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Two iterative methods for the calculation of acoustic transmission through a rough interface
between two media are compared. The methods employ a continuous version of the conjugate
gradient technique. One method is based on plane-wave expansions and the other on boundary
integral equations and Green’s functions. A preconditioner is presented which improves the
convergence for spectra that include evanescent modes. The methods are compared with regard to
computational efficiency, rate of convergence, and residual error. The sound field differences are
determined for a focused ultrasound beam distorted by surfaces having a Gaussian roughness
spectrum. The differences are evaluated from the root-mean-square differences on the rough surface
and in the focal plane. ©1996 Acoustical Society of America.

PACS numbers: 43.20.Fn, 43.30.Hw, 43.80.Qf

INTRODUCTION

In echographic imaging with large array transducers,
wave distortions in intervening tissue layers often are the
major cause for image distortions. Various correction meth-
ods have been proposed to obtain better images for these
cases.1–4 In order to test the applicability and limits of the
correction methods, it is important to have an accurate and
efficient computational model describing the propagation
through these distorting tissue layers. The sound propagation
through tissue is often modeled as the propagation through a
layer consisting of a cascade of thin sublayers, where each
sublayer acts upon the incident wave as a random time-shift
operator.5 Various papers,5–7 however, report that the wave
modification cannot be described sufficiently with these
models and that refraction effects also should be taken into
account. In particular, ultrasound propagation through female
breast5,7 suffers from severe refractive errors. In abdominal
animal tissue6 strong multipath components were noticed,
with refraction as a possible cause. Recently, therefore, we
have tried to come up with an efficient numerical method9 to
model the process of refraction, which is attacked by solving
the numerical problem of wave propagation through an ir-
regular interface between two uniform media. Of course, the
present model should be extended with distributed wave ab-
errations to get a more complete description of wave propa-
gation through human tissue.

If the medium parameters within each layer are assumed
to be constant, then the computational problem can be re-
duced to the problem of finding the acoustic variables on the
interfaces of the layered configuration. The discretization of
the problem leads to a large number of unknowns. Due to the
size of the numerical problem, iterative methods are essen-
tial. Iterative methods can lead to dramatically reduced stor-
age requirements and total computation time, especially for

3-D calculations. Also for large 2-D problems the require-
ments on computation time and memory resources can be
prohibitive.

In this paper, two iterative methods are described for the
calculation of reflection and transmission at a rough interface
between two media. Both methods are based on a continuous
version of the conjugate gradient technique.8 One method is
based on plane-wave expansions9 while the other method is
based on boundary integral equations and free-space Green’s
functions.10 Although the application deals with pulse-echo
ultrasound, the domain of analysis is the frequency domain.
An analysis in the frequency domain has the advantage that
the strongly frequency-dependent absorption and dispersive
sound speed can be incorporated quite easily. Time-domain
results are obtained by analyzing the problem at several fre-
quencies and subsequently calculating the inverse~temporal!
Fourier transform. Wave propagation through random inter-
faces can be analyzed by evaluating a large number of
interfaces.11 According to Altmeyer,12 typical acoustic inter-
faces in human tissue have a root-mean-square surface height
of at least 0.5 mm. Characteristic length scales of these sur-
faces are not given by Altmeyer. The soft tissues show low
contrast between the different tissue layers, with a difference
in sound speed typically lying between zero and five percent.

The extensions and novel techniques presented in this
paper are the preconditioning scheme for the iterative plane-
wave method of Ref. 9, an efficient preconditioner for this
scheme, the comparison of the iterative methods, and the
application of rigorous computational techniques to propaga-
tion through refractive rough interfaces similar to those oc-
curring in human skin and subcutaneous layers.

