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Abstract

In this paper, we consider multi-echelon, multi-indenture supply systems for repairable service parts with finite repair
capacity. We show that the commonly used assumption of infinite capacity may seriously affect system performance
and stock allocation decisions if the repair shop utilisation is relatively high. Both for the case of item-dedicated and
shared repair shops, we modify the well-known VARI-METRIC method to allocate service part stocks in the network.
The repair shops are modelled by (single or multi-class) multi-server queuing systems. We validate our procedure by
comparison to results from discrete event simulation. This comparison shows that the accuracy of the technique
presented in this article is on average more than five times as close to simulated values as the classical VARI-METRIC

technique. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Technically advanced systems play an ever more
important role in society. As a consequence, the
availability of such systems may strongly affect
daily operations. This applies to, e.g. heavily
automated production processes, computer sys-
tems, medical equipment, and military systems.
Downtime of critical equipment may have serious
consequences, e.g. in terms of loss of production,
quality reduction in health care or ineffective
military missions. Various measures can be taken
to reduce the amount of system downtime, such as
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system redundancy, appropriate preventive main-
tenance and effective corrective maintenance.
Especially with respect to the latter, fast supply
of the service parts required is essential. Here we
define service parts as all parts that are used to
maintain systems, both spare parts to replace
failed parts and diagnostic items that are used to
analyse the system performance and to find failure
causes.

The importance of service parts management
has increased in the past decades. One reason is the
fact that system availability and high quality after
sales service have become important criteria when
selecting suppliers of technically advanced sys-
tems. A second reason is the increasing value of
service part inventory investment. A survey by
Cohen et al. [1] reports that service parts
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inventories equal 8.75% of the value of product
sales in their sample, being over $23million
inventory investment on average. In this survey,
the following characteristics and trends in service
delivery organisations are observed:

1. a large and geographically dispersed installed
base;

2. a large number of service parts to be stocked,
varying between 2500 and 300,000 in the
sample;

3. increasing costs of service parts due to increas-
ing complexity and modularity, in the sample
being $270 on average with exceptions up to
several hundreds thousands of dollars;

4. a high part obsolescence rate caused by short
product life cycles;

5. a large and increasing fraction of slow moving,
caused by increased system customisation, and
design improvement; the average inventory
turnover in the sample equals 0.87 parts per
year, hence there are many parts having a
demand rate less than once per year.

As a consequence of the increasing costs of
spare parts (third characteristic above), it is
worthwhile to consider repair rather than scrap
and replace. In the survey by Cohen et al. [1], it
appears that in the sample 27.2% of the parts are
repairable, 1.e. parts for which repair is technically
possible and economically profitable. Although
this suggests that consumables are more impor-
tant, one should keep in mind that repairables are
generally more expensive, so the share of repair-
ables in total service part investment is probably
considerably higher.

Service parts are often supplied via a multi-
echelon distribution network, i.e. a hierarchical
network of stocking locations through which
service parts are supplied to the customer’s site.
A reason to have a multi-echelon structure is the
need for both local stocks close to the customer’s
sites in order to achieve fast supply and the need
for stock centralisation to reduce holding costs.
Cohen et al. [1] report that three-echelon networks
are prevalent in their sample followed by two-
echelon systems. Four-echelon networks occur in
practice as well. There is a trend however to reduce

the number of echelons and the number of
locations per echelon in order to reduce fixed
warehousing costs and service parts obsolescence
costs. This striving for lean and efficient service
part networks is facilitated by, e.g. stocking
essential parts at the customer sites and using
possibilities for fast emergency transportation.

All these characteristics cause that service parts
management is an increasingly important, yet
complex task. A key challenge is to attain high
availability of the installed base at low service
costs. These service costs include costs for stock
holding, warehousing, transportation, service en-
gineers, repair shops and overhead. Effective and
efficient spare part management means that
several design choices have to be made (e.g.
network structure) and a suitable logistical control
structure has to be developed. For a nice overview
of the key issues for the logistical control of service
part supply systems, we refer to the framework of
Verrijdt [2].

One way to influence the relation between
customer service (high availability of the installed
base) and costs of the service part supply system is
by appropriate stock allocation. That is, decisions
have to be taken about which parts to stock at
which locations in the network in which amounts.
This well-known stock allocation problem for
service networks is different from traditional
inventory models, because the relevant perfor-
mance measure is availability of the installed base
rather than part fill rates. A specific availability
level can be attained by several combinations of
part fill rates. One option is to use an equal fill rate
for each part such that the target availability is
attained. A more clever option is to focus on high
fill rates for cheap, slow movers, so that relatively
low fill rates (and hence low stock levels) of
expensive, fast movers are sufficient. In this way,
the same system availability can be obtained at
lower costs.

Many models for these kinds of stock allocation
problem have been developed in the past decades.
Already in the 60s, Sherbrooke [3] developed the
famous METRIC model for repairable item
inventory control. This model has been the basis
for a lot of additional research later on. An
overview of the most important models based
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on the METRIC approach is given in Sherbrooke
[4].

One of the key assumptions made by Sher-
brooke is that all repair shops in the network have
infinite capacity. Although this is generally not
true in practice, this assumption may be justified
by some arguments. Firstly, in some situations the
repair of service parts is just one of the activities of
the repairmen, e.g. next to preventive mainte-
nance. If service part repair gets highest priority,
the effect of finite capacity can be negligible.
However, this is only true if service part repair is
not a major task for each repairman. Besides,
preventive maintenance can have high priority as
well, e.g. when preventive maintenance of a
production system has to be carried out during
some limited time period outside regular produc-
tion hours. Secondly, in some situations the repair
shop capacity is flexible, e.g. because the repair-
men work overtime if the workload is high or
because it is possible to outsource service part
repair if the workload is high. Using this flexible
capacity, the repair shop has virtually infinite
resources. However, working overtime may cause
high overtime costs, while outsourcing is not
always possible, in particular if the parts or
modules are technically complicated and repair
requires specific skills. Thirdly, the finite capacity
could be taken into account by measuring the
actual throughput time in the repair shop and
plugging these values into the model as gross
repair times (=net repair time plus waiting time).
Although this seems to be a simple and straight-
forward solution, the throughput time measured is
only valid under the current circumstances. Ob-
viously the throughput times depend on service
part demand, return procedures and repair shop
capacity. Therefore this procedure is not suitable
for what-if analyses, which is a serious drawback.

Another reason to include finite repair capacity
in the model is the following. Under finite
capacity, the item throughput times can be
influenced using appropriate priority setting. For
example, expensive items can be given high
priority, so that repair shop throughput times are
short and hence the stock levels required can
remain low. This is only possible at the expense of
lower priority for the other (cheaper) items, so that

these items will face longer throughput times and
hence require higher stock levels. If the item values
are very different, such priority setting might be
worthwhile to consider in order to improve the
ratio between system availability and inventory
investment. In order to be able to make such a
trade-off, priority queuing models need to be
incorporated in a METRIC-like approach. As a
first step in this direction, we will focus on finite
repair shop capacity under first-come-first-served
rules in this paper.

Our choice to examine finite repair capacity is
further motivated by Rustenburg et al. [5], who
state that ““one of the most criticized assumptions
on METRIC-models and their extensions is the
assumption of unlimited repair capacity”. They
put capacity restrictions on their agenda for
research, but note that ‘“the combination of
capacitated multi-indenture and multi-echelon
structures however will require a substantial
research effort”. We aim to contribute to this
research effort with our paper.

