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Original Equipment Manufacturers (OEM’s) of advanced capital goods often offer service contracts for system

support to their customers, for which spare parts are needed. Due to technological changes, suppliers of spare

parts may stop production at some point in time. As a reaction to that decision, an OEM may place a so-called

Last Time Buy (LTB) order to cover demand for spare parts during the remaining service period, which may

last for many years. The fact that there might be other alternative sources of supply in the next periods

complicates the decision on the LTB. In this paper, we develop a heuristic method to find the near-optimal

LTB quantity in presence of an imperfect repair option of the failed parts that can be returned from the field.

Comparison of our method to simulation shows high approximation accuracy. Numerical experiments reveal

that repair is an excellent option as alternative sourcing, even if it is more expensive than buying a new part,

because of the option to postpone the repair until the parts are needed. In addition, we show the impact of

other key parameters on costs and LTB quantity.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider the spare parts supply for advanced

capital goods. Examples of these goods are mainframe computer sys-

tems, aircrafts, chemical plants, and medical systems. These systems

are very expensive and can be in use for a long period (5–30 years).

Often, these systems are highly downtime critical, that is, downtime

has serious consequences in terms of costs, quality of service, and

safety risks.

The customers of these systems are often not just interested in

acquiring such systems at an affordable price, but far more in a good

balance between the resulting Total Cost of Ownership (TCO) and the

system availability throughout its lifetime. Often, the support costs for

system upkeep during its lifetime constitute a large part of the TCO.

For customers however, system use is their core business, and not the

system upkeep. Therefore, customers often prefer to outsource major

parts of system upkeep, either to an OEM or to a specialized service

provider, if they can provide a good balance between system uptime

and costs of system upkeep. A service contract specifies the services

provided and the corresponding service level agreements, such as a

maximum problem resolution time, or a minimum system uptime per

year. To achieve a high uptime, capital goods are often repaired by

replacing failed parts by ready-to-use parts from inventory. Therefore,

service providers should offer high spare parts availability.
∗ Corresponding author. Tel.: +31 53 4893603.
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Due to technological developments and the introduction of new

ystems, the demand for specific spare parts may significantly drop

fter some time, causing the manufacturer of these parts to decide

hat it is not profitable anymore to produce them. This point in time

ay be many years before the time that service obligations end. As a

esult, the service provider has to decide how to cover future demand

ntil the end of the service period. This decision is inevitably hard,

ue to the long remaining period and the high level of uncertainty in

emand, arising from uncertainty in the size of the installed base and

he parts failure rate.

Placing a large final order, a so-called Last Time Buy (LTB) order,

s common in industry. Often, the LTB order quantity is very large to

ttain a high service level, which also yields high obsolescence levels

t the end of the service period. Therefore, companies try to mitigate

hese risks and the costs involved by considering alternative sourcing

ptions. Examples are (i) repair of failed parts that are returned from

he field, (ii) strip phased-out systems for reusable spare parts, (iii)

uy second-hand parts on the open market, (iv) substitute by a com-

atible part, and (v) system redesign avoiding the need of the specific

pare part.

A key advantage of using such alternative supply options is that

ither the decision to supply parts from alternative options can be

ostponed, thereby reducing the level of uncertainty to deal with

(i), (ii), (iii)), or that an LTB order is not needed at all ((iv) and (v)).

ven though companies use these alternative supply options, they

ack decision support tools to make rational trade-offs between the

arious supply options.

In this paper, we construct a model to determine the LTB quantity

y making trade-offs between one alternative supply option, namely
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Table 1

Overview of the existing literature on LTB problem for capital goods.

Supply option

Literature LTB

Repair of

failed parts

Retrieve parts

from

dismantling

Perform extra

production runs

External

market

Moore (1971) �
Ritchie and Wilcox (1977) �
Fortuin (1980) �
Fortuin (1981) �
Klein Haneveld and Teunter (1998) �
Hong, Koo, Lee, and Ahn (2008) �
Leifker, Jones, and Lowe (2012, 2014) �
Teunter and Fortuin (1998) � �
Teunter and Fortuin (1999) � �
Kleber et al. (2012) � �
Inderfurth and Mukherjee (2008) � � �
Inderfurth and Kleber (2013) � � �
Pourakbar, van der Laan, and Dekker (2014) � �
Teunter and Klein Haneveld (2002) � �
Krikke and van der Laan (2011) � � �
Van Kooten and Tan (2009) � �
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epair of the failed parts that are returned from the field. In this

esearch, we collaborated with two industrial partners (computer

achinery and printing machines). We noticed that typically only a

ertain fraction of the failed parts will be returned and diagnosed to

e suitable for repair, the so-called return yield. As we observed in

ractice, the return yield may depend on the willingness of the users

o send the broken parts back. In those cases, incentives such as a

ayment for a returned part will increase the return yield. In several

eal applications in our industrial partners, we observed an average

eturn yield between 60 percent and 80 percent showing that the

eturn flow is potentially a significant source of supply. In addition,

e observed high repair yields (80 percent–90 percent) in practice.

ot all returned parts can be repaired from a technical point of view.

We assume a pull policy for the repair of failed parts (i.e., re-

air on demand), as this is known to be effective (Krikke & Van der

aan, 2011). We aim to minimize the sum of LTB procurement costs,

olding costs of ready-to-use parts, repair costs, and shortage costs

inus the salvage value. In addition, we aim to evaluate service levels

n terms of fill rate and probability of not running out of stock. We

evelop accurate approximations for performance evaluation and ef-

cient heuristics to optimize the key decisions: the LTB quantity and

he repair policy (time-dependent inventory levels).

In the next section, we discuss the related literature and specify our

ontribution. Next, we present our model in Section 3. Section 4 shows

he performance analysis and the optimization heuristic when repairs

re assumed perfect. Section 5 extends the model to the case with

mperfect repairs. We validate the accuracy of our approximations as

ell as our optimization heuristic in Section 6. There, we also show the

mpact of the key input parameters in a numerical experiment. Finally,

e summarize our main conclusions and give promising directions

or future research in Section 7.

. Literature review

Research on the LTB problem exists in the area of: (1) consumer

roducts, and (2) capital goods. For consumer products that have

elatively low value, it is an option to replace the failed product by

new or similar product (Pourakbar et al., 2012; Van der Heijden &

skandar, 2013; Shen & Willems, 2014). This is however not a realistic

ption for advanced capital goods that may have a product value of

everal millions of euros. Therefore, such systems are repaired by

eplacing failed parts of modules by spares.

The literature within the field of spare parts management is ex-

ensive and covers several decades of research (Sherbrooke, 2004;
uckstad, 2005). The specific literature in the area of LTB decisions

or spare parts can be classified according to the sourcing options that

re used to satisfy demand after stopping the production of spare

arts. Early papers solely focus on finding the LTB order quantity for

everal model variants. More recent papers take into account other

ources of supply, in particular, the repair of failed parts, the retrieval

f parts from dismantling complete systems that are phased-out, set-

ing up dedicated production runs at higher costs, or ordering from

he external market at higher prices (if possible). In Table 1, we give an

verview of papers according to this classification and discuss them

n more details.

Among the papers that consider the LTB as the only source of supply,

oore (1971) is the first to propose a method to forecast the all-

ime-requirement of service parts. His method does not incorporate

tochastic demand. As a result, neither safety stocks nor service levels

r stock-out costs can be computed. The latter aspects have been

nalyzed by Ritchie and Wilcox (1977); Fortuin (1980,1981); Klein

aneveld and Teunter (1998); and Hong et al. (2008) for several model

ariants. Leifker et al. (2012) study LTB problems in a continuous

etting without any service period restriction, while there is limited

nformation on the customers, and the only alternative is buying a

art. Leifker et al. (2014) consider possibilities for service contract

xtension when computing the final order quantity.