I. FORMULATION OF THE PROBLEM

The rough interface is assumed to be a local deformation
of an otherwise plane boundary atz50, where a point in
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space is specified by its orthogonal coordinatesx5~x,y,z!. A
2-D configuration is shown in Fig. 1. The analysis is carried
out in the temporal frequency domain with angular fre-
quencyv where the complex time factore2 ivt is suppressed.
The two fluidlike media occupy the domainsD1 andD2,
respectively, and are assumed to be linear, homogeneous, and
isotropic with respective mass densitiesr1 andr2 and com-
pressibilitiesk1 and k2. Furthermore, both media exhibit
some losses and the real and imaginary parts ofr and k
satisfy the Kramers–Kronig causality relations. The interface
is denoted byS . Pressure and the particle velocity variables
are denoted byP and V, respectively. InD1, a source of
finite extent generates a wave incident uponS . The incident
wave is denoted by$Pi ,V i%. The total field inD1 is written
as the superposition of the incident field and the reflected
field $Pr ,Vr%. The total field inD2 is the transmitted field
$Pt ,Vt%. In two subsequent sections, one direct and two it-
erative methods are described for the numerical solution of
the problem.

II. INTEGRAL EQUATION METHODS

A. Direct solution method

Assuming that the contribution from the parts of the
contour integrals at infinity vanish, leads, at the interfaceS ,
to the simultaneous integral equations10

1

2
P~x!2E

x8PS

@G1~xux8!V~x8!1L1~xux8!P~x8!#

•n~x8!dx85Pi~x!, xPS , ~1!

1

2
P~x!1E

x8PS

@G2~xux8!V~x8!1L2~xux8!#•n~x8!dx8

50, xPS , ~2!

where

G1,2~xux8!52 irvG1,2~xux8!,

L1,2~xux8!52¹xG1,2~xux8!,

G1,2(xux8! is the volume injection Green’s function, and¹x
the spatial derivative at pointx. For 2D we haveG1,2~xux8!
5iH 0

~1!~k1,2ux2x8u!/4, with H0
~1! the zero-order Hankel func-

tion representing outgoing waves andk15v~r1k1!
1/2 and

k25v~r2k2!
1/2 the ~complex! wave numbers inD1 andD2,

respectively.
The integral equations relate the pressureP at a pointx

on the interfaceS to surface integrals alongS involving
pressure and the normal component of the particle velocity.
The outward normal of the surfaceS at x, pointing intoD1,
is denoted byn~x!. Equations~1! and~2! constitute a system
of two integral equations with two unknown quantities, viz.,
P(x) andn~x!•V~x! onS . It is noted that the integrals in the
left-hand sides of~1! and ~2! have to be interpreted as their
principle values, i.e., the integrals are, when necessary, cal-
culated by a limiting procedure that excludes the singularity
at x5x8 in a symmetrical manner. Once the solution toP~x!
andn~x!–V~x! has been found, the transmitted fieldPt fol-
lows from an integral overS 10

Pt~x!52E
x8PS

@G2~xux8!V~x8!1L2~xux8!P~x8!#

•n~x8!dx8, xPD2 . ~3!

The numerical solution to~1! and ~2! can be obtained by
discretizing the integral equations, evaluating the singular
parts of the integrals, and solving the resulting system of
linear equations by matrix inversion. This method will be
called the direct integral equation method~DIE!.

B. Iterative solution method

The technique described in Ref. 8 is used to arrive at an
iterative method for the solution of the two coupled integral
equations. The iterations are obtained from a continuous ver-
sion of the conjugate gradient technique. The method will be
called the conjugate gradient integral equation method
~CGIE!. Normalizing the unknownsP~x! and V~x!
5V~x!•n~x! according to

P~x!5Z0
1/2XP~x!, ~4!

V~x!5Y0
1/2XV~x!, ~5!

with Z0 andY0 a reference impedance and admittance, re-
spectively, the integral equations~1! and ~2! can be written
as

Y1~x!5E
x8PS

@K1P~x,x8!XP~x8!

1K1V~x,x8!XV~x8!#dx8, xPS , ~6!

Y2~x!5E
x8PS

@K2P~x,x8!XP~x8!

1K2V~x,x8!XV~x8!#dx8, xPS . ~7!

