

observed for the isoviscous case. On the contrary, the

power of the piezoviscous film scaling is much smaller

than for the isoviscous case.

8 Conclusion

Initiated by the self-similarity observed in the solution of

EHL contacts in the highly deformed isoviscous regime,

this paper studies numerical solutions of the EHL circular

contact to analyse boundary layer behaviour in the highly

deformed piezoviscous regime. For this purpose, the

pressure and film thickness difference with respect to the

Hertzian solution as well as a pressure flow related measure

have been used. Their dependence on the operating con-

ditions was studied. It has been shown that for sufficiently

highly loaded (deformed) contacts, these quantities are

indeed localized in narrow regions on either side of the

contact, thus characterizing boundary layers. It has been

shown that these boundary layers exhibit a strong angular

symmetry, which is consistent with the fact that the solu-

tion with increasing load should approximate the Hertzian

solution. Next, the scaling of the length of the boundary

layer and the solution of the pressure and film thickness

inside the layer were investigated. For a given value of the

Moes lubricant parameter L, the behaviour of the boundary

layer width and the pressure and film thickness have been

studied. It has been shown that the boundary layers on the

inlet and outlet side scale in the same way.

For the case of a fixed L parameter, as was done in the

present study, the non-dimensional boundary layer length

scales as
ffiffiffiffiffiffiffiffiffiffi

L=M
p

. The observed behaviour gives additional

physical rationale to findings of the deformation of wavi-

ness and roughness patterns in EHL contacts that the

amplitude reduction of waviness in EHL contacts is ‘‘inlet

controlled’’ by a single parameter, which was deemed

‘‘length of the inlet pressure sweep’’. It can now be seen

that in physical terms, this is in fact the lengthscale of the

boundary layer. The present simulations carried out for

fixed L ¼ 10 give in terms of the �k parameter a scaling of

�k
3=8

, where for L ¼ 0, the isoviscous case �k
2=5

was found.

Using local coordinates DPðXÞ for the inlet, it was

shown that a non-dimensional pressure difference in the

inlet is independent of M for heavily loaded/deformed EHL

contacts. Similarly, a dimensionless film geometry HðXÞ is

obtained, which is also independent of M. This indicates

the existence of self-similar pressure and film profiles in

this region. The observed behaviour suggests for the

present results with fixed L ¼ 10 a pressure scaling �k
1=4

and a film scaling �k
3=64

.

Future work should study if and how this self-similar

solution can be obtained from localized equations. The

observed similarity between the DP profile in the inlet and

outlet region can be investigated further to clarify the

elusive pressure spike behaviour. Also, the influence of the

L parameter should be analysed in detail, in spite of its

limited range of values that it takes in applications where

the piezoviscous regime roughly starts for L ¼ 5 and L ¼
20 which seems to be a limit for many practical

applications.

In addition to clarifying the fundamental physical nature

of the EHL problem, it is anticipated that the results, as

presented in this paper, will contribute to improved and

new semi-analytic engineering tools for the prediction of

EHL contact behaviour. The results can also help to opti-

mize numerical simulations and to reduce the need for full

numerical simulations of transient two-dimensional

contacts.
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