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The SAIL model (proposed by Verhoef) is largely used in the remote sensing community to calculate the
canopy Bidirectional Reflectance Distribution Function. The simulation results appear acceptable compared
to observations especially for not very dense planophile vegetation. However, for erectophile dense crops
(e.g. corn) the simulations appear less accurate. This inadequacy is due to the assumption that the multiple
scattered fluxes are isotropically distributed. The SAIL parameters are interpretable at the level of elementary
Keywords: . o .
Radiative transfer theory layer components. Now, the Adding method (initially proposed by Van de Hulst) provides a good framework
BRDF to model the radiative transfer inside a vegetation layer, but its parameter estimation lies on very simple

Vegetation geometric modeling of the canopy. In this paper, we first propose an adaptation of the Adding method using
Adding method the SAIL model canopy representation in the turbid case: it is called AddingS model. Such an approach allows
SAIL model to overcome the isotropy assumption. Second, AddingS is extended to the Discrete case: defining the
Kuusk' model AddingSDmodel. It allows to take into account the multi hot spot effect. Moreover, the AddingS and

AddingSD models allow to check the energy conservation in respectively turbid and discrete cases. Finally, in

order to keep reasonable time performance, a fast computation method was developed.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Optical radiative transfer (RT) modeling (in terrestrial environ-
ments) aims at formulating the relationships between remote sensing
measurements and the biophysical and biochemical features of the
media. The Bidirectional Reflectance Distribution Function (BRDF)
may be estimated using radiative transfer models which describe the
interactions between the electromagnetic waves and the soil-
vegetation system, i.e. the radiative fluxes inside the vegetation.
These models allow the understanding of the observations acquired in
various acquisition configurations (multi-date, multi-sensors, multi-
channels, etc) by predicting BRDF values.

Radiative transfer theory was first proposed by Chandrasekhar
(1950) to model radiation scattering in conventional media (rotation-
ally invariant). This theory deals with radiation scattering in a given
medium by modeling it as a set of parallel layers, diffusing and
absorbing the solar flux. Being extended to non-rotationally invariant
medium (typically foliage), numerous radiative transfer models have
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been proposed for computation of canopy BDRF (Allen et al., 1970;
Suits, 1972; Cooper et al., 1982; Verhoef, 1984, 1985; Verstraete et al.,
1990a; Kuusk, 1994, 1995b). Recently, the inverse modeling was
investigated (Verstraete et al., 1990b; Kuusk, 1991a, 1995a; Fanga et al.,
2003; Combal et al., 2002). The SAIL model (Verhoef, 1984) is among
the most widely used in case of crops canopies. Some improvements
of SAIL model parameters have then been proposed (Verhoef, 1998) in
order to take into account the hot spot effect (Kuusk, 1985, 1991b) and
leaf specular reflectance. The SAIL model allows to derive a non-
isotropic BRDF considering two diffuse fluxes (upward/downward
flux) to model the multiple scattering of the radiant flux by the
vegetation elements. These fluxes are added to the direct source flux
and used to derive a directional radiance in the direction of the
observation. In the SAIL model, the multiple scattered fluxes are
assumed to be semi-isotropic, which is only an approximation. For
example, vertical leaves do not emit radiation in vertical direction.
Also, the SAIL model does not allow to take into account the multi hot
spot effect (hot spot between multiple scattered fluxes). The SAIL
parameters are interpretable at the level of thin layer (differential
equations) and the whole vegetation scattering terms are derived by
integration.

Besides, in the Adding method (Van de Hulst, 1981; Cooper et al.,
1982; Lenoble, 1985), optical characteristics of canopy layers such as
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reflectance and transmittance are directly defined and handled at the
scale of the vegetation layer (as operators). Their physical interpreta-
tion is hence easier. However, the vegetation description is rather
simplistic and the canopy internal geometry is represented with low
accuracy. Indeed, in order to retrieve the adding operators for each
layer, Cooper et al. (1982), like Smith et al. (1981), supposed that all
layer elements are located in the middle of medium and that they
were Lambertian surfaces. Therefore, the scattered flux of the whole
layer is the sum of the fluxes scattered by every element weighted by
the corresponding effective element surface (i.e. equal to its area after
orthogonal projection on flux directions). This approximation does not
take into account the interaction between layer elements. If the
transmittance and the reflectance of the elements cannot be
neglected, the contribution of the flux scattered by an element
reaching another element to the flux scattered by this second element
can be significant. For dense canopy layers, at near-infrared wave-
length where leaf hemispherical reflectance (p) and transmittance (7)
values are between 0.45 and 0.55 (Jacquemoud & Baret, 1990), the
interactions between layer elements should be taken into account. In
order to adapt the Adding method to such a configuration, we need a
more accurate estimation of the Adding scattering parameters. Since
the Adding method operators are derived from the bidirectional
reflectance and transmittance of the considered layer, in this study we
propose to introduce the SAIL canopy description into the Adding
formulation. The developed model in the turbid medium case is called
AddingS. Such an evolution of the Adding method has important
consequences for canopy BRDF estimation, especially by avoiding the
assumption of the isotropy of diffuse fluxes assumed by SAIL. In the
discrete case the correlation between light paths before and after
scattering by some medium component should be taken into account.
This phenomenon is the well-known hot spot effect. Based on the
Kuusk model (Kuusk, 1985, 1991b), we propose the adaptation of
AddingS to the Discrete case. The extended model is called AddingSD.
This model allows both to conserve the energy and to take into
account the hot spot effect between diffuse fluxes.

In the following, we first present the physical basis of our approach
coupling SAIL and Adding in both the turbid and the discrete case.
Secondly, we despite our model implementation: operator derivation
and discretization. Finally, to validate our approach, some results are
presented concerning the model symmetry, energy balance, and
comparison with SAIL and then with 3-D models (RAMI II database).

2. Coupled Adding/SAIL modeling

The Adding method is based on the assumption that a vegetation
layer receiving a radiation flux from bottom or top, partially absorbs it
and partially scatters it upward or downward, independently of the
other layers (Van de Hulst, 1981; Cooper et al., 1982; Lenoble, 1985).
Thus, the relationships between fluxes are given by operators which
allow the calculation of the output flux density distribution as a
function of the input flux density distribution. As the Adding method
vegetation layer operators depend on the bidirectional reflectance and
transmittance, we propose to derive them both in the turbid and the
discrete case based on respectively SAIL' and the Kuusk definition of
the Hot Spot.

In this section, we first present the Adding operator definition, and
secondly the derivation of the bidirectional reflectance and transmit-
tance of a vegetation layer in both turbid and discrete cases
corresponding respectively to the operators of the models AddingS
and AddingSD.

" In this paper, we divide the SAIL BRDF terms by m, because these terms are
multiplied by m in the original SAIL model [SAIL estimates E, which is niL,, where L, is
the radiance in the observation direction, see (Verhoef, 1984).

2.1. Adding operators reformulation in the continuous case

In this paragraph, we present a generalization of the Adding
operators presented in Cooper et al. (1982) in the continuous case,
dealing with radiance hemispherical distribution.

Fig. 1 shows the radiance L, in the observation solid angle Q.=(0,,
©e) (0, is the zenithal angle and ¢, the azimuthal angle in the obser-
vation direction) provided by scattering of an incident source flux by
the medium, dE;(Q;), within a cone of solid angle dQ;=sin(6;)d0;do;
(6; and ¢; are the zenithal and the azimuthal angles in the source
direction). So the bidirectional reflectance is defined as follows:

dLe(Q;, Qe)

e T

dLe (Qi> QE)
L,‘ (Qi)COS(gi)in ’

where L; is the radiance provided by the source.

Moreover, as illustrated in Fig. 1 by passing through the medium,
the source radiation flux produces a radiance in the Q. direction. So,
like in the case of reflectance, the bidirectional transmittance can be
defined as:

dLe(Q;, Qe
t(QﬁQe/):%m”.

For both cases, L, is obtained by integrating the source flux over the
hemisphere:

o |

over hemisphere

{6, 1HQ — Qe)Li(Q;) cos(6;)dQ;.

So, we define the two scattering operators R and 7, that give the
outward radiance L, from an incident radiance defined over the whole
hemisphere L;:

RILI(-) = /H r(Q; — +)Li(;) cos(6;)dQ;, o)

TIL() = /H t(Q; — -)Li(Qi) cos(6;)dQ;. (2)

From Egs. (1) and (2), to derive the layer operators we should
estimate the bidirectional reflectance and transmittance.

y

N
v

v=

Medium
\;_

Fig. 1. Reaching a medium, the source radiation flux dE,((;) provided from direction (6;,
;) within a solid angle dQ;, produces a radiance at the top and at the bottom of canopy:
respectively in direction (6, ©.) and (0.,@e).
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2.2. Turbid case: AddingS

For one vegetation layer, we present a derivation method of the top
and the bottom bidirectional reflectances and the downward and the
upward bidirectional transmittances which are called respectively, r,
Iv, tg and t,. These bidirectional scattering terms are used to define
the operators of the model AddingS. Note that, due to null size of
components in the turbid case, there is no correlation between flux
paths, and therefore there is no hot spot effect.