We assume the existence of an iterative procedure, in which
n steps have been carried out. The iterative procedure has led

FIG. 1. Configuration and a realization of a rough surface having a Gaussian
roughness spectrum with a correlation lengthL51 mm and a rms surface
heighth50.5 mm.
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to the valuesXP
(n)~x! andXV

(n)~x!. The integrated squared er-
ror aftern steps of iteration is

ERR~n!5E
xPS

~ uF1
~n!~x!u21uF2

~n!~x!u2!dx, ~8!

in which

F1,2
~n!~x!5Y1,2~x!2E

x8PS

@K1,2P~x,x8!XP
~n!~x8!

1K1,2V~x,x8!XV
~n!~x8!#dx8, xPS . ~9!

In going from the~n21! st step to thenth, we use

XP,V
~n! 5XP,V

~n21!1h~n!gP,V
~n! , ~10!

whereh(n) is a variational parameter to minimize ERR(n) and
gP,V
(n) 5gP,V

(n) ~x! are the search directions. Using Eq.~10!, it
can be shown that

F1,2
~n!5F1,2

~n21!2h~n! f 1,2
~n! , ~11!

in which

f 1,2
~n!~x!5E

x8PS

@K1,2P~x,x8!XP
~n!~x8!

1K1,2V~x,x8!XV
~n!~x8!#dx8, xPS . ~12!

For the search directions the conjugate gradient directions
are taken:13

gP,V
~n! 5sP,V

~n21!1
A~n!

A~n21! gP,V
~n21! , n>2, ~13!

gP,V
~1! 5sP,V

~0! , ~14!

where the symbolssP,V
(n) 5sP,V

(n) ~x! denote the steepest-descent
directions

sP,V
~n! ~x!5F E

x8PS

@K1P,V~x8,x!F1
~n!* ~x8!

1K2P,V~x8,x!F2
~n!* ~x8!#dx8G* , xPS ,

~15!

~the asterisk denotes complex conjugate! and

A~n!5E
xPS

~ usP
~n21!u21usV

~n21!u2!dx. ~16!

The variational parameter resulting from the choice for the
conjugate gradient directions is given by

h~n!5A~n!/B~n!, ~17!

with

B~n!5E
xPS

~ u f 1
~n!u21u f 2

~n!u2!dx. ~18!

The error decreases at each iteration step according to

ERR~n!5ERR~n21!2
uA~n!u2

B~n! . ~19!

As a result, a decrease of the error is obtained ifA(n)Þ0.
From Eq.~16! it can be seen that this is the case ifsP,V

(n21)Þ0.
However, if sP,V

(n21) vanishes, the exact solution is arrived at
in the iterationn21. Once the iteration process has been
stopped, the transmitted field is found from evaluation of Eq.
~3!.

III. ITERATIVE PLANE-WAVE METHOD

The solution of the reflection/transmission problem can
also be found by expanding the field in a Fourier-type inte-
gral of plane waves.9 This method will be called the conju-
gate gradient Rayleigh~CGR! method because of its close
relationship with the modified Rayleigh method using direct
matrix inversion.14 The existence of an iterative procedure is
assumed in whichn steps have been carried out. The itera-
tive procedure has led to the plane-wave componentsfr

(n)

andft
(n) of the reflected and transmitted velocity potentials,

respectively. The corresponding field values are

$Pr
~n! ,Vr

~n!%5E E
2`

`

$pr
~n! ,vr

~n!%eik1
1
–x dkx dky ,

xPD1 , ~20!

$Pt
~n! ,Vt

~n!%5E E
2`

`

$pt
~n! ,vt

~n!%eik2
2
–x dkx dky ,

xPD2 , ~21!

where

$pr
~n! ,vr

~n!%5 i $vr1 ,k1
1%f r

~n! ,

$pt
~n! ,vt

~n!%5 i $vr2 ,k2
2%f t

~n! . ~22!

