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This paper considers two estimation prnblems which occur during the implementation design for a f-mite 
state machine (FSM). The first is a precise estimation of the znduction of a programmed logic aaray 
implementation (PLA) for a FSM by logic minimization. The second concerns se]cctiou of 
implementation alternatives based on such estimations. Estimations give the designer a quick overview of 
the impact of an optimization method for FSM implamantation without running the acreal 
time-cousuming algorithms. The method uses curve-fitting on results found in literetm~ for logic 
minimization preceded by state-assignment. Our estimations om'~lare by 0.97 to those 
results.State-grnph statistics can also he used for seluction of the most profitable optimization from a set 
of alternatives. We tested selection between a counter based impl~memation, pmtial state coding, 
state-essignment and topological partitioning. The goal is selection of the alternative which has the 
highest probability to deliver the largest minimization of the FSM. This selection method is also 
empirically verified by comparing its results with results obtained by framing specific optimization 
algorithms on machines of the MCNC benchmark set. 

1 Introduction 

A considerable problem in synthesis is the selection of the 
minimal implementation alternative for Finite State 
Machines. Meay implementation ahematives are known 
[2][5] for specific hardware configurations. Each of these 
implementations has its specific optimization or 
minimization algorithms [2],[3],[12]. Thus, for a 
comparison of alternatives, the designer must execute all 
optimization algorithms. Unfortaontely, this takes large 
computational efforts. Equal problems arise also in design 
piaoning [15], were design plans must be build. Quick 
estimations of optimizations can be of groat help in such 
situations. Estimations improve the efficiency of the 
design process. One can identify two types of estimatious 
for evaluation of design altereatives. 

The first estimation type is the prediction of results of 
complex and therefore dine-consuming optimizations. 
Such optimizatioor are usually bound to one 
implementation. An important example of such an 
optimization is the two-level logic minimization problem 
for Finite State Machines (FSM) implemented in a single 
FLA. However, only if the state-assignment problem [3], 
[4] is solved, the minimal FLA is ob~ioed. The 
state-assignmem assigns binary codes to intenml FSM 
states such that a two-level or a multi-level logic 
optimization has its maximal effect. In this ease we 

consider only two-level logic ie. PLA implementafio~ 
The exact amount of minimization is not the most 
interesting to know. In most cases the relative 
minimization potential is far more useful for ~ designer. 
In other words, whether application of logic minimizarion 
with stata-assignment will reduce the machine size by 
20% 50% or maybe even 70%. 

The second estimation type concerns the selection pmb!em 
among implementation ultematives. For selection, no~ the 
accuracy of estimation for each individual alternative is 
important, bat its selectivity. Therefore, such astinLnlians 
must have a reasonable correlation with the seselts of thcir 
optimization algorithm and preferably a low cmrnlation 
with the results of other optimizations. Selactim~ 
estimations deliver the alternative with the highear 
probability of ob~iulng the minimal implementation. 

In order to test the cstimaress, we ran optimization 
algorithms for each altereative on the MCNC benchmark 
set of FSM's. This henclanark set is used widely for the 
comparison of state-assignmont algorithms. 
correlation coefficient betwean estimations and algorithm 
results provides us an empirical verification. The set of 
alternatives contains a counter, partial state code 
generation, state-assignment and topological pat~tioning. 
Section 2 discusses the curve-fit estimation method for 
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store-assignment. Section 3 explains the optimizatians for 
each ulternadve and also the statistical measures used for 
the selection. 