Table 1 shows that retrieving parts from dismantling phased-out

ystems has received the most attention as alternative source in the

iterature. A key characteristic in this case is the correlation between

emand for parts and supply from dismantling: if systems are phased-

ut and dismantled, the size of the installed base decreases and thus

he number of system failures which initiate the demand for spare

arts decreases. At the same time, the supply from dismantling in-

reases. Teunter and Fortuin (1998, 1999) assume that dismantling

an be done at negligible costs, which justifies the use of a push

olicy to dismantle every returned system immediately. They ap-

ly dynamic programming and propose an approximation based on

ewsvendor equations. They determine a dispose-down to level for

he excess parts above that level in order to avoid high inventory

evels. Pourakbar et al. (2014) propose a model using a finite horizon

arkov decision process to find the LTB quantity and non-stationary

nventory control levels. They consider retrieving parts from phased-

ut systems, where timing and quantity of the phase-outs are uncer-

ain as well as repair time. Kleber et al. (2012) consider buying back

ailed systems to retrieve spare parts. They study possible benefits

f buying back broken systems compared to other sourcing options

uch as LTB and trade-in campaigns to exchange old systems with
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new ones. They develop Mixed Integer Linear Programming formu-

lations and investigate the circumstances under which a buy-back is

beneficial. The option of extra dedicated production runs is studied by

Inderfurth and Mukherjee (2008), and Inderfurth and Kleber (2013),

next to an LTB order and retrieving parts from dismantling. In the

first paper, the problem has been formulated as stochastic dynamic

decision problem. In the latter, they propose a heuristic to integrate

all the three options in decision making under specific conditions,

assuming an order-up-to policy for joint production and remanufac-

turing. Teunter and Klein Haneveld (2002) consider providing spare

parts from the external market at a much higher price. They propose

two order-up-to level policies based on the ordering time, an initial

level at time 0 and a subsequent series of decreasing levels for various

intervals. Finally, a few papers consider repair of failed parts that are

returned from the field. In contrast to dismantling, this source may

provide a considerable amount of supply early in the remaining ser-

vice period when the installed base is still large. A drawback is that

repair may be more costly or less successful than retrieving parts from

dismantled systems that may still function. The correlation between

demand and supply differs from that in the dismantling option: if

demand is higher than expected, the supply of failed parts suitable

for repair is also higher, which has a damping effect on the total un-

certainty throughout the remaining service period. Van Kooten and

Tan (2009) study the LTB decision under the repair option as the only

alternative. They aim to find the LTB quantity to avoid reaching the

maximum number of allowed backorders in the system. They assume

that repair is always preferred over LTB, if repair is feasible. They con-

sider a push repair policy in which all the failed parts are repaired

immediately. This policy may cause significant obsolescence at the

end of the service period.

Krikke and van der Laan (2011) consider both repair of parts re-

trieved from dismantled systems, and repair of failed parts returned

from the field as alternative sourcing options. As described above,

both sources of supply depend on the size of the installed base, but

in a different way. They develop an approximate method to find a

near-optimal LTB quantity while satisfying a maximum stock-out

probability just before a phase-out occurs. Timing and quantity of

the phase-out returns are known, which may be true in specific busi-

ness situations only. In addition, only at those points in time that

phase-outs occur, a decision can be made on using the alternative

options. It means that usage from the alternative sources depends on

the frequency of phase-out returns. Failed parts and retrieved parts

from phased-out systems are assumed to be immediately available

for repair within a short repair lead-time of one week.

In this paper, we propose an approximate method to find the near-

optimal LTB quantity, and determine a near-optimal repair policy. Our

contribution to the existing literature is as follows:

• We show that an alternative option (repair) is worth considering

even when it costs considerably more than buying a new part,

since we decide about the quantity and the timing of repairs based

on an explicit cost trade-off (compared to buying a new part at

the beginning) and the evolution of the system. To the best of our

knowledge, this trade-off has not been considered in the related

literature so far.
Fig. 1. Operation
• We consider a dynamic decision model allowing for significant

return and repair lead times. We combine this with a distinction

between return yield and repair yield. Thereby, we also aim to avoid

the intermediate stock-outs. The combination of all these variants

yields to a more realistic model compared to the other studies on

this topic.
• We evaluate service levels (fill rate, probability of running out of

stock) and their behavior over the service period. This is relevant,

since in practice stock-outs are less acceptable early in the service

period than close to the end of the service period.

. Model description, assumptions, and notation

.1. Model description

We consider a single part for which an LTB decision should be

ade, independent of other parts. In order to facilitate the optimiza-

ion, we discretize time in a finite number of disjoint time intervals,

ach equals to the review period of the repair process, e.g., a month

r a quarter. Demand arises from part failures in the installed base. As

epair lead times are typically long, the failed part is typically replaced

y a ready-to-use spare part. Next, the failed part may be repaired off-

ine and can be added to ready-for-use stock afterward. Replacement

arts are supplied from a stock of ready-to-use parts (including the

arts acquired as LTB and repaired parts). A failed part is immedi-

tely replaced by a ready-to-use part from stock on hand, either a

ew part or a repaired part. All demand that cannot be satisfied from

tock on hand is backordered until ready-to-use parts arrive from the

epair process. We assume infinite repair capacity, which means that

he repair lead-time is not influenced by the load of the repair shop.

ig. 1 shows a schematic view of the operational process.

Only a fraction of the failed parts at time t can and will be returned

or repair, which we model by a return yield. The return yield also

overs a possible entrance diagnosis upon receipt from the field. Di-

gnosis is done after receipt, since we are not sure whether all the

eturned failed parts from the field are suitable for repair. Therefore,

ny part included in the return yield is ready for repair in principle. In

he remainder of this paper, we will just use the phrase “return yield”

or ease of presentation. We model the time between part failure and

vailability of the failed part for possible repair as a deterministic

eturn lead-time. We use a push policy for the return process, so re-

urns are not delayed until failed parts are actually needed for repair.

lthough this may not be optimal, the return costs will generally be

onsiderably less than the repair costs for expensive spare parts.

In contrast to the return process, we control the repair process by

pull policy, as repair is typically rather expensive. Then, it is not cost

ffective to repair more parts than what is actually needed to satisfy

emand. We use a base stock policy for repair, i.e., at each review pe-

iod we order a number of failed parts to be repaired such that the

nventory position (i.e. the sum of new, repaired, and in repair parts)

s raised to the time-dependent base stock level st (the time depen-

ency of the levels is due to the fact that demand is non-stationary

ver the planning period). We make the repair decision based on

he number of the available ready-to-use parts, the ready-to-repair

arts and the number of parts under repair. Due to uncertainty in the
al process.
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Fig. 2. Behavior of the inventory position as function of time.
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utcome of the repair process, we know the number of successful

epairs only after repair completion. For the repair yield (repair suc-

ess probability), we typically have historic data from repairs before

he LTB decision. We will argue that a base stock policy is optimal

f there are no fixed setup costs for repair and if all repairs are al-

ays successful. However, if only a certain fraction of the repairs is

uccessful (repair yield <1), a base stock policy is not necessarily op-

imal. In the optimal repair policy of a numerical experiment (see

ppendix A), we observed that the inventory position to be reached

fter reordering depends upon the inventory position before reorder-

ng. The lower the inventory position before reordering, the higher

he inventory position after reordering to be reached to compensate

or the uncertainty in the number of successful repairs. A linear infla-

ion rule for the base stock policy to anticipate possible defects in the

epair process works fairly well as an approximation (Zipkin, 2000).

n practice, the repair yield will generally be high, because unnec-

ssary and expensive repairs are typically avoided by a preliminary

iagnosis. For that reason, we expect the base stock policy to be a

ood approximation of the optimal policy. This will be affirmed in a

mall numerical experiment (Appendix A).

We model the time between release of a repair job and job com-

letion by a deterministic repair lead-time. In contrast to many other

odels in the literature and based on what we have observed in prac-

ice, we allow both the return lead-time and the repair lead-time to

e large, say several months. Our industrial partners indicate that the

epair and return lead times may vary from a few weeks to half a year,

nd may even be longer for complex systems such as in the defense

ndustry. In principle, for capital goods it is not simple to reduce the

epair lead-time just by putting pressure on the repair vendors, since

t mainly depends on the uniqueness of the technology and number

f specialized repair-shops. However, for consumer electronics it is

ndeed feasible to reduce the lead-time due to technically easiness

f repairs and plenty number of the repair-shops. The objective of

ur model is to minimize the total relevant costs over the remain-

ng service period between discontinuation of part production (LTB

pportunity) and the formal end-of-service date, which may be up

o (say) 15 years. The total relevant costs cover procurement of new

arts, holding costs of new and repaired parts at the end of each time

nterval, repair costs of any repair started (whether it is successful

r not), shortage costs at the end of each interval, and scrap cost or

alvage value of remaining parts at the end of the service period. Fur-

her, we compute the time dependent service levels corresponding

o the cost-optimal policy, i.e., the cycle service level (probability of

o stock-out) and the fill rate (fraction of demand served from stock

n hand) at the end of each time interval. In this way, we facilitate a

rade-off between costs and service levels in case shortage costs are

ard to quantify. The decision variables of our model consist of the

TB quantity (Q) and the non-stationary base stock levels (st) for the

epair process during the remaining service period.