The SAIL model allows the calculation of the bidirectional
reflectance of each vegetation layer: r =%e. Assuming that the
vegetation layer is formed by small and flat leaves with uniform
azimuthal distribution, the layer has the same response when
observed from the top or the bottom. Thus r,=r; and t,=t4. So, only
the derivation of t4 is presented here.

Depending on the physical phenomena inducing them, two kinds
of transmittances can be differentiated: those provided from the
extinction of the incident flux while passing through the layer, and
those provided by the scattering of the incident flux by the vegetation
components while reaching them. We called them respectively t s and
t 4, where x equals d (downward) or u (upward).

Assuming a vegetation layer located between altitude -1 and 0 and
receiving only a direct flux E4(0) in direction Qs=(0s, ©s) from the top,
by downward transmittance, a radiance Lq(-1) exiting the layer in
direction Q4=(0q, ©q) is produced at the bottom of layer (without
taking into account the flux ‘reflected’ by the layers located bellow the
considered one). Ly is divided into two radiances Lqs(-1) and Ly q(—1)
created respectively by extinction and scattering. So, the downward
transmittances are given by:

Lyo(-1

td,S = %520) ) ) (3)
-1

tag = L‘;:l‘:((o) ) . 4)

Note that for notation simplicity, the dependencies of tys and tqq
on the input and output angles are omitted.

In order to derive the expression of tqs, we first show the re-
lationship between a direct flux Es and its associated radiance L. Let
us assume that a horizontal surface ds receives a radiation from a
source located far enough in direction Qs=(6s, ¢s), we can assume that
it receives a directional flux d& with orientation angle Q, i.e. Ly(Q)=
L(Q5)5(0=065)6(@=s). Now, the flux d& received by the surface ds
equals on the one hand d®=dsEs and on the other hand d®=dsf;Ls(Q)
cos(0)dQ, therefore:

o Es6(0 = 05)6(¢ = )
*7 " cos(fs)sin(fs) ®)

Passing through vegetation, E; is extinguished by the vegetation,
the relationship between E(-1) and E4(0) is given by SAIL (Verhoef,
1985):

Es(-1) = 7Es(0). (6)
Combining Eqgs. (3), (6) and (5):

_ Tss0(0 = 65)6(p = o5)
fas = Cos(@s)sin@y) @

Now, we propose to derive tq 4. Like in the case of the radiance in
direction of observation E, calculation in the SAIL model (Verhoef,
1985), we can estimate Ly 4 using the fluxes E, E- and E.: in sublayer
at level z and thickness dz,

Laq(z-dz) = Laq(2) + dz[WaEs(2) + V4E-(2) + VAE. (2)~Kglaa(2)].  (8)

Os | — 0/

B0

0d

v

X

Fig. 2. Analogy between upward and downward radiances, given the directions of the
source (s, ¢s=0), the leaf (6, ¢;), the downward observation 64>5, ¢4 and the upward
observation (6,=1m-64, ©,=1+Qq). Reaching a leaf, the flux provides radiances on the
observation directions either by reflectance or transmittance.

where wy, g and vj are the scattering parameters, Ky is the extinction
parameter.

A method to derive wq, v and v{, and to resolve the differential Eq.
(8) is given in (Verhoef, 1985, 1998). Here, we show an alternative
method based on the analogy between Ly 4 and E,, and deriving tqq
Versus Pso.

Fig. 2 shows the relative orientation of the source, the leaf and the
upward/downward observations. Referring to the leaf, the upward
and the downward observation directions are symmetric. The
contribution of a Lambertian flux scattered by the top of the leaf to
the radiance in the upward direction is the same as the contribution of
the flux scattered by the bottom of the leaf to the downward direction.
Therefore, by just interchanging the leaf p and 7, the contribution of
an incident flux (direct or diffuse) to the downward direction is
deduced from the upward one. Each Eq. (8) scattering parameter
(paE{wq,vq,v4}) is then derived from the corresponding SAIL one
(pE{w,v,v'}) as follows:

1
Pa(Ba, 4, p,T) = ZP(M=0a, W + 4, T P).
By the same way, one has:
Ka(04. va) = K(m=64,1 + ¢q).

Eq. (8) can be expressed as follows:

% = -8(2) + Kalqa(2), ©

with g(z)=wyEs(;)+Vv4E-(z)+V4EL(z). The general solution of Eq. (9) is
La.a(z)=h(z)exp(Kqz), with h'(z)=-g(z)exp(-Kqz). Using the boundary
condition: Lyq 4(0)=0, we obtain the following expression:

0
Laq(-1) = exp(-Ky) [] g(z) exp(-Kyz)dz. (10)
Then,

0
exp(-Ky) / 8(z) exp(-Kyz)dz

td.d (de Vd, v(’:lv I<d) = E (0)
S

(11)
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Now, similarly the equation of E, (Verhoef, 1985), one can show
that:

0
/ g2:(2) exp(Kz)dz
’ _J-1
Pro(w v,V K) = e (12)
with g(z)=wEy(z)+VE-(z)+V'E.(z). Therefore, introducing Eq. (11) in
Eq. (12), we obtain:

ta.a(Wa, Vg, va, Kq) = exp(-Ka)pso (W4 Va, Va, —Ka)-

Fig. 3 summarizes the layer scattering term estimation presented
in this section: 1, tqs and tq 4. The other layer scattering terms ry, tys
and t, 4 are respectively equal to ry, tqs and t4 4. These terms allow the
definition of the vegetation layer operators Eq. (2). Using such a
model, the operator estimation is not accurate since it depends on
E. and E- assumed isotropically distributed over hemispheres. In
Section 3, we show a method to overcome this problem. Moreover, we
present both the derivation of canopy (soil +several vegetation layers)
reflectance and the operator discretization.

2.3. Discrete case: AddingSD

In the discrete case, the leaf size is assumed non-null inducing a
non-negligible correlation between the incident flux path and the
diffuse flux one. This phenomenon is the well-known hot spot effect
(Suits, 1972; Kuusk, 1985, 1991b). In previous studies, the hot spot
effect was taken into account in the 1-D model only for the direct
fluxes. Now, in this paper we show that not considering this effect for
diffuse fluxes leads to radiative budget violation, and hence we
propose to treat all fluxes similarly.

To understand these two phenomena (energy conservation/multi
hot spot), we consider Fig. 4. It shows a configuration of a vegetation
layer composed of two sublayers 1 and 2. The direct flux (solid line in
black) is scattered only by a leaf (M), whereas the gray flux
(respectively the black dashed flux) is also scattered by leaves in the
layer 2 before (respectively only after) scattering by M. Kuusk' model
takes into account the correlation between direct fluxes (N; —M— N>)
by increasing the amount of the corresponding flux exiting the
vegetation layer (from N-). However this increase is not accompanied
by a decrease of diffuse fluxes (decrease due to absence of interaction
between the direct flux and the vegetation components, e.g. decrease
of fluxes reaching T; and Rs). Furthermore, such a modeling does not
take into account the correlations between diffuse fluxes (e.g. Ry —
M—R3). In the following this phenomenon is called the ‘multi hot
spot’ effect.

L
Incident flux SAIL

Vegetation layer

Using ?/u/xes Gap fraction
f.s

Fig. 3. Vegetation layer scattering term estimation: r, is estimated by the SAIL model,
tqs is estimated according to the gap fraction, and tq 4 is derived from the SAIL model
formalism.

A
oY N, N Ti O
« 7
Layer 2
20 4
R P
Layer 1
G |esssnpemenmene o o M
-1

Fig. 4. Two successive vegetation layers 1 and 2 such that the layer 2 is thin and the leaf
radius is not null. The depth of the two layers equals 1. Two incident fluxes reaching the
top of the canopy are scattered by a leaf M. The difference between the two fluxes is that
the gray one is also scattered in the layer 2 before scattering by M. The dashed flux is
collided by vegetation in layer 2 after scattering by M.

In this section, we first recall the Kuusk model from (Kuusk, 1985,
1991b). Then, we present our approach: the AddingSD model.

2.3.1. Kuusk model

Now, let us only deal with the direct flux, the corresponding
reflectance is called the single reflectance pH5> (the corresponding
radiance is called LO Hs) The source and observation dll‘eCthHS are
respectively Qs and Q,. From (Verhoef, 1998, pp 150-159), pHs(z) can
be expressed as follows:
PI(E) = Pro(Q,00,2) (13)
where w is the SAIL model bidirectional volume scattering coefficient
for vegetation components [(Verhoef, 1984); assuming a vegetation
layer architecture, this term is exact: it does not depend on the diffuse
fluxes], and Pso(Qs, Q,, ) is the joint probability that the incident flux
reaches M without any collision with other canopy components and
that, after scattering by M, it also reaches the top of the canopy
without any collision with the vegetation. In a turbid medium the two
probabilities being independent,

Pso(Qs,Q.,2) = Ps(Qs,2)Po(Qo,2), (14)
with Py(Qs, z)=exp(kz), Ps(Q,, z)=exp(Kz), k and K are respectively the
extinctions in the source and observation directions. However, for
discrete leaves, they are dependent, and one obtains (Kuusk, 1985;
Verhoef, 1998):

Pso(Qs, 0, 2) = exp (K + k)2]Cus (Qs, Do, 2), (15)

with Cys the correction factor referring to the independent case
Eq. (14):

Cus(Qs, Q,2) = exp {\/ﬁ% [l—exp(bz)]}, (16)

with b is a complex term depending on the hot spot parameter (d,)
defined as the ratio between the mean leaf radius and the height of the
vegetation layer.