We will use the VARI-METRIC method as
starting point (cf. [6,4]). In the next section, we will
first discuss the research results that are available
in literature with focus on finite capacity. In
Section 3, we will describe our model in detail.
In Section 4, we will give a preliminary analysis of
the impact of finite capacity. We will show that
simply “plugging in”” average throughput times in
the VARI-METRIC model may lead to inaccurate
results. Next, we will develop a method to optimise
spare part stock levels under finite repair shop
capacity, which is an extension of Slay’s VARI-
METRIC method (Section 5). In Section 6, we
compare the system availability obtained from a
numerical simulation for different input sets to the
system availability estimated by presented approx-
imation. Finally, we present our conclusions and
possible directions of further research in the last
section.

2. Literature overview
The service network model considered in this

article describes the process in which operating
units are sent to repair after failure, and after
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repair they return as good as new. Since the repair
process in this model has several echelons of
supply (local bases, central depots, etc.), and takes
into account the product structure of failed units
(assemblies, subassemblies), the model will be
referred to as a multi-echelon, multi-indenture
model.

In the literature, various approaches to solve
such multi-echelon, multi-indenture models are
described. As Guide and Srivastava [7] state, “the
classical repairable problem is the military logistics
problem of stocking repairable parts for aircrafts
at bases which are capable of repairing some, but
not all broken parts, and a central depot which
serves all of the bases”. The basic reference in this
area is the METRIC method of Sherbrooke [3].
Models of the METRIC class have initially been
applied to various military systems in the air force,
the navy and the army [4]. This model class is
generally recognized to be useful for commercial
applications as well insofar repairable items are
involved. Guide and Srivastava [7] mention ‘“‘the
leasing of office equipment (e.g. reproducing
equipment and computers), heavy equipment
(e.g. tractors, earth-moving equipment, industrial
presses), and transportation equipment such as
railroad, subway cars and buses”. Practical
applications using the METRIC method are
described in various commercial settings, such as
aircrafts [8], the Venezuelan metro-system [9] and
electronic testing equipment [10]. For a general
review of these kinds of models, we refer to Guide
and Srivastava [7], Rustenburg et al. [5], and
Kennedy et al. [11]. Because the classical applica-
tion in the area are military systems, we will use
cases derived from Rustenburg [12] and Sher-
brooke [4] in this paper.

A well-known approach is the METRIC meth-
od developed by Sherbrooke [3]. This approach
and its extensions (e.g. VARI-METRIC of [6])
employ simple assumptions that make it very easy
to use in practice. One of these assumptions is
commonly known as the ample service assump-
tion. It means that the repair capacity is infinite,
i.e. there is no queue of items waiting for a repair
channel. This has the effect that the replenishment
lead times can be considered as statistically
independent, and the mean and variance of the

number of items under repair service are equal. As
discussed in the introduction, the infinite capacity
assumption may not be applicable in practice. As a
consequence, the independence of lead time does
not apply anymore. This influences performance
calculations (backorders, availability) as well the
optimisation procedure.

Of course, the capacity effects have been
recognised both in practice and in literature. Pyke
[13] discusses the impact of finite capacity and
repair priority setting using discrete event simula-
tion. He finds that applying appropriate priority
rules can have significant impact on the system
performance if the utilisation is high. An analytical
method is not developed, however. De Haas and
Verrijdt [8] examine capacity effects and encounter
heavily fluctuating work loads in the repair shops
of the aircraft maintenance system they study,
causing varying throughput times and frequent
overtime and stress for the repair men. They
suggest that the throughput times in the repair
shop should be corrected for utilisation of repair-
men. Although they consider various options for
repair shop throughput times in their numerical
illustration, they do not describe a method to
quantify the relation between utilisation and
throughput time. Hence the issue how to deal
exactly with finite capacity remains unsolved.

In the literature, various ways to deal with finite
capacity in service part networks have been
discussed. One of these methods is to model the
network as the closed queuing network (Jackson
network, cf. [14,15]). This method provides very
good estimations of the steady state probabilities
in a closed network with fixed parameters, but the
numerical algorithms involved make it difficult to
find optimal stock levels for each location and
each part type. Another approach is based on
Markov processes; see [16—18]. A drawback of this
approach is the fact that the number of states may
become very large and that existing methods to
reduce the model size to acceptable dimensions are
rather rough.

A similar approach is developed by Avsar and
Zijm [19]. They construct an excellent approxima-
tion for a two-echelon inventory model, where
repair shops can be modelled as open Jackson
queuing networks. However, their model considers
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only item-dedicated repair shops and is difficult to
extend to multi-echelon model or model with
different types of repair shops, as we consider.
Another possibility is to extend the VARI-
METRIC method to deal with finite capacity by
replacing the M/G/oco queuing model for the
repair shop by some finite capacity system, cf.
[9,20,21]. They use their method to analyse the
impact of finite capacity. They show that finite
capacity has a serious impact on system perfor-
mance for a single indenture, two-echelon system
with only one central repair shop. They model the
repair shop as a GI/G/k multi-class queuing
system, where the part flow of one item type is
modelled as one class in the queuing system.
Although they discuss formulas for multi-server
queues, their numerical results refer to single
server queues only. In addition, they discuss an
alternative method to plug in throughput times as
observed in practice in the M/G/ oo model, so that
waiting times are included. This approach is also
used in the case study for the Caracas Metro
subway system that Diaz and Fu [9] present. Then
the impact of finite capacity is less, but still
significant, and as we mentioned already this
procedure is not suitable for what-if analyses.
Although the approach by Diaz and Fu [9] is
simple and attractive, they restrict themselves to a
very simple situation, namely a single repair shop
consisting of one or more single server queues for a
single-indenture, two-echelon system. It can be
expected that the model complexity increases if the
service part supply system contains multiple repair
shops at various locations in the network and for
various levels in a multi-indenture system, because
then the various queuing models interact which
may cause a serious deterioration of numerical
accuracy. Also, the model performance for multi-
server repair shops has not been analysed. In this
article, we generalise the model of Diaz and Fu [9]
to the multi-echelon, multi-indenture systems that
may have repair shops at multiple locations in the
network (local/central). To this end, we use the
approach by van Harten and Sleptchenko [22] to
compute performance characteristics of multi-
class, multi-server queuing systems. Our aim is to
get insight into the impact of capacity restrictions
on the system performance in terms of the

expected number of backorders, and system
availability. Also, we will examine how the service
part allocation in the network is affected by the
finite capacity. In other words, to which extent will
the use of the infinite capacity assumption lead to
sub-optimal decisions (lower availability for the
same budget).

3. The model

In this section, we first describe Sherbrooke’s
model for a general multi-item, multi-indenture,
multi-echelon inventory system (Section 3.1). We
introduce our extension of this model to repair
shops with finite capacity in Section 3.2. The
model assumptions and basic notation are pre-
sented in Section 3.3. As we will proceed from the
VARI-METRIC method (cf. [6]), we give an
outline of this method in Section 3.4.

3.1. Multi-echelon, multi-indenture systems

We show an example of both a multi-echelon
supply network and a multi-indenture product tree
in Fig. 1 (taken from [4]). The installed base
consists of the pumps aboard the submarines,
each consisting of several modules and parts
(figure on the right). The numbers at the con-
nectors represent the probabilities that the failure
of a system/module is caused by a certain item.
The echelon structure consists of a depot, 4 supply
ships and 16 submarines (figure on the left). If an
item cannot be repaired at the most upstream
location, it can be sent to an external supplier for
repair or replacement. The internal structure of the
external supplier is not explicitly considered, but
just modelled as a ““black box’’ with corresponding
throughput time characteristics.

3.2. Repair shops

We define a repair shop as a part of a location
that has its own repair facilities. We consider two
variants of repair facilities:

® An item-dedicated repair facility, that is able to
repair only one kind of items. Then every
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Fig. 1. An example of a supply system and an item hierarchy.
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Fig. 2. Single-site, single-indenture system (one

location has as many repair facilities as the
number of items.