The sequence of the events in each time interval is as follows:

1. At the start of the interval:

a. arrival of successfully repaired (ready-to-use) parts,

b. arrival of ready-to-repair failed parts that have been returned

from the field,

c. registration of the inventory position,

d. decision on the quantity of parts to repair.

2. During the interval: realization of demand.

3. At the end of the interval:

a. registration of inventory levels (on hand stock, backorders),

b. sending back failed parts from the field,

c. computation of service levels (probability of no stock out, fill

rate),

d. computation of operational costs (repair, holding, shortage).

The typical behavior of the inventory position during the planning

eriod is shown in Fig. 2. In contrast to the standard base stock policy,
he inventory position after reordering may be higher than the base

tock level due to the parts remaining from the LTB. However, it may

lso be lower than the base stock level due to lack of failed parts that

an be repaired. Stock-outs may occur at any point in time just before

epaired parts arrive from the repair process, as well as near the end

f the service period.

.2. Assumptions

In addition to the model characteristics as described in Section 3.1,

e use the following assumptions:

• Demand is independent over successive time intervals.
• Repair yield is constant over time, since a preliminary quality

inspection is being done on the failed parts once they are returned

from the field.
• New and repaired parts have the same quality and the same hold-

ing costs.
• There is no cost involved for holding the ready-to-repair failed

parts as well as non-repairable parts. The extension of the model

to consider these costs is straightforward.

.3. Notation

In the remainder of this paper, we use the following notation:

nput parameters

interval number, t ∈ {1, 2, . . . , T} with T the total number of

intervals

2 return lead-time

l1 repair lead-time

h holding cost per ready-to-use part (new or repaired) at the

end of each interval

cp purchasing cost of a new part at the start of the planning

period

cr,t repair cost for each repair started in interval t

vs salvage value per ready-to-use part at the end of the service

period

cb,t shortage cost per ready-to-use part at the end of interval t

yret,t return yield, i.e., the fraction of failed parts that are returned

from the field at the end of interval t and that are suitable

for repair (possibly after a preliminary inspection)

yrep repair yield, i.e., the fraction of parts that are successfully

repaired

pt(n) probability that the demand, Dt , for ready-to-use parts in

interval t is equal to n

tate variables

It inventory position of ready-to-use parts before repair deci-

sion at the beginning of interval t
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St inventory position of ready-to-use parts after repair deci-

sion at the beginning of interval t

Kt number of ready-to-repair failed parts at the beginning of

interval t

OHt on hand inventory of ready-to-use parts at the end of inter-

val t

BOt shortage of ready-to-use parts at the end of interval t

Auxiliary variables

Dt1,t2
accumulated demand in the intervals {t1, . . . ,t2}; by conven-

tion, Dt1,t2
= 0 when t2 < t1

rt(Dt) random number of failed parts that are sent back from the

field at the end of interval t (with fraction yret,t), as function

of the demand in interval t

z(X) random number of parts that are repaired successfully, if X

repairs have started

Performance indicators

βt fill rate at the end of interval t

β overall fill rate of the planning period

αt cycle service level

Decision variables

s∗
t base stock level of ready-to-use parts at the beginning of

interval t

Q ready-to-use stock level at the beginning of t = 1

3.4. Approach

In principle, we can find the optimal repair policy and LTB quan-

tity using stochastic dynamic programming (SDP). There, we find the

optimal repair decisions at the beginning of each time interval based

on the system state variables at that moment (e.g. ready-to-use, in

repair, in return, failed and ready-to-repair parts). However, the state

space of this SDP formulation explodes when the return and repair

lead times increase and the demand rates increase, and so do the com-

putation times and the computer memory requirements. Therefore,

we apply an approximate method by assuming a base stock policy for

the repair decisions. In Appendix A, we show that this approxima-

tion yields a maximum error of 0.9 percent (compared to the exact

solution from SDP) in total relevant costs based on a small numerical

experiment.

4. Performance analysis for perfect repair

It is known from literature that a base stock policy is optimal

for dynamic inventory models without fixed ordering costs under

general conditions, see Zipkin (2000). In Section 4.1, we summarize

the SDP approach to find the base stock levels under infinite supply

of failed parts. Next, we argue in Section 4.2 that the same base stock

levels (under infinite supply) are still optimal for the special case

with perfect repair. In Section 4.3, we find expressions for the total

relevant costs as function of the base stock levels and the LTB quantity.

In Section 4.4, we derive an approximate probability distribution for

the inventory position after reordering, which we need to compute

the total relevant costs. This is the basis for our algorithm containing a

simple numerical search over the LTB quantity to find a near-optimal

solution in Section 4.5.

4.1. Optimal base stock levels for infinite source of supply

According to Zipkin (2000), when the demand over time is con-

stant, inclining, or declining (without significant drops), myopic pol-

icy provides (near-)optimal base stock levels. This policy simply min-

imizes the current period’s costs while ignoring the impact of the

current decision on future demands and costs. However, in our case

the demand over time might be constant, inclining, and declining
ver time with significant drops. Therefore, a simple myopic policy

oes not provide accurate base stock levels, and we opt for stochastic

ynamic programming, since it is relatively easy to solve.

Following Zipkin (2000), we start with the special case of zero re-

air lead-time. We define the time intervals as stages and the system

tate as the inventory position before reordering It at the start of stage

. The decision in each stage is the base stock level st . That is, we order

o repair a quantity max {st − It , 0}. We define Vt(It) as the minimal

xpected costs from the start of interval t until the end of the service

eriod given that the inventory position at the start of stage t is It .

t the end of the planning period, we have the following terminal

ondition stating that any unused part has salvage value vs:

T+1(IT+1) = −vs ∗ IT+1 (1)

e define Ht(st) as the minimum expected relevant costs in the in-

ervals {t, . . . , T + 1} if we choose st as the base stock level and if

t = 0. Ht(st) consists of the ordering cost of st parts, the expected

olding and shortage costs at the end of interval t, denoted by Ct(st),
nd the minimum expected costs from interval t + 1 onwards. Note

hat It+1 = st − Dt:

t(st) = cr,t · st + Ct(st)+ E[Vt+1(st − Dt)] (2)

In Eq. (2), Ct(st) = E[h · (It − Dt)+ + cb,t · (Dt − It)+]. Zipkin (2000)

hows that we can find the optimal st by minimizing Ht(st). Next, we

nd the value functions Vt(It) for all It from:

t(It) = −cr,t · It + minst
{Ht(st) : st ≥ It} (3)

tarting from stage T and moving backward in time, we solve Eqs. (2)

nd (3) recursively. It is straightforward to extend this approach to

trictly positive lead times. Then, a decision in stage t influences the

olding and shortage costs at the end of stage t + l1 (a repair lead-time

ater). Therefore, we can apply the same algorithm, provided that we

valuate the single period costs by Ct(st) = E[h · (It − Dt,t+l1
)+ + cb,t ·

Dt,t+l1
− It)+]. As the first decision is taken at the start of stage T − l1,

e find a set of optimal base stock levels

∗ = {s∗
1, s∗

2, . . . , s∗
T−l1

}
.2. Optimal base stock levels for finite source of supply

Our model differs from the infinite supply model in two ways:

1) the supply of failed parts that are returned from the field in good

ondition is finite; (2) we have additional supply of parts from the

TB. The first implies that we may not be able to raise the inventory

osition to its target value; the second means that the inventory

osition may (strongly) exceed the base stock levels, particularly early

n the planning period.

