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1. Introduction

The evolution of Additive Manufacturing (AM) over the past
three decades has been nothing less than extraordinary. AM has
experienced double-digit growth for 18 of the past 27 years, taking
it from a promising set of uncommercialized technologies in the
early 1980s to a market that was worth over $4 billion in 2014. The
AM market is expected to grow to more than $21 billion by 2020
[354,355]. This growth has been made possible by improvements
in AM materials and technologies and is being driven by the market
factors that necessitate its use such as shorter product develop-
ment cycles, increasing demand for customized and personalized
products, increased focus and regulations on sustainability,
reduced manufacturing cost and lead times, and the introduction
of new business models [13,354,355].

During the past 30 years, the use of AM technology has also

vacuum and silicone casting molds) [187]. Today it is also used
the production of end use parts and products. It is estimated 

the market for AM end use parts was worth $1.748 billion in 201
up 66% from the previous year. Strong double-digit growth in 

area is expected to continue for the next several ye
[355]. Leveraging the geometric and material freedoms of 

for end use parts creates a world of opportunity. However, no
parts are possible or cost effective to produce using AM. T
necessitates a better understanding of when, why, and how
(re)design for the opportunities and constraints associated w
these technologies.

The CIRP community has previously reported on advance
AM processes [152,178,179,181,187], their role in rapid prod
development [42], and how they have been used in 

biomedical [36] and turbomachinery [176] industries. T
paper explores the opportunities, constraints, and econo

A R T I C L E I N F O

Keywords:

Design

Manufacturing

Additive Manufacturing

A B S T R A C T

The past few decades have seen substantial growth in Additive Manufacturing (AM) technolo

However, this growth has mainly been process-driven. The evolution of engineering design to 

advantage of the possibilities afforded by AM and to manage the constraints associated with

technology has lagged behind. This paper presents the major opportunities, constraints, and econo

considerations for Design for Additive Manufacturing. It explores issues related to design and redesign

direct and indirect AM production. It also highlights key industrial applications, outlines fu

challenges, and identifies promising directions for research and the exploitation of AM’s full potenti

industry.
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lopment that will enable Design for Additive Manufacturing
each its full potential in industry.

dditive Manufacturing

dditive Manufacturing processes produce physical objects
 digital information piece-by-piece, line-by-line, surface-by-

ace, or layer-by-layer [130,178]. This simultaneously defines
object’s geometry and determines its material properties. AM
esses place, bond, and/or transform volumetric primitives or
ents (voxels) of raw material to build the final part. Each
l’s shape and size and the strength of the bonds between the
ls are determined by the raw material(s), the manufacturing
pment (e.g. the build platform precision, nozzle geometry,

t or laser beam wavelength, etc.), and the process parameters
 the nozzle temperature, light or beam intensity, traverse
d, etc.). The overall part geometry is determined by tool paths,
ection patterns (digital masks), or a combination of the two.

 allows AM technologies to fabricate parts without the need for
rmediate shaping tools [155].
M processes are characterized by increasing workpiece mass.

 represent one of three major classes of manufacturing
nologies, along with subtractive processes where the work-
e mass is reduced and formative processes where the
kpiece mass is conserved [26,125]. Additive Manufacturing
esses are also distinct from chemical and thermal processes

 as etching, plating, oxidation, and heat treatment, which act
ll exposed (reactive) surfaces and traditional processes to

te composite materials.

History of Additive Manufacturing

he foundations of Additive Manufacturing go back almost
 years, with proposals to build freeform topographical maps

photosculptures from two-dimensional (2D) layers
48,256]. Research efforts in the 1960s and 70s provided proof
ncept and patents for the first modern AM processes including

topolymerization in the late 1960s [356], powder fusion in
2 [72], and sheet lamination in 1979 [243]. This work was
led by the invention of the computer in the late 1940s, the
lopment of photopolymer resins by DuPont in the 1950s, and
mercial availability of lasers in the 1960s. It followed advances
omputer aided design (CAD) and manufacturing (CAM),
ding the development of numerical control machine tools
e early 1950s, computer graphics and CAD tools in the early

0s, CAD/CAM systems in the late 1960s, and the availability of
cost computer monitors starting in early 1970s

258,356]. However, the technology was in its infancy with
commercial market and little support for research and
lopment activities.
he 1980s and early 1990s saw an increase in patents and
emic publications; the development of new technologies such
IT’s 3D printing process in 1989 [130] and laser beam melting
) processes in the early 1990s [287]; and the successful

mercialization of process technologies including stereolitho-
hy (SL) in 1988, fused deposition modeling (FDM), solid
nd curing, and laminated object manufacturing in 1991 [356],
laser sintering in 1992 [287]. These advances were made
ible, in part, by improvements in geometric modeling

attention began to shift to developing AM related software. AM-
specific file formats such as STL (StereoLithography), CLI (Common
Layer Interface), LEAF (Layer Exchange ASCII Format), and LMI
(Layer Manufacturing Interface) [256] were introduced. AM-
specific software programs, such as Clemson’s CIDES (1990) and
Materialise’s Magics (1992) were developed. New generations of
commercial systems offered new and improved features. Quality
improved to the point that Additive Manufacturing technologies
could be used to produce patterns, tooling, and final parts. The
terms ‘Rapid Tooling’, ‘Rapid Casting’, and ‘Rapid Manufacturing’
were created to highlight the ability to use Additive Manufacturing
technologies for production. Cheap, powerful computers helped to
make new generations of AM machines smaller and more
affordable [131]. Advances in solid modeling software made it
easy and inexpensive for students and professionals to design and
model 3D objects. Finally, the Internet made knowledge sharing
easy and supported the development of open-source hardware and
software. This led to the development of the first hobby AM
machines from the RepRap project in 2005.

The late 2000s saw the commoditization of the AM processes
that were commercialized in the 1980s and were a period of
growth for the younger metal-based AM processes. The expiration
of key patents for a number of older AM processes opened the
market to competition. This, combined with a growing AM hobby
community, spurred innovation, leading to a major expansion of
market supply and demand. Today, AM products and services
support a wide range of activities including manufacturing, energy,
transportation, art, architecture, education, hobbies, space explo-
ration, and the military. Wide scale adoption of AM for the direct
manufacture of final parts has occurred in the medical, dental, and
aerospace industries. Meanwhile, commercial hobby printers and
entry-level professional machines have made AM technology
available to the masses.

If the current trends continue, we will soon enter a new stage of
evolution where Additive Manufacturing becomes a design
paradigm in addition to a means of production.

2.2. Digital workflow for Additive Manufacturing

Additive Manufacturing processes have a digital dataflow that
generates the instructions for the AM machine followed by a
physical workflow that transforms the raw materials into final
parts (Fig. 1). The process usually begins with a product idea, a 2D
image such as a photograph, a set of 2D images like those derived
from Computed Tomography (CT) scans, or a physical 3D object
like a prototype or a part for reverse engineering. These are
transformed into digital models (e.g. volume models or facet
models) using solid modeling, metrology, or image reconstruction
software. Next, the data is checked for errors, the errors are
corrected, and support structures are added if needed. This is often
done with AM-specific software such as Magics from Materialise
NV. Finally, the model is sliced or otherwise discretized to create
instructions for the machine. This is often done using machine-
specific software.

New software formats have been developed and standardized
to support AM data preparation and digital workflow. For example,
the AMF format, which has native support for color, materials,
lattices, and constellations, has been standardized and is intended
to replace the STL format. Other formats such as STEP, STEP-NC,
bilities [71] and the development of programmable logic
rollers [130] during the 1960s and 1970s, the development of
jet printing technology in the late 1970s [130], and by the
eased cost and improved capabilities and availability of
puters and CAD/CAM systems in the 1980s [256]. However,
high cost, limited material choices, and low dimensional
racy of these machines limited their industrial application to

d prototyping and model making.
he 1990s and 2000s were a period of growth for AM. New
esses such as electron beam melting (EBM) [22] were
mercialized, existing technologies were improved, and
and 3MF have integrated AM concepts to compete with AM-
specific formats. Kim et al. [174] recently proposed a systems
approach for data flow structuring and decomposition in several
steps, clarifying the need for data generation and transformation
along the AM digital chain.

2.3. Additive Manufacturing processes and physical workflow

The physical workflow begins with one of the seven currently
recognized groups of AM technologies: binder jetting, directed
energy deposition, material extrusion, material jetting, powder
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bed fusion, sheet lamination, and vat polymerization (Fig. 2)
[26,155].

AM processes can be used for the direct production of models,
prototypes, end use parts, and assemblies, as well as fixtures,
patterns, and tooling for indirect production [66,71,155,337]. AM
can be integrated to create hybrid processes [163,166,168,
182,317] or combined with other processes to form longer
multi-stage process chains [149,327,337]. For example, parts
can be printed to near net shape and then post-machined (Fig. 3),

molds can be produced by alternating printing and machin
operations (Fig. 4), features can be printed on top of form
components [14], and components can be embedded wit
printed parts (Figs. 5 and 6).

Each process family has distinct operating principles, prod
tion characteristics, and compatible material types. These tr
affect the cost, quality, and sometimes the color and scale of
parts that can be produced, and therefore can substantially imp
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Fig. 1. Digital and physical workflow from product idea to actual component.

Redrawn from [337].
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Fig. 3. Outboard landing gear rib (24 kg) produced in Ti–6Al–4V by Wire 

Additive Manufacturing (WAAM): CAD model (left, courtesy of the We

Engineering and Laser Processing Centre at Cranfield University) and printed

before machining (right, [352]).

Fig. 4. Injection molding tooling produced by 3-axis Hybrid Layered Manufactu

(Gas Metal Arc Welding plus CNC machining): CAD model (left), near net s

molds (center), and finished molds (right) [317].

Fig. 5. Conformal cooling channels in an injection molding die. The cooling t

were inserted into the substrate mold (left), the tubes were ‘buried’ and the die

completed using a laser-aided metal-based AM process (center), and the final

was post-machined (right).

Adapted from [59].

Fig. 6. Timer circuit with embedded electronic components produced using a hy

stereolithography/direct print (SL/DP) machine [193].
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Fig. 2. Additive Manufacturing process families and materials [155].
design decisions. The consideration of process-specific charac
istics during the design process is even more important when
is combined with other direct manufacturing processes (
machining) and indirect manufacturing processes (e.g. moldin
casting) [43].