Now, in the AddingSD model, the first order hot spot effect is
modeled as follows: for a layer located at an altitude between -1 and
0, a direction of source Q,, a direction of observation Q, and an
element M located at z<0:

P1e(2) = P (2)Cus(Qs, 0. 2) (17)
HS HS\34s, 220,4),

with p* the single scattering reflectance in the independent case

Eq. (14).
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Considering only the first order hot spot effect, one computes the
canopy BRDF in the turbid case, and then adds the difference between

1) (1) s .
prs> and p''. However, in this case, the energy would no longer be
conserved.

The following subsection presents the way we compute the
hot spot also for diffuse fluxes, and the energy conservation can be
satisfied.

2.3.2. Multi hot spot model

Firstly we assume that the energy conservation is insured by the
AddingS model whatever be the vegetation parameter LAI (property
shown later, cf. Section 4.1). In this subsection, we first show that
modifying p*’ (replaced by pﬁ,ls)>) corresponds to the use of a fictive
equivalent LA called LAlys. Clearly, using LAlys for p" and LAlLcral
for the high order reflectances and transmittances, respectively called
p™ and ™™, n>1 (where n is the number of the flux collisions) does
not lead to energy conservation.

The following of the subsection is organized as follows: first we
define Py(Q,|Qs, 2o, z) from which we will propose an estimation of
LAl,s. Then, we derive p™ and 7™, n>1, and the Adding operators
using LAlys. Finally, we show that the diffuse fluxes can be handled
similarly to the direct flux since the Adding method provide
equivalent direct fluxes in output of the sublayers. The bidirectional
scattering terms will be used to define the Adding method operators
of the model AddingSD.

Dividing the part of the layer from top to the depth z into ngy,
small sublayers having depth Az = n‘i‘b the joint probability that both
fluxes are free of collisions with the sublayer i, called P, i(Qs, Qo, 2,

Az), is (Kuusk, 1985):
(7)) 09

Now, for a given sublayer i, we define the conditional probability
that the flux in the direction Q, does not collide with leaves given the
same property for the incident flux, it is called P, (Qo|Qs, z, Az):

Pso.i(Qs-,szv AZ) = exp

—{K + k-VKk exp

Peoi(Qs, 06,2, A2) *

Py i(Q0[Qs, 2, Az) :W7
Sl i Ead]

(19)
where Pgi(Qs, z, Az) represents the prior gap probability in the
direction Qs.

Since Psi(Qs, z, Az)=exp|-kAz], then according to Eq. (19):

Py i(Qo|0s,2, Az) = exp HK—\/KT exp {(1— ni >bz} }Az} . (20)

sub

The posterior probability that the flux does not collide with leaves
when exiting the layer 2 (z' € [z, 0]) in direction Q, given that the
incident flux does not collide with leaves in the layer 2 in direction Qs
is called Py(Q,|Qs, zo, z). From Eq. (20), and inspiring from Kuusk
(1985), it is straightforward to show:

20

0
Po(Qo|Qs,20.2) — exp {- / {K—\/Kﬁexp[(z—x)b}}dx},
= exp[Kzp|Cus(Qs, Qo, 20, 2).

with Cys the generalized correction factor:

Cus(Qs, Qo,20,2) = Xp {\W% (exp [b(z-z0)]-exp [bz])}. (21)

Note that Cys(Qs, Qo, 2)=Cus(Qs, Qo,2,2) and:

Chs(Qs, Qo0,2) = Cys(Qs, Qo,2-20)Chs (Os, Lo, 20, 2). (22)

2 The conditional probability of ‘A’ given ‘B’, noted P(A|B), is equal to %.

In the case of the direct flux (in black and solid in Fig. 4), the first
order contribution of the leaf M to the layer BRDF is given by:

P (2) = 2 expl(k + K)ZICs (s, 0o,2),

= Zexpl(k+ K)(220) Cirs (Os, 0o, 2-20)

exp|kzo]exp[Kzo]Cus (Qs, Qo, 20, 2), (23)
Kiis (Q0]s.,20.2)20

= explkzo] pisa (2-20) exp {Kzo + log[Cus (Qs, o, 20,2)]} .
S —

Ps(Qs,20)

Pi—M—P, Po(Q0]05.20.2)

From the last equality of Eq. (23), p,({]s)>(z) can be interpreted as
follows: reaching the top of the canopy the direct flux is partially
extinguished in the layer 2 by the factor Py(Qs, zo) (from N; to P;).
Then, reaching the interface between the two layers at P, its
amplitude will be determined according to pSS)>(z—ZO) that depends
on the layer 1 features (from P; to P,, passing through M). Finally,
Kis(Qo|Qs, 2o, z) can be viewed as the ‘effective’ extinction related to
the conditional probability of gap Po(Q,|Qs, 2o, Z) of the layer 2 (from P,
to N>). Indeed, Ki;s<K means that the probability of collision with leaves
for Lé}.’,s is decreased. Since the extinction depends linearly on LAI, one
can deem that LAl is locally decreased by the factor y = K—;i :

Kys(Q0|Qs, 20,2
LAl (o]0, 20,2) = (0l 207)

LAL (24)

The physical interpretation of LAlys is as follows. Assume that the
probability of gap (for a given flux) is increased in the layer 2. For this
flux, the ‘effective’ density of vegetation encountered when crossing
the layer is reduced accordingly. Obviously, the fist collision between
the flux and the vegetation is reduced according to the same density of
vegetation. Now, since the layer 2 is thin, its corresponding reflectance
and diffuse transmittance depend mainly on the first interaction. So,
just an approximation of the multiple scattered fluxes is sufficient to
derive the layer 2 scattering terms with good accuracy. For that, the
derivation of all diffuse fluxes can be done using this ‘effective’ density
of vegetation (LAlys in our case). Moreover, for such a modeling, the
interactions of the considered flux and the layer 2 components
(transmittance by extinction, reflectance and diffuse transmittance)
are derived using exactly the same LAI value (LAlys), which is
physically consistent and thus leads to the conservation of the energy
of this flux. Furthermore, by doing the same processing for all fluxes
exiting the layer 1 in direction of the layer 2, the energy of all fluxes is
conserved and so the energy is conserved in the system composed by
the two vegetation layers.

Here we propose that, consequently, in the layer 2, the reflectance
and diffuse transmittance of the flux Lf:,ls are calculated using
the ‘effective’ density LAlys. They are respectively called 1,5 ns(Qs, 2,
Q,—.) (from P, to R3) and tgopus(Qs, 2z, Qo—.) (from P, to Ty). In
summary, we view the multi hot spot effect as a local reduction of the
LAl in the layer 2.

Fig. 5 shows the recursive construction of the multi hot spot
effect for a given vegetation layer. The considered layer is divided
into 4 thin sublayers. The multi hot spot effect construction begins
from two sublayers, chosen sufficiently thin so that the leaves do
not overlap and so the hot spot effect does not occurs within a
sublayer. Now, for two sublayers, the first order hot spot effect is
computed between sublayers (it corresponds to a local decrease of
the LAI, represented by dark gray ellipse). In addition to the first
order hot spot effect, when a third sublayer is added, a hot spot
effect is computed in the sublayers 1+2 for flux scattered in the
sublayer 3 (cf. Fig. 5b second case). In the case of four sublayers

3 Use Eq. (22) to separate Cys.
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(b) 3 sublayers

A\

\

(c) 4 sublayers

Fig. 5. Multi hot spot effect construction for a vegetation layer composed by 4 sublayers. The dark gray rectangles show the first order hot spot effect, the dark gray ellipses show the
local reduction of LAI and the dashed ellipses show the local reduction of LAI taken into account previously. Sublayers separated by dashed lines are considered as a single layer (in
Fig. 4, it corresponds to the layer 1 and the sublayer just above is considered as the layer 2). For 2 sublayers, we consider only the hot pot effect, besides for 3 and 4 sublayers, the hot

spot between diffuse fluxes is taken into account.

(Fig. 5¢), the hot spot for fluxes scattered in the sublayer 4 and the
sublayers 3 +4 is computed respectively in the sublayers 1+2+3 (cf.
Fig. 5c second case) and the sublayers 1+2 (cf. Fig. 5c third case).
Using such a modeling, we take into account the hot spot effect for
any flux scattered in any sublayer of a vegetation layer, in the
vegetation located below. Hence the name, multi hot spot effect.