® A cluster-dedicated repair facility, when multi-
ple kinds of items can share this facility. Here
we define a cluster as a set of items, which can
be repaired at the same facility using the same
shared repair resources (personnel, equipment).
There is no limitation in the composition of the
clusters.

These two variants imply different queuing
models: single-class multi-server queue, for an
item-dedicated repair facility, and a multi-class
multi-server queuing model for cluster-dedicated
cases. The repair shops for both variants of repair
facilities have similar structures. Fig. 2 presents an
example of a single-site, single-indenture system.

This simple system consists of only one location
having repair facilities and only single level
indenture items circulate in this system. The repair
block in Fig.2 may consist of one or more
dedicated repair facilities. Items are processed by

location consisting of a stockpoint and a repairshop).

a repair shop as follows: First, a failed item arrives
at the repair shop and an order for a new item is
issued. If a new item is available on stock, it is
dispatched to replace the failed item. At the same
time, the failed item enters the repair facility and
after repair it is added to stock. The number of
items in this sequence of processes between arrival
of the failed item at a repair shop and repair
completion is called the pipeline.

In a multi-echelon structure, the failed item can
follow two different routes through the system:
either it enters the local repair facility, or it is
forwarded to the next echelon upstream to be
repaired there (e.g. the downstream echelon
consists of supply ships, the upstream echelon
consists of a depot in the harbour, see Fig. 1).
Usually items are sent to the higher echelon if local
repair is technically impossible, i.e. if the local
repair shop does not have appropriate equipment
or skills. Sherbrooke [4] assumes that the decision
whether to repair locally or not is based on such
technical considerations only, and not by, e.g.
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current repair shop workload. This is modelled by
a fixed probability that the item can be repaired
locally, independent of the system state. We will
use the same assumption.

A multi-indenture structure means that every
item (assembly) may consist of other items
(subassemblies), see Fig. 1. If an assembly fails,
we assume (following [4]) that either the failure is
caused by the failure of exactly one of its
subassemblies (so the replacement of this sub-
assembly is sufficient to repair the assembly), or
there is no specific subassembly causing the
assembly failure (hence the assembly as a whole
has to be repaired). In the case of a subassembly
failure, the repair procedure is as follows: the
item is disassembled and the failed subassembly is
sent to the subassembly repair shop, where the
procedure is similar: First, a new item is ordered
from stock, and then the failed item enters repair.

3.3. Assumptions and notation

In this paper, we use the following assumptions:

1. Demands occur according to stationary Pois-
son processes, independent of the number of
items under repair (i.e. the impact of the finite
installed base is neglected).

2. The failure of an assembly is caused by at
most one subassembly failure.

3. Each stockpoint uses an (S—1, S) inventory
policy for each item, i.e. the stock level equals
S and each demand immediately generates an
order for a replacement item; as a conse-
quence, there is no batching.

4. Each stockpoint has exactly one supplier;
there is no lateral supply from other stock-
points.

5. Request for replacement items are handled by
a stockpoint according to the first come, first
serve (FCFS) rule (i.e. no allocation priori-
ties).

6. After repair, the items are as good as new.

7. Backorders for different items are equally
important.

8. The item repair times are independent, identi-
cally distributed random variables.

9. The repair shops handle their jobs according
to the FCFS discipline (i.e. no repair prio-
rities).

10. The probability that an item is repaired in a
particular repair shop is solely determined by
technical considerations and not by the system
state (e.g. repair shop utilisation); this is by a
fixed repair probability for each combination
of item and location.

Assumptions 1-8 are generally used in the
literature on repairable spare part management
(cf. [4,12,5]). Some specific models have been
developed to examine the impact of releasing some
of these assumptions. For example, Verrijdt [2]
examines lateral supply (releasing assumption 4)
and concludes that this has only significant impact
for low fill rates at downstream locations (<70%).
This justifies assumption 4. Pyke [13] examines
dispatch policies using a simulation model (releas-
ing assumption 5) and concludes that his distribu-
tion rule has little effect for most cases. This
justifies using assumption 5. For a more extensive
motivation and critical review of assumptions 1-7,
we refer to Rustenburg [12].

Modelling finite capacity repair shops imply
that we have to make assumptions on the structure
and processes within the repair shop. Therefore we
need some additional assumptions (8—10). Regard-
ing assumption 8§, it is in fact different from the
commonly used assumption of independent repair
lead times. If the repair shop capacity is infinite,
the throughput times of consecutive jobs are
generally assumed to be independent because of
the absence of a practical alternative [12]. Finite
capacity repair shops automatically deal with
dependent repair lead times, because the waiting
times of consecutive jobs are naturally correlated.
In this sense, our assumption is less restrictive than
the one commonly used in the literature. If the
times to carry out repair jobs (excluding waiting
times) would be correlated as well, we would have
to deal with: (1) an intractable queuing model for
which no useful results are available in the
literature, (2) a practical problem because these
correlations are hard to estimate from field data.

The queuing discipline (FCFS) is an important
characteristic of a finite capacity repair shop. Pyke
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[13] examined the impact of repair priorities using
his simulation model and found that priority rules
are clearly valuable. This requires (multi-class,
multi-server) priority queuing models which com-
plicates the mathematical analysis considerably.
Therefore we choose to use the FCFS discipline in
order to get more insight into the impact of finite
repair capacity. Knowing that appropriate priority
rules can enhance the system performance indeed,
a future extension of our model to priority repair is
high on our research agenda.

In fact, assumption 10 on repair job routing is
generally used in the literature on spare part
networks with infinite capacity repair shops,
similar to assumptions 1-7 [4,12]. This is not
surprising, because the infinite capacity assump-
tion rules out the option to route repair jobs
through the network based on repair shop utilisa-
tion. Besides, technical considerations can be
dominant indeed, because expensive repair equip-
ment and advanced technical skills tend to be
concentrated in a central repair shop. In such a
situation, a local repair facility is only able to carry
out relatively simple jobs because equipment is not
available. In situations where such restrictions do
not occur, dynamic routing of repair jobs based on
time-dependent repair shop utilisation is an
option. Because of the additional transport costs
involved if a failed item has to be moved to
another location, we expect that releasing assump-
tion 9 will have more perspective for efficiency
gain than assumption 10.

In the remainder of this paper, we will use the
following notation:

Geographical structure
m = location index, m=1,..., M,
where M denotes the total num-
ber of locations in the system
echelon index, n = 1, ..., N, where
N denotes the total number of
echelons in the system; here n = 1
(n = N) denotes the most up-
stream (downstream) level

set of locations belonging to the
echelon n

set of customers (supported loca-
tions) of location m

ECH(n)

CUS(m)

SUP(m) = the location that supplies items to

location m (i.e. the direct supplier

of location m)

Product structure

j = item index, j=1,...,J, where J

denotes the total number of items

in the system

indenture index, i =0, ..., I; here

i = 0 denotes the system level and

i =1 denotes the lowest subas-

sembly level, i.e. the subassem-

blies that cannot be decomposed

further into smaller units

set of items belonging to inden-

ture i

set of subassemblies of item j

set of assemblies, which have item

j as a subassembly

the multiplicity of item j (i.e. the

number of class j items in a single

system)

Repair shop characteristics

Domj = demand rate for item j at location

m

repair time, a random variable with

mean E[S,;] and coefficient of

variation Cg,,;, where the coefficient

of variation is defined as the ratio

between the standard deviation and

the mean

number of type j items in the

repair queue at the location m

number of type j under repair

(in queue and in service) at

location m

Routing characteristics

Fij = probability that item j can be
repaired at location m; the item is
dispatched to the next higher
level in the multi-echelon struc-
ture with probability (1 — r,;)

Amjk = probability that a failure
of item j at location m is caused
by a failure of subassembly
k (keSA()))

IDNG) =

SA() =
AS(j) =

Zj =

Sm . =

Oy =

Ry =

Other notation
B, = the size of the installed base at

location m
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= stock level of item j at location m1;
5 denotes the matrix of all stock
levels in the system

number of type j items in the
pipeline at the location m, i.e.
all items j under repair at
location m, all items j on order
at the supplier of location m
and all items j waiting at
location m for subassembly re-
placement

order-and-ship time of item j to
location m from its supplier, a
random variable with mean
E[O,,;] and coefficient of varia-
tion Cop;

number of backorders for item j
at location m as function of the
stock levels §

backorder probability for item j
at location m as function of the
stock levels §

¢ = price of item j

The decision variables in our model are the stock
levels s,,;.