2.4. Current AM standards

Working groups for the development of AM-related standa
have been organized by the International Organization 

Standardization (ISO/TC 261) and the American Society for Tes
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Materials (ASTM F42). To date, they have produced standards
ted to terminology, individual processes, chains of processes
dware and software), test procedures, quality parameters,
omer–supplier agreements, and fundamental elements. Re-

 additions address data processing [156] and consider the
vance of and specify variations to existing standards [27,28]
. 7). In 2013, ISO and ASTM defined a common goal to produce
set of global standards including general standards that are
icable to most AM materials, processes, and applications;
gory standards that define the requirements for a material or a
ess category; and specialized standards for specific require-
ts to a material, process, or application [158]. AM standardi-
n efforts are also taking place in Germany (VDI FA 105 and DIN

145-04-01AA), Spain (AEN/CTN 116), France (AFNOR UNM
), Sweden (SIS/TK 563), the US (SAE AMS-AM), and the UK (BSI
/8). The Association of German Engineers published VDI

4 and VDI 3405 as part of this work.
M standards provide a common understanding of the field and
ared lexicon from which to work. This is important for
loping and using AM-related design tools and methodologies.

also a prerequisite for developing design related AM standards.
example, ISO/ASTM DIS 20195 ‘‘Guide for Design for Additive
ufacturing’’ [157] is currently under development.

esign for Additive Manufacturing

he term ‘Design for Additive Manufacturing’ has been used
nsively in the literature [10,19,31,70,74,91,142,150,262,
,335,336], however there have been only a few attempts to
ne it [130,271,272]. This section provides an overview of

manufacturing constraints’’ [168] such as ‘‘user and market needs,
materials, processes, assembly and disassembly methods,’’ main-
tenance requirements, etc. [228]. DfMA can be viewed from three
levels of abstraction. At the first level, DfMA offers concrete tools,
techniques, and guidelines to adapt a design to a given set of
downstream constraints. These are usually process-specific (e.g.
Design for Injection Molding) [46,260], feature-specific (e.g. how
part size, weight, and symmetry affect insertion/assembly time)
[46], or activity-specific (e.g. how to calculate the theoretical
minimum assembly time) [45]. At the next level of abstraction,
DfMA aims to understand and quantify the effect of the design
process on manufacturing (and vice versa). This is needed to
improve the performance of the manufacturing system, the
execution qualities of the product (cost, functionality, customer
satisfaction, etc.), the evolution (through-life) qualities of the
product (safety, reliability, service and repair costs, etc.), and the
long-term potential of the associated business case (e.g. the ability
to respond to unexpected surges in product demand) [20]. In this
context, DfMA is a subset of Design for X [183]. At the highest level,
DfMA explores the relationship between design and manufactur-
ing and its impact on the designer, the design process, and design
practice. In this context, it addresses topics such as material and
process selection, concurrent engineering [231,291], and how to
improve CAD to support DfMA [46].

3.2. The need for Design for Additive Manufacturing

The definition of DfMA above is valid for all processes and
process chains that involve AM. However, in practice the design
knowledge, tools, rules, processes, and methodologies at all three
levels of abstraction will be substantially different for DfAM than
traditional DfMA. For example, AM can create different types of
features and impose different types of constraints than other
manufacturing processes. Therefore, they require different pro-
cess-specific design rules and tools [10,70,74,77,122,130,139,142,
150,261,262,335,336]. At the same time, the freedoms of AM
reduce the need for, and therefore the importance of, designing for
activities such as assembly [149]. AM processes have different
batch sizes, production times, and cost drivers than traditional
processes [29,148,275,276,366] and require different approaches
to metrology and quality control [224,274]. Therefore a new body
of knowledge is required to support DfAM. Finally, the unique
characteristics of AM processes allow for and require different
approaches to the design process and design practice
[31,126,130,138,284]. This includes new approaches to explore
large, complex design spaces [70,271,272,348]; to incorporate
material, mesostructures, and multi-scale design considerations
[130,271,272]; and to overcome the ‘‘cognitive barriers’’ imposed
by past experience and conventional fabrication techniques [284].

The development of DfAM knowledge, tools, rules, processes,
and methodologies has been cited as one of the technical principle
challenges of AM [19]. Insufficient understanding and application
of DfAM is said to be limiting the overall penetration of AM in
industry [122], holding back the use of AM for the production of
end-use parts [10,122], preventing designers from fully benefitting
from AM [91,126], and preventing AM from reaching its full
potential in general [31,74]. Once Design for Additive Manufactur-
ing is well understood, that knowledge must be disseminated to
current and future members of industry. Thus, AM-specific design

Genera l AM Stand ards (ge nera l co ncepts, common requ irements, ge nerally  appli cable) 

Terminology  Processes /  Mat erials  Test  Met hods Design / Data  Format 

 ASTM F 2792  ISO 17296- 2  ISO 17296- 3  ISO 17296- 4 
O / ASTM 5292 1 ASTM  F 2971  ISO / ASTM 5291 5 

ASTM F 3122  ISO / A STM  DIS    
20195 DRAFT 

Raw Mater ials  Process  / Equip men t  Finished Parts 

Materials Category-
Specific 

Process  Category  / Mater ials 
Specific 

Standard Protocols  for 
Round  Robin Testing 

al powders, po lymer 
ders, po lymer resins, 
mics, etc. 

Powder Bed  Fusion, Material 
Extrusion, Directed Ene rgy 
Deposition, etc. 

Mec hanical Te st Metho ds,  
Parts Specification, etc. 

ASTM  F 3049  ASTM  F 3091 /  F3091 M 

Materials-Spec ific 
Standa rds 

Process /Mater ials-Spec ific 
Standa rds 

Applicatio n-Spec ific 
Standa rds 

er ial-Spec ific Size 
cification, Materia l-
cific Ch emica l 
position, Material-

cific Vis cosi ty 
cification, etc . 

Process- Spec ific Perfor mance  
Test Methods, Process-
Spec ific Perf ormance  Test 
Artifacts, System Component 
Test Methods, etc. 

Aero space,  Medi cal, 
Automotive,  etc. 

ASTM  F 2924 
ASTM  F 3001 
ASTM  F 3055 
ASTM  F 3056 

. ASTM and ISO standards for AM.

ted and modified from [158].
sical Design for Manufacturing and Assembly (DfMA), exam-
 the suitability of that definition and framework for AM
ications, and outlines the need for the development of Design
dditive Manufacturing expertise and education.

Design for Manufacturing and Assembly

fMA is the practice of designing and optimizing a product
ther with its production system to reduce development time
cost, and increase performance, quality, and profitability. This
one by ‘‘simultaneously considering design goals and
education [19,122,150] and design standards [19] are also needed.

4. Design opportunities, benefits, and freedoms of AM

This section provides an overview of design opportunities,
benefits, and freedoms associated with Additive Manufacturing.
These have been divided into three levels: the part level with
macro scale complexity, the material level with micro scale
complexity, and the product level with multi-scale complexity.
Production and business level benefits are discussion in Section 6.
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4.1. Design freedoms at the part level with macro scale complexity

Incorporating the material and geometric freedoms of AM into
macro scale parts can provide a variety of aesthetic, functional,
economic, emotional, and ergonomic benefits.

4.1.1. Material choice

AM technologies can process a large range of materials.
Commercial AM machines can process polymers, metals, and
ceramic materials [155]. Sheet lamination processes are compatible
with paper, wood, cork, foam, and rubber [34]. Investment casting
molds and cores have been printed in sand [343] and large
structures have been printed in clay and concrete [171,173]. Re-
search to print Lunar and Martian habitats using locally available
materials such as lunar regolith is also underway [172]. Various AM
processes have been used to print edible items such as chocolate,
sugar, frosting, pasta, spreads, cheese, scallop puree, ground beef,
egg whites, insect powders, and an entire pizza. Much of this work is
motivated by the desire to produce novel shapes, flavors, and
textures; to provide personalized nutrition; to enhance the quality
of life for individuals who have difficulty swallowing; to increase
food supply security; and to improve dining in outer space
[192,315,350]. (Some AM foods must be cooked, baked, or fried
before consumption.) AM has also been used to print biological and
bio-compatible materials such as cells, proteins, synthetic hydro-
gels, biological hydrogels, and bioactive glasses [36]. This work
could ultimately enable additive manufacture of tissues and organs.

4.1.2. Color

Some AM processes can create products in full color (Fig. 8).
This can be done by adding color to the raw materials (e.g. by ink jet
printing on paper or powder), by using different color feedstock for
different parts of the model, or by inducing color change in a single
feedstock (e.g. resin) by in-process activation of pigments
[169,263,318]. Additively manufacturing parts in color can reduce
or eliminate downstream painting and decoration steps during
production and reduce chipping and flaking. In rapid prototyping
and model making, color can be used as a communication tool to
highlight features such as tumors in medical models and to map
analytical data onto objects to make the information easier to
understand and discuss [303,332].

accessories (Fig. 10) and to explore new forms for clothing, sh
purses, and other accessories in the fashion industry (Fig. 11
the past, AM applications that emphasized form were ma
intended for exploration and exhibition. However, additiv
manufactured designs are becoming increasingly available
purchase and use.

4.1.4. Internal freeform geometry for functionality and performa

Additive Manufacturing enables the creation of comp
internal features to increase functionality and improve per
mance. For example, AM has been used to create integrated
ducts [41,101,209,311] and wiring conduits [209] for indust
robots; 3D flexures for integrated actuators and universal gripp
[134]; complex internal pathways for acoustic damping dev
[285]; optimized fluid channels (Fig. 12); and internal micro va

Fig. 8. AM objects in full color: frog and toad models printed using paper-based

selective deposition lamination on an Mcor IRIS and colored to appear as aged

copper (top left) [215]; bicycle seat colored to show simulated pressure distribution

from a rider printed on an Objet Connex3 (top right) [294]; plates showing a

Fig. 9. Jewelry produced with AM: award winning Tiger Ring from OG-Art – pa

printed in wax on a Solidscape machine (via [34]) (left); Kinetic Ring from Vu

Jewelry (available for purchase) (center, courtesy of Vulcan Jewelery); custom R

inspired ring from Uptown Diamond and Jewelry – pattern printed in wax on 

Systems ProJet machine [4] (right).

Fig. 10. Home furnishings produced with AM: the Monarch Stool from Fu

Factories (left, via [90]); Quin.Mgx Pendant Light from Bathsheba Grossman pri

in polyamide using SLS (available for purchase) (center, courtesy of Baths

Sculpture LLC); and decorative bowl by Carl Bass printed in stainless steel

bronze on an ExOne metal binder jet printer (available for download) (right, [1

Fig. 11. AM in the fashion industry: dress from Iris van Herpen’s Voltage h

couture collection produced using laser sintering (left [208]); one-of-a-kind p

from Kipling produced using laser sintering (center, [210]); and Mutatio shoe

Francis Bitonti produced using SLS and then gold plated (available for purch

(right, courtesy of Francis Bitonti Studio).
9 � 9 � 9 set of color options from a ZCorp ZPrinter 650 before and after brushing

(lower left) [92]; and a surgical planning model of a human liver printed on an Objet

Connex3 in clear and colored resins [303].