Note that, in the following, the sublayer LAI is called Lys. Lys is
higher than the elementary sublayer LAI (Lyyn).

In summary, the hot spot is treated as follows: we begin by a thin
sublayer, and we add each time a new thin sublayer. The already
concatenate sublayers and the new sublayer are respectively equiva-
lent to the layer 1 and 2 of Fig. 4. The concatenation of the thin layer is
deferent to the classical adding principle only for the three fluxes
N;—-P;-M—-P,—-N;, NN-P;—-M—P,—T; and N;—»P;—-M—
P2 HR?,.

3. Implementation

In this section, we present the implementation of the coupled
model Adding/SAIL in the turbid and the discrete case: AddingS and
AddingSD. In the turbid case, the AddingS model is based on the
Adding principle: concatenation of many layers. Moreover, this
principle is adapted to the discrete case (AddingSD model) by
distinguishing between fluxes scattered once and those scattered

many times. In this section, we present firstly the Adding method
principle, then we expose the AddingS model algorithm. After that, we
show successively the operator derivation and the algorithm of the
AddingSD model.

3.1. Adding method computation principle

Here, we first show the basic of the computation of the Adding
method: derivation the Adding operators for multiple vegetation
layers given the operators of each one. Then, we present a new
formulation of medium operators.

3.1.1. Multiple layer operators

Assuming a vegetation canopy represented by some horizontal
layers covering the soil, the relationship between the output flux
and the input flux reaching the canopy may be described by layer
operators. Fig. 6 illustrates the four terms: R¢, Ry, 7y and T, re-
spectively representing the reflectance operators of the top and
bottom of the layer and the transmittance operators upward and
downward. Defining the interface between the soil and the vegetation
layer, Fig. 6 shows the interactions between two successive layers: at
the interface, the radiation incident from layer 2 on layer 1 is either
absorbed, transmitted downward or reflected upward by layer 2, and
then either transmitted or reflected by layer 1, and so on.

Rz
z=0
layer 2 7 7.: T.»
Interface \ /2: \3:/-\'41
layer 1 4 Zi
z=-1

Fig. 6. Adding method: Multi-interactions between two successive layers. The scattering operators are R; reflectance from the top of layer, R, reflectance from the bottom of the
layer, 7, upward transmittance and 74 downward transmittance. The second subscript denotes the provenance layer of the flux.
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In the following, the hemispherical distribution of incident ra-
diance from above the layer 2 is called Ls(0). The energetic budget for
the case of only two layers involves the following terms:

« the distribution of radiance (L, ) scattered by the layer 2:
Lo.2 = Rt‘2 [LS(O)]v (25)

where R is the top reflectance of the layer 2.

« The radiance scattered by the layer 1 (L,1): it is equal to the infinite
sum of the fluxes respectively associated to a given number of
‘reflection(s)’ between the two layers:

Loqy =Tu2°(Re1 + Re1°Rp2°Re1 + Re1°Rb2°Re1°Rb2°Req + - )
°T42(Ls(0)], : (26)
=Tu2°(I"R¢1°Rp2)  *Re1°Ta2[Ls(0)],

where 7, T4, are respectively the upward and downward trans-
mittances of the layer 2, R, and Ry are the reflectances of re-
spectively the top of layer 1 and the bottom of layer 2, and I is the
identity operator.

Adding Egs. (25) and (26) leads to:

Lo=Lo2+Lo1,= (Rtl + Tu,2°(1_Rt,l°Rb<2)_l °Rt,1°7d,2> [Ls(0)].  (27)

So, the top reflectance operator for the canopy is given by Verhoef
(1985):

-1
Re=Re2 + Tuze(IFRe1°Rp2)  *Re1°T d2- (28)

Similarly, the other operators for two layers are given by Verhoef
(1985):

-1
Ry =Rp1+Ta1°(FRp2°Re1) *Rp2°Tui,
5
Ta=Ta1°(IFRp2°Re1) *Ta2, (29)
-1
Tu="Tu2(IFRe1°Rp2) T,

where the signification of the layer 1 operators 7 ; and R ; are the
same as 7 ; and R .

Note that here we only present the simple case of two layers. In the
general case, more layers can be considered, so the fluxes reaching
layer 2 can be transmitted to layer 3, which will scattered them, and so
on. Using Egs. (28) and (29) recursively from the bottom to the top
allows the estimation of different canopy operators.

3.1.2. Discretization

In this subsection, we present a discretization of the Adding
operators as matrices relating the discrete density of radiant flux in
input and in output.

In general case, 1, t, L; and L. depend on the zenithal and azimuthal
angles. Thus, the zenithal angle 0 and azimuthal angle ¢ were
sampled respectively into N and M intervals A6, and A, respectively
centered on 6, and ¢, with n€{1,..., N} and m € {1,..., M}, the
corresponding solid angle is noted Q.. Since dQ=sin(6)déd¢, then
AQp ;m=5in(0,)A0,AQ;,. Moreover, as dE(Q)=L(Q)cos(0)dQ, then

AE(Qnm) = L(Qum) €0S(0n) AQy m, = L(Qnm) €OS(6y) Sin (6,) A0y Apr.
(30)

2m pm/2
RILJ(Qe) = /rﬂﬂgmmmwmmwm%
0

s—

N
3 r( o, —>QE>L (614,) cOS(6;,) Sin (651, ) A8y, Agiy.

U
M=

=1 =1
i XN: r( iod, Qe)Ei (Agi:l""”">"1
I,=1 ly=1

4 Use Eq. (30).

By the same way, the outward zenithal angle 6, and the outward
azimuthal angle ¢, were sampled respectively into N and M intervals
A, 1, and A@eyk, respectively centered on 0, and @, . The following
relationship between E; (AQ,z;IHJ;) and E, (Aoe;kgvk;) is obtained:

Ee (AQe:I<‘,.k;)

M N
= 05(0e,) SN (Oe,) Abe e, Aperc, Y D r<Qi;13.I; - Qe;kg‘k;)Ei (AQi;lH,z,.)-
s

(31)

By considering the indices I=N(I,-1)+ly and k=N(ky-1)+ke,
Eq. (31) becomes:

MN
Ee(AQe 1) = €0S(0er) AQes Y 1(Qit — Qe)Ei(AQy). (32)
=

So, a matrix form of the discretized reflectance operator is derived:
R(L k) = r(Qi.l - Qe‘k) COS(Oe,k)AQe,kv (33)

R is a NMx NM matrix. By the same way, we derive the matrix form
transmittance operator:

T(l7 k) = t(Q“ — Qe‘k) COS(G&IC)AQ&I(. (34)

Finally, for a discrete density of irradiant input flux E; (vector of
samples) the output density of radiant flux E, is given by:

E. = OF;, (35)

where O equals R for the reflectance case and T for the transmittance
case.
Using matrix operators, Eq. (28) becomes

Re =Ry + Tuz (I-Re1Ry2) 'ReaTaz, (36)

where the signification of the subscripts in the R and T matrix
expression is the same as in the case of R and 7.

In this study, we opt to regular discretization of the azimuthal
angle ensuring a zenithal invariance by rotation, i.e.:

r(-oi‘le.lyﬂrq - Qe,ky.R;Jrq)

=1(Qut, = Qesor. ) Yoo ko= {1, oo N}, Lo ki, g1, MY

So, we have only to compute only MxN? terms. In the case, when
such an invariance property is not needed, other hemispherical
samplings (quadratures) could be proposed when more adapted to the
considered application: for example in the Discrete-Ordinates Method
(DOM), many other optimized quadratures have been used (Kokha-
novsky, 2007).

The reflectance and the diffuse transmittance operators are simple
to estimate since for each layer the values of r(Q;;— Qix), tua(Qii— Qik)
and tg4(Q;;— Qix) are computed. Now, as in the formulation of the
transmittance by extinction, there are Dirac functions. The correspond-
ing operator is derived as follows. Recall that

Tss0(0 = 65)6(¢ = s)
cos(fs)sin(fs)

[d.s(Qs - Qo) =

For given discretizations of the zenithal and azimuthal angles
{61,..., 6n} and {@y,..., @y}, let us define the simple functions:

H0.m/2) — {1, Ny, e [0,2m) — {1, My
qe(0 = argmmne{] N}\B Onl, 4, () = argminpei, .. myle=@m|-
(37)
® e 0”—4—;&,9" A—gu]
5 pe|pm=—2m, o+ }
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6(6=65) and 6(¢=@s) can be approximated respectively as follows,

1
Ay’
O'ﬁ

The discrete tys can be assumed constant over the solid angle AQ, :

if qo(0) = qo(0s),

otherwise,

1 .
and mv if g.(¢) = qu(s),
0, otherwise.

Tos(Qex) Tas(l,k) = Tes(Qek), if I =k,
€05 (0e ) AQe )’

=0, otherwise, =0,

tas (i — Qi) = if [ =k,

otherwise,

where T4 is the discrete downward transmittance operator by
extinction which corresponds to a diagonal matrix.