The plane-wave vectorsk1
1 and k2

2 indicate plane waves
traveling away fromS :

k1
15~kx ,ky ,kz,1!, ~23!

with

kz,15~v2r1k12kx
22ky

2!1/2, R~kz,1!,I~kz,1!.0, ~24!

and

k2
25~kx ,ky ,2kz,2!, ~25!

with

kz,25~v2r2k22kx
22ky

2!1/2, R~kz,2!,I~kz,2!.0. ~26!

The integrated squared error ERR(n) in the boundary condi-
tions aftern steps of iteration is

ERR~n!5E
xPS

~ uFP
~n!u21uFV

~n!u2!dx, ~27!

in which the deviationsFP
(n)5FP

(n)~x!, FV
(n)5FV

(n)~x! are
given by

FP
~n!5Y0

1/2~Pi1Pr
~n!2Pt

~n!!,
~28!

FV
~n!5Z0

1/2n–~V i1Vr
~n!2Vt

~n!!.

In going from the~n21!st step to thenth, we use

f r ,t
~n!5f r ,t

~n21!1h~n!gr ,t
~n! , ~29!
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whereh(n) is a variational parameter to minimize ERR(n) and
gr ,t
(n)5gr ,t

(n)(kx ,ky) are the search directions. Upon using Eq.
~29! it can be shown that

FP,V
~n! 5FP,V

~n21!2h~n! f P,V
~n! , ~30!

where

f P
~n!52 ivr1Y0

1/2E E
2`

`

gr
~n!eik1

1
–x dkx dky

1 ivr2Y0
1/2E E

2`

`

gt
~n!eik2

2
–x dkx dky , ~31!

f V
~n!52 iZ0

1/2E E
2`

`

n–k1
1gr

~n!eik1
1
–x dkx dky

1 iZ0
1/2E E

2`

`

n–k2
2gt

~n!eik2
2
–x dkx dky . ~32!

For the search directions the conjugate gradient directions
are taken

gr ,t
~n!5sr ,t

~n21!1
A~n!

A~n21! gr ,t
~n21! , n>2, ~33!

gr ,t
~1!5sr ,t

~0! . ~34!

where the symbolssr ,t
(n)5sr ,t

(n)(kx ,ky) represent the steepest-
descent directions

sr
~n!5F2 ivr1Y0

1/2E
xPS

FP
~n!* eik1

1
–x dx

2 iZ0
1/2E

xPS

n–k1
1FV

~n!* eik1
1
–x dxG* , ~35!

st
~n!5F1 ivr2Y0

1/2E
xPS

FP
~n!* eik2

2
–x dx

1 iZ0
1/2E

xPS

n–k2
2FV

~n!* eik2
2
–x dxG* , ~36!

and

A~n!5E E
2`

`

~ usr
~n21!u21ust

~n21!u2!dkx dky . ~37!

The variational parameter is given byh(n)5A(n)/B(n) where

B~n!5E
xPS

~ u f P
~n!u21u f V

~n!u2!dx. ~38!

Again a decrease of the error is obtained:
ERR(n),ERR(n21). The transmitted field follows from
evaluation of Eq.~21!.

IV. NUMERICAL IMPLEMENTATION

A. Weighting functions

Some issues concerning the 2-D implementation are pre-
sented. To be able to make a fair comparison between the
integral equation methods and the plane-wave method, the
same spatial weighting function was used. For the compari-
son described in this paper, Dirac-impulse functions were

used. This results in the so-called point-matching technique,
where the integrations are performed as simple summations
of the discrete function values. If piecewise polynomials are
used for both the weighting functions and the description of
the surface, then the subintegrals of the CGR method can be
evaluated analytically. The CGR scheme was implemented
for two different weighting functions: the Dirac-impulse
function and the piecewise constant function. The implemen-
tation for different weighting functions also provides a con-
venient check for the required spatial integration step size. If
the root-mean-square difference in the solution for Dirac-
weighting and piecewise constant weighting was larger than,
say, one percent, then the step size was rejected as being too
large.