Fig. 12. Solid model of a water redistribution manifold redesigned for AM: original

design made in PEEK with perpendicular drilled channels (left) and optimized

version printed in titanium (right). The redesign reduced turbulence induced

vibration forces by 90%. Images courtesy of ASML.
4.1.3. Freeform geometry for art and aesthetics

AM’s ability to create unique, intriguing, and appealing
geometric forms has led to its adoption by artists, artisans, and
industrial designers. For example, AM is used in the jewelry
industry for direct production [104,218] and to produce patterns
for investment casting [94,97] (Fig. 9). It is also being used to enrich
interior design with high-end furniture, lighting fixtures, and
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cular surgical devices [69]. However, one of the most widely
ied applications is conformal cooling. Conformal cooling
nels follow the external geometry to provide more effective

consistent heat transfer (Fig. 13). Early research
,267,280,359] showed that conformal cooling in injection

ding tooling improves process efficiency and quality. Industrial
tion molding case studies have confirmed these benefits with
rts of reduced lead time, more uniform temperature distribu-
s, reduced cycle times, improved quality, reduced reject rates,
ced corrosion, longer maintenance intervals, and overall cost

ngs [98,108,112].
onformal cooling is not limited to tooling. Fig. 14 shows two
ions of a thermal conditioning ring from the semiconductor
stry. The original design has circular cooling channels milled

 the outer circumference of the ring and enclosed by a welded
r plate. The redesigned version was optimized for perfor-
ce by incorporating additively manufactured conformal
ing channels on the top and side surfaces of the ring. The
mal behavior of the two rings is shown in Fig. 15. The redesign
roved temperature uniformity across the top surface of the
 by more than 6�, reducing the temperature range across
top face from 13.8 milli-Kelvin (mK) to 2.3 mK and the
perature range over the thickness of the ring from 22 mK to

K.
ecent studies have focused on new applications of conformal
ing (e.g. hot sheet metal forming [240]), strategies for
eased performance (e.g. profiled conformal cooling channels
), and indirect and hybrid AM for more efficient and cost
tive production (e.g. using AM to produce wax patterns for

rect tooling [17], using machining for the less complex
etries followed by direct metal tooling for the part of the

d with the cooling channels [121], and using direct metal
ing processes to embed tubing inside near net shape molds

 (Fig. 5)).

4.1.5. Production of macro-structure topology optimized objects for

reduced material and energy use

AM can also produce macro-structure topology optimized
objects. Topology optimization is a numerical approach that
identifies where material should be placed in a given domain to
achieve a desired functionality (e.g. stiffness) for a given set of
loads and constraints while optimizing for qualities such as
minimal material usage/weight or uniform stress distribution.
Macro structure topology optimization assumes that the structure
is composed of a single homogeneous material and that material is
either present or absent in each part of the design domain.
Although the optimization is often only in the structural domain,
examples of multi-physics topology optimization (e.g. with
thermal and structural degrees of freedom) can be found in the
literature [119,135]. Macro structure topology optimization is
especially useful in the aerospace and automotive industries [273]
where weight reduction can lead to substantial energy savings
over the usable life of the product. Aerospace related examples can
be found in [23,49,105,241,329] (Fig. 16). Macro structure topology
optimization has also been used to improve biomedical implants
[61], investment casting processes [135], and more.

4.1.6. Cost effective production of custom-fit and mass customized

products

AM’s direct digital workflow and freeform geometry can be
combined to fabricate objects with any degree of customization
(Fig. 17). This includes products that can be custom-fit to an
existing person or object, products that can be personalized based
on individual or group preferences, and mass-customized products
that can be produced with infinite variations.

In the medical and dental industries, AM is being used to
produce a wide variety of personalized and bespoke products
including hearing aids [93,214]; dental crowns, implants, and
dentures [96,100,102,345]; biomedical implants for hard and soft
tissues [1,8,9,47,99,103,107,111,330] (Fig. 18); customized casts,
splints, and orthotics [242,249,251] (Fig. 19); and prostheses
[11,201,306]. AM is also used to produce patient-specific models to

3. Schematic of conventional cooling channel (left) and conformal cooling

nel (right).

ted from [17].

4. Thermal conditioning ring with milled cooling channels enclosed by a

ed cover (left) and with additively manufactured conformal cooling channels

t). Courtesy of ASML. Infini te 

Perso nalize d
product

Bespoke
product

Fig. 16. Brackets before and after topology optimization: Airbus A320 nacelle hinge

brackets as-designed for cast steel and optimized for titanium (left) and Airbus

A380 brackets as designed and optimized for stainless steel (right) [105]. The

optimized brackets were produced by direct metal laser sintering (DMLS).
5. Temperature plots from finite element models of the milled conditioning

(left) and the additively manufactured conditioning ring (right). Shown with

ame temperature scale. Courtesy of ASML.

None  

Number of
choices 
ava ilable

“One size fits 
all” product

Modulariza tion

None  AllFew 

Number of cust omiza ble features 

Fig. 17. Types of customization.

Redrawn from [59].
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facilitate surgical planning [216,299,302,307,341] and surgical
guides to improve accuracy and efficiency [95,301,305,309,310]
(Fig. 20). For example, in orthopedic surgery, cutting guides are
used to correctly position an implant for the individual patient’s
anatomy. This improves the anatomical alignment of the implant
and enhances the efficiency of the surgical procedure. AM surgical
guides have the additional benefits of being lightweight (making
them easier to handle during surgery) and disposable (safer).

AM is being used to produce custom-fit packaging and shipping
materials. For example, the Pack & Strat1 process from CIRTES in
France uses a sheet lamination approach to produce custom-fit low
cost ‘direct digital packaging’ for fragile and high-value objects
[34]. The process begins either with a CAD model or a 3D scan of
the object to be packaged. The model is oriented and a bounding
box is created around the model. The model is subtracted from the
outer volume and the remaining volume is sliced. Next, the slices
are arranged in sheets and the tool path is generated. Finally, the
physical slices are cut from sheet stock, assembled around the
object, bound, and placed in the shipping container (Fig. 21). This

unique. Finally, in the entertainment industry, AM is being use
produce mass customized models for stop motion anima
[2,295].

4.2. Design freedoms at the material level and the micro scale

AM allows designers to modify and combine materials, mic
and meso-structures to create new properties, forms, 

functionality.

4.2.1. Custom metallurgy, microstructure, and material composi

Because AM simultaneously creates an object’s material 

geometry, it can be used to create custom alloys and compo
materials. For example, it is possible to create custom mixe
powders and binders [353], to alternate feedstock mater
[81,357], and to embed fibers [33,65,67] in order to create in 

composites, increase mechanical strength, modify the ther
expansion coefficient [67], and obtain electrically tunea
stiffness [281]. Similarly, it is possible to control the poros
microstructure, and material properties of metal, polymer, 

ceramic parts through the choice of materials, process paramet
and build orientation [75,292,353,362,365].

Postprocessing steps after each layer can also be used to con
material properties. For example, Selective Laser Erosion and
laser re-melting after each layer of a selective laser melting (S
process increases part density and reduces surface roughn
[362]. Cold work by high-pressure interpass rolling of Ti–6Al

Fig. 19. Customized laser sintered foot orthoses from Materialise’s A-Footprint

project (left) and customized selective laser sintered wrist splint produced by

Fraunhofer IPA. Images via [251].

Fig. 18. Titanium implants for the skull (left, [103]) and pelvis (right, [107])

produced using an EOSINT M 280.

Fig. 20. Patient-specific drilling guides for dental implants produced using an Objet

Eden260TM (left, [310]) and cutting guide for knee arthroplasty (right, Courtesy of

Aesculap AG).

Fig. 21. Schematic of the Pack & Strat1 process.

Adapted from [34].

Fig. 22. Examples of products with custom-fit packaging: metal indus

component with cardboard packaging (left) and wooden sculpture ‘‘Océane

Dominique Pollès with alternating polystyrene and foam layers (right) [34].
re-
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ical
process is compatible with many types of material including
cardboard, wood, cork, polystyrene, polypropylene, and foam. It
has been used to package industrial components, machine tools,
artwork, crystal, glass, prototypes, models, and more (Fig. 22).

AM is being used to produce custom-fit consumer products
such as running shoes [110,206] and ear buds [308]; personalized
products such as eye glasses with customized messages [213]; and
bespoke objects such as 3D busts created from photographs or 3D
scans [217,219,342]. Artists like Lionel Theodore Dean from
FutureFactories.com are using AM to mass customize furniture,
lighting fixtures, and other home furniture so each piece sold is
parts produced by SLM results in a refined, equiaxed, and textu
free microstructure [202,203] with mechanical properties that
higher than the forged material (ultimate tensile strength as h
as 1078 MPa, and ductility up to 13%) [202]. Similarly, h
pressure interpass rolling of aluminum alloys during Wire +
Additive Manufacturing (WAAM) reduces porosity [136] 

increases strength due to finer sub-grains and fewer m
orientations [137]. Finally, postprocessing of finished parts 

control and improve material properties. For example, h
treatment alters the grain structure and increases the mechan
strength of metal parts [164,349,357] (Fig. 23).
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. Custom surfaces, textures, and porosity for improved

tionality

M processes with micro or nano scale resolution can create
om surfaces, textures, and porosities. In the consumer product
stry, AM has been used to produce prototype luggage with a

ured shell [212]. However, the most important application
y is the improved fixation and osseointegration of biomedical
lants compared to porous coatings [78]. For example, AM
us metal acetabular augments are now widely used to address

y defects in patients undergoing revision total hip arthroplasty
,321,351] (Fig. 24 left). Porous acetabular cups offer similar
fits [78] (Fig. 24 right). Implants with more complex surface

ctures for improved primary fixation are also being developed
Fig. 25).

. Lattices, trusses, and cellular materials for custom material

erties and biofunctionality

M can create three-dimensional lattices and trusses with
ific mechanical, thermal, optical, and biological properties. For
ple, AM lattices can be used to produce high stiffness low

ht structures and photonic crystals (Fig. 26). Lattices and
ses can be incorporated into sandwich structures [361] or used

to line external surfaces for increased strength [246]. Furthermore,
enclosed lattices can be used as internal support for flexible
structures such as inflatable (deployable) wings for unmanned
aerial vehicles (UAVs) [197,198]. In structural engineering, the
orientation and diameter of the individual struts within a truss or
lattice can be optimized to improve stress distribution, strength,
and manufacturability [268,323,324] (Fig. 27).