By discretization, the BRDF is computed only for a finite number of
samples. In order to compute the radiance in arbitrary directions, and
since the BRDF is more sensitive to the zenithal angle variation than to
the azimuthal angle variations, then linear interpolation is applied in
the zenith domain, and nearest neighbor interpolation in the azimuth
domain.

Note finally that, by discretization of Egs. (28) and (29), the
different layer operators become matrices, the ‘’ operator becomes
matrix multiplication and the input/output distributions become
irradiance vectors. Such discrete equations were also presented in
Verhoef (1985, 1998). However, in this previous work, a separation
was made between source and observed fluxes from the others. As it
will be shown in Section 3.3, and for the flux scattered one time by the
vegetation (or by the soil), such a separation can be taken into account
in the AddingS and AddingSD models.

3.2. AddingS algorithm

In the turbid case, using the bidirectional reflectance and
transmittance derivation presented in section (2.2), one can derive
the discrete operators for a vegetation according to layer Egs. (33) and
(34). However, this method gives poor results for very dense layer,
since at the bottom the direct flux becomes negligible compared to the
diffuse fluxes assumed isotropical. Then, the percentage in the total
amount of radiance in the direction of observation provided by diffuse
fluxes increases. As these fluxes are assumed isotropically distributed
over the hemispheres, the performance of the bidirectional reflec-
tance and transmittance as well as their corresponding operator
estimation decreases.

Note that, to overcome the assumption of semi-isotropic diffuse
fluxes, Verhoef (1998, 2002) proposed to discretize the diffuse fluxes
into 72 subfluxes, turning the SAIL equations into a matrix-vector
equation. Moreover, the well-known Discrete-Ordinates Method
(DOM) does not consider any assumption over diffuse fluxes
(Chandrasekhar, 1950). DOM divides the radiant flux into subfluxes
and using the Legendre Polynomials tries to solve the radiative
transfer equation over a mesh cells (set of couples: altitude and
discrete solid angle).

Here, in the AddingS model, we propose to divide each vegetation
layer into small sublayers, for each of them the operators are estimated,
after that using the Adding principle (presented in Section 3.1.1)
recursively we derive the initial layer operators. Indeed, for small depth
layers, the diffuse fluxes provided by the interaction between the
incident flux and the different layer elements are negligible compared
to the incident flux. Therefore, for such a configuration, the output
fluxes can be computed in an accurate way under the isotropic diffuse
flux assumption. Experimental results show that the model stability is
reached for diffuse irradiances lower than 5% of total irradiance. In
general, sublayer Lyi,=1072 is sufficient to reach stability.

Note that, DOM consists also to divide the whole layer into
thin layers. The difference between DOM and the AddingS model is
that DOM use differential operators in each mesh, whereas AddingS
considers the relationships between input and output fluxes of an
elementary layers and using the Adding principle the relationships
between input/output fluxes for a thick layer are determined.

The different operator elements are estimated for the sublayer
with depth Ly, Then, according to the Adding method principle
Eqgs. (28) and (29), they are deduced for 2Ly;,, and for 4L, noting
that 4Lyin=2(2Lmin), and so on. Having estimated the operators for
any sublayer of depth 2Lnn, the operators for a vegetation layer of
depth L are obtained decomposing L as 3/ a;2'Lmin, With a;{0,1}
(within about Ly;,). The layer operators are then calculated by
considering the sublayers 2/Lmin With a;=1. Such a dividing allows
the acceleration of the layer operator derivation: about log,(L/Linin)
operations (an operation corresponds to the computation of the
four layer operators, Egs. (28) and (29)) are required, whereas if at
each time only one sublayer was added, L/L,;, operations would be
required.

Fig. 7 shows an example of derivation of the AddingS layer
operators. The layer is decomposed into 8 thin layers. Using the
decomposition on powers of 2 (8=1x23+0x22+0x2'+0x2°), only
a3 #0. Therefore it is sufficient to apply the Adding method 3 times:
2Liminy 2°Linin and 2%Liyn.

So, we have an analytical expression of the AddingS model
parameters in the case of one vegetation layer. Then, we can derive
the top and bottom reflectance and upward and downward transmit-
tance matrix operators according to Eqgs. (33) and (34). By combining
them with the soil reflectance operators (by assuming that it is a
Lambertian surface or by using the soil bidirectional reflectance model
of Hapke (1981)) we can obtain the canopy reflectance.

3.3. AddingSD operator derivation

The development presented in this section is based on the case
of the two layers presented in Fig. 4. We aim at deriving the
AddingSD global reflectance and transmittance operators for the
two vegetation layers presented in Fig. 4. For this, we vary M(z)
and estimate the different LAlys, b 2.ns and tqo ps. Unfortunately,
doing this, model operators will no longer be separable, and thus
we are only able to compute an equivalent combination of these
operators.

Note that, in this section and as explained in Section 2.2, we do not
make distinction between downward and upward transmittances
(Tq =Ty =T). But, we make distinction between different kinds of

Sublayer 8 \

Sublayer 7

Sublayer 6

Sublayer 5

> Adding: 2(2(2Lain)
Sublayer 4

Sublayer 3 Adding: 2(2Luin)

Sublayer 2 Adding: 2Lmin

Sublayer 1 operators: SAIL formalism j

Fig. 7. AddingS vegetation layer operator estimation: the layer is divided into 8 thin
sublayers for which the operators are estimated using the SAIL formalism. After that the
operators of 2, 4 and 8 sublayers are derived using the Adding principle.
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transmittance, either by extinction (7) or by diffusion (74). In
particular, for the layer 2, one has:

Ta2+Tu2=T2=Ts2+ Ty (38)

As explained in Figs. 4 and 5, when a new thin layer is added (layer
2 in Fig. 4), the hot spot effect (first or high order) that should be
estimated corresponds to fluxes scattered only one time in the layers
already concatenated (Fig. 4, only the leaf M in the layer 1). Therefore,
a distinction between multiple scattered fluxes and single scattered
flux should be made. Then, let us define firstly the reflectance operator
provided from the scattering of the direct flux and the reflectance
provided from the multiple scattering. They are called respectively

1 (the associated BRDF is called ) and R™"Y. In particular, for the
layer 1, on has:

Rea =Ry + RO (39)

Moreover and also according to Fig. 4, the new layer (layer 2)
processes differently the flux provided by single reflectance from the
layer 1 only if it is transmitted downward by extinction (without
making contact with the layer 2 components, N; — P;). More precisely,
let us consider the incident flux from above of the layer 2, if it follows
the path Ny —P;—M— P, (corresponding operator R(Ro s.2), it will
be processed differently by the layer 2 (dark gray ellipse in Fig. 5)
according one of the three following cases:

Transmittance by extinction (first order hot spot, Ny—P;—
M—P,—N,), the corresponding operator (R¢17ss2) is given in
the turbid case by

1
Re1Tss2 =Ts2 °R£1)°Ts.27

Diffuse transmittance (N;—P;—M—P,—T;), the corresponding
operator (R¢17 sq2) is given in the turbid case by

1
Re1Tsaz = Ta2°R\ ) Tsa,

Reflectance (N;—P;—M—P,—R3), the corresponding operator
(R12752) is given in the turbid case by

R127Ts2 = Rb,z"Rgl)“Ts,z

In order to separate the first order scattering of diffuse fluxes from
the higher orders, we write:

e
(I-R¢1°Rp2) B Z (Re1°Rp2) 71+Z Re1°Rpa)"
0< i=1

Rt 1°Rb2) ) *Re1°Rp 2,

=1+ (I—Rm °7€b_z) °Rt1°Rp2-

According to Eq. (28) and using the equalities (38) and (39), the
reflectance of the two layers (R}*zﬁ can be written as follows:

RiZ =Rea + (Ts2 + Td,z)“(l + (I-Re1°Rp,) °Rt,l°Rb,2)
(Rtl + Rtr;uﬂ ) (TS,Z + Td,z)‘,

-1
=Ta2°(I-Re1°Rp2) °Rt,1°Rb.2°R§‘]1)°Ts,2 + Ts,z"Rgl)"Ts.z

R12Ts2

Ri1Ts2

1 1,2
+Td,2°RL1)°Ts.2 + Rt,’r »
————
Ri1Tsd2

with Rl the sum of the terms not depending on RtloTsz (in
partlcular those depending on R m“”)

Note that, not taking into account the hot spot effect, the terms
Re17T 5520 Re1Tsa2 and Rq 7T, are separable.

Similarly, the downward transmittance of the two layers (T 31’2> is
given by:

-1
T4 =Tq1°(I-Rp2°Re1) °Rb,2°R£_11)°Ts,2 + TS;E,
| ———
R127Ts2
with 7' ;2 the sum of the terms not depending on R eT 5.2

We derive the expression of Ri17ss2, puttlng forward the
dependance on z:

f///h@mmﬂw@@am
nJn Jn——e—

Input Ni—P Py—M—P,
ts2(Qy — Qe) €os(6;) cos(67) cos(6,)dQ;dQdQ;,
—_——

Py—=N,

\T (Qy)o
///L’ ) Sszcosl

T002(Q)8(02 = 0e)6(2 = we)
€S (6, )sin(6e)

ReaTss2 [Li] (Qe>

(01 = 6)5(¢1 = i)
0;) sin(6;)

i@ — o)

cos(6;) cos(0;) cos(6,)d2;dQ;dQ,,
:LhmmmmMWgaamﬂ@wmwmh
/ / Li(Q;) exp[k(Q, ]@exp[l( (Qe)z] cos(6;)dQidz.