B. Integrals of Green’s functions

The Hankel functions of the integral equation methods
were calculated by using the polynomial descriptions in~Ref.
15, pp. 369–370!. Although the latter expressions are in-
tended for real-valued arguments, complex arguments with
relatively small imaginary parts also may be used. For the
absorption typically found in soft human tissue, these expres-
sions are accurate to about seven significant digits, where
recursion relations~Ref. 15, pp. 385–386! were used as ref-
erence. When applying the Dirac-weighting functions, ex-
ceptions have to be made for the integrable singularities of
the integral equation kernels, which were evaluated by using
a piecewise constant weighting function. These singular parts
of the integrals were evaluated analytically.16 The subintegral
of the singular derivative of the Hankel function was as-
sumed to be zero.

C. Spatial discretization

Experiments with the spatial step size showed that, for
small to moderate surface slopes, the calculations gave con-
sistent results for a spatial integration step sizeDx<0.2l,
wherel is the smallest wavelength in both media. For larger
surface slopes the discretization in thex direction should be
smaller. As an alternative, the discretization can be carried
out with constant step size along the surface. To study the
behavior of the methods for varying surface characteristics,
surfaces with different correlation lengthsL and different
root-mean-square surface heightsh were generated. The ir-
regular interface has a surface height with a Gaussian rough-
ness spectrum, as described by Thorsos.16 A surface realiza-
tion with correlation lengthL51 mm and rms surface height
h50.5 mm is shown in Fig. 1. The convergence of the CGR
method is primarily governed by the maximum surface
slope.9 Therefore the ratioh/L was used as one of the inde-
pendent parameters. The other independent parameter was
the correlation lengthL. For h/L<0.5, 512 surface points at
a step sizeDx50.2l were used, withl 5 2p/(vAr2k2) the
wavelength in medium 2. Forh/L51,1024 surface points
with Dx50.1l were used.

D. Spectral discretization

The CGIE method uses the same function spaces for the
residuals as for the search directions. For the CGR method
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however, residuals are calculated in the spatial domain,
whereas, the search directions are calculated in the spectral
domain. This leads to an additional degree of freedom with
respect to the discrete implementation. However, it will be
seen that the discretization in the spatial domain prescribes
the choice for the~optimum! discretization in the spectral
domain. This is illustrated in Fig. 2, where the convergence
properties of the CGR method are shown. The plot shows the
residual error as a function of the number of iterations. The
residual error ERR̂~n! at iterationn is defined by

ERR̂~n!5SERR~n!

ERR0
D 1/2, ~39!

where ERR0 is the initial error ERR
~0! for a zero initial guess,

i.e.,XP,V
(0) 50 ~CGIE! or fr ,t

(0)50 ~CGR!. The ratior is intro-
duced as thetotal number of modes taken into account di-
vided by the number ofpropagatingmodes. In fact, the
graph of Fig. 2 shows the convergence properties for a fixed
spectral step size with the number of modes as parameter. It
can be seen that the error reaches a certain minimum value
after some iteration steps, where the minimum is lower if
more modes are included. However, it can also be seen that
the convergencerate strongly decreases ifr becomes larger
than unity, i.e., if more evanescent modes are included. In the
next subsection it will be shown how a preconditioning op-
erator can improve the convergence considerably for this
case. However, in almost every case occurring in our appli-
cation, we found that the use of propagating modes only,
leads to a sufficiently small residual error. If we omit the
evanescent modes altogether, the question remains what the
desired number of propagating modes is. To this end, all
modes up to the evanescent mode limit were used where the
mesh size in the discretized spectral domain was varied. This
is equivalent to varying the number of propagating modes,
which is shown in Fig. 3. The dashed line indicates the num-
ber of propagating modes corresponding to the discrete Fou-
rier transform, for a given spatial stepsize/wavelength ratio.
Figure 3 shows that the residual error is not improved any-

more if the number of modes is larger than the number of
modes for the discrete Fourier transform. Taking the spectral
stepsize corresponding to the discrete Fourier transform turns
out to be very convenient in practice. It allows a direct cou-
pling of the rough surface calculation method to FFT-based
extrapolation methods for plano-parallel geometries. Follow-
ing the above, the number of plane waves for the CGR
method was taken to be equal to the number of surface points
Nx . The spectral step sizeDkx was taken to be the value for
the discrete Fourier transform, i.e.,Dkx52p/(NxDx). The
number of unknowns then becomes 2Nx if all modes are
used and 4NxDx/l if only the propagating modes are used.