Cellular materials and structures are created by choosing the
shape and volume fraction of a unit cell (Fig. 28) and building up a
volume based on the unit cell (Fig. 29). Examples of unit cells are
shown in [12,16,128,140,348]. The size, type, orientation, and
boundary conditions of the periodic unit cell usually [12] (but not
always [349]) affect the porosity, mechanical properties, and the
deformation and failure mechanisms of the resulting materials.
Therefore, the structure of the unit cell can be chosen or designed
to produce specific material properties. For example, AM has been
used to produce ultra light and stiff structures [374], auxetic
structures [51,143,282] and the molds for the unit cells for auxetic
structures [32], and could be used to produce the chiral
honeycomb auxetic structures proposed by [177]. It has also been
used to produce unit cells for acoustic materials with a negative
refraction index [358]. In biomedical engineering, lattices can be
optimized for cell attachment and growth; transport of nutrients
and metabolic waste; biocompatibility, bioresorbability, and
degradation; and biomechanical properties [85,151,250]. Examples
of additively manufactured lattices in biomedical engineering can
be found in [24,128,319]. The applicability of designer cellular
materials and lattices for biomedical engineering, especially for the
design and fabrication of orthopedic implants and for bone and
tissue engineering, is discussed in [21,24,78,88,128,151].

Various optimization methods exist for the design of periodic
meso-scale cellular structures. Topology optimization is often
used, but the designer has to consider issues of homogenization
(the individual cell must be much smaller than the design space in
all directions), and of periodicity (the material inside the cell must

3. SEM micrographs of etched surfaces showing the different grain structures

wrought (a) and SLM TiAl6V4 (b) with post heat treatment at 700 8C (c), 900 8C
r hot isostatic pressing (e).

ted from [164].

4. Porous acetabular augment for hip revision arthroplasty (left, courtesy of

lap AG) and porous acetabular cup produced by EBM (right, [78]).

25. OsteoAnchorTM implant with micro scale features to improve primary

on produced by DMLS [141].

Fig. 27. Beams with lattice structures produced by SLM: periodic structure (a, left),

flux of force adapted structure (b, center), and flux of force adapted structure with

straightened struts (c, right) [324].

Fig. 28. Cell structures at 50% volume fraction (top) and an example cell with

varying volume fractions (i.e. hole diameters) (bottom) [348].
6. AM lattices: octet truss lattice (left, [31]) and square lattice (center, [31])

ced using SLM, and photonic crystal with a micro woodpile structure made

 two-photon polymerization (right, [247]).

Fig. 29. Schoen Gyroid as a unit cell (left), volume generated from Schoen Gyroid

unit cells (center left), Schoen Gyroid cellular structure with a 15% volume fraction

and unit cell size of 2 mm (center right), and with a unit cell size of 8 mm (right).

Both samples produced by SLM [140].
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be such that it corresponds to the material in the adjoining cell).
Manufacturing constraints, such as minimum wall thickness and
minimum feature size, must also be considered. Although uniform
lattices are common, there is no limit to the number of cell types
and volume fractions that can be used. For example, structures can
be topology optimized using different cell types and volume
fractions [49,348]. Cellular lattices can also have spatial variations
[120,279] (Fig. 30).

4.2.4. Multi-material parts and products

Some AM processes can produce parts with different materials
or material properties in different parts of the object. This is
accomplished by using different feedstock or binders for different
parts of the model. Multi-material AM has been used to fabricate
wrist splints [251,252] (Fig. 31), compliant mechanisms [223], art
[248], integrated electronics [333], and more. Multi-material AM
can be used to produce multi-material topology optimized
structures like those described in [123,145,266,338,346]. It could
also be used to produce custom laminates and composites. For a
review on multi-material AM, see [333].

4.2.5. Functionally graded materials and objects

Some AM processes can vary the material percentage composi-
tion in different parts of the model to create functionally graded
objects. The simplest case of this is to ‘blend’ a single material with
void space to create variable porosity within a single body.
However, most cases involve variable mixes of metals within an
alloy system (Figs. 32 and 33), variable mixes of polymers (e.g.
Stratasys Connex systems), or variable mixes of binders. While
some AM processes such as the laser engineered net shaping

(LENS) process and direct metal deposition (DMD) can prod
continuous variations in a material, most others can only prod
discrete variations within a layer or at layer transitions. Fo
review of functionally graded materials, see [290].

4.2.6. Metamaterials

Finally, AM could be used for on-demand production
metamaterials. Metamaterials are ordered composites that h
material properties not usually found in nature [80,289]. Traditio
metamaterials have a structured periodic lattice that interacts w
an applied wave to produce unusual and useful properties suc
artificial magnetism, negative refraction, near-field focusing, 

more [52,289]. Today, most optical and electromagnetic meta
terials are produced using microfabrication techniques. Howe
‘mechanical metamaterials’ whose properties are determined o
by their structure (i.e. cellular materials) are being produced us
AM in research settings (see Section 4.2.3).

4.3. Design freedoms and opportunities at the product level

AM can provide additional design freedoms and opportuni
at the product level including part consolidation, embedded pa
and the direct production of assemblies.

4.3.1. Part consolidation

AM allows designers to consolidate the parts of an exis
assembly into a single printable object. This eliminates assem
time and reduces inventory costs. It can also increase functiona
and improve performance. For example, GE Aviation redesig
the fuel nozzles for its LEAP engines for production with metal 

reducing the part count from 18 to 1. This also reduced the mas
25%, increased the durability by 500%, and improved efficiency
including features to reduce carbon build-up [355]. Other ex
ples of part consolidation in the literature include a redesig
aircraft duct (reducing the part count from 16 to 1) [1
redesigned tractor control pod casing (reducing the part co
from 6 to 1) [59], redesigned packaging for a medical inje
system (reducing the part count from 15 to 7) [298], 

redesigned robot grippers with flexible elements (reducing 

part count from at least 9 to 1) [41].

4.3.2. Embedded objects and electronics

AM allows objects such as ‘‘small metal parts (bolts, n
bushings)’’ [130], tubes for cooling channels [84], and sh
memory alloys for actuated hinges [83] to be embedded in prin
parts. In addition, electrical components [146,193,195,253] (F
6 and 34), conductive tracks [146,195,229,253,255], motors [1

Fig. 31. Customized splint with multiple materials fabricated in a single build using

an Objet Connex [252].

Fig. 33. Cross section of a functionally graded flywheel as designed (right) an

produced (left). The white spots are cavities that resulted from insufficient me

of the powder mix [233].

Fig. 30. Spatially variant self-collimating lattice produced using FDM (left) and a

plot of the unit cell orientation over the part (right) [279].
Fig. 32. Functionally graded flywheel (outer radius 0.2 m) composed of

320 stainless steel and copper coated nickel produced using the LENS process [233].

Fig. 34. Examples of AM objects with integrated electronics produced using a

combination of stereolithography and direct print technologies [193] (left and

center) [195] (right).
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eries [200,316], and sensors [199,253,288] can be embedded or
ted in situ to print complete products and mechatronic devices
. 34). The first commercial 3D printer with the ability to print

uctive tracks and embed objects is scheduled to ship in 2016
]. For a review of sensor integration in AM, see [186].

. Direct production of assemblies

inally, AM can directly produce assemblies with moving or
able parts such as crank and slider mechanisms [68], gears [56],

ts [55,56,68] (Fig. 35), and hinges [29]. It can also produce
continuous interlinked structures’’ [79] (textiles) such as chain
l [44] and armor [162] (Fig. 36). AM textiles can offer ‘‘greater
ls of out-of-plane and shear flexibility’’ than traditional textiles
can also be custom fit [79]. However, assemblies and interlinked
ctures require a clearance between the individual bodies during
ication. They also require any remaining interstitial material

der, resin, etc.) to be removed when completed.

Discussion and limitations

lthough all of the design freedoms discussed in Section 4.1
ugh 4.3 exist today, much of the work that was shown is still in
proof of concept stage. Research and development are needed
oth the design and manufacturing side to bring all of these

gn benefits to the market.

onstraints and quality considerations in Design for AM

hile AM seems to have unlimited potential, it does not have
mited capabilities. Designers must take into account many
s of constraints, including those associated with CAD and the

tization of their ideas; the digital and physical discretization of
parts to be produced; the characteristics of AM processes and
current capabilities of AM machines; the impact of AM
essing on material properties and the requirements for
essing materials using various AM techniques; new challenges
requirements associated with metrology and quality control;
ugh-life requirements and considerations such as mainte-

generates machine ‘tool’ paths, digital masks, and other instruc-
tions to produce it. This imposes the first major constraint:
designers must create comprehensive and complete digital models
of the final product. Since there will be little or no human
intervention in the translation of the digital model to the physical
product, AM CAD models must be higher quality and contain more
complete information than has been traditionally needed for other
process technology.

Producing digital models for AM is challenging because most
commercially available CAD programs are parametric NURBS
systems. These are well suited to modeling geometries associated
with traditional manufacturing processes (extrusions, revolves,
lofts, etc.) but often inadequate for the more organic shapes [138]
and complex, multi-scale geometries associated with AM. In
addition, traditional CAD systems cannot generate multi-scale
cellular and lattice structures, model or denote color, specify the
material to use, indicate material variation within an object, or
specify tolerances. To overcome these limitations, AM CAD
systems require an interface that can develop complex shapes
and structures, and a data structure that can store their properties.

Two common methods to overcome some of the bulk geometric
limitations of legacy CAD systems are haptic modeling and reverse
engineering. Haptic modeling is a virtual sculpting method that
uses a force-feedback hand-held tool to interact with a 3D CAD
model. It gives the user the sense that they are physically touching
‘‘virtual clay’’ [364] and therefore is much better suited to creating
freeform shapes [57]. An alternative to developing the organic
shape ex nihil is to start the modeling process by 3D scanning an
existing physical object. This is particularly well suited for the
development of models based on anatomical data [18] but it can
also be used on hand-crafted models in clay, foam, or other
materials. Next, the raw scanned data is refined. Then the shape
can be developed further using a variety of digital tools. From this
point on, the geometry is usually in the form of triangulated data
rather than geometric primitives or NURBS surfaces. Regardless of
how they are generated, 3D CAD models often need additional
modifications and data preparation before they can be converted
into machine instructions.