Smj

p mj =

Bomj (S )

PBO,,(5) =

3.3.1. Outline of VARI-METRIC

There are different ways to measure availability
of supply systems for repairable items. It is
common to relate the average system availability
to the backorders [4]:

1
A~ —
[ECH(N)|
s EL T] {1-BOw®/(Bazi? .
meECH(N) |jeIND(1)

(1)

where [ECH(NV)| denotes the number of elements
in the set ECH(N). Hence the average system
availability depends on the backorders of all
highest indenture items (jeIND(1)) at all down-
stream locations (meECH(N)). Sherbrooke [4]
shows that maximising this availability function is
approximately equivalent to minimising the sum of
the expected backorders if the repair shops have
infinite capacity. This leads to the following goal

function:
min Y Y E[BO,®) ®)
¥ meECH(N) jeIND(1)

Another availability function was introduced by
Rustenburg [12] in a NAVY case. In this applica-
tion, the downstream locations are frigates and the
failure of any unit implies that the frigate is not
available. In fact, the size of the installed base at
each downstream location is exactly one (B, = 1).
For this case the availability function can be
defined as

1

~[ECH()|
x Y II 1-BO.,G}. (3)

meECH(N) je IND(1)

A

Rustenburg [12] shows that maximising this

availability function is approximately equivalent

to minimising the sum of the backorder probabil-

ities. So an alternative goal function is

min > > PBO,®)] (4)
meECH(N) jeIND(1)

The optimisation procedure is similar for both
goal functions. Both for the traditional infinite
capacity repair shops and for our finite capacity
models it is possible to calculate both expected
backorders and backorder probabilities. There-
fore, we can use our model for various availability
functions. We will return to the methods of
estimating the system availability in the case of
finite capacity repair shops in Section 5.2.

Next, we will discuss how to find the distribu-
tion of backorders in the system. Consider a
subsystem with one repair facility and one stock at
location m in a multi-echelon multi-indenture
system. The number of backorders of item j in
such subsystem is the non-negative difference
between number of items in pipeline P,,; and the
number of items in stock s,,:

BOmj = maX{ij — Smj,O}. (5)

Recall that the number of items in the pipeline
refers to items in local repair plus backordered
items in external repair, where external repair
means repair at a higher echelon or repair of
subassemblies. Hence the pipeline distribution
depends on the backorders upstream in the
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echelon structure and downwards in the indenture
structure. The (VARI-)METRIC method analyses
the relevant backorder distributions by subse-
quently deriving pipeline and backorder distribu-
tions of various items and various locations,
starting from the lowest indenture items at the
most upstream location in the echelon structure.
To facilitate this, the arrival rates of all items
(assemblies and subassemblies) at all repair shops
in the network are calculated.

Below, we give an outline of the basic mathe-
matics of VARI-METRIC.

3.4. Calculating the item arrival rates

The arrival rate ,,; of item j at location m can be
derived from two parts:

® the arrival rates of this item at downstream
locations /(/;) multiplied by the probability that
these items cannot be repaired at these down-
stream locations (1 — ry);

® the arrival rates of higher indenture items (i.e.
assembles at k have item j as subassembly) at
location m(Z,,;) multiplied by the probability
that item k can be repaired at location m(r,;)
and multiplied by the probability that item j is
the cause of the failure (g,u;).

Hence we arrive at the expression

;Lmj: Z /l[j(l—i’lj)‘i‘ Z )‘mkrmkqu]" (6)

1eCUS(j) keSA()

All arrival rates can be computed recursively,
starting from the failure rates of systems (the
highest indenture items) in the operational field
(the most downstream locations in the echelon
structure).

3.5. Calculating pipeline and backorder
characteristics

The dependency of backorders on the pipeline is
given by (5). Next to this dependency, we have a
relation between the pipeline and the backorders
for other combinations of locations and items. We
first state this dependency for the mean number of

items in the pipeline, next we will give the
expression for the variance. Referring to the
definition of pipeline, we see that the number of
items of type j in the pipeline at location m consist
of:

® All items j under repair at location m. If the
repair shop has infinite capacity, the mean
number of items under repair is given
)Lmjrij[Smil

® All items j waiting at location m for subassembly
replacement. The reasoning to derive an expres-
sion for this number is as follows: the total
number of items waiting for replacement of
subassembly keSA(j) equals the number of
backorders BO,,x. Only a fraction A, of the
backorders for item k at location m is due to a
request from item j. A reasonable approxima-
tion for this fraction is the effective demand rate
for subassembly k arising from item j as a
fraction of the total demand rate for item k at
location m: My = VimAmjQmjic /2mic. So for this
part of the pipeline, we arrive at the mean value
ZkeSA(/) hmjkE[BOmk]-

® All items j on order at the supplier of location m.
These items include the items being transported
to location j from its supplier (Au,(1 —
7mj)E[Opy]) and the items waiting at the supplier
n = SUP(m) for replacement. The items waiting
for replacement can be derived from the
number of backorders for item j at the supplier
n, BO,;. Only a fraction f,,; of these backorders
are destined for location m. This fraction can
be calculated as the ratio between the demand
for item j by location m and the total demand
for item j at the supplier n: f,; =(1—
Tim)2mj/ 2sUp(m),j- S0 for this part of the pipeline,
we arrive at the mean value (1 —
rmj)E[Omj] +f;njE[BOSUP(m),/‘]-

Putting it all together, we find the following
expression:

E[ij] = ;Ln1jrij[Sm_‘] + Z hmjkE[BOmk]
kEeSAQ)

+ ;Lmj(l - rmj)E[Omi] +f;74/E[BOSUP(m),j]'
(N
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Eq. (5) shows that the backorder characteristics
can be calculated from the pipeline character-
istics, whereas Eq.(7) shows that the pipeline
characteristics can be calculated from the backorder
characteristics. This provides a way to obtain all
backorder characteristics recursively. As a simple
approximation to obtain the backorder character-
istics from (5), we only use the first two moments of
the numbers of items in the pipeline and we fit a
discrete distribution on the first two moments. The
most general way to achieve this is given by Adan
et al. [23]. Based on this approximate distribution for
the pipeline, we can find the first two moments of the
backorders. Next we can use the values for the mean
backorders to calculate the mean pipeline for higher
indenture items and for more downstream locations
from (7). Similar to the expression for the mean
backorders, an expression for the variance of the
backorders can be derived as well. Then we arrive at
(cf. [4,12)]):

Var[Pyy] = 2t E[Sny]

+ 37 {1 — By E[BO,]
keSA()

+ I Var[BOu ]} + Awi(1 — 1) E[Ony]
+ finj(1 = [ ) E[BOsup(m), ]
+7, nijvar[BOSUP(m),/]- ®)

3.6. The VARI-METRIC algorithm

Based on the equations for the item arrival rates
and the backorder characteristics, the VARI-
METRIC algorithm uses a greedy algorithm to
optimise item stock levels within a budget con-
straint. The idea is very simple: The system
availability is related to the backorders of all
highest indenture items (ie IDN(1)) at almost all
downstream locations (meECH(N)). Hence a
greedy algorithm adds an item i* to stock at
location m" in each step (5 + ey, where e, is a
matrix with all elements equal to zero, except for
element #,m which is equal to 1), such that the
reduction in the sum of the expected backorders
per invested dollar is maximised. So for goal
function (2), the rule is to select (i*,m") such, that

the expression

Ai*m* = { E[Bomj(i)]
jeIDN(1) me ECH(N)