E. Preconditioning

In the previous subsection, the inadequate convergence
of the CGR method was mentioned in the case that evanes-
cent modes were included. If the problem would have been
solved with direct matrix inversion, then the matrix would
have been found to be very ill conditioned.17 Ill-conditioned
matrices often lead to badly converging conjugate gradient
schemes.18 Therefore, a modification of the scheme was
searched for by employing well-behaved matrix elements.
The modification was implemented along the lines of Ref. 18
by using a preconditioning operatorP that approximates the
inverse operator of the problem at hand. The conjugate gra-
dient directions for the preconditioned scheme become

gr ,t
~n!5P*Psr ,t

~n21!1
A~n!

A~n21! gr ,t
~n21! , n>2, ~40!

gr ,t
~1!5P*Psr ,t

~0! , ~41!

whereP* is the adjoint ofP and where

A~n!5E E
2`

`

~ uPsr
~n21!u21uPst

~n21!u2!dkx dky . ~42!

Various preconditioners were evaluated. A preconditioner
which gave useful results is the inverse of the diagonal from

FIG. 2. Residual error ERR̂(n) of the CGR method as a function of the
iteration numbern with parameter the ratior , the total number of plane
waves taken into account divided by the number of propagating waves;
L5l50.294 mm,h5l/250.147 mm.

FIG. 3. Final residual error ERR̂(N) of the CGR method as a function of the
number of propagating modes. Evanescent modes are omitted. The dashed
line corresponds to the number of propagating modes for the discrete Fou-
rier transform: 2NxDx/l, with Nx5512,Dx/l50.2,L51 mm,h50.5 mm.
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the direct matrix inversion method of our least-square mini-
mization procedure. Then, the preconditioners are defined by

Psr
~n!5F E

xPS

~ uY0uuvr1u2

1uZ0uun–k1
1u2!ueik1

1
–xu2 dxG21/2

sr
~n! , ~43!

Pst
~n!5F E

xPS

~ uY0uuvr2u2

1uZ0uun–k2
2u2!ueik2

2
–xu2 dxG21/2

st
~n! . ~44!

In Fig. 4, the convergence of the preconditioned scheme is
compared to the convergence of the standard conjugate gra-
dient scheme. From this figure it can be seen that the precon-
ditioning indeed has a positive effect on the convergence
rate. It can also be seen, however, that there is little differ-
ence in convergence if evanescent modes are omitted.
Schemes which are already well behaved, such as the CGR
method with omitted evanescent modes, apparently are not
substantially improved by using the preconditioner. How-
ever, the very ill-conditioned CGR method with evanescent
modes benefits from the preconditioner.

V. RESULTS

A. Configuration

The methods were applied to surfaces described by
Gaussian statistical averages, in this case by a correlation
lengthL and a root-mean-square surface heighth. The mean
of the surface is atz50. The rough surface is irradiated by an
array transducer at depthz510 mm. The mean of the inter-
face is atz50. The 1-D linear-array transducer consists of
128 radiating elements, each having a width of 0.15 mm,
positioned at a grid distance~‘‘pitch’’ ! of 0.2 mm. The elec-

tronic focus is at depthz5240 mm~that is, at a distance of
50 mm from the array!, in a medium with the parametersr1
andk1. The array elements radiate with equal magnitudes of
normal surface velocity. The frequency is 5 MHz and the
sound speeds arec151550 m/s andc251473 m/s, i.e., a
sound speed contrast of 5%. The densities arer15r25103

kg/m3. The attenuation is 0.5 dB/~cm MHz!. Note that due to
the attenuation the compressibilities are complex valued. The
values for the reference admittanceY0 and the reference im-
pedanceZ0 were taken to be the geometric means of the
admittances and impedances of both media.