2 State-assignment result estimation 

What we try to estimate is ~.he maximal redimtion of a PLA 
implementation of a FSM by logic minimization. This 
problem includes the state-assignment problem, which 
must be solved optimal in order to obtain the maximal 
profit out of  logic minimization. The stere-assignmem 
problem is very complex and as problem hard to estimam. 
The FSM structure however is much simpler and therefore 
we can estimate the maximal profit of  logic minimization 
for it. 
In other enginee~ng sciences as for exarr~ple in chemisa'y, 
curve-fitting is usually applied to model complex physical 
processes. In chemistry, the behaviour of reactors is 
modelled by volume, pressure and temperature parameters, 
which axe very global compared m the actual molecular 
reactions. Then, curve-fit methods can supply 
understanding and prediction of the macro-molecular 
behaviour of the complete reactor. Therefore, we 
investigate a curve-fitting method for the esdmation of two 
level logic minimization. Analogue to the example we 
have to identify global FSM parameters as input for the 
estimation polynomial 

The curve-fit methnd delivers_ the coefficients C for a 
polynomial in the form of  (1). ~ t e  input data for the 
curve-fit are the results from NOVA [9]. NOVA performs 
near-optimal state-assignmems for PLA implementations, 
and it obtains its minimization results with ESPRESSO 
[111, which is a widely known two level logic minimizer. 
The number of coefficients of  the polynomial minus one is 
the order of  the polynemial. Wc applied mathematical APL 
programs for regression analysis [1] to compute the 
coefficients C of  the polynomial curve. These programs 
apply a least square's method for this computation. 

Polynomial of  order 4 : 

POLY(x) = Cl.x**4 + C2.x*'3 + C3.x*'2 + 
C4.x + C5 (1) 

The ftrst problem is to determine the parameter(s) x of the 
FSM that give a curve close to the NOVA/ESPRESSO 
sesult,:. The second problem is the order of the polynomial. 
This order must be small et~mpared to the set of data from 
which the polyn.omial is derived. NOVA 19] provides 
resul~s for 25 machines from the MCNC benchmark set 
(table 1 }. For a proper c~arve, the polynomial ~der  must be 
small compared to the number of samples. Therefore we 
use a polynomial of  a third order, which is small enough. 

2 . 1  Finite State Machine parameters. 

Next, we identify some curve parameters, for which we 
need first some FSM definitions. Cardiuality of a set of  
elements is denoted by #. For example: #I is the number of 
symbols in the input alphabet. A binary coded symbol is 
called a word. A Finite State Machine is defined by the 
quintuplet FSM = <I, O, S, OUT, TRS > given by : 

1 = {it..ik} Input alphabet where ix is a binary 
coded symbol 

O=[oI..Ont] OutpUt alphabet where Ox is a 
binary ceded symbol 

S =[Sl..Sv] State alphabet, where Sx is 
symbolic. 

o := OUT ( s ,  i) Mealy Output function 
o := OUT ( s ) Moore Output function 
s" := TRS ( s ,  i) Transition function 

A second specification of a FSM is given by a set 
PTS=[ptl,.ptn} of four tuples <input word, state, next 
state, output word> denoted as pt=<i,s,s',o> wl-.ich are 
called productterms. The FSM's in the benchmark set are 
all of the Mealy type. Now we can write the estimation of 
the minimized number of productterms #PTSmin in (2). 

#PTSmin = PCLY( x ) * #PTS 

We select various parameters, and combinations of them, 
for the x in (2) and tested their quality. First we compute 
the polynomial coefficients. Then, the estimations of 
#PTSmin are compared with the NOVA/ESPRESSO [9] 
results. This comparison includes the correlation 
coefficient and the average difference between the 
algorithm minimization and the estimated minimization 
#PTSmin. Examination of the FSM structure in relation 
with the NOVA [9] results shows two important FSM 
parameters. The first parameter is the number of 
productterms per state #PTS/#S. One expects that for logic 
minimization, a high number of productterms for a state 
causes a relatively high minimization potential, Because, i f  
more productterms sba~ the same state code then larger 
cubes can be expected. A second parameter is the number 
of output variables #O. Roughly, the higher this number, 
the more difficult it becomes to combine productterms. 
Thus the number of output variables contributes in a 
reverse way to minimization. Therefore we use this 
parameter inverted (1/#O) when we combine it with other 
parameters as #PTS/#S. Furthermore, the number of inpu: 
variables #I may be interesting. Although #I is mosdy 
related to #PTS/#S and therefore only a limited effect can 
be expected from its use. 
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A combination of more FSM parameters in x P.quires a 
weighting mechanism. This to make sure that value ranges 
of parameters become overlapping. Thus, we presume an 
equal importance of both parameters. The value range of 
the #PTS/#S parameter is roughly from I to 10. The 1/#O 
parameter is always between 0 and I. Therefore this last 
parameter is multiplied with a factor 10. Another 
alternative would be the use of complex curve fitti~ Z, 
which can obtain a polynomial for sets of parameters. 
However, the results of parameter bulaociog are quite good 
in this case, which makes complex curve-fitting 
superfluous hem. 