In related literature on models with finite and time-varying (pro-

uction) capacity, the capacity is modeled either as deterministic, or

s random variables which are independent over subsequent inter-

als, see, e.g., Federgruen and Zipkin (1986); Güllü (1998); and Iida

2002). Under finite capacity, the base stock levels tend to be higher

han in the corresponding infinite supply model. The reason is that

e should order more when capacity is available to compensate for

he fact that capacity may be restricted and insufficient at a later point

n time. The key point is that unused (production) capacity is lost. In

ur model, the latter is not true, because we never scrap failed parts

aiting for repair. A failed part in stock can always be repaired in a

ext interval when it is needed. Therefore, the unused supply of failed

arts is never lost and early ordering does not add any value, since

e incur more holding costs without avoiding significant shortage

osts. As a result, there is no trigger to repair in advance, and so no

rigger for higher base stock levels, see Appendix B for mathematical

vidence. Therefore, the optimal base stock levels from the infinite

upply (capacity) model still apply in our model and we can com-

ute it based on the proposed method in Section 4.1 without further

nformation about number of repairable parts.
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For the computation of the total relevant costs, we have to take

nto account that the inventory position after reordering may differ

rom the target values s∗
t . It is a random variable St that can take

n any discrete value within (−∞, max(s∗
t , Q)]. The random nature

rises from (i) the random number of parts available for repair, and

ii) the option that demand in the intervals [1, . . . , t − 1] has been

ess than Q − s∗
t causing a random inventory position larger than s∗

t .

t can exceed the base stock level s∗
t , but it can never be larger than

(initial ready-to-use stock level) if Q � s∗
t . In the next section, as

general approach, we derive approximations for the total relevant

osts and the related service levels given the initial stock level and the

ase stock levels. There, we assume that the probability distribution

f St is already known to us.

.3. Total relevant costs and fill rates

The total relevant costs consist of holding costs, salvage value,

hortage costs, repair costs, and procurement of new parts. Below,

e give expressions for each of these cost components, where we use

he shortcut notation X+ = max{X, 0}.

.3.1. Expected on hand inventory

As the demand in interval 1 will yield receipt of some ready-to-

epair parts at the start of interval 2 + l2, the first time that repaired

arts can be available for use is at the start of interval 2 + l2 + l1,

f 2 + l2 + l1 � T. Therefore, repaired parts only arrive in stock at

he start of interval t∈{l1 + l2 + 2, . . . ,T}. We compute the expected

n hand inventory E[OHt] at the end of interval t by conditioning

n the actual inventory position after reordering a repair lead time

go and on the demand during the repair lead-time. In time intervals

∈{1, . . . , l1 + l2 + 1}, we only consume from the LTB order, since

epairs cannot be completed due to the return and repair-lead time.

herefore, the on hand inventory at the end of these intervals depends

n the demand only.

[OHt] =
{

E[(St−l1 − Dt−l1,t)
+], for l1 + l2 + 2 ≤ t ≤ T,

E[(Q − D1,t)
+], for 1 ≤ t ≤ l1 + l2 + 1.

(4)

.3.2. Expected parts on hand at the end of the service period

The salvage value is computed based on the parts on hand at the

nd of the service period, i.e. E[OHT ].

.3.3. Expected backorders

[BOt] =
{

E[(Dt−l1,t − St−l1)
+], for l1 + l2 + 2 ≤ t ≤ T,

E[(D1,t − Q)+], for 1 ≤ t ≤ l1 + l2 + 1.
(5)

.3.4. Expected number of repairs

The usage from the supply and the returned failed parts in previous

ntervals determine the number of ready-to-repair failed parts Kt at

he start of each interval. Defining Rt as the number of repairs started

n interval t, we have:

t = min{(s∗
t − St−1 + Dt−1)

+
, Kt} (6)

t = Kt−1 − Rt−1 + rt−l2−1(Dt−l2−1). (7)

Because there are implicit dependencies among Kt, Dt−l2−1, and

t−1, finding the exact value of E [Rt] is complicated (see Section 4.4.1

or details). As a simple approximation, we use:

[Rt] ∼= (
E [St] − E [St−1] + E [Dt−1]

)+
. (8)

Aggregating the costs per time interval and adding the purchasing

ost for a given value of Q and computed s∗, we find the total relevant
osts TRC
(
Q, s∗) as:

RC
(
Q, s∗) = Q · cp +

T∑
t=1

h · E [OHt] − vs · E [OHT ]

+
T∑

t=1

cb,t · E [BOt] +
T−l1∑

t=2+l2

cr,t · E [Rt] . (9)

The last term is equal to zero if l1 + l2 + 2 > T. If we have any initial

eady-to-use parts before placing the LTB order, we simply deduct its

rocurement costs when computing TRC
(
Q, s∗).

.3.5. Service levels

We compute the fill rates per time interval, the overall fill rate and

he cycle service levels as:

t = 1 − E [BOt]

E [Dt]
, (10)

= 1 −
∑T

t=1 E [BOt]∑T
t=1 E [Dt]

, (11)

t = Pr {St − Dt,t+l1 > 0} (12)

In order to evaluate the above-mentioned performances, we need

he probability distribution of St . In the next section, we derive ap-

roximations for this distribution.

.4. The probability distribution of St

St depends on the availability of ready-to-repair parts and the base

tock levels. In Section 4.4.1, we derive recursive stochastic equations

or St . As these equations appear to be hard to solve, we derive a sim-

le approximation for the probability distribution of St (first approx-

mation) in Section 4.4.2, which we improve in Section 4.4.3 (second

pproximation).

.4.1. Recursive equations for St

The inventory position before reordering at time t is equal to St−1 −
t−1. So, we aim to start

(
s∗

t − St−1 + Dt−1

)+
repairs. As this may not be

easible due to finite supply of failed parts, the actual repair quantity

s Rt , given in Eq. (6). The following stochastic recursion shows the

ctual inventory position after reordering:

t = St−1 − Dt−1 + Rt, where S1 = Q . (13)

Now, we have three Eqs. (6), (7), and (13) and the complexity

s in the term rt−l2−1

(
Dt−l2−1,

)
, since Stdepends on Dt−l2−1 as well.

herefore, the three random variables St , Kt , Rt are correlated, and we

ust find the conditional joint distribution of St and Kt given Dt−l2−1.

his correlation cannot be easily determined. Therefore, we derive an

pproximation. The recursive evaluation is an option only if l2 = 0,

hich is not a realistic case.

.4.2. The first approximation of St

To find the approximate probability distribution of St , with related

andom variable Ŝt , we use the cumulative demand in the intervals

1, . . . ,t − 1} and the cumulative supply of ready-to-repair failed parts

n the intervals {1, . . . ,t − 1 − l2}. We distinguish three cases:

Case 1: Demand in the first t − 1 intervals was low, such that the

nventory position without any repair from the beginning until t − 1

xceeds the target level s∗
t :

ˆt = Q − D1,t−1, for s∗
t < Q − D1,t−1 ≤ Q . (14)

Case 2: The supply of ready-to-repair failed parts is not sufficient

o raise the inventory position to the target level s∗
t . Therefore, the
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Fig. 3. Inventory position above the base stock level (before reordering).
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inventory position is equal to the maximum inventory position if all

the ready-to-repair parts have entered repair:

Ŝt = Q − D1,t−1 +
t−l2−1∑

i=1

ri

(
Di

)
, for Q − D1,t−1 +

t−l2−1∑
i=1

ri

(
Di

)
< s∗

t .

(15)

Case 3: The supply of ready-to-repair failed parts is sufficient to

reach the target level s∗
t . Therefore, there is a need to repair only the

required number of parts:

Ŝt = s∗
t , for Q − D1,t−1 ≤ s∗

t ≤ Q − D1,t−1 +
t−l2−1∑

i=1

ri

(
Di

)
. (16)

We refer to Appendix C for details on the evaluation of the stochastic

Eqs. (14)–(16).

The key approximation lies in Cases 1 and 3. In fact, we assume

that the inventory position at the start of interval t can only exceed s∗
t

if the cumulative demand in the first t − 1 intervals is less than Q − s∗
t

and no repair has been started before. This is correct when the base

stock levels are constant or increasing in time. However, if the base

stock levels are strictly declining (or declining in part of the planning

period) there are other sample paths leading to an inventory position

exceeding s∗
t which is not covered under Case 1.

