Microprocessing and Micropregramming 35 (1992) 151-158
North-Holland

Estimators for Logic Minimization and Implementation
Selection of Finite State Machines

AJW.M. ten Berg

University of Twente

Faculty of Computer Science
PO.Box 217, NL 7500 AE Enschede, The Netherlands

This paper iders two estimation prob which occur during the implementation d:signfornﬁnia:
state machine (FSM). The first is a precise ion of the reduction of a p d logic array
implementation (PLA) for a FSM by log:c mmmuzauon The second concerns selection of
implementation alternatives based on such i give the d a quick overview of
the impact of an optimization method for FSM implementation without running the actual
time-consuming algomhms The method uses curve-| ﬁmng on results found in literature for logic
minimization preces state late by 097 to those
results.State-graph statistics can also be used for selection of the most profitable optimization from a set
of altcmauves We tested selccuon between & counter based implocmentation, partial state coding,
state and logical partitioning. The goal is selection cf the altemative which has the
highest probability to deliver the largest minimization of the FSM. This selection method is alsc
cmpirically verificd by comparing its results with results obtaincd by ing specific optimizati
algorithms on machines of the MCNC benchmark set.

151

1 Introduction

A iderable problem in synthesis is the selection of the
P ion al ive for Finitc Statc
Machs Many 1 ion all ives are known

[21(5] for specxf ic hardware configurations. Each of these
implementations has its specific optimization or
minimization algorithms {21,[3],[12]. Thus, for a proper
comparison of altematives, the designer must execute all
optimization algorithms, Unfortunately, this takes large
computational efforts. Equal problems arise also in design
pianning [15], were design plans must be build. Quick
esllmanons of opumi lanuns can be of great help in such

p the efficiency of the
design process. One can ldenm'y two types of estimations
for of design al

The first dicti

type is the
and time- g of
Such optimizations are usually bound 10 one
implementation. An iiportant example of such an
optimization is the two-level logic minimization problem
for Finite State Machines (FSM) impl d in a single
PLA. However, only if the state-assignment problem [3] ,
[4] is solved, the minimal PLA Is obtained. The
state-assignment assigns binary codes to internal FSM
states such that a two-level or a mulii-level logic
optimization has its maximal effect. In this case we

of resuits of

1 araf;

consider only two-level logic ie. PLA implementations.
The exact amount of minimization is not the most
interesting to know. In most cases the relative
minimization potential is far more uscful for the designer.
In other words, whether application of logic minimizatios:
with state-assignment will reduce the machine size by
20%, 50% ot maybe even 70%.

The second estimation type concerns the selection problem
among implementation alicrnatives. For selection, not the
y of estimation for each individual al is
p but its selectivity. Th such
must have a reasonable comlanon with the results of their
optimization algorithm and preferably a low correlation
with the results of other optimizations. Selection
estimations deliver the aliemative with the highest
probability of obtaining the minimal implementation.

In order to test the we ran op

algorithms for cach alternative on the MCNC benchmark
set of FSM’s. This bcnchmark set is uscd wu:lcly for the
comparison of stat The
correlation cocfficient between esumanons and algorithm
results provides us an empirical verification. The set of
alternatives comams a2 counter, pamal sate code
generation, state- and topological paititioniag.
Section 2 discusses the curve-fit estimation method for

182 AJ.WM. ten Berg

2al i Section 3 explains the optimizations for
each alternative and also the staristical measures used for
the selection.

2 Stat i result

!

‘What we &y to estimate is the maximal reduction of a PLA
implementation of a FSM by]oglc minimization, This

bl includes the stat problem, which
must be solved optimal in order to obtain the mamma]
profit out of logic The star

blem is very plex and as problem hard to estimate.
The FSM structure however is much simpler and therefore
we can estimate the maximal profit of logic minimization
forit.
In other engineering sciences as for example in chemistry,
curve-futing is usually applied to model complex physical
processes. In chemistry, the behaviour of reactors is
modelled by volume, p and temp par
which are very global compared to the actual molecular
reactions. Then, curvefit methods can supply
understanding and prediction of the macro-molecuiar
behaviour of the p reactor. Thereft we
investgate a curve-ﬁmng method for the estimation of two
level logic mini Anal to the ple we
have to identify global FSM parameters as input for the
estimation polynomial.

The curve-fit method delivers the coefficients C for a
polynomial in the form of (1). The input data for the
curve-fit are the reeults from NOVA [9]. NOVA performs
near-optimal state for PLA impl

and it obtains its minimization results wuh ESPRESSO
{11}, which is a widely known two level logic minimizer.
The number of coefficients of the polynomial minus one is
the: order of the poly 1. We applied math ical APL
programs for regression analysis [1) to compute the
coefficients C of the polynomial curve. These programs
apply a least square’s method for this computation.