#1 #0  

bbam 4 2 
bbsse 7 
bbtas 2 2 
beect 3 4 
cse 7 7 
dk14 0 5 
dk15 3 5 
dk16 2 3 
dk17 2 3 
dk27 1 2 
dk512 1 3 
donf[ 2 1 
exl 9 19 
ex2 2 2 
cx3 2 2 
ex5 2 2 
ex6 5 8 
keyb 7 2 
plan 7 19 
s l  8 6 
sand 11 9 
scf 27 56 
shilt 1 1 
styr 9 10 
tral 1 2 1 

#PTS #S 

6O 10 
56 16 
24 6 
28 7 
91 16 
56 7 
32 4 
108 27 
32 8 
14 7 
30 15 
96 24 
138 20 
72 19 
36 10 
32 9 
34 8 
170 19 
115 48 
107 2O 
184 32 
166 121 
16 El 

166 30 
25 11 

Table l .  Data of MCNC FSM set. 

Table l gives the MCNC FSM data and Table 2 shows a 
comparison of FSM parameters and some combinations of 
them. Clearly x=(10/#O) + (#PTS/#S) delivers the bust 
result with a correlation coefficient of  0.97 with the NOVA 
results and an average dfffemnee of 6.1% in #PTSmin 

parameter : x Corr.Coeff. Av.Oifl.% 

#PTS/#$ 0.94 10.3 
#0  0.94 9.5 
(10/#0)+(#PT$/#$) 0.97 6.1 
#1+(IOI#O)+(#PTSt#S) 0.92 11.2 
#1 0.92 11.2 
#1+(10/#0) 0.93 10.4 
#1+(# PTS/#S) 0.92 12.1 

Table 2. Estimations for several FSM parameters 
compared. 

compared with t ic  NOVA msuhs. Then, Table 3 gives d ~  
coefficients of the polynomial for x=(10/#O)+(#PTS/#S). 
Table 4 shows in the second column the produ~erms after 
minimization #PTSmin, comput(~ with ~ polyF~rfl~a]. 
The first column shows the number of ~ s  
obtained by NOVA/ESPRESSO. Table 5 gives the 
pcrcemile diffc'cnccs between esdmadou and algorithm, 
related to the original #PTS of the machines. 

coelficient orde~ 

-3.23 E -4 x'*3 
9.60 E -3 xn2 

-0.13 x--1 
1.03 1 

Table 3. Coefficients of estimation polynomial. 

Tbuse tables show the remarkable ~m~c~si,~a of [;.~ 
estimations. CenaJaly, because the estimations are based 
on only two lpcametcrs of tbu FSM and a third order 
polynomial. This gives sufficient conf'~ence in tim 
usefulness of this type of  estimations for ixcdicdon of the 
impact of  logic minimization including slate-assignmem. 
The two largest exceptions am machines sl  and exl.  sh~ 
analysed these machines into further detail but did not 
identify a clear cause. Further research coneems 
estimations fo: other optimization algorithms used in 

%Dift. 

NOVA estim. 

bbar~ 24 23 
tYosse 27 ~5 
b~as 181 
I~ect 44 45 

dk14 ~96 23 
dk15 13 
dk16 5a 
dk17 87 16 
dk27 7 
dk512 17 1B 
dOflll 23 25 
ext ~ 67 
ex2 32 
~x3 17 17 
ex5 15 15 
ex6 ~3 20 

47 44 
I plan 87 86 

89 93 
138 140 

shift 4 6 

i 9 e 

Table 4. NOVA results with Table 5. Percentiie 
estimations, diffemnocs. 