Options to model cellular and lattice materials and structures
are more limited. Past solutions have involved complete solid
models of truss structures using geometric modeling kernels such
as ACIS [347], algorithms [24,88,140], and unit cell libraries
[16,70,246] (Fig. 37).

Researchers are working to overcome CAD and digitalization
constraints by developing new data formats that can handle
material related information. (For a review, see [333].) Multi-
material capability has also been built into the AMF format.
However, there remain many challenges when designing for
heterogeneity taking into account the shape and material
distribution in order to meet the functionality, requirements, or
constraints of the artifact. Issues include what granularity to
consider during the design exercise, how to handle material
variation analytically, and if the resulting design can be
satisfactorily manufactured using a given AM process. The
coupling between the design, representation, analysis, optimiza-
tion, and manufacture still needs to be resolved.

. 35. Articulated joints produced using selective laser sintering (SLS) [55].

36. Additively manufactured chain mail (left, [44]) and laser sintered

lated stab-resistant armor (right, [162]).
Fig. 37. Example of a unit cell library [246].
e, repair and recycling; and external factors including the
latory environment. While many of these constraints also
y to other types of manufacturing technologies, the bottom up
re of AM means they can have very different implications for
gns, the design process, and the intermediate artifacts that are
ted to support production.

Constraints associated with CAD and digitalization

oday, AM is a highly automated direct digital production
nique that discretizes a digital model of the artifact and
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5.2. Constraints associated with discretization and directionality and

the need for support and an appropriate build orientation

As noted in Section 2, AM produces physical objects piece-by-
piece, line-by-line, surface-by-surface, or layer-by-layer. This has
several major implications for part quality and consistency.

5.2.1. The impact of discretization and orientation on surface

roughness and material properties

The boundaries between the pieces, lines, surfaces, or layers of
AM parts are rarely, if ever, seamless. This adds a characteristic
roughness at the length scales associated with the discretization
(Figs. 38–40). Since the characteristic lengths of the raw material and
process parameters such as layer height are often at different length
scales, the surface roughness is also often multi-scale [35,314]. The
boundary between newly created and existing material can act as an
interface where cracks and other types of failure can initiate. Since
the discretization in modern AM processes is rarely isotropic, the
surface roughness and resulting material properties [113,268,274]
are also usually anisotropic. One common method to address these
anisotropies is to modify the part [25,118,328] or assembly [232]
orientation to minimize their impact. Other options include
finishing operations after each layer [362] (Fig. 41), finishing
operations such as chemical [35,254] (Fig. 40) or mechanical
polishing, or post machining after the build is complete.

5.2.2. The need for support structures during production

Additively manufactured artifacts go through a large but fi
number of states during the printing process. Each state mus
able to resist the forces that are applied to it, includ
gravitational body loads, external forces applied by the prin
and internal forces from thermal and residual stresses. While 

is also true for subtractive processes like machining, machi
parts are usually in their strongest state at the beginning of
process and in their weakest state at the end. In contrast, AM p
are usually strongest when complete. Designers typically co
pensate for these mechanical effects by orienting the par
maximize its strength during the build, by adding supp
structures to the part, or by designing the part to be s
supporting throughout the printing process. All of these strate
can increase the cost and time of production. For example, Le
et al. [185] produced topology optimized cantilever beams w
and without support structures using FDM (Figs. 42 and 43). 

optimized beam without support required 1.6 hours to print 

consumed 47.8 cm3 of build material but did not print successfu
The optimized beam with columnar support required 5.7 hour
print and consumed 47.8 cm3 of build material plus 41.9 cm
support material. The self-supporting beam required 2.6 hour
print and consumed 54.9 cm3 of build material.

Support strategies are always process specific. In so
processes, the raw material (e.g. powder or resin) acts as a nat
support. Some processes require a sacrificial build plate and
support structures to anchor the part to a build plate. In th
cases, support cannot be eliminated entirely. In metal 

processes, the support acts as a pathway for heat conduct
Thus, support is often needed to counter the effects of ther
residual stresses and reduce heat related failures, even if the pa
mechanically self-supporting. In these cases, the support mus
designed to fulfill both the mechanical and thermal requireme
[73,160].

Designers must also consider if and how the support wil
removed and the impact removing it will have on the final p

Fig. 39. EBM octet-truss unit cell (left), 3D reconstruction of a 1 mm strut from X-

ray tomography (center), and an isometric view of the strut showing the diameter

variation by the inscribed and circumscribed diameters (right). Adapted from

[314]. Note that the strut exhibits surface roughness at length scales associated

with the layering and with the powder.

Fig. 41. Cross section of a surface created using SLM only (left) and SLM plus lase

melting (right).

Adapted from [362].

Fig. 42. Topology optimized cantilever beam successfully built with support 

and redesigned to be self-supporting (right). Arrows indicate where build fai

occur if no support strategy is implemented.

Adapted from [185].

Fig. 38. Benchmark showing the surface roughness resulting for SLM parts with

different build angles. Courtesy of ASML.
Fig. 40. Surface roughness of FDM parts deposited at 08 before (top) and after

(bottom) chemical vapor polishing [50].

Fig. 43. Closeup of build support strategies: failed build with no support (left),

successful build with support (center), and successful build of self-supporting

structure (right).

Adapted from [185].
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ity. For example, in self-supporting processes, the supporting
erial can become trapped in internal voids and may have to be
oved from blind holes. In addition, removing the anchoring and
ort material and other postprocessing steps add risk to the

 and can scar or damage the part [327]. Therefore, the choice of
ess and the anchoring and support strategy can affect the
ity of a part even after the fabrication phase of production has
hed.

. Reducing process constraints to create new opportunities

ver time, process characteristics will relax and machine
bilities will be extended, creating new opportunities and
ling new DfAM strategies. For example, part orientation, once
en, is fixed in most AM processes. However, the possibility to
ge the part orientation in-process does exist for some AM

ilies. Increasing the orientation degrees of freedom in space
time increases the possibilities for controlling and therefore

mizing orientation-specific qualities such as surface roughness
material properties. Similarly, it increases the probability of
g able to specify a build order of operations that will result in a
supporting structure and therefore eliminate the need for
orts.
i-directional deposition enables the exploitation of symmetry
e deposited volume. For example, the build plate can be placed
g a line of symmetry in the part (Figs. 3 and 44) or two parts
be built back-to-back (Fig. 45). If thermal-based processes
sit alternate layers in opposite directions, the two halves will

 identical but opposite residual stress states [352], balancing
component stress and reducing or eliminating distortion. This
raightforward when the substrate divides the part in two equal
mes; otherwise redesign of the part might be required. If parts
uilt back-to-back, the cost and waste associated with buying,
aring, and removing the sacrificial built plate is reduced.
ulti-directional deposition can be adopted to minimize non-

e-adding time. For example, WAAM deposition must be
ormed on the underlying material at a fixed temperature to
re consistent deposition conditions. This can result in long
hine idle times during cooling. However, if a layer can cool
le another is being deposited on the opposite side, the only
-value-adding activity is the part rotation. Finally, layers can be
sited out-of-position [165]. For example, two deposition
s can work simultaneously on opposite sides of a vertical

ting plate. This doubles the deposition rate and still results in
 distortion. It does not help heat management because the two
mes are being deposited at the same time, but this might not
n issue for large (multi-meter) parts. These considerations
ld be taken into account when defining the design and

production strategy. Otherwise, they may result in costly redesign
later in the product development process.

5.2.4. Discussion

These issues are tightly coupled. It is rarely possible to
simultaneously optimize the part orientation to reduce material
usage and production cost, improve surface and overall build
quality, control the material properties, and eliminate the need for
support. To balance these considerations, researchers have used
genetic algorithms [54,60,205,257], swarm intelligence [127],
multi-objective optimization [82,245], and multi-attribute deci-
sion making processes [368,369,371,372] to identify the most
optimal orientation for a given part. In addition, discretization and
directionality are strongly tied to the characteristics of the AM
process and the capabilities of the specific machine used. Thus,
build orientation and support strategies cannot be developed
independently from the process, machine, and process parameters.

5.3. Constraints due to process characteristics and machine

capabilities

Every additively manufactured part is affected by the character-
istics of its process family and the capabilities of the specific
machine(s) used. Process- specific characteristics include the
material deposition method, the recoating method (if any), and
the bonding principle. These determine the types (polymer, metal,
etc.) and nature (e.g. powder shape and size) of raw materials that
can be processed; the resulting material properties and character-
istics; the anchoring and support requirements, options, and
strategies; if material can become entrapped in internal voids and
blind holes; and what postprocessing procedures can or must be
performed. These are constant for all machines of a given type and
are different for each class of AM process listed in Fig. 2. Machine-
specific capabilities and requirements include the input and data file
requirements and options; the minimum build resolution (usually in
x, y, and z) and the other resolutions that can be chosen; the
maximum build dimensions (usually in x, y, and z); the available and
compatible materials that can be used; the process parameters that
can be varied and the options for varying them; and the
postprocessing parameters that can be varied and the options for
varying them. These are rarely fundamental limitations and can
often be overcome by buying or building a different machine.

Together, the process-specific characteristics, the machine-
specific constraints, the choice of material(s), and in some cases the
support strategy place limitations on the parts that can be built and
define the qualities and characteristics of the parts. For example,
they determine the warpage, shrinkage, accuracy, and precision of
the part; the dimensional stability of the part; the surface
roughness of the part in x, y, and z; the minimum feature size in
x, y, and z; the minimum spacing between features; the maximum
aspect ratio of a feature; and the unsupported and supported
feature shapes and sizes that can be produced. Given these
constraints, designers must choose an AM process that can
produce the specified part in the specified material with the
required quality, choose a non-AM process or combination of AM
and traditional processes that have the required capabilities, or
modify the design and its production strategy to compensate for
the constraints that are imposed by AM.