B. Performance

The sound propagation through the irregular interface
was analyzed with the two iterative methods and a phase-
screen approximation, where the results of the direct integral
equation method~DIE! were used as a reference. The eva-

FIG. 5. Pressure magnitude field of array transducer for a plane interface
separating two media. The array transducer is positioned atz510 mm and
radiates into a medium with parametersc151550 m/s,r15103 kg/m3 at a
frequency of 5 MHz. The parameters of the second medium arec251473
m/s,r25103kg/m3. The attenuation in both media is 0.5 dB/~cm MHz!. The
focus is atz5240 mm.

FIG. 6. Pressure magnitude field of array transducer for an irregular inter-
face separating two media withL52 mm,h51 mm, CGIE method.

FIG. 4. Residual error ERR̂(n) of the CGR method with preconditioning
~indicated by P! and no preconditioning~indicated by NP! as a function of
the iteration numbern, with parameter the ratior , the total number of plane
waves taken into account divided by the number of propagating waves;
L5l50.294 mm,h5l/250.147 mm,Nx5256.
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nescent components of the CGR method were not taken into
account, which results in a relatively high efficiency from a
computational point of view. The calculations were run on a
40-MHz Sun-Sparc LX in Matlab 4.2. Within a finite number
of iterations the CGIE method always converged to the re-
sults obtained with the DIE method. Therefore the CGIE
method will be used as the reference from now on.

A beam pressure plot for the plane interface is shown in
Fig. 5. The beam pressure plots show the incident pressure
field Pi(x) and the transmitted pressure fieldPt~x!. The in-
terface is shown as a dark line in the figures. The beam
pressure plots for the irregular interface obtained with CGIE
~Fig. 6! and CGR~Fig. 7! agree closely.

In Tables I–IV the results are shown for the different
surface characteristics. It can be seen that the residual error
ERR̂CGR

(N) of the CGR method becomes larger for largerh/L
ratios, as was also shown in Ref. 9 for sinusoidal interfaces.
On the surface, the normalized root-mean-square difference
ECGIE-CGR between the CGR method and the integral equa-
tion methods has a similar behavior. The CGR residual is
roughly a factor 2 smaller than the difference between the
two methods. If we assume that the integral equation gives
the more accurate result then we can say that the residual of
the CGR method is a good indication of the absolute accu-
racy on the surface. The performance in the focal plane has a
somewhat different behavior. At first sight, the difference
ECGIE-CGR between the CGR method and the integral equa-
tion methods does not seem to depend on the surface irregu-
larity for small surface irregularities. As a matter of fact, the
rms difference for a completely flat interface is 0.054. This
difference is caused by the finite support of the spatial inte-
grals. At a distance halfway the focal plane, the differences
between the iterative methods are smaller. In Tables I–IV
also the results for a phase-screen approximation are shown.
The tables show the normalized root-mean-square difference
ECGIE-phases screenbetween the phase-screen method and the
integral equation methods. The phase-screen approximation
acts as a local time-shift operator based on travel time dif-
ferences in the two media. Refraction is not taken into ac-
count in the phase-screen approximation, which leads to rela-

tively large errors at largeh/L ratios. The beam magnitude
cross sections for the iterative methods are very close, also in
the focal plane. Examples of two beam cross-sections in the
focal plane are shown in Figs. 8 and 9. Figure 8 shows the
beam cross section for a perfectly flat interface, whereas Fig.
9 shows the beam cross section for a rough interface. It
should be noted that the CGR method can be made more
accurate than the results of Tables I–IV by using all propa-
gating and evanescent waves, in combination with the pre-
conditioned scheme.

As far as the computational efficiency can be evaluated
from a single numerical implementation, it can be said that
for the accuracy we desire, the total computation time of the
CGIE method is much larger than the computation time of

FIG. 7. Pressure magnitude field of array transducer for an irregular inter-
face separating two media withL52 mm,h51 mm, CGR method.