ex5 0.0 
mark1 S.O 
ira11 O.S 
styr 1.2 
ffoar~ 1.6 
~yb 1.7 
dk14 -1.8 
donll -2.1 
sand -2.2 
c~e -2.2 
sd *2.5 
plan 2.6 
ex3 2.7 
dX17" 3.1 
dk512 "3.4 
dklS -3.8 
ex2 -56 
dk27 7.1 
ex6 8.8 
dk15 9.3 
bbsse -1P..5 
bb~s -12.5 
shift o12.5 
beect -14.3 
exl -19.6 
Sl 24.2 
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microarchitecture synthesis. The next section discusses a 
different type of estimations that c~n select a 
mieroarchitecmre from several alternatives. This requires a 
selective character instead of a high precision. 

3 Implementation alternative selection by estimations. 

The second type of estimation problem is the selection 
among implementatioo alternatives. In most cases, the 
designer has to choose from a set of alternative 
implementations. Unfed'innately, each implementation 
ttsually requires its own specific optimization. Therefore a 
proper comparison between alternatives requires execution 
of all the optimization algorithms. Estimations can provide 
the designer quickly with information on the alternatives. 
Then, the designer can deduct which of the alternatives are 
most promising for a more detailed comparison. We 
implemented a set of implementation alternatives and 
computed results of  their optimization algorithms for the 
machines in the MCNC benchmark set. Next is the FSM 
analysis which is the base for the estimations. The problem 
is to identify those FSM parameters that have a selective 
character.. Therefore, these parameters must provide a high 
correlation between the estimation and its optimization 
algorithm results and a low correlation with the other 
alternatives. 

We focus mainly on the ~ansitinn function in the FSM, 
because quite a number of different alternatives is 
available to implement it. First we explain each of the 
ditto'natives shortly with theirs related optimization 
problem. Some optimization algorithms originate from 
literature and some where necessarily self-devaloped. The 
alternatives set contains a counter implementation, partial 
state coding, state assignment and topological partitioning. 
These are all quite common to FSM's and not restricted to 
veery specific types of FSM's as other more dedicated 
optlmizations 171,[81 are. 

3.1 A counter implementation. 

Algorithms for optimal embedding of a counter in the 
tlmrsition fonctloa of r. FSM are studied extensively in [2]. 
The counter implements the countable transitions. This 
makes these transitions redundant in the transitinn PLA 
and therefore removable. The PLA generates the signal to, 
counter activation by default in case an input pattern does 
not match any of  its produetterms. The counter must be 
lendable to accept codes generated by the PLA in case of 
noo-countablc transitions. The counter connects to the 
wansition function output, thus it affects only transition 
uod~. 

The optimization coupled to this implementation is ~-.~ 
coding of transitions such that the countable transitions 
cover the highest posalble number of prodactterms (PTS). 
Thus, the algorithm must identify a collection of la"ansition 
chains that cover a maximum number of productterms. 
Such an algorithm is given in 121. That algnrithm handles 
only Moore type machines and incorporates also other 
constraints for the code assignment which make it less 
suitable for our purpose. Because the MCNC benchmark 
set contains Mealy machines, we developed a different 
algorithm better suited to Mealy machines. 

Countable transition chain Cti : 

Cti = trsl..trSk [ Code(trSi+l )=Code(lrsi)+ 1 where 
1<= i <= k(3)  

The total number of productterms implemented by a 
counter is then : 