Polynomial of order 4 :
POLY(x)= Clx**4 + C2.x**3 + CI.x**2 +
Cd.x+C5)

The first problem is to determine the parameter(s) x of the
FSM that give a curve close to the NOVA/ESPRESSO
resulis. The second problem is the order of the polynomial.
This order must be small compared 1o the set of data from
which the polyromial is derived. NOVA [%]) provides
resulis for 25 machines from the MCIWC benchmark set
(table 1). For a proper carve, the polynomial order must be
small compared 10 the number of samples. Therefore we
use a polynomial of a third order, which is small enough.

2.1 Finite State Machine parameters.

Next, we identify some curve parameters, for which we
need first some FSM definitions. Cardinality of a set of
elements is denoted by #. For example: #] is the number of
symbols in the input alphabet. A binary coded symbol is
called a word. A Finite State Machine is defined by the
quintuplet FSM = <i, O, §, OUT, TRS > given by :

1= {i..ik} Input alphabet where ix is a binary

caded symbol

O ={o1..0m} Output alphabet where ox is a
binary coded symbol

S ={s1..5v} State alphabet, where sz is
symbolic.

o:= QUT(s,i) Mealy Output function

o= OUT(s) Moore Qutput function

s';= TRS(s,1) ‘Transition function

A second specification of a FSM is given by a set
PTS={pt1..pin) of four tuples <input word, siate, next
state, output word> denoted as pt=xi,s.s’.0> which are
called productterms. The FSM’s in the benchmark set are
all of the Mealy type. Now we can write the estimation of
the minimized number of productterms #PTSmin in (2).

#PTSmin =POLY(x) * #PTS

We select various p and binations of them,
for the x in (2) and tested their quality. First we compute
the polynomial coefficients, Then, the estimations of
#PTSmin are compared with the NOVA/ESPRESSO (9]
results. This comparison includes the correlation
coefficient and the average difference belween [he
algorithm jon and the est d

#PTSmin. Examination of the FSM structure in relation
with the NOVA [9] results shows two importamt FSM
parameters. The first parameter is the nomber of
productterms per state #PTS/#S. One expects that for logic
minimization, a high number of productterms for a star2
causes a relatively high ion potential. B if
more productterms share the same state code then Jarger
cubes can be expected. A second parameter is the number
of output variables #0. Roughly, the hxgher lhlS number,
the more difficult it b w0

Thus the number of output variables contributes ip a
reverse way to minimization, Therefore we use this
parameter inverted (1/#0) when we combine it with other
parameters as #PTS/#S. Furthermore, the number of inpu:
variables #1 may be interesting. Although #1 is mosdy
related to #PTS/#S and therefore only a limited effect can
be expected from its use.

for fogic

A combination of more FSM in x ires a

for FSM 153

weighting mechanism. This to make sure that value ranges
of parameters become overlapping. Thus, we presume an
equal importance of both parameters. The value range of
the #PTS/#S parameter is roughly from 1 to 10. The 140
parameter is always between 0 and 1. Therefore this last
parameter is multiplied with a factor 10. Another
alternative would be the use of complex curve fitting,
which can obtain a polynomial for sets of parameters.
However, the results of parameter balancing are quite good
in this case, which makes complex curve-fitting
superfluous here.

#0 #PTS #5
bbara 4 2 60 10
bbsse 7 7 S6 16
bbtas 2 2 24 6
beect 3 4 28 7
cse 7 7 AN 16
dk14 3 5 56 7
dk15 3 S 2 4
dk1é 2 3 108 27
dk17 2 3 32 8
dk27 1 2 14 7
dk512 1 3 30 15
donft 2 1 96 24
ex1 9 19 138 20
ex2 2 2 72 19
ex3 2 2 36 10
exs 2 2 32 9
exb 5 8 34 8
keyb 7 2 170 19
plan 7 19 115 48
s1 8 6 107 2
sand kb] 9 184 32
scf 27 56 166 121
shifi 1 i 16]
styr 9 10 166 30
tralt 2 1 25 11

Table 1. Data of MCNC FSM set.