- Y E[BOW(He,an*)]} / ¢

jeIDN(1) me ECH(N)
©))

is maximised. For goal function (4), we simply
substitute E[BO,,;(5)] by PBO,,;(3). Sherbrooke [4]
shows that this greedy method yields an optimal
solution for single-site, multi-product, single-in-
denture models. The algorithm is not optimal for
general multi-echelon, multi-indenture models.
However, Rustenburg [12] shows that this greedy
algorithm yields good results, provided that some
nonnegative starting values are chosen for the
stock levels. We recall that the expressions as
presented in this section are only valid for infinite
capacity repair shops. For that model, the variance
of the number of items under repair equals the
mean value, as is well known from the analysis of
the M/G/oo queue. For the modifications of the
VARI-METRIC algorithm to the finite capacity
model, we refer to Section 5.

4. A preliminary analysis of the impact of finite
capacity

As mentioned in the introduction, a simple
approach to deal with finite repair capacity is to
measure throughput times and plug these values as
repair times in the (VARI-)METRIC model.
However, this may lead to inaccurate intermediate
results, as we will show in this section. The issue is
that the aforementioned approach does not
guarantee that the variance of the number of items
under repair is correctly estimated.

To this end, we compare two models. In the first
model, we have a finite capacity repair shop where
the part throughput time consists of waiting time
and repair time. A single repair shop handles all
items. Assuming for this simple example that the
repair times are the same for all items, we can
model the repair shop as an M/M/k queue. In the
second model, we assume an infinite capacity
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Fig. 3. The availability errors for different numbers of servers and different utilisation rates (one- and two-echelon systems).

repair shop, modelled as an M/G/co queue where
the service time equals the sum of the waiting time
and repair time resulting from the finite capacity
system as found from the first model. Then, the
number of parts under repair, in the second model,
is Poisson distributed, so that the variance of the
number of parts in the repair shop equals the
mean. Obviously, the latter need not be true in the
first model. Hence the error made by using a
simple M/G/oo queuing system is caused by
misspecification of the variance of the number of
items in the queuing system.

To compare these models for repair shops, we
analyse simple single models for both single-
echelon and two-echelon models. The two-echelon
model consists of one central depot and one local
base. We assume that all repair shops have finite
capacity and that the utilisation rates and number
of servers are equal for all repair shops. For these
models, we first find the mean number of items in
service based on utilisation rate and number of
servers. Then, we optimise the stock levels
according to the VARI-METRIC method, where
the variance of number of items in repair is equal
to the mean of this number for different avail-
ability levels, from 0% to 100%. Thereby we
estimate the system availability using the infinite
capacity assumption. Also, we estimate the system
availability based on a finite capacity repair shop
for each combination of stock levels, as follows.
We can easily find the variance of the number of
items in the repair shop, proceeding from an
M/M/k queue. This variance, which is generally
different from the mean, is used to improve the

estimate of the system availability using the VARI-
METRIC method.

Using the results for two simple systems (one
echelon and two echelon), we can find the
maximum availability error (absolute difference
in availability between M/G/k and M/G/ oo repair
shop) corresponding to every combination of
number of servers and utilisation rate. Then, we
can make plots (Fig. 3), which show us for every
number of servers and for every utilisation rate the
maximum error in the system availability if we
ignore finite repair capacity.

These plots show us the critical utilisation rates
in simple systems. For example, if one tolerates an
error of 2% points in availability for a two-echelon
system with ¢ = 4 servers, the maximum acceptable
utilisation rate to use VARI-METRIC is approxi-
mately 0.45 or less (all values for which Ileft
function on every plot is below the dashed line).

5. Stock allocation under finite capacity

It has been shown in the previous section that
ignoring finite capacity can have a significant
influence on the estimate of the availability.
Therefore we will develop a variant of the
VARI-METRIC method, taking into account
finite capacity of repair shops.

Sherbrooke [4] shows that the expected number
of backorders depends on the mean and variance
of the number of items in the pipeline. To calculate
these pipeline characteristics, we need the mean
and variance of the number of items in the repair
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shop. If the repair shop is modelled as M/G/ o0
queue, the number of items in the repair shop is
Poisson distributed. However, such a simple
expression is not available for single-class, multi-
server queues in case of a general service time
distribution (if repair shops are item-dedicated) or
multi-class multi-server queues (if repair shops are
cluster-dedicated). There are only few useful results
from literature, because most queuing theory focuses
on the mean and (sometimes) variance of the
number of items in queue rather than in the system
(in queue plus in service). It is hard to derive the
variance of the total number of items in the system
from these results, because (a) the variance of the
number of items in repair is not known and (b) the
numbers of items in queue and in repair are not
independent. For the multi-class, multi-server M/M/
k queue, we can use the results from Sleptchenko
and van Harten (2000). This will be discussed in
Section 5.1. Obviously, we can use these results for
the single-class, multi-server M/M/k queue as well.
Then, we discuss the impact of finite capacity on
the optimisation procedure in Section 5.2.

5.1. Multi-class MIMl/k queue

The repair shops at the lowest echelon are usually
run by a small crew of multi-skilled specialists that
are able to handle a certain set of repair jobs. This
gives rise to multi-class multi-server models, where
several classes of items with each their own arrival
and service processes share the same queue and the
same servers. A complication of this model is that
the number of items in the system are correlated
amongst classes. If the number of class j items is
high at a particular point in time, it is likely that
the servers had a high utilisation recently, and so
the number of class j/#; items in the system can
expected to be high as well. The consequences of
this phenomenon on the optimisation procedure
will be discussed in Section 5.2.

Multi-class, multi-server queuing models have
not been investigated as extensively as single-class
queuing models. Still some results are worth
mentioning. Diaz and Fu [9] present an approx-
imation for the GI/G/I multi-class queue, but they
do not discuss the multi-server model. The most
advanced theoretical results are obtained by de

Smit [24] for the multi-class GI/M/k model (or,
equivalently, the single class GI/H/k model where H
denotes the hyperexponential distribution). How-
ever, though his approach leads to nice structural
properties of the waiting time distribution, it cannot
provide the sort of information on performance
characteristics concerning backorders that we need.
Moreover, the approach does not look promising
from a numerical point of view as well and, as far
as we know, it was not tested numerically.

A more useful approach is given by Van Harten
and Sleptchenko [22], who develop both an exact
solution and an approximate variant for the
multi-class M/M/k queue. In this paper, we will
use their approximation, which is quite easy from
a computational point of view and gives accurate
results for high utilisation rates. As can be seen
from Section 4, this is the most interesting
situation. For low utilisation rates, we might as
well use the M/G/oo queue. The main feature of
the multi-class queue is that all items of one cluster
C are sharing the same repair facility, which has
k¢ servers and a utilisation rate p. Similar to Van
Harten and Sleptchenko [22], we define the relative
arrival rate a;, of item j at location m as

Amj
amj = Tm] where AC = Z ﬂvmjﬂ
C (GheC

The relative deviation of the service rate of item j
at location m from its cluster average is denoted by
the variable d,,, i.e.
s EIScl

mj E[Sm]] B

1
Where E[SC] = — Z /lm/j/E[Sm’j’].

C m'j)eC

As the analysis focuses on a repair shop for a single
cluster of items at a single location, we simplify the
notation by omitting the cluster index C and the
location index m. So we will work with an abstract
queue with k servers and utilisation rate p. The
queue is shared by |C| (number of items in cluster
C) items having arrival and service time character-
istics a(j) and 0(j), respectively (j = 1, ...|C)).