n 

PTSC = Y-#pt( Cti ) where n is the number of 
countable chains 

i=l 

The objective of the algorithm is to code TItS such that 
PTSC is maximal. Therefore all transitions get a weight 
assigned representing their number of prodectterms : wi 
#pt(trsi). The algorithm removes first all transitions of 
which the start state is equal to the next state, because 
transition cycles are not countable. It sorts the transitions 
to decreasing weights. In the next phase, the algorithm 
builds chains of transitions. It starts with the first 
unmarked transition and scans the list for follow-up 
transitions. Thus, the transitions with the highest weight 
are selected first. The algorithm proceeds with this until it 
encounters a cycle, or it finds no follow-up transition. 
Furthermore, it marks only the state which is at the head of 
a chain. Through this way of state marking a state may 
occur in more than one chain. It occurs however only once 
as head of a chain. This redundancy avoids io,:al optima. 
The algorithm generates new chains as long as there exist 
unmarked states that have unmarked successors. Next, the 
chains are sorted according their cumulative weights, again 
in a decreasing order. To retrieve the final collection of 
countable chains, the algorithm takes chains from the head 
of the list. Chains that contain states which do also occur 
in previoesly selected chains are rejected. The algorithm 
codes the states according the chains selected. This 
algorithm iterates until no improvement occurs in the 
PTSC. Table 6 shows the results for this algorithm on the 
MCNC FSM benchmark set. Column d.Cntrl shows the 
number of countable productterm~ before optimization, 
d.Cntr2 after optimization. These results are also in table 7, 
column #PTS e. 
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Table 6. 

#PTS 

bbara 60 
bbsse ~44 
I~tas 

dk14 ~ 
dkl 5 
dk16 108 
dk17 
0k27 ~4 
dk512 30 
donfl 96 
exl  138 
ex2 72 
ex3 
ex4 
ex5 32 

ex6 ~6 
ex7 
keyb 170 
llon 11 
t]on9 255 
plan 
=31 107 
sand 184 
SC| 166 
shi~ 16 
styr 166 
lay 49 
trao4 14 
tral 1 25 

I 

d.' 11 ;ntrl 8 a . c ~ -  15 11 

10 11 
4 , 7 
4 ' 14 
5 7 
3 5 
11 26 
7 9 
3 5 
7 i 12 
7 13 
3 21 
6 i 18 

13 
4 l e 
3 ! 9 
6 I to 

12 ! 44 
3 I 3 
6 ~ 
6 5o 
6 I 23 

,* ! e 
8 56 
2 23 
5 6 
1 8 

Improvement in countable productterms. 

3.2 Partlal  state coding 

Partial state coding is not a common optimization type in 
eontrolpath synthesis systems. However, many manual 
dcsigos of  processor controlpaths [10] use this method to 
implement state Iransifioas. It reduces the number of 
productterms in case several states have identical transition 
sn'uctm~s anti active input variable sets. The ~raositica 
function generags just a part of  the next addsess (sta;e 
code), Often only the two least sigaificant bits (LSB). The 

Figure l .  ~xample of  partial cotiing of  sueessor states. 

oulput function generates tim miter,  the most  signil"a:am., 
bits (MSB) of t i c  next address. By this, these MSB bits 
must be identical in all next states of  a ce'aain state. This 
state code generation is feasible because stags usually 
have only a small number of next shales as shown ~ figure 
l.  That makes it possible m code the local seleedon Of tim 
next state in a few bits. Than the MSB bits Of the sta~ 
code can be equal among all aext states of  a state. That 
makes it possible to generate the MSB part with ~ ~ l p u t  
function. In case several states have idemical sets Of in~, ~ 
vectors and transitions, they C, an share a set of 
prodectterms in the mms~on  PLA. This reduces t im 
number of  producuerms and output variables in 
transition PLA. Note the cost o f  additionRl output variables 
for the MSB bits in tim output function. The optimization 
problem is m find the maximal number of  compatibie 
transition sets. As stated before, transition sets g*¢ 
compatible in case all inputs ale identical and the sets of 
next states contain cqua] subsets of ststes. Fm'r l lcrmore 
these sets may contain each state only once to prevent 
multiple codes for a single state. In case not all st~cs ave 
parlially codeabie, the transition function decomposes into 
two PLA's, of  which one generates the usual complete next 
state code for all state teansitions that c imnot  be 
implemented by partial state coding. 

C¢2Sl s2 
~ 1 2  sl s,?. 