4. Examples of unidirectional (far right) and bi-directional build orientations

 the three planes of symmetry for a wing rib. Based on [116]. Images courtesy

e Welding Engineering and Laser Processing Centre at Cranfield University.
5. Ti–6Al–4V wing spars (1.2 m long) built back-to-back on a sacrificial build

 for BAE Systems [352]: side view show one wing spar (left) and top view

ing both wing spars (right).
5.3.1. AM design guides for general material- and process- specific

considerations and constraints

A number of AM design guides have been published to outline
process- and machine-specific constraints and considerations. For
example, Materialise published 19 design guides for a variety of
materials [207]. Each guide provides a set of ‘design specifications’
that include minimum wall thickness, minimum detail size,
expected accuracy, maximum part size, clearance, and if inter-
locking or enclosed parts are possible. These are followed by a set
of ‘basic rules, tips, and tricks’ that are material and process
specific. Stratasys published three guides that address DMLS [296],
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FDM [300], and laser sintering [304]. These are also process specific
with little overlap in content. Shapeways has published design
guidelines for 16 materials [286]. Each guide includes the
minimum and maximum bounding box, minimum supported
and unsupported wall thickness and wire size, minimum
embossed and engraved detail, minimum escape hole for
entrapped material, if enclosed and interlocking parts are possible,
if multiple parts per file is possible, the expected accuracy, and the
expected look and feel of the material. Additional material-specific
information such as design tips and information about the
handling and care of the final parts is also included. Finally, 3D
systems published two design guides that focus on application-
specific considerations for brass [3] and plastic [5] SLS components
that include features such as internal channels, cages, assemblies,
interlocking/woven parts, springs, hinges, snap fits, and threads.

In the academic literature, Adam and Zimmer [10] presented a
catalog of design rules for laser sintering, laser melting, and FDM
that address geometric constraints such as sharp edges, element
transitions, unsupported features, and feature spacing. Additional
process-specific design rules have been proposed for FDM [322],
SLM [325], EBM [336] and WAAM [220–222].

5.3.2. AM benchmarks for material- and machine-specific

considerations and constraints

While design rules and guidelines can provide a useful starting
point, they do not provide information about individual machines
and local capabilities. When more detailed information is needed
to support design, benchmarks can be used to study and compare
AM processes, parameters, and production strategies. Early AM
benchmarks were used for process optimization, comparison, and
selection. They were relatively large and contained features that
were easily characterized by CMMs [53,238,239]. Over time, AM
benchmarks gained more ‘real’ features (holes, bosses, towers,
angles, notches, thin walls, fine features, freeform structures, etc.
[238]) that could be used to develop local rules for DfAM (Fig. 46).
Benchmarks have also become more specific over time, focusing on
design considerations such as surface roughness (Fig. 38), over-
hangs and support structures (Fig. 47), and cellular materials

(Fig. 48). Finally, benchmarks, such as Proto Labs’ torus design
[265], are starting to be offered by AM service providers.

5.4. Constraints associated with material properties and process

In many cases, raw materials can be used in AM proce
without modification. However, some materials must be adap
before they can be used. For example, laser sintering gold requ
a change in the alloy to prevent the raw material from evapora
[104]. Similarly, the proportion of ingredients in additiv
manufactured food affects properties such as dimensional stab
[192], requiring some recipes to be optimized for AM. In addit
AM processing can change the material properties of the fi
parts. Although this was presented as a design freedom in Sec
4.2.1, it is also a design constraint. For example, Ti–6Al–4V
parts produced using DMLS have a higher tensile strength an
lower breaking elongation than the bulk material. This
undesirable when producing medical implants. A comm
countermeasure is to use postprocessing treatments to achi
the desired mechanical properties. For example, post heat trea
Ti–6Al–4V ELI at 800 8C for 2 hours leads to a significa
improved fracture elongation compared to the as-built condi
[109] (Table 1). Finally, the material properties can be influen
by the proportion of recycled raw material used and by 

recycling process. Thus the cost and waste associated with 

must be weighed against any potential degradation in quality

5.5. Constraints associated with metrology and quality control

While the unique capabilities of AM present great opportuni
at the beginning of the design process, they create m
challenges for metrology and quality control after product
These challenges are related to the verification of mater

Fig. 46. AM benchmarks with design related features from [239] (top left), [196]

(top right), [180] (bottom left), [63] (bottom center), and [363] (bottom right).

Adapted from [239,363].

Fig. 48. Benchmarks to investigate the design of FDM porous structures [2

Table 1
Mechanical properties of Ti–6Al–4V ELI used for medical implants: requirem

according ASTM F136 for conventional bulk material and ASTM F3001 for AM

material compared to the typical mechanical properties of DMLS processed sam

in the as-built and heat treated conditions [109].

Bulk material

ASTM F 136

AM bulk

material

ASTM F

3001-14

Typical

DMLS

as-built

(XY build

direction)

Typical DM

heat treate

(XY build

direction)

Tensile strength

(N/mm2)

Min. 860 Min. 860 1260 � 40 1075 � 30

Yield strength

(N/mm2)

Min. 795 Min. 795 1125 � 65 1000 � 40

Breaking

elongation (%)

Min. 10 Min. 10 7 � 3 13 � 3
and
ects
tics,
nge

 In
me

tion
rial

ted
ater

Fig. 47. Test parts to investigate the design of overhangs (left, [225] adapted from

[264]) and support structures (right, [264]).
geometries, and surfaces. Because AM creates the part material 

geometry at the same time, AM parts must be inspected for def
in the bulk material including undesirable grain characteris
unexpected porosity, and larger internal voids. The challe
increases dramatically for functionally graded materials.
addition, AM materials cannot be assumed to have the sa
properties as their bulk counterparts. Thus, characteriza
techniques for the mechanical or optical properties of the mate
may need to be adjusted before they can be used.

The organic, freeform external geometries that can be crea
by AM require more complex measurement techniques and gre
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 processing capabilities. The first (and perhaps most impor-
) challenge is the mere fact that current specifications systems
efined in ISO [154] were not developed for complex freeform
es. In addition, it is not straightforward to assign a ‘‘tolerance
’’ to a freeform shape and connect this to its function and
ufacturability. There has been some research related to
municating requirements for [175] and estimating form errors
4] freeform geometries in optics. However, little or no work has

 done in this area for AM. The verification of critical internal
ures, such as conformal cooling channels, is even more
lenging [339] and will require improvements in non-destructive
ging technologies such as ultrasound and computed tomogra-
. The difficulty and importance of verifying internal geometries
eases substantially when considering multi-scale cellular
lattice-based structures and materials [39,334,360]. Here the
lenge lies both in imaging these bodies and in interpreting the
lts using advanced methods as described in [161].
esigners must keep in mind that the early choices they make
e design process will have a major impact on the downstream
irements for production and quality control. Thus, designing
etrology and quality control must be a part of DfAM.

Through-life constraints: maintenance, repair, and recycling

ections 4.3.2 and 4.3.3 presented embedded components and
ted assemblies as benefits. However, as-printed assemblies
lly cannot be disassembled for routine maintenance or repair

. If part of an assembly breaks and it cannot be disassembled and
sembled, then the whole assembly has to be replaced. This
eases the cost and the waste associated with the product
ughout its usable life. This is especially important because with
exceptions [115,226], relatively little work is being done on
rmining and improving the wear properties of AM parts. The
lem increases for objects with embedded components and

ti-material assemblies because they are also difficult to
ssemble for recycling and disposal. Design strategies to address
overcome these limitations must be developed in the future.

External and regulatory constraints

he many benefits of AM described in Section 4 led to
espread interest and early adoption of AM for end use parts
e aerospace and medical industries. However, both industries
ighly regulated and require parts to gain regulatory approval

re being put into use. Thus, the designer and the design are
trained by the need for testing and documentation to support
certification and approval process. Obtaining regulatory
oval can be challenging since AM processes are relatively

 and do not have the same historical data that is available for
entional processes. In addition, AM machines have a higher
rent variability than is seen in more mature technologies. As a
lt, in aerospace AM is currently being used mainly for non-
ty-critical parts and mostly on military rather than commercial
aft [58]. More recently, some aerospace manufacturers have
mented on the wider use of AM parts [244]. To gain regulatory
oval for these, the consistency of the AM process itself must be
en and stringent materials safety testing must be performed.
ost medical applications of AM have been for medical models

removable prosthetics [58]. Where implants have been used, it

the value added by AM far outweighs the costs. This section
explores the costs and economic benefits of AM-based production
as barriers, motivations, and considerations for DfAM. It presents
some of the major cost models that have been developed for AM,
considers the requirements for successful AM business models,
and presents a series of case studies that explore the economic
viability of DfAM.

6.1. Costs of AM parts and production

AM costs are usually divided into well-structured direct
production costs (e.g. labor, material, and machine costs) and
ill-structured costs (related to build failures, transportation,
inventory, etc.) [326,354]. Traditional cost models focused on
the well-structured costs and were intended to compare AM
processes to each other or traditional manufacturing processes,
and to identify strategies for process and product cost optimiza-
tion. More recent work has discussed the need for [190] and
attempted to [170] evaluate the costs and economic benefits of AM
by considering all life cycle costs.

6.1.1. Cost models for AM production

Hopkinson and Dickens [148] proposed one of the earliest
generic AM cost models. This model assumes that one product will
be produced on the same machine for the entire economic lifespan
of the machine. It includes machine costs (purchase, depreciation,
and maintenance), labor costs (operator, setup, and post proces-
sing), and material costs (direct material costs and material cost for
support structures). The model was used to compare the direct
printing cost of two plastic parts produced by SL, FDM, laser
sintering (LS), and injection molding. It indicated that the cost per
AM part was driven by the production speed and that the break-
even point between LS and injection molding was driven by part
size. It was estimated that LS was economical up to 14,000 pieces
for the smaller part (Fig. 50) and up to 700 pieces for the larger part.

Ruffo et al. [275–278] expanded upon that work to create a
more flexible and realistic cost model that included different parts
in a single build; indirect costs such as administrative costs, part
design, and production overhead; and the cost of powder material
reuse and waste. While Hopkinson and Dickens predicted a price
per product that was independent of production numbers, Ruffo
et al. found that the price per parts drops as the costs of part design
are distributed over more products and when adding more parts to
the same production layer. It jumps up again when new layers/
builds are used (Fig. 49). This results in a higher and more plausible
cost for lower production volumes and predicts higher costs for
higher production volumes [277]. As a result, Ruffo et al. predict a
lower break-even point between LS and injection molding for the
smaller part from [148] (9000 vs. 14,000 pieces).

More recently, Atzeni and Salmi [29] developed a model to
estimate the cost of DMLS metal parts. It included machine costs
(including interest and maintenance over a 5 year usable life),
material costs (volume multiplied by 1.1 to compensate for
support and waste), and pre-, and postprocessing costs as labor.
Fig. 49. Cost per part vs. the number of parts produced estimated using the model

from [276] applied to the lever from [148].
often been on a ‘single-use, experimental’ basis where explicit
ission is obtained from a specific patient. However, there are

e notable exceptions such as the large-scale production of hip
lants. The manufacturers of such implants must also demon-
te consistency of both process and material to gain regulatory
oval.

osts and benefits of AM products and processes

he cost of AM is often viewed as one of the biggest barriers to
tion in industry. However, there are many examples where
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The model was used to compare the cost of a 1:5 model of an
aluminum airplane landing gear assembly (overall dimensions
70 mm � 210 mm � 70 mm; mass 0.18 kg) produced using DMLS
and High Pressure Die Casting (HDPC). They estimated the cost of a
single DMLS assembly to be 526.31 EUR (material cost 5%, pre-
processing cost 1%, build costs 90%, post processing cost 4%) vs.
21.29 + 21,000/N EUR for HDPC. This results in a break-even point
of 42 parts.