To analyse the system as a Markov chain, the
system state is described by two vectors w and v
where the ith element w; of the vector w gives the
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class of the ith item in queue and the ith element v; of
the vector v gives the class of the item in service at
server i (i =1,2,...,k). This abundant state repre-
sentation facilitates the solution of the equilibrium
equations. The approximate solution is based on
constructing a product form solution of the equili-
brium equations. It first gives an approximation
for the system state probabilities, and next these
probabilities are used to approximate the necessary
performance measures such as mean and variance of
number of items in the system for each class j (E[R;]
and Var[R;]). We can even approximate correlations
between R; and R; (i#) from the state probabilities.

The product form of the probability on system
state (w,v) is

te] Il (])w/
P(w,v) = ij H PR(U),

where Pg(v) denotes the probability on server state
v given that the total number of items in the system
equals R.

The components Pg(v) of the product form
solution can be calculated directly when the queue
is empty:

Pr(v) Po(klg) <R>

a(v())
oy

The probabilities of the other states can be
calculated using the eigenvalues z; (i = 1...|C]) of
the linear system of equilibrium equations describ-
ing the queuing process (cf. [22]). Although this
procedure gives exact probabilities of the system
states, the procedure of finding eigenvalues may
require an excessive amount of computation time
if the number of classes and servers is high. As an
approximation, we observe that some eigenvalues
can be calculated as

zi(o)) = (1 +p —a;)/p,

where o; is the ith solution of the equation

<k. (10)

1+ 6())
lfp""*pz )

These equations give exactly |C| eigenvalues > 1
and one eigenvalue =1 (cf. [22]). Compared to the
standard procedure for finding eigenvalues, these
equations provide a considerable easier method
from a computational point of view. Therefore, we
can construct an approximation for the probabil-
ities Pr(v) based on the |C| eigenvalues > 1, z; and
their corresponding eigenvectors:

€]
Pr(v)~ Y 77 K Do)

i=1

B ERICY)

Lo /o

where D(;) is defined by

b B IC| Cl([)
)= 2T aor

>k, (11)

The coefficients py in expression (10) and y;
(i=1...]C]) in expression (11) should be chosen
such that the expected number of class j items in
service is equal to A(j)/u(j) = p(j) and the sum of
all probabilities is equal to 1. Thus, we obtain a set
of |C| equations:

IC] B Cl(/)
Z{D("f) 1+ 60)/01} }/"

i=1
i obo)z”(k,f)

plus the sum of all probabilities:

IC] ( )n
Z(ﬂ, +po Z (13)

where the variables ¢, are defined as
—1y-1
(Pzgf"/i(l -z ).

(12)

Egs. (12) and (13) give us a system of |C| + 1 linear
equations in |C| variables ¢, and one variable py.
This system can be reduced to a |C||C| linear
system using the equation (see [22]):

ST

Together, Egs. (11)—(13) define an approximation
for the system state probabilities. From these




A. Sleptchenko et al. | Int. J. Production Economics 79 (2002) 209-230 223

probabilities, we can derive approximations for the
mean and the variance of the number of items in
the queue for each class.

To calculate the mean value we have to find the
sum in the following form:

o0

zz S Potasslss = 1)

R=1 r=1 q,s

which can be divided into two terms (R<k and
R=>=k). The first term is a finite sum of probability
states that can be calculated directly from formula
(3). The second term is in fact an infinite series of
state probabilities, to be approximated by (4).
After some algebra, we find the following approx-
imation for the mean number of class i items in the
system:

= R R
£ a(s(j))
Zl wz),ﬂéo{l + (i)}

N
Z pizi = 1)~ ziD()

s a(s())
H 1+ 0(s¢))/ o1}

Analogously we can approximate the second
moment of the squared number of items in the

system:
wen S SE(L)

N, a(s(y))
2 % JL s

+ 2Zs, Zy,(z, - 1) ZD(G,)

$,8.1. i=
H a(s(j))
{1+ 0(s(j))/ai}
From the two equations above, we can find the
variance using Var[R;] = E[R?] — E[R;]*.

Van Harten and Sleptchenko [22] tested these
approximations extensively and compared the

approximate results to the exact results that they
derived. They show that the approximation error
remains within reasonable bounds (<10%). Be-
sides, they observe that the approximation error
decreases with the repair shop utilisation. The
latter is relevant, because our method is especially
meant for instances with high utilisation.

5.1.1. Remark

An interesting generalisation is to combine these
results for the multi-class M/M/k queue with the
approximate equations that Whitt [25] developed
from the relation between single-class M/M/k and
G/G/k systems. This approximation does not
make a deep analysis of arrival and repair process
and the only characteristics of this processes used
in this approximation are squared coefficients of
service and interarrival time (C; ~and C3 ) of
item 7 at location m. In this way, we arrive at the
following new approximations for the multi-class
G/G/k queue:

i +C3
ElRmilaycp~ | =5 | E[Qmilmm/k

+ kmipmj’
Var[Ruilgic i = ElRnlo1/6k
— (E[Rmilci/a )’ (14)

and

E[R;, J61/Gx X (E (R v wyic/ ELRmil /k)
X E[Rmilci/c i

where the characteristics of multi-class M/M/k
queue as described in this section are substi-
tuted. This approximation still has to be tested,
however.

5.2. Optimisation procedure

We will base our optimisation procedure on the
VARI-METRIC method as introduced by Sher-
brooke [4]. Our motivation for using this approach
is as follows. We deal with a nonlinear optimisa-
tion problem with many integer decision variables.
This combination yields a hard optimisation
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problem. This is especially true for the finite
capacity model that we consider, because we have
to solve a multi-class, multi-server queuing model
many times. Exact optimisation algorithms are
only available for special cases, for example the
single-item case [20]. Therefore we have to
consider approximation schemes. Because it has
been shown that the VARI-METRIC method
provides good results if some appropriate starting
values are chosen (cf. [12]), we decided to use this
procedure. We only made a few modifications
because of the finite capacity repair shops. Let us
now discuss the concept of this procedure in more
detail.

We proceed from the definition of the system
availability as introduced by Sherbrooke [4], see
Eq. (1). If the term BO,,;(5)/B,Z; is small, we
can this equation by using the first order
approximation (1 — &)~ 1 — ke if ¢ is small. Then
we find

An~ E|1— ——
D
jeIND(1)
1
=1— 2 > EBO,G) (15)
m ;e IND(1)

and the average availability 4 over all systems at
all downstream locations equals

1
A=1— e A
[ECH(N)| mel;'l(N)
1
' EcH™)
1
S LS msoyel (16)

meECH(N) ™M jeIND(1)

As a consequence, maximising average availability
is roughly equal to minimising the weighed
average of expected backorders at each location.

As noted by Van Harten and Sleptchenko [22],
the approximations (15) and (16) can be refined by
using a second order approximation rather than a
first order approximation. If we use that

(1 — &)~ 1 — ke + k(k — 1)/2 %,

we can modify Eq. (16) as

E[BO()]  Zi(Z; — DE[BO;,(5)]
- Z{ B, 233121.2] }

jeIND(1)

1

m i je IND(1)i<j

If the repair shops are modelled by M/G/
queues, the backorders of wvarious items are
mutually independent. If the multiplicity of each
item Z; equals one, which is not uncommon in
practical situations (cf. [12]), the second term in
the first summation drops out. Then we only need
the mean number of backorders for all assemblies
at all downstream locations to optimise availabil-
ity.