100s s3 

Shoe co~ing : 

=3=~10 C~ ~01 

sii=1o/IO lo l  lx11 

R g u r c  2. Example Of productterm reduct ion by partial 
codes 

The example of figure 2 shows a reduction in 
prodecttetms. In this example, the n'ansifion set of state 7 
is not identical with the other two sets because its next 
slate smactor¢ has a different pattern. Both the input word 
set and the tl'ansidons have to be identical, as is the ease 
to:  s!ates I and 5. After state coding, the transitions of  
sta~s 1 and 5 can be merged. However, the ffi~lSilions 
from state 7 cannot be implemented in the same PLA as 
the merged set o f  smtas 1 and 5 .  The output  funct ion 
generates the static code part, in case of  state 1 it generates 
00, of  state 5 : 10, and for state 7 this code is don't  cam : 
22. 
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Optimizat ion 

Tim next algorithm detects the number of  redundant 
productterms in a FSM for a dbits wide LSB part of the 
staZe code. Firsts it removes ail transitions starting from 
states that have more than 2**dbits of next states. Then it 
generates maximal clusters of  states with identical input 
vectors. From these dusters the algorithm makes new ones 
that contain t i e  next state collections ira a matrix form with 
one row of  r~ext states for each state. For partial state 
ending, ." clusi~r shotdd contain only unique states. 
Therefore the algorithm searches for a maximal unique 
sub-matrix, It discards non-unique states ~ a 
state/transition matrix one by one until a sub-matrlx with 
unique states temalns. The reduction ','n transitions is then 
obtained by counting the number of states in the unique 
solymatrix minus one row, because one row is actually 
implemented. From this follows also the number of 
redundant productterms. In table 7, column #PTS_a gives 
the reduction of prodnctterms of  the transition function, 
This method is suited best for control functions with a few 
transitions per state and d~,sjolnt next-state sets. 

bb~r~ 60 1 ~ 15 36 0 

b txas  24 8 11 16 0 
beect 28 7 0 7 17 0 
¢s~ 91 16 0 :4 47 $ 
dk14 56 7 O 7 34 0 
dk15 32 4 O 5 16 0 
dS16 108 27 66 25 59 D 
dk17 32 S B 9 15 0 
dk?7 14 7 2 ' ~  6 0 
dk51~ 30 15 16 12 13 0 
rant 96 24 B 13 73 O 
a ~  138 20 2 21 gEl 3 t  
ex2 72 1~ 28 18 44 O 
ex3 36 10 12 9 19 0 
ex4 21 14 2 l a  - 1 
ex5 32 9 8 8 17 o 
ex6 34 a o 9 11 o 
. . . . . .  ; ' : j  . . . .  
key~ 170 19 44 123 
lion 11 4 3 3 a 

~oo ~;s :s o I &  - o 
~ 3a 28 18 

107 20 3 23 27 5 
nd 18~ 32 34 82 g5 36 

scl 166 121 10 120 28 76 
.~,hia 16 8 14 8 12 O 

56 16S 3O 0 77 26 
4S 4 O 23 0 

ITd04 14 4 O 6 - O 
2s . I o s , s  o 

- : no  da la  availalole from 

# PTS...a = prodtlcl lerm reduclkm Io¢ partial addressing 
#PTS_c = productterm reduction tar a cour l l~  
# P T S ~  = p m d u ~  reduction by s ta t~ -ass ig~ent  
# P ' l~_t  _ p m d ~ m  reduction equivalent of repot, pan. 

TabIe 7. Algorithm results : productmrm reduction. 

Microprogramming methods [10] use that knowledge 
extensively to generate the controlpath function which can 
be implemented efficiently with this technique, 

3.3 Slate AssignmunL 

As is clear from section 2, logic minimization with state 
assignment reduce also the number of produetterms of a 
PLA implementation. Therefore, we consider it as another 
design alternative. Table 7 shows the results of 
NOVA/ESPRESSO [91 as #PTS - #PTSmin in column 
#PTS_s. Unfortunately NOVA does not supply data for all 
machines in the MCNC set. 