TABLE I. Residual error ERR̂CGR
(N) of the CGR method, the normalized root-

mean-square difference between the integral equation methods and the CGR
methodECGIE-CGR ~on the rough surface! andECGIE-CGR ~in the focal plane!,
and the normalized root-mean-square difference between the integral equa-
tion methods and the phase-screen methodECGIE-phase screen, for h/L50.1.

L @mm# ERR̂CGR
(N)

ECGIE-CGR

~rough interface!
ECGIE-CGR

~focal plane!
ECGIE-phase screen

~focal plane!

0.2 0.0040 0.0090 0.048 0.062
0.5 0.0013 0.0042 0.048 0.061
1 0.0010 0.0030 0.047 0.060
2 0.0024 0.0055 0.047 0.061

TABLE II. As Table I, excepth/L50.2.

L @mm# ERR̂CGR
(N)

ECGIE-CGR

~rough interface!
ECGIE-CGR

~focal plane!
ECGIE-phase screen

~focal plane!

0.2 0.0089 0.022 0.049 0.065
0.5 0.0048 0.012 0.047 0.060
1 0.0095 0.018 0.047 0.062
2 0.0049 0.0086 0.046 0.063

TABLE III. As Table I, excepth/L50.5.

L @mm# ERR̂CGR
(N)

ECGIE-CGR

~rough interface!
ECGIE-CGR

~focal plane!
ECGIE-phase screen

~focal plane!

0.2 0.036 0.070 0.065 0.092
0.5 0.035 0.065 0.050 0.071
1 0.040 0.080 0.047 0.078
2 0.051 0.085 0.047 0.12

TABLE IV. As Table I, excepth/L51.

L @mm# ERR̂CGR
(N)

ECGIE-CGR

~rough interface!
ECGIE-CGR

~focal plane!
ECGIE-phase screen

~focal plane!

0.2 0.090 0.13 0.078 0.13
0.5 0.086 0.17 0.070 0.14
1 0.076 0.22 0.092 0.15
2 0.058 0.16 0.072 0.39
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CGR ~Fig. 10!. There are two reasons for this. First, for the
first few iteration steps, the convergence of CGIE is not as
fast as the convergence of CGR. Second, the computation of
the Hankel functions for CGIE requires much more time than
the computation of the exponentials in CGR. However, the
error obtained with the CGR method reaches a steady value
after a number of iterations, whereas the error obtained with
CGIE can be driven to an arbitrarily small value. Our interest
is in simulation of interfaces of moderate surface slopes
separating media with low contrast. Then, the final error
value which can be obtained with CGR is sufficiently small.

VI. CONCLUDING REMARKS

Two iterative methods for the 2-D simulation of wave
propagation through aberrating interfaces were compared.
The iterative plane-wave~CGR! method has a number of
attractive features that makes it very suitable for simulation
through aberrating media in human tissue. A clear advantage

is the very rapid convergence for media with relatively low
contrast and moderate surface roughness. The advantage is
for a large part obtained from the observation that evanescent
modes can safely be neglected. Also in the latter case, the
method is more accurate than a phase-screen approximation.
For the cases that evanescent modes are required, an efficient
preconditioning scheme has been presented. A further advan-
tage of the CGR method is that it can be directly coupled to
FFT-based extrapolation methods. In addition, the implemen-
tation is relatively simple~also for 3D! because of the lack of
singular integrands. For improved accuracy and stability the
spatial subintegrals can be evaluated analytically for a com-
mon class of surfaces and weighting functions. An often
overlooked advantage of plane-wave methods over Green’s
function methods is that the algorithms can remain un-
changed for strongly absorptive media. For this condition,
the Hankel functions of the integral equation methods should
be calculated in a more sophisticated way.

However, if extremely rough surfaces have to be evalu-
ated, possibly with reentrant points, then the integral equa-
tion method should be used.
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