Fig. 3 shows an example with s∗
t < s∗

t−1 (common in an end-of-

service situation), where the inventory position before reordering

It−1 is less than s∗
t−1 and Ŝt−1 − Dt−1 > s∗

t . This means that the inven-

tory position before reordering at the start of interval t may exceed s∗
t ,

even though Q − D1,t−1 ≤ s∗
t and based on the three-case categoriza-

tion inventory position even after reordering cannot exceed s∗
t . In this

case, we have (Q − D1,t−1 + ∑t−1
n=2+l2

Rn > s∗
t ), where

∑t−1
n=2+l2

Rn > 0

which means repair jobs had already been initiated in the previous in-

tervals. By neglecting these possibilities, we underestimate the prob-

ability mass for Case 1 and overestimate the probability mass mainly

for Case 3. In principle, it may also happen in Case 2 but with neg-

ligible probability. Preliminary numerical experiments, in which we

compared our approximations to simulation, revealed that this first

approximation may cause significant errors in the total costs evalu-

ation for declining repair policies. Therefore, in the next section we

introduce a random variable that partly corrects for this phenomenon.

4.4.3. The second approximation of St

The previous arguments in Section 4.4.2 show that we have to

move probability mass from Case 3 to Case 1. We define a random

variable CFt , as the gap between the inventory position before reorder-

ing and the base stock level s∗
t at time t, insofar it is non-negative. We

define S̃t as the actual inventory position after reordering by adding

a correction variable to Ŝt , i.e. S̃t = Ŝt + CFt . Note that, since we fo-

cus on Case 3 for strictly positive CFt , Ŝt = s∗
t . In order to find the
nderestimated probabilities, we need to know the probability dis-

ribution of CFt. Hence, Pr {CFt = f } for f > 0 exactly states the under-

stimated probability at Ŝt = s∗
t + f in the first approximation. In order

o find Pr{S̃t = s∗
t + CFt}, we add the underestimated probability (i.e.,

r{CFt = f }), to the probability for the same inventory position under

ase 1 (i.e., Pr{Ŝt = s∗
t + f }). We refer to Appendix D for details. After

nding the second approximation S̃t , we plug the new probability

istribution into Eqs. (4), (5), (8), and (9).

.5. The algorithm to find the near-optimal LTB quantity

Now that we are able to evaluate the total relevant costs for a given

ase stock policy and LTB quantity, we apply a numerical search over

range of Q values to find the minimum TRC
(
Q, s∗) and the near-

ptimal Q∗. Altogether, this yields the following algorithm:

Step 1: Determine the base stock levels s∗ = {s∗
1, s∗

2, . . . , s∗
T−l1

}
Section 4.1). Initialize

Q = max{s∗
1, s∗

2, . . . , s∗
T−l1

} and the current value of TRC as very

arge (→�).

Step 2: Determine the distribution of the actual inventory position

fter reordering for the base stock policy as found in Step 1 and for

he current value of Q using Eqs. (14)–(16).

Step 3: Compute total relevant costs TRCnew for the given Q and

he repair policy using Eq. (9).

Step 4: If TRCnew > TRC, set the near-optimal LTB quantity as Q∗ =
− 1. Otherwise, set

TRC:= TRCnew, Q := Q + 1, and go to Step 2.

Step 5: compute the service levels for the Q∗ using Eqs. (10)–(12).

This algorithm presumes that the cost function has a single min-

mum. Although we were not able to prove this, numerical exper-

ments revealed no example with multiple local minimums. Note

hat in case of large values for Q , we can improve the efficiency of

ur algorithm by using a better numerical search procedure, e.g.,

isection.

. Adjustments for imperfect repair

.1. Approach

It is known from literature that the optimal repair policy is not

ecessarily a base stock policy when the repair is imperfect, see

enig and Gerchak (1990) and Zipkin (2000). Nevertheless, a base

tock policy is a good approximation under our problem settings, see

ppendix A. Referring to the arguments from Section 4.2, we con-

lude that we can still use the base stock levels from the infinite

upply model. To include the impact of imperfect repairs, we use or-

er inflation as suggested in Zipkin (2000). It means that with yrep

s repair yield and order quantity Rt , we should order Rt/yrep at the

eginning of interval t (rounded to an integer).

For approximate evaluation of the inventory position after re-

rdering, we include the effect of failed repairs immediately after re-

rdering in the inventory position. That is, a repair order with size

t contributes to the inventory position as a random variable z
(
Rt

)
,

eing the number of successful repairs if Rt repairs have been started.

he realization of z
(
Rt

)
is only known after repair completion. As in

he case with perfect repair, first we find the first approximation Ŝt

nd then correct it by means of a correction variable.

.2. The probability distribution of St

As in Section 4.4.2, we distinguish three cases for the first approxi-

ation Ŝt , which are identical to those in Section 4.4.2. Case 1 is exactly

he same as Eq. (14). However, here we should include uncertainty in

he repair process in Cases 2 and 3, where we start to repair:
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Table 2

Varying parameters in the numerical experiment.

Varying parameters Value 1 Value 2

Repair cost per part 50 percent of the new part price 150 percent of the new part price

Shortage cost 1500 25000

per part/interval (low overall fill rate <80 percent) (high overall fill rate >98 percent)

Total expected demand 50 200

Demand distribution Poisson Negative binomial

Return yield 0.6 0.9

Repair yield 0.6 0.9

Return lead-time 1 (2 months) 3 (6 months)

Repair lead-time 1 (2 months) 3 (6 months)

Table 3

Yearly demand patterns.

Year 1 2 3 4 5 6 7 8 9 10

Mean demand 1 (50) 9 8.50 8 7 5.70 4.40 3 2 1.40 1

Mean demand 2 (200) 38 35 32 28 22 17 12 9 5 2

CV(NegBin) 1 1.05 1.10 1.20 1.45 1.80 2.20 2.50 3 3.50

Variance/mean (Poisson) 1 1 1 1 1 1 1 1 1 1
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1 www.plm.automation.siemens.com/.
Case 2: We take the product of the repair yield and the return yield

s a single yield factor. Similar to Eq. (15) we find:

ˆt = Q − D1,t−1 + z

⎡
⎣t−l2−1∑

i=1

ri

(
Di

)⎤⎦ , if

Q − D1,t−1 + z

⎡
⎣t−l2−1∑

i=1

ri

(
Di

)⎤⎦ < s∗
t . (17)

Case 3: The key point in this case is the assumption that we can

each the base stock level only in expectation:

[Ŝt] = s∗
t , if Q − D1,t−1 ≤ s∗

t ≤ Q − D1,t−1 + z

⎡
⎣t−l2−1∑

i=1

ri

(
Di

)⎤⎦ .

(18)

he major complexity is in the third case where we need to include

he additional uncertainty in Ŝt , in which s∗
t can only be reached in

erms of E[Ŝt]. This additional uncertainty only exists over the amount

n the repair pipeline, i.e., the quantity that has been ordered in the

ast l1 periods (repair lead-time). We define the random variable Ŷt

s the actual inventory position after reordering in Case 3. Ŷt can be

igher, equal or even less than s∗
t due to the inflated number of repair

rders and uncertainty in the repair outcome. Therefore, we need to

nd the distribution of Ŷt where the uncertainty of repair process is

ncluded. Then, we need to include it in the distribution of the first

pproximation. For doing so, we need to condition on:

− D1,t−1 ≤ s∗
t ≤ Q − D1,t−1 + z

⎡
⎣t−l2−1∑

i=1

ri

(
Di

)⎤⎦ .

his condition makes sure that we focus on Case 3, otherwise it may

verlap with the outcomes in the other two cases.

To find the probability distribution of Ŷt , we compute the first two

oments and fit it to a discrete distribution as in Adan et al. (1995).

hen, we add the resulting probabilities from all possible outcomes

f Ŷt to the resulting probabilities for the same outcomes of Ŝt (under

ases 1 and 2). For Case 3, we just use the probability at Ŷt = s∗
t (see

ppendix E for details).