3.4 Topological Partitioning. 

This problem concerns the division of  a single PLA into 
several smaller PLA's such that the AND- and OR-planes 
of the PLA's become densely used, which reduces the total 
silicon area occupied. Several algorithms are known for 
this problem [12), [13], [14 I. We selected the algorithm of 
Henne56y 113] and extended it to FSM's by viewing all 
productterms in a state as an emity, which simplifies 
implementation and reduces computational complexity 
For more details on the algorithm we refer to [14]. Oae 
variant of this topological partitioning algorithm 
minimizes the total area of  the PLA's, if possible. It 
accounts also for input/output buffers, power and ground 
overhead. The last column of table 7, called #PTS_t, 
shows the converted results. The original resuhs are in 
terms area reduction. These were converted to numbers of 
produetterms which take the equal amount of area, to make 
topological partitioning results comparable with the results 
of  the other algorithms. 

3.5 FSM analysis. 

This section explains how the estimations for selection are 
made. Both the state-graph structure and I and O word 
densities are analysed. The most obvious analysis concerns 
the division of  numbers of transitions per state. We started 
with simple estimations based on observations and 
computed the correlation coefficients.-Then we Lded to 
improve these correlations by exploring closely related 
alternatives. The tables do not show these alternatives for 
sake of clarity. We discuss only ,,he final estimations in the 
remainder of this section, Table 8 shows the reduction of 
productterms #PTS-#1PTSmin for each estimation. 

The column 'subsetl '  of table 8 estimates countable 
transitions, It estimates the average number of countable 
transitions as the number of states times the average 
number of prodoctterms for a transition (#S*#PTS/#TRS). 
We know that just one countable transition can occur for 
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each state and also the average number of prnductterms in 
a transition. This gives the average expectation of the 
number of producttenns to be saved. 

subset1 subset2 subset3 subs~4 

bbara 16 O 60 I 
bb~se 21 12 30 12 
bbtas 12 24 24 0 
beeci a 28 2a 0 
cse 26 8 91 7 
dk14 14 0 56 1 
ak15 10 0 32 0 
dk16 28 108 108 2 
dkl 7 11 32 32 0 
dk27 11 8 0 0 
ek512 15 30 0 0 
donfl 24 96 96 1 
exl  37 12 130 24 
ex2 24 72 72 1 
ex3 12 36 36 1 
ex4 16 10 0 7 
ex5 11 32 32 0 
ex6 8 16 31 3 
ex7 13 36 36 1 
keyb 70 12 158 19 
[!on 4 2 0 0 
lion9 9 4 0 0 
plan 77 46 52 52 
sl  26 20 86 22 
sand 6 5  44 138 69 
scf 133 32 34 133 
shiO 8 16 0 0 
styr 54 4 153 37 
lay 49 0 40 0 
Ira04 7 8 8 0 
, ,a l l  11 16 I o I 0 

Table g. Pmducltenn reduclion estimations, 

Column 'subset2' is for partial state coding. The  number of 
productterms per  state relates strongly to the number of 
code bits geoeratcd by the transition function. ~ choose 
for two bits. This allows z~t most four next slates in a state. 
Therefore we count all prodectterms of states which have 
cxactiy two or four productterms (#{pt leaving s } = 2,4). 

Next, column "subset3" is for state assignment. A high 
number of productterms per state gives on average heifer 
logic minimization sesuits. We counted the total number of 
product terms of states w i t h  four or more product tenns 

(#{pt leaving s} >= 4). After some experiments, this 
number gave the highest correlation with state-assignment 
reSalts. 

The last column 'anbset4" of table 8 shows the produutterm 
mdecdon equivalant of  the a~a  saved with topological 
partitioning. This equivalent gives compatibility with the 
other subsets, which is needed for a con~ct d¢terminatian 
of the corr01ation coefficients. 
This number of ptoductterms is derived from the average 
number of input/antput vadablas active per state. This 

number lies between 0 and I. The lower this nm'nber d'~ 
higher the possible area savings by mpologleal 
partitioning. The next formula was der i ved  experim~tally 
to correspond with the optimization results from 3.4. #PTg 
=11( #1s/#S + C* #Os/#S) were #Is is the ~ of 0clive 
input variables counted over all states. #Os is tlm co~zt  
variable equivalent of this. C=50 is an expedm~tal|y 
d~'ived constant to balance both parameters. 