Table 1 gives the MCNC FSM data and Table 2 shows a
comparison of FSM p and some binations of
them. Clearly x—(lO/#O) + (#PTS/#S) delivers the best
result with a correlation coefficient of 0.97 with the NOVA
results and an average difference of 6.1% in #PTSmin

parameter :x Corr.Coeff.| Av.Difl.%;
#PTSHS 0.94 103

#0 094 a5
{10/0)+{#PTSHS) 097 6.1
#+{10/HO)H{#PTSHS) 0.2 12

#l 0.92 12
#14(10/40) 0.93 104
#+(#PTS/HS) 092 121

Table 2. Estimations for several FSM parameters
compared.

pared with the NOVA results. Then, Table 3 gives the
coefficients of the polynomial for x=(10/#0)+#PTS/4S).
Table 4 shows in the second column the pmducmms m:r
imization #PTSmin, puted with the
The first column shows the number of pmducncrms
obtained by NOVA/ESPRESSO. Table 5 gives the
ile diff cstimation and algorithm,
mlatcd to the original #PTS of the machines.

coefficient | order

323E-4 | x"3

960E-3 2
-0.13 X1
1.03 1

Table 3. Coefficients of estimation polynomial.

These tables show the remarkable precision of e
Certainly, b the estimations are based
on only two parameters of the FSM and a third order
polynomial. This gives sufficient confidence in the
usefulness of this type of esumanons for pmdmmn of the
impact of logic minimi i tate:
The two largest exceptions are machmes s1 and exl. We
analysed these machines into further detail but did not
1dcnufy a clear cause. Further research concems

for other op algorithms used in
WIS «Dit.
NOVA| estim. s 0.0
makt | 0.0

bbara 24 23 wat1 00
bhsse 27 34 styr 1.2
bbtas 8 " bbara 1.6
beect 1 15 oy 17
cse 44 45 14 18
14 2 2 donl 21
15 16 13 sand 29
16 49 53 cse 22
k17 17 18 sct 25
%7 8 7 pian 26
512 17 18 ox3 27
dortl 23 25 a7 | a1
ext 40 87 a2 | 34
o2 28 a2 K16 2a
ex3 17 17 ox2 56
o5 15 15 dk27 7.1
ox8 &3 20 ox6 a8
keyt a7 44 dk15 9.3
plan 4 % bbsse | -12§
st 80 54 bbtas | -125
sand 59 9 shitt 125
scf 138 140 beect | -14.3
shit 4 6 ext 196
siyr 8 8 81 2.2
trat1] 8

Table 5. Percentile
differences.

Table 4. NOVA results with
estimations.

154 AJ.WM. ten Berg

microarchiteciure synthesis. The next section discusses a
different type of estimations that can sekct a
microarchiteciure from several alternatives. This requires a
selective character instead of a high precision.

31 ion alternative ion by

The second type of estimation problem is the selection
among implementation alternatives. In most cases, the
dcsxgncr has to choose fmm a set of a!temanve

ions. Unf iy, each y!

usually ires its own ifi ion. Tt a

The optimization to this impl ion is L.
coding of transitions such that the countable iransitions
cover the highest possible number of productterms (PTS).
Thus, the algorithm must identify a collection of transition
chains that cover a maximum number of productterms.
Such an algorithm is given in {2]. That algorithm handles
only Moore type machines and incorporates also other
constraints for the code assignment which make it less
suitable for our purpose. B the MCNC benchmark
set ins Mealy hi we d d a different
algorithm better snited to Mealy machines.

proper comparison between alternatives requires execution
of all the optimization algorithms. Estimations can provide
the designer quickly with information on the alternatives.
Then, the designer can deduct which of the alternatives are
mos: promising for a more delailed comparison. We
d a set of impl ion alternatives and
cumpmed results of their optimization algorithms for the
machines in the MCNC benchmark set. Next is the FSM
analysis which is the base for the estimations. The problem
is to identify those FSM parameters that have a selective
h Therefore, these p must provtdc a hlgh
comrelation between the estimation and its opti
aigorithm results and a low correfation with the other
alternatives.

We focus mainly on the transition function in the FSM,
because quite a number of different alternatives is
available to implement it. First we explain each of the

C ble transition chain Ctj :

Cij = trs)..trsk | Code(irsi+1)=Code(trsi)+1 ~ where
1<= i<=k(3)

The total number of productierms implemented by a
counter is then :

n
PTSC= Z#pt(Ch) wheren is the number of
countable chains

i=1

The objective of the algorithm is to code TRS such that
PTSC is i Therefore all jons get a weight
assigned representing their number of productterms : wj =
#pi(ursi). The algorithm removes first all transitions of
which the start state is equal to the next state, because
transition cycles are not countable. It sorts the transitions

alternatives shortly with theirs related

P Some optimization algorithms originate from
ln.erature and some where neccssanly self—dcve]oped The
il set ins a counter i ion, pa,rua]

1o d ights. In the next phase, the algorithm
builds cha.ms of transitions. Tt starts with the first
unmarked transition and scans the list for follow-up
Thus, the transitions with the highest weight

state coding, state assignment and topological parti g
These are all quite common 10 FSM’s and not restricted to
very specific types of FSM’s as other more dedicated
optimizations {7],[8] are.