However, the backorder distributions are not
independent if they share the same repair facility
having finite capacity. Then it is clear from
formula (17) that we also need the correlations
between backorders. In a multi-echelon, multi-
indenture setting, these correlations may propa-
gate throughout the network. For example,
suppose that a central repair shop (say location
1) has finite capacity and repairs two different
subassembly types (two classes), 4 and B. If
subassembly A4 is part of assembly i and sub-
assembly B is part of assembly j, there is
theoretically a correlation between the backorders
of assembly i at location meCUS(1) and the
backorders of assembly j at another location
meCUS(1). So the system availability at various
locations (say A4, and A,,) may be dependent.
However, this is not an issue when calculating the
average availability A4 as in (16).

The optimisation procedure depends on the
availability function and on its approximation. In
principle, we can use the second order approxima-
tion, because the approximation for the multi-class
M/M/k queue facilitates the computation of
correlations between the pipeline distributions
and hence also the computation of correlations
between backorders. Van Harten and Sleptchenko
[22] show the impact of using a second order
approximation in a single-indenture, single-site
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model. Extension to general multi-indenture,
multi-echelon models requires additional research.

Because we will base our numerical experiments
on the case of the Royal Netherlands Navy as
introduced by Rustenburg [12], we will use the
alternative availability function (3). Therefore, our
goal function for our computations in Section 6 is
defined by (4). However, we emphasize that our
approach also works with other definitions of
availability.

6. Computational results

To test our model, we proceed as follows. We
use the modified greedy optimisation heuristic as
described in Section 5 to calculate stock levels for a
range of experiments. We focus on cluster-
dedicated repair shops (modelled by multi-class,
multi-server queuing systems), because this is a
new aspect in the spare parts management
literature that has not been examined before. Each
time, we choose the budget such, that 95% system
availability can be reached. Then, we simulate the
system to estimate the true availability. Also, we
approximate the system availability using the
traditional VARI-METRIC method, assuming
that the repair shop has infinite capacity and by
plugging in the observed repair shop throughput
time in the M/G/oo model for the repair shop.
Next, we examine to which extend the inclusion of
finite repair capacity in the VARI-METRIC
model improves availability estimates. In this
approach we use the theory as sketched in Section
5.1 for deriving first and second moments of
backorders at the operational level. Using these
two moments, we fit a discrete distribution and
find the probability of backorders at the opera-
tional level given a stock distribution. These
backorder probabilities are the input of the greedy
algorithm of Sherbrooke [4] that optimises the
stock levels such, that the inventory investment to
attain a given fixed availability (say 95%) is
minimised. Here the system availability is calcu-
lated by (3).

In the experimental design, we focus on cases
where we expect that finite capacity has significant
impact. In Section 4, we already showed that the

impact of finite capacity increases with repair shop
utilisation and decreases with the number of
servers. Therefore, we choose relatively high repair
shop utilisation in our experimental design (=0.8).
We vary the following system characteristics:
indenture structure, echelon structure, system
failure rate, number of servers and repair shop
utilisation rate. Altogether, we have 5 experimen-
tal factors. We will define two values for each
factor and we will include all parameter combina-
tions in our experimental design, resulting in
2° =32 experiments.

We use the system structure and the indenture
structure as shown in Fig. 1, where numbers
display probabilities to be sent to higher echelon
repair r,; and the cause probabilities g, . For
simplicity these probabilities are the same through-
out the whole system.

We include both a two-echelon and a three-
echelon system in our numerical experiment. Fig. 1
shows that the three-echelon system consists of 1
central depot, 4 frigates and 16 submarines. The
two-echelon system does not have an intermediate
frigate-level and simply consists of the depot and
16 submarines. Similarly, we analyse a three-
indenture system as shown in Fig. 1 and the
corresponding two-indenture system that arises
when the lowest indenture level is omitted.

The installed base consists of one pump A and
one pump B per submarine. We fix the failure rate
of pump B in all experiments and vary the failure
rate of pump A as shown in Table 1.

All locations have finite capacity cluster-dedi-
cated repair shops. As clusters, we take all items at
the same indenture level. That is, each location has
two, respectively, three (multi-class, multi-server)
repair shops in the two-, respectively, three-
indenture model. One repair shop is dedicated to

Table 1
Values for the failure rates in the experiments (mean number of
failures per pump per year)

Notation Pump A Pump B
Low 10 15
High 19 15
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Table 2
Varying parameters of experiments

Echelons Indentures Failure rates Number of Utilisation
servers per rates (%)

repair shop
Three Three Low 3 80
Two Two High 10 95

pump A and pump B, one repair shop is dedicated
to the valve, the piston and the flange and the third
repair shop (only in the three-indenture model) is
dedicated to the other items.

Next we have to specify the repair shop
parameters, namely the mean repair times and
the number of servers per repair shop. We choose
these parameters such that the utilisation rates of
all repair shops equal 80% and 95%, respectively.
For the numbers of servers we define two different
sets with 10 servers at each repair shop and with 3
servers, and repair times are defined completely by
these parameters (arrival rates, utilisation rates
and number of servers).

All parameter combinations (Table 2) lead to
2° =32 experiments. As mentioned above, we used
our optimisation program to calculate the 32
different stock levels sets, which guarantee 95%
system availability. Next, we estimated the true
availability using discrete event simulation. The
results of simulation runs (availability estimates
with half-lengths of the 95% confidence intervals)
are given below (Table 3).

It is clear that including the finite capacity of the
repair shops leads to better results. The average
deviation between simulation and the finite capa-
city approximation is 0.9%, whereas the average
error is 4.8% if the infinite capacity assumption is
used. Hence the inclusion of finite repair capacity
improves the approximation accuracy by a
factor 5.

To analyse these results in more detail, we
examine how this approximation error depends on
the five factors in our experimental design, see
Table 4. The ordering of the factor levels in this
table corresponds to Table 2.

This table shows us that the utilisation rates
have the strongest effect on approximation error.

The experiments with 80% utilisation rate have
smaller approximation error than the experiments
with 95% utilisation rate.

Repeating the same analysis for the VARI-
METRIC method (see Table 5), we see that the
average approximation error is considerably worse
for all subsets of the experiments.

Table 4 shows that the utilisation of the repair
facilities has the highest impact on the approxima-
tion error. We stress that our results are valid only
within our experimental range. As we already
showed in Section 4, the impact of the infinite
capacity assumption is high if the repair shop
utilisation is high, especially if the number of
repair men in the shop is low (Fig. 3). Some side
experiments showed that the infinite capacity
model is appropriate indeed if the utilisation is
low, especially if the number of servers is not too
small. For example, the average error when using
the infinite capacity assumption reduces to 1.5% if
the utilisation equals 60% and the repair shop has
10 servers.

Heavy utilisation also leads to long queues and
hence the simulation model requires more time to
stabilise. This can be also seen in simulation data
presented in van Harten and Sleptchenko [22]
Table 2; where is shown that a single queue needs
around 2000 subruns with each 1000 arrivals to
arrive at 10% errors in estimation of mean number
of items in queue. The fraction of failed items that
are repaired at the lowest indenture repair shops is
determined by the parameters r,,;. In our three-
echelon model, we find that this fraction equals
0.2x0.2x0.2=0.008 (or 0.04 in case of two-
echelon models). A rough estimate of the simula-
tion run length requirement for three-echelon
models yields that we need 2000 (subruns) x 1000
(item failures per subrun)/0.008 = 250,000,000 fail-
ures at each submarine for each model (out of 32
models). We could not make such long runs and
we stopped the simulations after 50,000-60,000
failures at each submarine. However, the errors in
the system availability are within reasonable
bounds. It shows that the errors in estimation of
lowest indenture repair shops performance have
only a limited impact on the estimation of the
system performance. On the other hand, we see
that the high utilisation of repair facilities
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Table 3
Results of the approximation program and the simulation runs