Now, for discrete leaves, and according to Eq. (17), the correlation
between flux paths is taken into account as follows:

/ [ 100 ™ %% exp k(@) + K(0))2
Cus(Q4, Qe, 2z )cos( 1 dQ;dz.

Qﬁ
RtlTSSZ : 6)

Similarly, following the flux paths (Fig. 4), we obtain in the turbid
case:

20 0;, Q

RTaalt(@) = [ [ [ Lianexpik@z 22 expik(0) 220
- ——— —_——

put Ny — M M M — P
t4.2(Qo — Qe) cos(6;) cos(6,)dQidQydz. (40)
—_———
Py—Ty
In the discrete case, Eq. (40) becomes:
_ w(Q;, Qo)
RuTaalti@) = [7 [ [ L@yem k@)% (41)

exp[K(Qo)(2-20))Cus (R, Do, 2-20)
M P,

ta2.ns(Qi, 2, Qo — Q) cos(6;) cos(6,)dQ;dQydz,
Nk g

P,—Ty

By the same way, one has:

Rl = [ [ [ L@ eswika explK(Qo)(220)]
Cus(Qi, Qo,2-20) b 215 (24, 2, Qo — Qe cos(6;) cos(6,)d;dQydz.
Niduiledinding "

Py—Rs

W(.Oi Q)

(42)
3.4. AddingSD algorithm

As we have seen, the implementation in the discrete case should be
harder than the turbid case and need the specification of many
discretization details.

First, recall the computation of the first order hot spot effect. In the
SAILH code implemented by Verhoef, a method to approximate the
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first order reflectance (*"’Q;— Q,)) when the first order hot spot effect
is taken into account is proposed. One has

W@, 0e) / " exp (k) + K(Q0)ZICis (@, Qo 2.
-1

Q- Q) = m

The interval [-1,0] is divided into N;=20 subintervals [a;.1,a;],

j€(0,..., N;=1}, such that ag = 0>a,>...>ay, = -1. 7" is then written as
follows:
w0, Q) (9
M0 - Q) = 3 M) [T exp{(K(Q) + K(Q0))2ICis (2,0 2.
j=0 7 Aj1

hot;

43
hot; is then approximated for j<{1,...,N;-1}. For more informat(iora
about the endpoint chosen and the integral approximation, view the
SAILH code.

Now, the bidirectional reflectance corresponding to R 17 s, called
Ttaltss,2, 18!

Tt1 tss,2 (Qi - Qe)

w(Q;, Q) (%
- % / exp[(k() + K(Q0)2lCis (2 Q0. 2)dz.

So to derive this term, we perform the same discretization as for
1 in Eq. (43) but the following modification. Let ko={0,..., N;-1},
such that ay, 1 <zo=ay,. ax, is then changed as follows: ay, = zo, there-

fore the integral estimation is done over the points (a;). ictko. . N}

Ni-1
Teatss2(Qi — Qe) = Z

ML) | ” expl(k(Q) + K(Qe)2ICis (1, Q. 2)dz.
J=ko T Gjs1

(44)
The bidirectional reflectance corresponding to R 17, called riits2,
is:

Ratiaa(@ = Qo) = [3 i exp k@2 ) exp (0, (2-20)

Chs (94, Q0,220 )ta 2,15 (24, Z, Qo — Qe) €OS(0,)dQodz.

By performing the same discretization as for r¢tss> Eq. (44), one

obtains:
// exp [k b)(2-20))
Jj=ko

Cus (Qi, Q0,220 )ta 2,15 (i, 2, Qo — Qe) €OS(0)dzd Q.

(Qn Qo)

Te1tsa2(Q — Qe) exp[K(

(45)

Now, over each interval [aj+1, aj], ta2ns(Qi 2, Qo— Q) is assumed
constant and it will be called t4 2 ns;(Qi Qo— Q.) and approximated by:

Aj.1 + G
tazns,i(Qi, Qo — Qe)~taans <Qia%700 - Qe>~

Recall that tq, s is the diffuse bidirectional transmittance of the
layer 2 derived using the ‘effective’ LAlys rather than LAIL The
estimation of LAlys is performed using Eq. (24) and (45) becomes:

hot;(Q; — Q)

N1
Teala2(Qi— Q) = Y
J=ko
ta2 HSj(Q‘ Qo — Q¢) €08(0,)dQ,,

[ enplis enplk(@) ez G0 02z
1 i1

Y [ B0 = Qo)tazusy (01,05 — Q) cos(Bo)d. )

Tiatsg 2 (J.Qi—Qe)

Let [R¢1Tsq.2]; and Hot; be the discrete operators corresponding to
the bidirectional terms re1tsq2(j, Qi— Q.) and hot;. Let Ty 5 s ik the
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discrete operator corresponding to tq2 us, j for a value of the angle Q;
equal Q;. So, inspiring from the turbid case matrix product, it is easy
to show that:
[Re Tsd.z]j(k 1) = Hotj(k, :)Ta 2 ns j » (47)
with [Re1Tsa2]j(k,:) (respectively Hot;(k,:)) the matrix [Re1Tsq2];
(respectively Hot;) kth line (i.e. fixed value of Q).

Let Ri1Tsq> be the discrete operator corresponding to the
bidirectional term r¢ tsq2(Qi—Q.), then it can be written as
follows:

N-1
Ri1Tar = ZFO

By analogy with Ty 2, usj,« in the discretization of R¢17 54, One can
define the discrete operator Ry mus,ji Then, the discrete operator
R12Ts corresponding to Rq,7 s, can be derived as Ry1Tsq2 by only
replacing Tq sk by Ra2ns, ik

In summary, for a vegetation layer, the reflectance is computed
dividing it into Nys thin sublayers (LAI value equal Lys), and
iteratively adding a new sublayer to the current ‘stack’ of sublayers
(from 1 to Nys).

[Rt,l Tsd.2}j~ (48)

4. Method validation

The AddingS and AddingSD simulations are given for discrete
operators by Eqs. (33) and (34) with a sample step equals to 552 for the
zenithal angle and a sample step equals to {5 for the azimuthal angle.
This discretization will be called (20,10). As it will be shown later, it is a
compromise between computational considerations (memory and
running time) and results accuracy. The leaf angle distribution is
assumed ellipsoidal, parametrized by the mean leaf inclination angle,
noted ALA, that varies between 0 and 90°. Small ALA values
correspond to planophile vegetation and high ALA values to
erectophile vegetation (Campbell, 1990). The elementary sublayer
Limin is chosen equal to 1073 (enough to conserve energy, cf. Section
4.1). Finally, in the discrete case, when the multi hot spot is considered
in the AddingSD model Lys=3x1072.

In this section, first physical laws are checked. Secondly, a
comparison between AddingS/AddingSD and SAIL/SAILH is given.
Finally, validation tests based on the RAMI database are shown.

4.1. Physical laws

Among the physical laws that should be checked by a radiative
transfer model, there are:

. Symmetry (reciprocity principle): the source and the observation
positions are interchangeable;

ii. Energy conservation: the quantity of radiation scattered by a

medium is lower than the received one, the equality occurs where

the medium does not absorb energy.

The symmetry induces that the positions of the source and the
observation can be interchanged without changing the bidirectional
reflectance. For an elementary sublayer, the bidirectional reflectance
and transmittance are symmetric (Verhoef, 1985, 1998). For two
successive vegetation layers 1 and 2, without making distinction both
between the upward and the downward transmittances and between
the top and the bottom reflectances, the total reflectance (R'?) of the
two layers is given by:

R =Ry + Too(I-R1°Ra) " *Ry°T 2,

where the subscript in the operators indicates the layer number. As
the operators “+, ‘', *’ and ‘(.)” " preserve the symmetry. Therefore,
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the bidirectional reflectance of the concatenation of the two layers is the error can reach 0.4% for LAI=3. Hence, to preserve it, after each
also symmetric. iteration the reflectance and transmittance matrices are symmetrized.

For discrete operators, by accumulation of computation errors, the We will now focus on the energy conservation. For an elementary
symmetry property of AddingS and AddingSD can be slightly violated, layer, it induces that for each source direction the sum of the
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Fig. 8. Vegetation layer energy conservation in the turbid purist corner case: p=0.5 and 7=0.5). In captions, the couple of values (x,y) corresponds to the zenithal (in [0,m/2]) and the
azimuthal (in [0,n]) angle numbers of samples. (20,10)* is the only discretization such that the zenithal angle is not sampled regularly, the samples are: (5°,15°, 25°, 35°,45°, 55°, 64°,
68°, 72°,75°,77°,79°, 81°, 83°, 85°, 86°, 87°, 88°, 88.5°, 89°).
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directional hemispherical reflectance and the directional hemisphe-
rical diffuse transmittance is equal to the albedo (p+7) of the leaf
multiplied by the intercepted flux:

VQs, | 1e(Qs — Qo) cos(6,)dQ, +/ t4.d(Qs — Qo) os(0,)dQy
1] 1
=k(Qs)(p+ 7).