Many variations of these cost models exist in the literature. Li
[188] included labor costs for pre- and postprocessing, material
costs (part volume/0.7 to account for support and material waste),
machine cost per hour (purchase cost over annual utilization and
years until return), and overhead (rent, electricity, etc.). Allen [15]
considered labor, material costs (part volume, raw material costs,
and material usage efficiency), capital (machine) costs, power costs
(including power conversion efficiency and power delivered to the
part), the build rate, and the cost of consumables. Grimm [133]
considered pre-, printing, and postprocessing time; capital costs
(machines, facilities, etc.); annual operating costs (service,
maintenance, consumables, material disposal, etc.); and hourly
costs (assuming a 60% utilization rate). Baumers [37] considered
total indirect cost per machine hour (machine costs, overhead,
labor, utilization rates, and usable equipment lives), material cost,
and electricity costs. Gibson et al. [130] included labor costs
(including setting up the build, postprocessing, and cleaning and
resetting the machine), machine purchase cost (allocated based on
the part build time and machine usable life), machine operation
costs (including maintenance, utilities, floor space, overhead, etc.),
and material costs (based on part volume, multiplied by up to
1.5 to account for support and multiplied by up to 7 to account for
material waste). Lindemann et al. [190,191] built on the work of
Gibson et al. with an extensive model to define machine costs. They
also introduced a part complexity factor to allow for the increased
time needed to design support structures and place complex parts
in the build environment. Rickenbacher et al. [269] developed one
of the most comprehensive models to date. Their model includes
detailed cost estimates based on the full SLM process chain and is
suitable for jobs with different parts sizes, complexities, and
quantities. For a full review of AM cost models to date, see [326].

6.1.2. Machine costs for AM production

The cost of hardware is a major contributor to the total cost of AM
products. Hardware costs are defined mainly by the capital
equipment costs, service and maintenance costs, build time, and
machine utilization. Table 2 shows the relative contribution of AM
machine cost to the total product cost for FDM, SL, and SLS for a
plastic hinge (Fig. 50) from 2003 [148] and for EBM and DMLS build
plates with a variety of parts (Fig. 51) from 2016 [38]. For the
polymer processes, the contribution of hardware to the total part
cost ranged from 24% to 75%. SLS had a higher annual production
volume than FDM and SL, and therefore had the lowest cost per
product and the lowest relative contribution of the hardware to the
cost. The SL hardware had the highest contribution to the cost of the
final product (75%) because of (8�) higher hardware procurement
costs. For the metal processes, the estimated relative contribution
of hardware was in the range of 40–55%. The EBM and DMLS
machines had comparable procurement costs. The differences in the

relative cost contribution of the hardware to the total volume
cost (3.26 s/cm3 for EBM and 8.41 s/cm3 for DMLS) stem f
differences in layer height (deposition rate), preheating and cool
and postprocessing.

6.1.3. Build time models for AM production

Build time dictates how machine costs are allocated to a gi
part and is therefore essential for accurate AM cost estimati
[87]. Existing build time models can be grouped into 3 categor
models dedicated to one process using a limit set of paramet
generic build time models that use many parameters to estim
build times; and parametric models that use neural network
predict production times based on historical data. For exam
Ruffo et al. [275] modeled build time as a black box: part dimensi
part volume, powder bed volume, and bounding box volume wen
and a build time came out. The relationships between the inputs
outputs were determined empirically. This approach requires v
few input variables to obtain a good estimate of build t
(generally conservative and within 12% of the actual build tim
however only one type of machine was used and the settings w
kept constant. Thus, the method is transferrable but the results
not. Byun and Lee [54] proposed a generic build time mo
assuming that build time is ‘‘proportional to the sum of the idle t
between layers (except for the curing, sintering or deposi
operation), the time taken to fabricate a part, and the time take
generate the supports’’. Gibson et al. [130] used a similar appro
assuming that build time is equal to the scan (or deposition) t
plus the recoat time between layers and the delay time. M
recently, process-specific built time models have been proposed
SLM [269], SLS [367], and FDM [373]. Finally, di Angelo and
Stefano developed a neural network-based build time estim
[87]. After 72 training cases, they were able to estimate the b
time of six different FDM samples with errors ranging from 6.07
20.3%. For a full review of AM build time models to date, see [3

Table 2

Fig. 50. The plastic hinge used in calculations from [148]: CAD model (left, ada

from [276]) and printed part (right, [148]).

Fig. 51. The build platform and printed parts used for the cost calculations in 

EBM layout (left, a) and DMLS layout (right, b).
ay,
250
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Relative contribution of AM machine procurement cost to total product cost for

FDM, SL, SLS [148], EBM, and DMLS [38]. A factor of 1.3 was used to convert £ to s for

the EBM and DMLS parts.

Polymers (2003) Metal (2016)

FDM SL LS EBM DMLS

Annual AM machine costs (ks) 23 219 73 57 59

AM machine cost per

product/build (s)

2.64 3.92 0.52 513 1964

Total cost per product/build (s) 4.47 5.25 2.20 1246 4183

Relative AM machine cost per

product/build (%)

59 75 24 41 47
6.1.4. Material costs

AM materials have relatively high procurement costs. Tod
thermoplastic and photopolymer materials for AM cost $175–
per kg. This makes AM materials 58–125 times more expen
than the raw materials for injection molding [355]. More spec
ized thermoplastic materials cost up to 500 $/kg while PLA and 

filament for at-home printers sell for 15–50 $/kg. Metal powd
have a price range of 78–120 $/kg for stainless steel and up to 3
880 $/kg for titanium (alloys) [354]. Wire feedstock is normally
order of magnitude cheaper than powder. Material costs dep
on the source. Large variations have been observed in the cos
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al powders when bought from a system manufacturer or
hased directly from a metal spraying company.
M processes also have high relative contributions of material
s to final costs. For example, the contribution of the material
 to the final cost of an aluminum part can be 9.9 times greater
n using AM instead of a traditional process [29]. The
ribution of the material costs to the final product in metal
der-based AM product can vary from 11% and 46% [326].

. Labor costs

ow labor intensity is thought to be one of the key benefits of
 However, the pre- and postprocessing stages often involve
ual activities such as file repair, support structure design, build
ber layout, cleaning, support removal, sintering or heat-

ting, and surface finishing. The impact of these costs on the
uct price can be considerable, especially for low production
mes (Fig. 49). Most cost models assume higher production
mes for a single design and therefore underestimate the labor
s of AM products.

. Energy consumption

lthough the energy consumption of AM processes is important
 life cycle and sustainability perspectives [167], it plays a

or role in cost comparisons today. For example, it was
ated that energy costs in [38,148] contributed less than 2%

e total part cost. For a detailed analysis of energy and resource
iency in SLM and SLS, see [167]. For a discussion and review of
AM energy consumption literature, see [326,354].

Business cases for Design for Additive Manufacturing

ompetitive businesses cases can be made for Additive
ufacturing when it adds sufficient value to a product to
fy higher production costs, reduces product development
s, reduces production costs, reduces costs over the entire value
n, reduces the cradle to grave costs of the product, or provides
e combination of these benefits. AM can be used to increase the
omic, ecological, and experience values of products [59]. Other
es such as the freedom to produce parts in-house (eliminating
risks due to dependence on external suppliers and reducing
ly chain vulnerability) [278], protecting business secrets, and
enting piracy [159] are difficult to quantify but nevertheless
ribute to profitability. The ‘tool-less’ nature of AM allows it to
ce direct production costs when complexity and/or customi-
n are high and when volumes are low [76]. It can also shorten

 times compared to conventional methods. As a result, AM can
 to an overall reduction in time to market and time to profit.
eradjat and Minshall [86] observed that business cases for

 can be based on benefits from any part of the AM business
ework: technology, operations, organizations, and external
ences. For example, improvements in operations, organiza-

s, and external factors, especially in terms of over production
in the areas of supply chain and inventory control, can enable
, agile, or Just-In-Time manufacturing [76,147,224,283,326,
] and increase profitability. This increases the scope of DfAM

 the design of the product to the design of the production
em. The potential for AM in the supply chain has been
stigated in the aerospace industry [230], in the shipping
stry [344], and by the air force [170] and navy [144]. These

which machine and vial type until it is ordered, FDM is used to
produce the parts on demand in house [312].

Finally, maximizing the business benefits of AM requires a
through-life approach that considers production, use, mainte-
nance, repair, and disposal. For example, AM is currently being
used to repair gas turbine blades [106,176]. It is also being used to
produce on demand parts for emergency repairs. For example, a
recent case study showed that printing a component for an
emergency repair of a labeling system saved Anheuser-Busch
‘‘nearly 70% in production costs alone’’ because of the quick
delivery time [313].

6.3. Successful examples of AM products in industry

This section presents six examples from industry where AM
added value; improved functionality; and reduced time, cost, and
waste.

6.3.1. On demand workpieces to reduce lead time, cost, and waste

Using AM to produce near net shape workpieces can
substantially reduce lead time, cost, and material waste. This is
especially important for the aerospace industry where many
components require substantial material removal; are slow,
difficult, or expensive to machine; and have high material costs
[15]. Fig. 52 shows a custom 2.5 mm thick truncated cone that was
printed using WAAM and then welded to a commercially available
flange. The printed workpiece can be produced in a few hours.
Purchasing the same workpiece made using conventional methods
would cost almost ten times more and take up to 6 months to
receive. The buy-to-fly ratio (in this case, the material purchased
and used compared to material specified in the final CAD files) for
the printed cone was 1.25. In comparison, aerospace parts
machined from forged billets often have buy-to-fly ratios in the
range of 6–20 [15,352] and can be as high as 40 [352]. [204]
compares the cost of products with buy-to-fly ratios between 6 and
37. Direct cost savings of up to 69% were found for WAAM
compared to milling the same parts from stock.

6.3.2. Reduced part count, mass reduction, and increased usable life

GE aviation redesigned the fuel nozzle for its new LEAP engines
for DMLS (Fig. 53, left). The redesigned nozzle reduces the number
of brazes and welds from 25 to 5. It also increases the lifetime of the
fuel nozzle by a factor of 5 and reduces the mass by 25%. Production
rates of up to 40,000/year are expected [124,184].