3.6 Results. 

Table 9 lists the computed correlation cocffn:lents between 
the est imated reduc t ion  i n  # P T S  o f  table 8 and the 

algorithm results in table 7. Table 9 shows quite high 
correlations on the main diagonal and reasovable low 
correlation coefficients with other optimization 
¢stin.,ttions. However, them is one exception, which is the 
correlation between counter and topological partitioning. 
Both the counter and topological partitioning astimadons 
cornelate highly with each others algorithm results. -! opt.method subset1 subset2 surest3 sbbse¢4 

counter G.05 0.17 0.40 0.95 
pa~.a~:lress 0,22 0.78 0,24 0.18 
star ,  assign. 0.45 0.18 0.93 0.27 
tapol.paflit, 0.88 0.03 0.34 0.97 

Table 9. Correlation coefficients of  astimaficas. 

One can give two explanations for this. The fwst is that wv 
measure the wrong pmm~ete~ for both estimations. But, 
because the subsets 1 and 4 am based one totally different 
parameters which are iedependcat by natu~, this 
explanation is not foanded. The second explanation is that 
both optimizations a~  highly con~lated for the FSM's in 
this benchmark set. To check this assumption, wc 
computed also all the con'vlafians hetwecn the results of  
the optimization algorithms. Table 10 lists them. All 
coefficients on the main diagonal am one, as ¢~ected. 
Furthermore, zhls table shows that the second explanation 
is co~n'ec t, because the counter and Topological petdtioning 
algorithm results ~xe here also highly coffelated. In fact, 
the coefficients in table 9 resemble those in table 10 quite 
closely, which shows that our estimations for alternative 
selection am quite reliable. 

cpt.metb~d counter parl.addr state-ass, top01.part 

COUnter 1.00 0.28 0.41 0.91 
part.address 0.28 1,00 0.15 0.10 
s!ate-aesJgn. 9.41 0.15 1.00 0.32 
topoJ.~r6L 0.91 0.10 0.32 1.00 

Table 10. Corre la t ions between op t im i za t i on  results. 
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How must we interpret FSM estimations on alternatives 
with regard to these correlations ?. In case the esfimadoos 
for a FSM result in just one high estimation numhex, the 
selection is evident. When equal or nearly equal estimation 
figures occur for altemativas, one selects the alternative 
which has the higher correlation coefficient in table 9, 
because the correlation coefficient expresses the 
probability to he the best akeraative. But, i f  the FSM has 
equal estimation figures for subsets 1 and 4. no selection 
can be made based the correlation coefficients. Thus, only 
in this case one has to tun both optimization algorithms. It 
is likely that both alternatives have about equal 
minimization potentials. Concluding, for most eases our 
estimations give a clear indication of the probab!y best 
alternative, which helps the designer to choose among 
alternative implementations. 

, i  ¢ -  - _ ~.~.~e.H_...mo~_..s 

For the estimation of logic minimization including 
state-assignment, we conclude from the correlation 
coefficient of 0.97 with an average size difference of 6% 
compared to the algorithm results, that it is reliable enough 
to apply it in synthesis decisions. It gives a good 
expectation of what size reductions are feasible with logic 
minimization for a FSM without the need for extensive 
computations. Although the high state-assignment problem 
complexity, the FSM structure is less complex, which 
explains the high quality ofoor results 

The selection estimators, also based on FSM statistics, 
show correlation coefficients around 0.9 and 
cross-correlation coefficients that are typically below 0.4. 
Only the highly correlated results of  two optimizatioos in 
the alternatives set distort these results partially. On 
average, these coo'elations help to retrieve information on 
which design alternatives are the most suitable for a 
cemJn FSM. This selection method saves detailed 
computations for all opfimizations for the alternatives. 
Thi.~ makes this type of estimation methods also suitable 
for planning based design systems [15]. At this moment 
we extend our research on curve-fitting to other 
im[ lemematioo techniques as multi-level logic 
hnplemenmtions. Also, on the field of implementation 
selection, re,~;earch for more elaborated sets of alternative 
irnpl,ementarioos is carded out. 
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