For an elementary layer, ¢ (Qs — Qo) = %W(QS7 Qo) and tg4(Qs— Qo)=
wq(Qs,Q,) (wis divided by m because it corresponds to E, which is equal to
7L, ). Now, as shown in (Verhoef, 1998):

1
m U“ w(Qs, Qo) €05(60)d o + /“ Wq(Qs, Qo) c0s(606)d Qo
=k(Qs)(p +T).

Receiving a direct source flux from a direction Qs the total
radiative budget (B(Qs)) for one layer is given by the difference
between the incident flux and the sum of the directional hemi-
spherical reflectance and the total directional hemispherical trans-
mittance:

B(Qs) = 1—[/ Pe(Qs — Q) cos(6,)dQ, + / (td_d + tﬁl_s)(()S — Q) €05(0,)d Qs |,
JIT JIT
where
/n Lo (Qs — Q) €08 (60)dQ = Tss(Qs) = exp(—k(Qy)).
For a thin layer, one has:
/H tas(Qs — Qo) oS (65)dQp=1-k(Qs),

then
B(Qs) = k(Qs)(1-p-1)=0.

The equality is reached when p+7=1 (purist corner case, pure
scatterers, Pinty et al. (2004)), that corresponds to the fact that the
leaves do not absorb any energy. For such leaves and for a system
composed of a concatenation of thin sublayers, the radiative budget of
the layer is hence equal to zero. Since the Adding method (on which
based the AddingS model) as well as the generalized Adding method
to the discrete case (that as led to the AddingSD model) represent all
the interactions between the sublayers, the radiative budget of the
global layer should also be equal to zero. In the following, to verify that
our approach conserves the energy, we propose to check the value of B
which should be close to zero. Practically, for visual comparison
between simulations, the mean of |B| values (noted <|B|>) is
convenient:

1B = 1/ IB(Qy)]| cos(65)d0s.
mJn
In the turbid case, when using the AddingS model, the sign of B is
constant (positive or negative), V(. Therefore:
<B> = <|B[> x sign(B).

And we chose finally to represent <B>, since it can be viewed as the
radiative budget of incident flux that is isotropically distributed over
the hemisphere.

Table 1
Elementary operator derivation running time (in seconds) comparison between (20,10),
(22,10) and (20,12)

(20,10)
Running time (s) 24.49

(22,10) (20,12)
32.56 35.49

Discretization

MATLAB code and PC P. 4, DELL OPT. GX 620, RAM 1 G.

T T T T T T

-~ —(20,10)
- - -(22,10)
! (20,12)

Running time
<
\
\

0 0.5 1 1.5 2 2.5 3 35 4

LAI

Fig. 9. Adding process running time (in seconds) comparison between (20,10), (22,10)
and (20,12). MATLAB code and PC P4, DELL OPT. GX 620, RAM 1 G.

Fig. 8 shows some energy conservation tests of the AddingS model
varying LAI, ALA and 6 for different kinds of discretization: (20,10),
(20,10)*, (22,10) and (20,12). (20,10)* is a non-regular discretization
corresponding to more samples for the higher values of zenithal angle

(a) < 1Bl > vs. LAL

x10°
6

0 0.5 1 15 2 25 3

(b) B vs. 8, for LAI =3.

x10°
8'

6f

r; = 0.02
r; = 0.05

0 30 60 90
0;

Fig. 10. Vegetation layer energy conservation in the discrete purist corner case: p=0.5
and 7=0.5, for two values of hot spot parameter r;=2% and r;=5%. ALA=63°. The used
discretization is (20,10).
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Fig. 11. BRDF measurements: turbid vegetation layer and Lambertian soil. LAI=3,
ALA=45°, 6,=30°, ©,=90° and (p, 7)=(0.1,0.09). The solid and dotted line corresponds
respectively to AddingS and SAIL results. The legend numerical values correspond to the
used soil reflectance and ‘Mul’ refers to the layer multiple scattering contribution to the
reflectance.

(input/output). First, we note that the error is always lower than 0.6%
which means that the model conserves the energy. Besides, a
phenomenon of error accumulation due to the discretization appears:
the error increases with LAI (in particular on Fig. 8c,e). Note that <B>

(a) LAI=0.5 and ALA= 45°

3651

increases or decreases quasi-linearly. The three regular discretization
give close results. (20,10), (20,12) give very close results, illustrating
that the BRDF does not vary much versus the azimuthal angle. Mainly
for low values of LAI (lower than 2), the discretization (22,10) gives
more accurate results (than the two other regular discretizations): by
increasing the number of samples over the zenithal angle, the
performance of the model can be improved. Comparing the regular
discretizations to the non-regular one, we see that the last one
presents lower performance. Indeed, in the integrals the {r,t}(Q;— Q.)
terms are weighted by cos(6.)sin(6.)d6.de,, that is (for 6,>m/4) as
lower as the zenithal angle is high. Thus, a finer discritezation for the
higher values of the zenithal angle presents no interest in our case,
which is clear on Fig. 8b,d,f:the error increases for 6s>30° due to the
decrease of the sample number from mid-values of zenithal angle. For
the other discretization schemes, the error is about constant which
confirms the interest of regular discretization for this study.

Still to test the energy conservation of our model, the directional
hemispherical reflectance of a ‘white’ soil (reflectance equals 1) is
derived using our model, the reflectance is estimated with an error of
about 107°%.

Table 1 shows a comparison between the running times obtained
for the computation of the elementary thin layer (Ly;,) operators
using the three discretizations: (20,10), (22,10) and (20,12). The
running time increases by of about 33% (respectively 45%) when the
zenithal angle (respectively the azimuthal angle) discretization is
increased by only 2 samples (corresponding to an increase of the

(b) LAI=3 and ALA= 27°
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Fig. 12. BRDF measurements: turbid vegetation layer and Lambertian soil. 6;=30°,0,=90° and (p, 7)=(0.47,0.49). The solid and dotted line correspond respectively to AddingS and
SAIL results. The legend numerical values correspond to the used soil reflectance and ‘Mul’ refers to the layer multiple scattering contribution to the reflectance.
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Fig. 13. Bidirectional reflectance and transmittance of canopy formed by a vegetation
layer with LAI=3 covering the soil, ALA=63°, 6,=25°, (p, 7)=(0.5,0.5) and d,=0.1. The
black curves present the layer BRDF. In the legend ‘1 Hot', ‘Mul Hot’ means respectively
the first order and the multi hot spot effect, ‘0.4’ is the used soil reflectance to compute
top of canopy BRDF and ‘Mul’ means the layer multiple scattering contribution to the
reflectance.

sample number of about 10%, respectively 20%). Fig. 9 shows a
comparison between the running times obtained for the Adding
process (concatenation of layers) using the same three discretizations.
Once again, the running time increase is not linear and depends on
LAL For example for LAI=4, the running time increase is about 28%
passing from (20,10) to (22,10) and about 65% from (20,10) to (20,12).
For values of LAI lower than 3, we consider as sufficiently accurate the
regular discretization (20,10).

Fig. 10 shows the variation of the energy balance of the AddingSD
model in the purist corner case (a) versus LAl and (b) versus the source

zenithal angle 6, for two values of hot spot parameter r,=0.02 and
1;=0.05. Note that, due to the complexity of the discrete case, varying
versus Qs B can change sign, then we use <|B|> rather than <B>,
however, the difference between the two measure is too small. The
error is always lower that 0.8%, so we conclude, like in the turbid case,
that the method conserves the energy. We also note that like
previously, the error increases with LAl However, conversely to the
turbid case, Fig. 10b shows that the error varies with the zenithal
angle, that can be explained by the complexity of the multi hot spot
model and the number of approximations used to compute integrals.

As shown in this section, both from theoretical study and
simulations, our model verifies the symmetry property and the
energy conservation. In the following section, a comparison with other
models and a discussion are presented.

4.2. Our approach versus SAIL

Here, the simulation results given by the discrete AddingS and
AddingSD models are assumed ‘credible’. We propose then a
comparison of the canopy reflectance and transmittance simulations
between SAIL/SAILH and AddingS/AddingSD.