227

Echelons Indentures No. of Arrival Utilisation Finite Simulation oo—Capacity
servers rates rates (%) capacity (%) approximation (%)
Three echelons Three indentures 3 Low 80 95.03 93.9% +0.39 99.89
95 95.01 97.0% +0.23 100.00
High 80 95.06 94.8% +0.29 99.92
95 95.01 97.1% +0.64 100.00
10 Low 80 95.03 95.4% +0.37 99.10
95 95.01 96.9% +0.53 100.00
High 80 95.00 94.2% +0.43 99.14
95 95.00 96.9% +0.45 100.00
Two indentures 3 Low 80 95.02 94.6% +0.33 99.91
95 95.01 95.9% +0.42 100.00
High 80 95.01 95.9% +0.71 99.86
95 95.01 96.5% +0.47 100.00
10 Low 80 95.00 94.9% 40.52 99.33
95 95.01 95.7% +0.48 100.00
High 80 95.00 95.2% +0.51 99.24
95 95.01 96.1% +0.54 100.00
Two echelons Three indentures 3 Low 80 95.05 94.1% 40.37 99.91
95 95.01 95.3% +0.52 100.00
High 80 95.05 95.0% +0.51 99.92
95 95.01 96.9% +0.41 100.00
10 Low 80 95.01 94.0% +0.50 99.92
95 95.01 94.8% +0.51 100.00
High 80 95.05 95.3% +0.45 99.91
95 95.02 96.2% +0.43 100.00
Two indentures 3 Low 80 95.03 95.3%+40.35 99.90
95 95.01 96.2% +0.56 100.00
High 80 95.03 94.3% +0.28 99.88
95 95.01 96.0% +0.51 100.00
10 Low 80 95.02 94.7% +0.42 99.37
95 95.01 93.5%40.51 100.00
High 80 95.00 95.3% +0.45 99.24
95 95.01 96.2% +0.63 100.00

can destabilise the system. Despite the limit on the
number of submarine failures, we still needed up
to 200 hours for a single simulation run in some
cases (three-echelon models). Although this is
long, it is still manageable if the number of
experiments is not too high as we did (32
experiments).

These experiments also show us that the stock
levels at lowest echelon must be high to attain the
target availability level (cf. Table 6). As a result, it
can be cheaper to increase the capacity of the
repair facilities then to keep many spare parts
in stock. Hence, the optimisation of the
availability with finite capacity repair shops can
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Table 4
Average errors for all experiments and for different subsets of experiments

Average error Echelons Indentures Failure rates Number of servers Utilisation rates
0.89% 3—1.01% 3—1.02% Low—0.83% 3 set—0.97% 80%—0.50%
2—0.77% 2—0.77% High—0.96% 10 set—0.81% 95%—1.28%

Table 5
Average errors for the same set of experiments in case when availability was estimated with assumption of infinite repair capacity®

Average error Echelons Indentures Failure rates Number of servers Utilisation rates
4.81% 3—4.76% 3—4.83% Low—4.82% 3—4.93% 80%—4.63%
2—4.86% 2—4.78% High—4.80% 10—4.69% 95%—4.99%

#In fact we calculate the mean number of items in repair using formulas of multi-server queue, but the variance of this number we set

up equal to the mean.

Table 6

Optimal stock levels at each location of a three-echelon three-indenture model with 10 servers and “‘high” failures rate using the finite

capacity model

Utilisation Echelons Pump A Pump B Valve Flange Piston Stem Gasket Rod Ring

80% Ist echelon 2 3 7 13 16 4 4 5 7
2nd echelon 3 5 6 12 16 4 3 4 6
3rd echelon 12 13 8 15 19 S 4 5 7

95% Ist echelon 5 5 21 35 47 11 7 19 18
2nd echelon 7 7 20 33 45 8 6 16 16
3rd echelon 49 42 27 43 63 14 8 21 20

include a trade-off between stocks and servers
capacities. A formal method for this trade-off still
has to be developed and is a subject for further
research.

Another interesting question is whether the use
of our model with finite capacities leads to
significantly different decisions than the traditional
infinite capacity model. Therefore, we compared
the stock allocations using both models. As an
example, we show in Table 7 the stock allocation
based on the traditional infinite capacity model for
the same cases as in Table 6. As throughput times
in the infinite capacity repair shops, we used the
throughput times corresponding to repair shops
with 10 servers and a utilisation of 80% and 95%
in the finite capacity model, respectively.

The shift in stock allocation as shown in both
tables are representative for our experiments. We

see that decisions are modified in the following
direction:

1. The total number of items on stock is consider-
able higher using the finite capacity model. As
we also see from Tables 3-7, the infinite
capacity model overestimates the real system
availability. Therefore, the model suggests to
put considerable less items on stock than
actually required to reach the target availability.

2. Using the finite capacity model, a somewhat
larger fraction of the stocks is allocated to the
downstream locations.

3. There is no clear shift in stock distribution over
indenture levels. That is, the distribution of
stocks over first, second and third indenture is
approximately similar for both the finite and
infinite capacity model in our experiments.
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Table 7
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Optimal stock levels at each location of three-echelon three-indenture model with “high” failure rates using the infinite capacity model;
the mean repair throughput times are equal to finite capacity repair shops with 10 servers and a utilisation of 80% and 95%,

respectively

Mean repair throughput time Echelons Pump A Pump B Valve Flange Piston Stem Gasket Rod Ring

Equal to repair shop with 10 servers Ist echelon 3 4 6 12 15 4 4 4 6

and 80% utilisation 2nd echelon 4 6 6 11 14 3 3 3 6
3rd echelon 9 11 7 13 16 4 4 4 7

Equal to repair shop with 10 servers 1st echelon 10 10 14 23 35 10 6 11 13

and 95% utilisation 2nd echelon 13 13 14 23 34 9 6 10 12
3rd echelon 22 22 15 25 37 11 7 11 13

7. Conclusions

In this article we studied multi-echelon, multi-
indenture service parts supply systems with finite
repair capacity. We considered both item-dedi-
cated repair shops, modelled by M/G/c queuing
systems, and cluster-dedicated repair shops, mod-
elled by multi-class M/M/c queuing systems. Our
finite capacity VARI-METRIC approach yields
more accurate results than the traditional approach
of modelling repair shop throughput times by M/G/
oo queues if the utilisation is high (say >0.7), and
especially if the number of servers is low (say <4). In
our numerical experiments, we found that the
average absolute deviation between estimated and
simulated availability is only 0.9% using our method
whereas this average deviation is 4.8% if we use
the traditional infinite capacity VARI-METRIC
approach. The VARI-METRIC approach gener-
ally overestimates the system availability.

Regarding the spare part stocks distribution
within the system, we see that our finite capacity
model leads to some shift in stock distribution to
downstream locations. The distribution over the
indenture levels is hardly affected, however.

We note that our conclusions are only valid
within our experimental range, i.e. if the repair
shop utilisation is relatively high. Naturally, our
finite capacity model converges to the traditional
infinite capacity approach if the utilisation de-
creases. Therefore, our approach is especially
useful for practical situations in which (some of)
the repair shops have a high work load of urgent
repair jobs. Obviously, there are also cases where

the traditional infinite capacity model is sufficient.
This is true if outsourcing of repair jobs against
little additional costs and lead time is possible or if
the repair shop has low priority jobs (e.g.
preventive maintenance or special projects) caus-
ing that the utilisation for high priority repair jobs
is relatively low.

Furthermore, our method facilitates what-if
analysis with important design parameters as the
number of servers in the repair shops and the
assignment of items to repair shop clusters.
Another topic for further research is refining the
finite capacity model for the repair shop to multi-
class, multi-server priority systems. Such a model
could enable us to improve further on the system
efficiency. The latter issues have to be elaborated
further in our next research phase. Such analysis is
not possible for sure using the traditional infinite
capacity VARI-METRIC approach.
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