Fig. 52. Truncated cone produced in mild steel by Wire + Arc Additive

Manufacturing: as printed (left, courtesy of the Welding Engineering and Laser

Processing Centre at Cranfield University) and welded (right, [352]).
Fig. 53. Commercially successful AM products: GE Aviation fuel nozzle for the LEAP

engine (left, [124]); hearing aids produced by vat polymerization (center, [117]);

and the casing of the handheld Piblaster from Pinovo as produced by Materialise

(right, [211]).
ies concluded that the benefits of AM in the supply chain are
yet being realized in these areas. However, industrial case
ies in the medical and dental industries show that these
fits are being realized today. For example, customers’ dental
els are being stored as digital files instead of as physical parts,
ring costs and providing better protection of the information
,297]. Acist Medical Systems reports that their inventory also
s the form of digital files on a server. If a part breaks, the
pany prints a replacement and ships it the next day [298]. And,
tPro is using AM to produce bezels for their vial handling

ems. Since they do not know which bezel will be needed for
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6.3.3. Reduced production costs of customized hearing aids

Historically, personalized hearing aids (Fig. 53, center) were
produced by investment casting using a wax model of the ear
canal. This is being replaced by 3D scanning the wax model
followed by AM. This substantially reduces production costs. It is
estimated that more than 10,000,000 AM hearing aids are in
circulation today [117].

6.3.4. Improved safety and functionality and reduced waste

Pinovo designed a handheld pipe blaster (Fig. 53, right) with
housing shape and material requirements that could not be
achieved with injection molding. Instead, the housing was
produced using laser sintering of alumide. The new design reduced
waste production by 75–90%, increased operator safety, and
improved flexibility in responding to customer demands [211].

6.3.5. Reduced costs and lead time for an electrical enclosure

ASML redesigned an electrical enclosure for AM (Fig. 54). The
original enclosure was composed of 3 brazed parts and required a
total of 34 steps in the process chain: 11 machining and joining
steps, 7 material treatment and cleaning steps, 8 quality checks,
and 8 packaging and transport steps. The overall lead-time was
21 weeks. The part was redesigned for AM to optimize process flow
and cost. The redesigned part requires a total of 11 process steps:
DMLS followed by annealing, 3 machining and joining steps,
2 material treatment and cleaning steps, 2 quality checks, and
2 packaging and transport steps. This reduced the lead-time by 70%
and reduced costs by 20%.

6.3.6. Weight reduction, functional optimization, and improved

robustness in the semiconductor industry

ASML also redesigned a manifold for AM. The original design
was composed of PEEK bodies connected by polyurethane hoses.
They created two alternative designs: a monolithic milled design
that replaced the hoses with solid channels sealed by welded cover
plates and a design that was optimized for production by SLM
(Fig. 55). A detailed cost breakdown of the three designs is shown
in Table 3. Redesigning for AM had benefits for both the product
and the process. The AM variation could be optimized for flow and
therefore had improved dynamic system performance. The AM

variation was more robust and almost 10% lighter than the origi
Using AM eliminated the welding and assembly steps. It 

reduced the amount and cost of machining necessary, and redu
the cleaning and other post treatments needed. However, in 

example, the AM variation is still too costly. To make the AM p
economically viable in production, it is estimated that the di
AM costs must be reduced by 50% (by increasing the build spe
machining costs must be reduced by 25% (by improving 

accuracy and quality of the SLM process), and the overhead m
be reduced by 20% for a final part that is no more than 120% of
cost of the conventional design.

7. Summary, conclusions, coming trends, and future work

This paper has presented some of the major design oppo
nities, constraints, and costs associated with DfAM, and dem
strated some of what is possible and affordable today. Howe
Design for Additive Manufacturing is still in its infancy. Ther
insufficient understanding of when and how to design for AM 

many of the technologies needed to support it are not yet mat
This section explores some of the future challenges and com
trends that will shape DfAM and the technology it will enabl

7.1. Guidelines for when and how to Design for AM

Although AM can be ‘‘an economically convenient alternativ
conventional manufacturing processes’’ [30], it is agreed that p
should be redesigned for AM and not simply reproduced using
AM process [30,130,191,270]. Lindemann et al. [191] presente
method to select candidates for AM from a larger pool of parts. 

2015 draft of ISO ASTM/DIS 20195 [157] also includes a proced
for identifying the potential of AM for a given part. However, m
more work is needed to understand what kind and how m
redesign is necessary or optimal for a given situation, how
modify the design process and the design strategy to maximize
benefit, and to develop software to support this work.

One promising (re)design strategy is to take a functional sur
approach [142,261,335,370] and design parts from the bottom
Fig. 56 shows the top down design of the monolithic manifold fr
Fig. 55, starting with the maximum envelope and then remov
material to create the functional features and reduce mass. Fig
shows a bottom up functional surface approach, starting with
interfaces, defining the maximum envelope constraint, and t
adding the functional features and structural reinforcement. W
the functional surface approach results in a design that is half
mass of its top down counterpart, it requires geometric mode
capabilities that are not yet common in commercial CAD packa
Functional surface design approaches also require a closer 

between design and analysis. Thus, the multi-physics capabili
that were once limited to high-end finite element programs m
soon be needed in most major commercial CAD packages.

Fig. 54. Exploded view of the solid model for the original brazed electrical enclosure

(left, [6]) and the final printed part (right, courtesy of ASML).
Table 3
Cost breakdown of the three manifold designs shown in Fig. 55 as a percentage of the total cost of the conventional design. Courtesy of ASML.

Concept Material & standard parts AM cost Machining cost Welding/assembly cost Treatments/cleaning/quality Overhead/risk/profit Total cost

PEEK & hoses 15% 33% 21% 8% 21% 100%

TiGr5 milled 1% 59% 54% 4% 38% 156%

TiGr5 SLM 4% 113% 28% 3% 35% 185%

Fig. 55. Three designs of a manifold from the semiconductor industry: conventional design made of PEEK with hoses (110 g) (left), monolithic design milled in TiGr5 (200 g)

(center), and optimized design printed in TiGr5 using SLM (100 g) (right). Courtesy of ASML.
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o receive the full benefits of AM, designers must learn to think
rently while focusing on creating robust industrial solutions

 added value. Design theories, processes, methods, tools, and
niques [194] must be adapted or developed to address the
rent coupling between material, geometry, and quality in
e systems. Specialized and application-specific tools must be
loped to support the design of cellular structures, meta

erials, heterogeneous artifacts, biological scaffolds (e.g. [259]),
more. Finally, it must be acknowledged that each build is a
gn artifact with its own requirements and constraints, and its

 features (e.g. support structures, part layout, etc.) to be
gned and optimized. Thus DfAM must extend beyond the
uct to the production system and consider the entire value
n.

Redefining the roles of the designer and the manufacturer

M will continue to redefine the roles and relationships of the
gner and the manufacturer, making it easier to merge them

 one individual and location (enabling home production and
orting small businesses) and to distribute them over many

viduals and locations for truly global product development
. For example, GE Aviation has experimented with crowd
cing for the redesign of an aircraft engine bracket for weight
ction [62]. The contest received 700 entries (Fig. 58) and was
uccessful that GE is considering another 40 crowdsourcing
lenges in the future. Similarly, online repositories of AM
acts, such as Thingiverse, Fabbaloo, Bld3r, Yeggi, Repables, and
imagine, make it possible for individuals to produce a wide
e of artifacts without needing to design them.

according to ISO 286-1 [153] taking into account part orientation
(Fig. 59). Similar work has been done by Griesbach [132] for SLA,
material jetting, material extrusion, and SLS, and by Mintetol et al.
[227] for FDM. Such efforts will enable standards organizations to
bring researchers and industry together to establish standards that
can be built upon to support process-specific DfAM, more general
process selection, and process chain development.

7.4. New manufacturing paradigms and a divergence of

manufacturing system complexity

AM process chains will become simpler as postprocessing needs
are reduced. They will also become more complex as AM
technologies are better integrated into the production environ-
ment. More hybrid AM processes will emerge and more commer-
cial hybrid AM machines will become available. AM processes with
more degrees of freedom will be developed. And, automation of
AM, especially for postprocessing and part transfer between
machines, will increase. This will lead to an increase in sensors and
information processing capabilities in AM production systems.
Eventually, most production scale AM will be done with cyber-
physical manufacturing systems. The direct digital nature of AM
combined with the use of cyber-physical systems will allow for
cloud-based AM [186]. The benefits of cloud-based approaches
have already been demonstrated in process optimization [320],
adaptive process planning [235], shop-floor planning [234],
scheduling [236], and maintenance [237]. The benefits of higher
quality, hybrid, high DOF, cyber-physical, and cloud-based AM
systems are expected to be emergent. To take advantage of these
benefits, new classes of design tools [194], rules, strategies, and
production planning techniques will be required beyond what is
needed today.

7.5. Design education

Finally, all of the developments in tools, rules, theories,
methods, processes, and planning must be compiled and made
available to support design activities and training in educational
institutions and in industry. Design, as a field of study and practice,
will have to be adapted to AM processes. Design representation,
analysis, and optimization tools will have to be transferred from

Fig. 59. Achievable tolerances of select traditional and AM processes [189].

6. Top down design of a conventional manifold by starting with the maximum

ed volume (left), removing material for the functional surfaces (center) and

reducing mass (right). Courtesy of ASML.

7. Manifold designed from the bottom up for AM starting with the interfaces

, defining the maximum envelope as a constraint (center), and then adding

ional features and reinforcement (right). Courtesy of ASML.
 58. Examples of crowdsourced redesigned aerospace engine brackets [62].
Improved quality and consistency and increased standardization

M process quality, consistency, and capabilities will continue
prove. Existing standards will be applied more to AM. AM-

ific standards will become more relevant and complete. And,
 AM-specific standards will be developed. These trends are
cted in the literature. For example, Lieneke et al. [189] recently

sified the achievable tolerances of several AM processes
academia and research (and the hobby community) to industry
and practice. Thus, the future will bring educational materials
related to DfAM at all levels and for all engineering professions.

7.6. Conclusions

Advances in Additive Manufacturing are bringing about new
design possibilities, products, and production paradigms. While
much work will be required to bring Design for Additive
Manufacturing to maturity, businesses, both small and large, are
exploring and adopting AM for end use parts at an astounding
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rate. Progress is being driven from the top down and the bottom
up, by individuals and industry, in research and practice. The
results will rewrite the rules of product development and new
product introduction. A new era is beginning.
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