Fig. 11 shows BRDF simulations, in the red wavelength domain, of a
canopy composed of one vegetation layer covering the soil. As leaf
scattering is low, the multiple scattering terms are negligible
compared to the first order ones, inducing close SAIL and AddingS
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Fig. 14. Canopy BRDF simulation for turbid medium, principal plane. The vegetation
features are LAI=3, h=2, uniform leaf distribution, p=0.4957 and 7=0.4409. The soil is
assumed Lambertian with reflectance equal to 0.159.
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Fig.15. Canopy BRDF simulation for turbid medium, cross plane. The vegetation features
are LAI=3, h=2, uniform leaf distribution, p=0.4957 and 7=0.4409. The soil is assumed
Lambertian with reflectance equal to 0.159.

results. Note also that the BRDF increases with the soil reflectance.
Fig. 12 shows different cases of comparison between the BRDF for one
vegetation layer covering the soil in the Near Infrared domain. For low
LAI values (Fig. 12.a), both models give close results. Indeed, in this
case the reflectance essentially depends on the first order scattering
term: the diffuse fluxes are negligible compared to the direct flux.
Moreover, as the soil is Lambertian, the property that the layer BRDF
increases versus the zenithal angle (Kallel, 2007) is as less marked as
soil reflectance decreases. For higher LAI values and considering
vegetation from planophile to erectophile, the difference between the
two model results is more and more visible (Fig. 12.b,c,d). Indeed, as
the agreement between SAIL and AddingS occurs for constant
reflectance (Kallel, 2007) and as the variations of the multiple
scattering reflectance are more and more important for higher zenith
angles, the difference between the two models becomes stronger. This
is even more prominent for vertical vegetation: the leaf reflectance
being maximal for horizontal direction and minimal for vertical
direction, the assumption of isotropically flux distribution is obviously
false. In Fig. 12, we note also that when the soil reflectance increases,
both the canopy BRDF increases and its angular variation is smoothed
(Lambertian soil effect).

Fig. 13 shows a comparison between SAILH (Verhoef, 1998), the
AddingSD model with the first order (1 Hot) and the multi hot spot

effect (Mul Hot). Since the multi hot spot effect conserves the energy,
it is not surprising that the Mul Hot related curves are lower than the 1
Hot ones. However, we note the closeness of the vegetation layer Mul
Hot reflectance simulation and the 1 Hot one. Indeed, referring to the
1 Hot reflectance, there are two additive contradictory effects: first the
multi hot spot effect increases the reflectance, second the decrease of
the multiple scattering fluxes decreases the total reflectance. More-
over, to conserve the energy the layer diffuse transmittance is
necessary lower than the first order one, which is confirmed by the
simulation. Since the layer transmittance is taken into account in the
whole canopy reflectance computation, then by adding a bright soil,
the Mul Hot BRDF curve becomes lower than the 1 Hot one. Note that,
the differences are stronger for low zenithal angles and the results are
close for high zenithal angles.

In agreement with the theoretical development, presented
simulations have shown that SAIL underestimates the bidirectional
reflectances of a vegetation layer. Note that in Verhoef (2002), the
previous underestimation does not occur when adding a bright soil
layer; however, this may be due to an overestimation of diffuse
transmittance by SAIL. In the discrete case, the multi hot spot effect
taken into account by the model AddingSD allows the conservation of
the energy by the decrease of the diffuse transmittance.
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Fig. 16. Canopy BRDF simulations for discrete medium, principal plane. The vegetation
features are LAI=3, h=2, leaf radius equal to 0.05, erectophile leaf distribution,
p=0.4957 and 7=0.4409. The soil is assumed Lambertian with reflectance equal to
0.159.
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4.3. Method validation using the RAMI database

The RAdiation transfer Model Intercomparison (RAMI) database
(Pinty et al., 2004) proposes some protocols to compare radiative
transfer models applied to plant canopies covering soil surfaces. The
object of RAMI is to point out enhancements which lead to some
benefit for the remote sensing data interpretation and more generally
lead to some benefit in terms of radiative transfer modeling and for
the user communities.

The presented study only deals with homogenous vegetation layer
for both turbid or discrete (finite size leaves) medium. Having tested
numerous cases, we only present here the BRDF for the near-infrared
domain, since the result for near-infrared domain are more contrasted
than those obtained in the red domain. According to the RAMI second
phase (Pinty et al., 2004), two kinds of radiative transfer model: 1-D
models, namely 4SAIL2 (Verhoef & Bach, 2003, 2007), SAIL++ (Verhoef,
2002), 1/2 Discrete (Gobron et al., 1997), and 3-D models, namely
Flight (North, 1996), DART (Gastellu-Etchegorry et al., 1996), Sprint-2
(Thompson & Goel, 1998), Raytran (Govaerts & Verstraete, 1998), RGM
(Qin & Sig, 2000), Drat (Lewis, 1999), have been considered (for
comparison with our approach). In the lack of ground truth data, the
3-D models are taken as references. According to the RAMI phase 2
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Fig. 17. Canopy BRDF simulations for discrete medium, cross plane. The vegetation
features are LAI=3, h=2, leaf radius equal to 0.05, erectophile leaf distribution,
p=0.4957 and 7=0.4409. The soil is assumed Lambertian with reflectance equal to
0.159.

simulation results “Flight, Raytran and Sprint-2 are the most credible
models”. Recall that the proposed models (AddingS and AddingSD) are
1-D models. In this section, we will show that these 1-D models
compete, in terms of result accuracy, with the ‘most credible’ 3-D
models and are more credible than classical 1-D models, such as the
4SAIL2 or the 1/2 Discrete models. It will be also shown that SAIL++
gives results close to the AddingS and AddingSD ones. For legibility,
only the ‘most credible’ 3-D models and among the 1-D models
4SAIL2, SAIL++, 1/2 Discrete and AddingS/AddingSD are shown. Note
that, to conform with the RAMI simulations, the Bunnik (1978) leaf
distribution was used for our simulations.

Figs. 14 and 15 show the BRDF simulations in the case of a turbid
medium. Fig. 14a and b (respectively Fig. 15a and b) show simulations
in the principal plane (respectively in the cross plane) differing by the
source zenithal angle. For all simulations, the AddingS curve is
intermediate between the 3-D model curves. As shown in the last
Section 4.2, the 4SAIL2 model underestimates the bidirectional
reflectance. Since the SAIL++ model overcomes the isotropy assump-
tion, SAIL++ gives good results close to the AddingS ones even if they
are sometimes slightly below the 3-D models. We also see that the 1/2
Discrete curve is always below the 3-D model curves. Finally, for near
nadir observations, the Flight model curve is above the others.

Figs. 16 and 17 are the equivalent of Figs. 14 and 15 for a discrete
medium. As previously, our model (here AddingSD) simulation is
intermediate between the 3-D model simulations, which is not true
for the other 1-D models. As seen previously, the 4SAIL2 model
underestimates the BRDF. As the soil reflectance is small, the multi hot
spot effect results are close to the first order ones and so AddingSD and
SAIL++ give close results. Finally, we note that the Raytran simulations
are always above the other 3-D simulations, in particular for near
nadir observations.

In conclusion, based on 3-D simulations, assumed close to the
‘truth’, our model shows better performance than the other 1-D
models.

5. Conclusion

In this paper, a coupling between SAIL and Adding was shown.
First, a new mathematical formalism for the Adding method operators
has been proposed. For a given layer, the operators are derived using
the SAIL model formalism. Since the SAIL model gives accurate results
for low LAl values (the diffuse fluxes are negligible for thin layers), the
different operator parameters were derived for a thin layer. Then, the
layers with high LAI values were decomposed into thin sublayers in
which the operators are derived, and using the Adding principles, the
global layer operators are computed; the proposed model is called
AddingS. Such an approach allows to overcome the assumption of SAIL
that diffuse fluxes are isotropically distributed. In the discrete case, we
proposed an extension of the Kuusk model to our model; the extended
model is called AddingSD, and we showed that the hot spot effect
corresponds to a local reduction of the LAL All scattering terms are
hence estimated using the modified values of LAI, allowing energy
conservation. Since, the proposed method takes into account the hot
spot effect between diffuse fluxes, we call it ‘the multi hot spot effect’.

The validation was performed according to three kinds of tests.
First, the model physical laws are presented: energy conservation and
symmetry between source and observation. Secondly, we compare
SAIL (or SAILH) and AddingS (or AddingSD either with only the first
order hot spot effect, or modeling the multi hot spot effect): we
showed that SAIL underestimates the reflectance whereas the first
order hot spot overestimates it. Finally, based on the RAMI I database,
it is shown that our models (AddingS and AddingSD) give results
comparable to those obtained by 3-D radiative transfer models.

From computational point of view, AddingS and AddingSD
take much longer running time than 4SAIL2 and SAIL++. Moreover,
compared to the Adding version of (Cooper et al, 1982), our
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algorithms are more complex and ‘longer’. Therefore, using simple
approximations of the multiple scattering fluxes, SAIL gives good
approximation of the BRDF mainly in the Visible/InfraRed domain
excluding the NIR; making AddingS and AddingSD really interesting
only in the NIR domain.

Although our approach claims to model many physical phenomena
describing the interaction wave/canopy such as multiple scattering
and multi hot spot effect, we emphasize that many assumptions are no
other than an idealization of the actual canopy case: e.g., the leaves are
Lambertian discs having the same radius. Future study will deal with
such phenomena. Moreover, we would like to extend the model to the
thermal domain.
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