To find the correction variable, we follow the same procedure as

n Section 4.4.3. We compute the total relevant costs as in the perfect

epair model, except for the repair costs that should be inflated by
he repair yield factor, i.e. E [Rt] is replaced with E [Rt] /yrep in Eq. (9).

hen, the algorithm in Section 4.5 still applies to find the near-optimal

TB quantity.

. Validation and sensitivity analysis

We first validate the accuracy of our heuristic by comparison with

he results of discrete event simulation for the same set of decision

ariables (repair policy, LTB quantity). Next, we perform a sensitivity

nalysis of the performance on the key input parameters.

Note that we may use simulation optimization to compute the

epair policy and the LTB quantity in theory. As the number of param-

ters (base stock levels for all intervals s∗
t , LTB quantity) is large, the

omputation time of such an approach will be very large. In addition,

he sensitivity analysis on critical parameters will be even harder.

.1. Accuracy of the approximation

To assess the accuracy of our approximations, we constructed a

iscrete event simulation model in Tecnomatix Plant Simulation1

oftware. We consider an experiment of 256 problem instances. For

ach near-optimal solution, we compared the key performance indi-

ators (cost components as mentioned in Table 4 and service levels) to

he simulation results. In all instances, the planning period between

TB and end of service is equal to 10 years, divided in 60 intervals of 2

onths. The price of a new part is €1000, and any left part at the end

f the service period has no value. The holding cost per piece equals

5 percent of the new part price per year. For simplicity, we assume

hat repair cost and shortage cost per part are constant over time.

e vary the other key input parameters as stated in Table 2. Even

hough some scenarios are less realistic, we included them in the

xperiment to check the approximation accuracy for a large range of

roblem instances. Table 3 shows four yearly demand patterns arising

rom the choice of total mean demand (50 or 200) and the variability

f demand. To show high and low variability, we consider Negative

inomial and Poisson distribution. For the Negative binomial distri-

ution, we assume an increasing coefficient of variation (CV) in order

o introduce a higher variability in the later intervals:

All combinations yield 28 = 256 problem instances. For each in-

tance, we find the near-optimal LTB quantity and repair policy, and

http://www.plm.automation.siemens.com/
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Table 4

Relative error of the proposed heuristic compared to simulation results.

High overall fill rate Low overall fill rate

Average error Maximum error 90 percentile Average error Maximum error 90 percentile Average percentage of the total cost

Total cost (percent) 0.30 0.70 0.60 0.50 1.10 0.80 –

Shortage (percent) 9 20 16 2 5 3.70 15

Obsolescence (percent) 1 2 1.60 2.50 5 4 –

Repair (percent) 2 4 3.50 4.20 5.50 5 10

On hand stock (percent) 0.20 0.80 0.65 0.50 1.60 1.20 44

Fig. 4. Impact of the repair cost on the number of repairs.
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compare the estimated performance to results from simulation with

100,000 replications. See Table 4 below:

The error in the total costs is small for all problem instances. In

most cases, shortages are slightly overestimated, while holding and

salvage value are slightly underestimated. However, there seem to

be significant errors for individual components, see, e.g. the large

maximum relative error in the shortages for the cases with high fill

rate. In these cases, the absolute value of the shortage is typically very

small, and so the relative error is large. For example, a 20 percent

shortage error arises from an approximate fill rate of 0.995 versus a

simulated fill rate of 0.996, which is typically accurate enough (or in

terms of shortage quantities: 0.2 versus 0.25). The maximum error in

the obsolescence and repair arises in cases with low overall fill rates

(<0.80), while for advanced capital goods very high overall fill rate is

necessary. The last column in Table 4 shows the average percentage

for each of the cost components (except the purchasing cost of the

LTB) compared to the total cost. Note that there is no salvage value

for unused parts at the end of the service period.

The average run time for determining the optimal base stock policy

and evaluating the performance indicators for a single LTB quantity

is between 5 seconds (Poisson demand distribution) and 15 seconds

(Negative binomial demand distribution). The average run time for

the optimization varies between 75 and 250 seconds.

To examine whether our method finds the correct LTB quantities,

we performed a numerical search with our simulation model. We used

the same repair policy over different values of LTB quantity (lower

and higher values than computed LTB by the model) and compared

the resulted total costs. We find that our method gives the optimal

quantity in 95 percent of the cases. In the other cases, we found only

one unit difference, usually in cases where the total cost difference

between the two solutions is very small.

We also studied the sensitivity of the LTB quantity to the repair pol-

icy. For this matter, we chose a large variation in the repair policy and

computed the optimal LTB quantity for three sets of order-up-to lev-

els: the optimal values s∗
t , the values

(
2 ∗ s∗

t

)
, and the values

(
0.5 ∗ s∗

t

)
.

The near-optimal LTB quantities appeared different to some extent

(in average 20 percent, with a maximum of 40 percent), showing that

there is a clear dependency of the LTB quantity on the repair policy.

As an extra check, we aggregated the intervals for each of the return

and repair lead-times in those instances that lead-time is equal to

three intervals (i.e. 3 intervals of 2 months = 6 months) into just one

interval equal to 6 months. This modification changes the repair pol-

icy. It also yields different LTB quantities, and confirms the sensitivity

of the LTB quantity to the repair policy.

It is also remarkable that the LTB quantity is more sensitive to

repair and return yields than lead times. In other words, there is

considerable reduction in LTB quantity for an instance with high yield

and long lead-time than low yield with short lead-time.

6.2. Sensitivity analysis and the insights

We study the impact of key parameters such as repair cost, return

and repair yield, return and repair lead-time, and demand variability

on the performance indicators to explore any structural results. We

use a similar demand pattern as before where the demand follows
negative binomial distribution with total mean equal to 50. The

hortage cost is set to 25,000, corresponding to an overall fill rate of

pproximately 98 percent.

.2.1. Impact of the repair cost on the number of repairs

In Fig. 4, we study the impact of repair cost on the fraction of

he total demand satisfied by repairs. It shows that we may still use

he repair option to fill a significant fraction of demand when the

epair cost is considerably higher than the price of a new part. This

s the effect of postponing the repair decisions. Then, we may not

nitiate a repair job and repair costs are zero. If we procure a new

art at the start of the planning period, it may happen that we do

ot use it. In this case, we incur scrap costs at the end and holding

osts over the entire planning period, next to the procurement costs.

herefore, expensive repair may be a better option depending on the

robability that we will actually need the part. Based on the numer-

cal experiments, expensive repairs become more attractive for high

epair yield, large demand variability and long planning horizon due

o the postponement theory (see online Appendix 2 for the numerical

esults). For the remaining sensitivity analysis, we set the repair cost

o 120 percent of the new part price to show the impact of yield and

ead times when repair is less attractive from costs point of view. For

ower repair costs, the impact is higher.

.2.2. Impact of the return yield on the total costs

Fig. 5 shows how the return and repair yield influence the total

osts. A relatively high repair and return yield leads to significant

eduction in total costs, even if the repair costs are higher than the

rice of a new part. It is also remarkable that the decrease in the total

osts diminishes when the yield increases. Because of the high repair

osts, we need fewer parts for repair than we can retrieve from the

eld and repair successfully.

.2.3. Impact of the repair decisions on the obsolete parts

Fig. 6 shows the impact of yield on obsolete parts at the end of

he service period. When return and repair yield are increasing, the

umber of obsolete parts at the end of the service period is decreasing

ue to postponement of the repair decisions as discussed before. The

arge number of obsolete parts at the end of the service period (as



S. Behfard et al. / European Journal of Operational Research 244 (2015) 498–510 507

Fig. 5. Impact of the return yield on the total costs.

Fig. 6. Impact of the repair decisions on the obsolete parts.

Fig. 7. Impact of the repair lead-time on the LTB quantity.
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Fig. 8. Impact of demand variability on the LTB quantity.
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n extreme case in this figure) arises from enormous uncertainty in

he demand, very high shortage cost, and expensive repair cost which

ields to larger LTB order at the beginning.

.2.4. Impact of the repair lead-time on the LTB quantity

In Fig. 7, we study the impact of the repair lead-time on LTB quan-

ity. For a lead-time larger than zero, we fix the return lead-time to

interval (2 months) and increase the repair lead time. It shows that

ead-time has significant impact on LTB quantity, particularly in case

he repair yield is high. We will see the same affect if we fix repair

ead-time and vary the return lead time. This shows the importance

f including the lead times explicitly in the model. We also tested the

nteraction between repair and return lead-time while keeping the

um of them fixed. We found little impact on the LTB quantity with
aximum 3 units difference over all combinations (e.g. instead of re-

urn lead-time = 3 and repair lead-time = 1, we may set the return

ead-time to zero and the repair lead time 4). Nevertheless, the base

tock levels and the cost breakdown (particularly repair and obso-

escence costs) change considerably for each setting. Furthermore, as

he return and repair lead times may be significant (cf. Section 3.1),

e should consider them separately.

.2.5. Impact of demand variability on the LTB quantity

The impact of the demand variability on the LTB quantity is shown

n Fig. 8. We increase variance to mean ratio per interval to see how

he LTB quantity changes. Variability has relatively significant impact

n LTB quantity even for high return and repair yield with short lead

imes. It means that we need an accurate estimation of the mean

emand and variance in order to reduce the required LTB quantity

n real cases. We observed in industry that the average demand in

he generated forecasts is typically overestimated (biased forecast),

hile there is not much information about its variability.

. Conclusions and directions for further research

In this paper, we developed a model to determine the optimal Last

ime Buy quantity when supply of spare parts is discontinued and re-

air of failed parts is used as an alternative sourcing option. The large

cale problems considered in our case cannot be solved efficiently

sing stochastic dynamic programming. This is due to the curse of

imensionality especially for large and highly variable demand and

ong return and repair lead times. Therefore, we proposed an efficient

euristic method assuming a base stock policy for the repair deci-

ions. We validated our heuristic in a numerical experiment (total of

56 cases). Then, we studied impact of key parameters on the perfor-

ance indicators. According to the observed results, we can draw the

ollowing conclusions:

(1) Alternative supply is worth considering even if it is consid-

erably more expensive than the primary source (buying new

parts). It becomes more attractive for a high repair yield, with

an increasing length of the planning horizon, and with increas-

ing demand variability.

(2) Improving the repair yield has a significant impact on the re-

duction of obsolete parts at the end of the service period. This

is due to the intermediate repair decisions that only carried out

when it is necessary.

(3) Merging the return lead-time with the repair lead-time does

not influence the LTB quantity significantly; however, the re-

pair policy and the costs breakdown change considerably.
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(4) Reduction of the demand variability significantly reduces the

LTB quantity; it is important to have an accurate life cycle de-

mand forecasting method.

Our work can be extended in several ways: (i) include the decision

when to return failed parts from the field, which results in a dynamic

two-echelon inventory model, (ii) include a dispose-down-to level for

failed parts in the field, (iii) extend the analysis for continuous demand

distributions in order to model fast moving parts, (iv) include other

sources of supply as retrieving parts from phased-out systems.
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Appendix A . Impact of using a base stock policy under imperfect

repair

In order to see impact of using a base stock policy instead of the

optimal repair policy, we conduct an experiment of 16 problem in-

stances with deterministic lead-time. For each instance, we find the

LTB quantity and the total relevant costs from both SDP and our ap-

proximate method. In all instances, the planning period is equal to

10 intervals. The price of a new part is €10. The holding cost is €2
per part per interval. The repair lead-time is one interval. For ease

of computation, we use zero return lead-time. We vary return yield,

repair yield, shortage cost and repair cost as in Table A.1. Table A.2

shows the demand pattern.

We find out that SDP and our approximation (using a base stock

policy assumption) yield the same LTB quantity for all 16 instances.

The maximum error in terms of total relevant costs is 0.9 percent,

whereas the average error is 0.5 percent. The maximum error arises

in cases with low repair yield due to our assumption on using base

stock policy for imperfect repairs.

As an example, Table A.3 shows the base stock levels for a case with

return yield = 0.6, repair yield = 0.9, and shortage cost = 200. Both

the return and repair lead times are one time interval. The computed

optimal LTB quantity is 55.
Table A.1

Varying parameters.

Varying parameters Value 1 Value 2

Repair yield 0.6 0.9

Return yield 0.6 0.9

Shortage cost per part per interval €50 €200

Repair cost per part €8 €12

Table A.2

Demand pattern.

Interval 1 2 3 4 5 6 7 8 9 10

Mean demand (Poisson distribution) 10 9 8 7 6 5 4 3 2 1

Table A.3

Base stock levels.

Interval 1 2 3 4 5 6 7 8 9 10

Base stock levels – 27 25 22 19 16 13 10 6 –

d

i

f

ε

fi

y

y

f

e

p

a

p

i

l

P

i

(

ppendix B . Optimality of infinite supply base stock levels for

nite supply models

First, we show that under which condition it is beneficial to order

ne unit more than the levels found from the model with infinite

apacity s∗
t . Then, we show that in our case, this condition does not

old and therefore there is no trigger to order more in advance.

It is beneficial to order one unit more if the extra expected holding

osts are lower than reduction in the expected shortage costs:

h · (
E[s∗

t + 1 − Dt,t+l1 ]
+ − E[s∗

t − Dt,t+l1 ]
+)

< b · (
E[Dt,t+l1 − s∗

t ]
+ − E[Dt,t+l1 − s∗

t − 1]
+)

(B.1)

e use the following expression to replace the second term in each

ide of (B.1):

[s∗
t − Dt,t+l1 ] = E[s∗

t − Dt,t+l1 ]
+ − E[Dt,t+l1 − s∗

t ]
+

(B.2)

fter replacement, we end up with the following condition:

E[s∗
t + 1 − Dt,t+l1 ]

+ − E[s∗
t − Dt,t+l1 ]

+
<

b

b + h

E∗ [OHt] − E[OHt] <
b

b + h
(B.3)

E∗ [OHt] is the expected on hand inventory while we order one unit

ore than the base stock level. According to Zipkin (2000), ( h
b+h

) is the

tock-out probability when we order s∗
t parts according to the optimal

ase stock policy under infinite supply. Therefore, the probability that

e do not run out of stock is ( b
b+h

). In all cases that we do not run

ut of stock, we have one unit more on hand if we order s∗
t + 1 units.

herefore, the extra expected on hand inventory equals ( b
b+h

.1), which

eans E∗[OHt] − E[OHt] = b
b+h

and is in contradiction with (B.3). If we

onsider more intervals ahead, the same argumentation holds and the

xtra quantity in the expected on hand inventory will be accumulated

n subsequent intervals which means: E∗[OHt] − E[OHt] ≥ b
b+h

.

This argumentation holds in our case, since we are able to order

n the current interval or postpone it to any of the next intervals

hen it is needed (due to not scraping ready-to-repair failed parts).

n addition, repair cost is not computed with discount factor.

ppendix C . Approximate distribution of St with perfect repair

The actual inventory position after reordering Ŝt has a probability

istribution on the interval
(−∞, max

(
s∗

t , Q
)]

(Section 4.4.2). To facil-

tate the computations, we only compute the probabilities Pr{Ŝt = x}

or x � LBt, where Pr{Ŝt � LBt } = ε with ε a very small value (we used

= 10−6).

Based on the three possible cases described in Section 4.4.2, we

nd Pr{Ŝt = y}. For simplicity of notation, we assume that the return

ield is independent of time. Extension to a time dependent return

ield is straightforward. We denote by ρ = {1 − yret} the fraction of

ailed parts that are not returned from the field or that are not good

nough for repair. Wj,ρ

(
i
)

denotes the probability that from j failed

arts, at most i parts are not available for repair. We define wj,ρ(i)
s the corresponding density function. We denote by qt1,t2

(n) the

robability that the accumulated demand in the intervals {t1, . . . ,t2}

s equal to n.

Case 1:

The inventory position without any ordering exceeds the target

evel s∗
t :

r{Ŝt = y} = q1,t−1

(
Q − y

)
, for s∗

t < y ≤ Q . (C.1)

Case 2:

The inventory position is equal to the maximum inventory position

f all ready-to-repair parts have entered repair. The first two terms in

C.2) show the accumulated demand in the two subset of intervals
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1, . . . ,t − l2 − 1} and {t − l2, . . . ,t − 1} that we have to distinguish

ecause of the return lead-time. In the second subset of intervals,

nly failed parts in the intervals {1, . . . ,t − l2 − 1} can be available

or the repair. By definition, the probability that
(
Q − y − n2

)
parts

rom n1 failed parts have not been returned in good condition equals

n1,ρ(Q − y − n2). Then, there are insufficient ready-to-repair parts

o raise the inventory position to the base stock level s∗
t :

r{Ŝt = y} =
Q−y∑
n2=0

∞∑
n1=Q−y−n2

q1,t−l2−1 (n1) · qt−l2,t−1 (n2)

· wn1,ρ(Q − y − n2), for y < s∗
t . (C.2)

Case 3:

There are sufficient ready-to-repair failed parts to raise the inven-

ory position to the base stock level s∗
t . The probability that maximum

Q − y − n2

)
parts from n1 failed parts have not been returned in good

ondition is Wn1,ρ(Q − y − n2) by definition:

r{Ŝt = s∗
t } =

Q−y∑
n2=0

∞∑
n1=Q−y−n2

q1,t−l2−1 (n1) · qt−l2,t−1 (n2)

· Wn1,ρ(Q − y − n2), for y = s∗
t (C.3)

ppendix D . The distribution of the correction variable CFt

As explained in Section 4.4.3, we define CFt as the gap between

he inventory position before reordering and the base stock level at

ime t, insofar it is nonnegative. CFt can be strictly positive only under

ase 3 in the first approximation. Based on the assumptions in the

rst approximation the justification is as follows: when Ŝt > s∗
t , no

epair has been started yet and the initial ready-to-use parts are still

eing consumed. When Ŝt < s∗
t , demand was so high (or the number

f ready-to-repair failed parts is so low) that even after reordering

he inventory position cannot reach s∗
t , therefore the probability of

ositive CFt is negligible.

A two-moment approximation for the distribution of CFt does not

ield accurate results, since it does not behave as one of the distribu-

ions used in Adan et al. (1995). Therefore, we find its distribution by

onditioning on S̃t−1 and Dt−1:

CFt = (Ŝt−1 + CFt−1 − Dt−1 − s∗
t )

+

S̃t−1 = Ŝt−1 + CFt−1

(D.1)

Note that for Ŝt−1 ≤ s∗
t−1, CFt−1 = 0 and for CFt−1 > 0 we already

ave considered Pr{Ŝt−1 = s∗
t−1} while computing Pr {CFt−1 = i > 0}.

lso S̃t−1 and Dt−1 are mutually independent. Using the stochastic

quation in (D.1) we find D.2 for f > 0:

r{CFt = f } =
s∗

t−1∑
y=s∗

t +1

Pr{Ŝt−1 = y} · pt−1 {Dt−1 = y − f − s∗
t }

· Pr {CFt−1 = 0} +
s∗
τ −s∗

t−1∑
i=1

Pr {CFt−1 = i}
· pt−1{Dt−1 = s∗

t−1 + i − s∗
t − f } (D.2)

Note that τ is the first time interval that s∗
τ < s∗

τ+1, since the

orrection variable appears only when base stock level is declin-

ng (in case that repair policy is strictly declining over entire pe-

iod τ = 2). Now, for each Ŝt > s∗
t in the first approximation with

he probability Pr{Ŝt = y}, we add the probability from correction

r{CFt = y − s∗
t }. As a result, we find the second approximation as
ollows:

Pr{S̃t = y}

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pr{Ŝt = y} for y < s∗
t

Pr{Ŝt = y} + Pr{CFt = y − s∗
t } for y > s∗

t

1 −
s∗

t −1∑
i=−∞

Pr{S̃t = i} −
max{Q,s∗

t }∑
j=s∗

t +1

Pr{S̃t = j} for y = s∗
t

(D.3)

For y < s∗
t , we just use probabilities from the first approximation

ince there is no correction involved.

ppendix E . The distribution of St with imperfect repair

We use a similar approach as for the model with perfect repair

Appendix C). Case 1 is identical to (C.1) with no repair. Case 2 is

dentical to (C.2), but we take the product of the repair yield and the

eturn yield as a single yield factor: ρ = {1 − yret · yrep}. We mainly

ave to revise Case 3.

Case 3:

In this case, the (stochastic) amount in the repair pipeline

s equal to (s∗
t − St−l1−1 + Dt−l1−1,t−1)

+/yrep. The last two ran-

om terms are mutually independent, since the demand included

efers to different (adjacent) periods. This order quantity can be

ranslated into an increase in the inventory position equal to

{(s∗
t − St−l1−1 + Dt−l1−1,t−1)

+
/yrep}. This random variable exactly

epresents the variability in the inventory position due to the failed

epairs. The output (successful repairs) corresponding to this repair

uantity is z{(s∗
t − St−l1−1 + Dt−l1−1,t−1)/yrep}, and only this amount

s included in the inventory position given by:

ˆt = Ŝt−l1−1 − Dt−l1−1,t−1 + z{(s∗
t − Ŝt−l1−1 + Dt−l1−1,t−1)/yrep} (E.1)

.e., the quantity that we had a lead-time l1 ago minus the demand in

he last l1 periods plus the output of the process of ordering up to s∗
t

n expectation.

For convenience, we use the shortcut notation Ut:

t =
⎧⎨
⎩Ŝt−l1−1 − Dt−l1−1,t−1|Q − D1,t−1 ≤ s∗

t ≤ Q − D1,t−1

+ z

⎡
⎣t−l2−1∑

i=1

ri

(
Di

)⎤⎦
⎫⎬
⎭ (E.2)

ˆt =
⎧⎨
⎩Ŝt|Q − D1,t−1 ≤ s∗

t ≤ Q − D1,t−1 + z

⎡
⎣t−l2−1∑

i=1

ri

(
Di

)⎤⎦
⎫⎬
⎭ (E.3)

So, we have that: Ŷt = Ut + z{(s∗
t − Ut)/yrep}. If we ignore that

s∗
t − Ut)/yrep is real-valued, and if z {(s∗

t − Ut)/yrep} has a binomi-

al distribution with success rate yrep, we find for the unconditional

ean and variance of Ŷt:

E[Ŷt] = s∗
t

ar[Ŷt] = Var{E[Ŷt|Ut]} + E[Var(Ŷt|Ut)] = (1 − yrep) · (s∗
t − E[Ut])

(E.4)

We use a two-moment approximation for the discrete distribu-

ion of Ŷt as in Adan et al. (1995). Next, we combine this approximate

istribution with the first approximation Ŝt . In order to do so, we

eed to estimate E[Ut] which is not easy to compute due correlations

etween demands in adjacent periods. As an approximation, we can

ake into account the most important part of the condition that indi-

ates repairs should have been started, namely: Q − D1,t−1 ≤ s∗
t . Then,

e have:

t
∼= {Ŝt−l1−1 − Dt−l1−1,t−1|D1,t−1 ≥ Q − s∗

t } (E.5)
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We rewrite the conditional part by splitting D1,t−1 into Dt−l1−1,t−1

and D1,t−l1−2. Then, we can derive a new expression for Ut by looking

to the lower bound of Dt−l1−1,t−1, since Dt−l1−1,t−1 exists in the both

sides of the rewritten expression:

Ut = {Ŝt−l1−1 − Dt−l1−1,t−1|Dt−l1−1,t−1 ≥ Q − s∗
t − D1,t−l1−2}

= min{Ŝt−l1−1 − Dt−l1−1,t−1, Ŝt−l1−1 − Q + s∗
t + D1,t−l1−2}

= Ŝt−l1−1 − max {Dt−l1−1,t−1, Q − s∗
t − D1,t−l1−2} (E.6)

It can be easily found that:

E[Ut] ∼= E[Ŝt−l1−1] − E[max{Dt−l1−1,t−1, Q − s∗
t − D1,t−l1−2}] (E.7)

Finally, we replace E[Ut] computed from (E.7) into (E.4) to find

Var[Ŷt] and use it in the two-moment approximation of Ŷt .

Supplementary materials

Supplementary material associated with this article can be found,

in the online version, at doi:10.1016/j.ejor.2015.02.003.
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