3.1 Acounter implementation.

Algorithms for optimal embedding of a counter in the
transition function of 5 FSM are sludxed cxtcnstvely in[2].
The counter impl the ¢ i This
makes these i dundant in the ition PLA
and therefore removable. The PLA generates the signal 1o,
counter activation by default in case an input pattern does
not match any of its productierms. The counter must be
loadable to accept codes generated by the PLA in case of
non-couniable transitions. The counter connects to the
transiiion function output, thus it affects only transition
codes.

are selected first. The algorithm proceeds with this until it
encounters a cycle, or it finds no follow-up transition,
Furthermore, it marks only the state which is at the head of
a chain. Through this way of state marking a state may
occur in more than one chain, It occurs however only ence
as head of a chain. This redundancy avoids local optima,
The algorithm generates new chains as long as there exist
unmarked states that have unmarked SUCCESSOrs. Next, the
chains are sorted g their ights, again
in a decreasing order. To retrieve the final collection of
countable chains, the algorithm takes chains from the head
of the list. Chains that contain states which do also occur
in previoesly selected chains are rejected. The algorithm
codes the siates according the chains selected. This
algorithm iterates until no improvement occurs in the
PTSC. Table 6 shows the results for this algorithm on the
MCNC FSM benchmark set. Column d.Cntrl shows the
number of bl d before opti

d.Cnir2 after opumlzauon These results are also in table 7
column #PTS_c.

Estir for logic

for FSM 155

#FTS [d.Cntrt | d.Cnmr2
bbara 60 11 15
bbsse 56 8 1t
bitas 24 10 11
beect 28 4 7
cse 91 4 14
dk14 56 s 7
dk15 32 3 5
dki6 108 1 26
dk17 32 7 9
dk27 14 3 5
dk512 30 7 12
donfl 96 7 13
ex1 138 3 21
ex2 72 6 18
exd 36 3 9
exd 21 " 13
x5 32 4 8
exé 34 k] 9
ax7 36] 10
keyo | 170 12 44
lion 11 3 3
kong 25 6 6
plan 115 [:1 50
s1 107 6 23
sand 184 2 82
scf 166 3 120
shift 16 2 8
styr 166 8 56
av 49 2 23
tra04 14 5]
tra11 25 1 8

Table 6. Improvement in countable productterms.

3.2 Partial state coding

Pamal sxale codmg is not a common optimization type in
. However, many manual

csigns of processor comrolpat.hs {10} use this method to
implement state transitions. It reduces the number of
productierms in case several states have identical transition
structutes and active input variable sets. The transition
function generates just a part of the next address (staie
code), often only the two least significant bits (LSB). The

Figure 1. Example of partial coding of sucessor states.

output function generates the other, the most significant,
bits (MSB) of the next address. By this, these MSB bits
must be identical i in all next states of a certain state. This
state code is feasible b states usually
have only a small number of next states as shown in figure
1, That makes it possible to code the local selection of the
nexi state in a few bits. Then the MSB bits of the state
code can be equal among all next states of a state. That
makes it possible to generate the MSB part with the output
function. In case several states have identical sets of input
vectors and transitions, they Cun share 2 set of

d in the ition PLA. This reduces the
numbcr of productierms and output variables in the
transition PLA. Note the cost of additional outpat variables
for the MSB bits in the output function. The optimization
problem is to find the maximal number of compatible
transition sets. As stated before, transition scts e
compatible in case all inputs are identical and the sets of
next states conzin equai subsets of states. Furthermore
these sets may contain each state only once to prevent
muitiple codes for a single slate In case not all states are
panially codeable, the i P into
two PLA’s, of which one generates the usual complete next
state code for all state tramsitions that cannot be
implemented by partial state coding.

Trs state 13 Trsstaw s Trs swmte 7:
002 51 s2 002 55 <8 002 s7 59
212 53 52 212 5 8 212 ¢7 810
1005 s3 100 55 s 100 87 311
101 81 84 101 55 12 101 57 stt
Stava coding :
5220001 Transiton fu. :
$3-00/10 002 xx 01 Output . «
st | =L 212 w0t &l st~
55='Cgl°'° 100 xx 10 S 10
s11210/1
121011 101 x 1

Figure 2. Example of productterm reduction by partial
codes

The example of figure 2 shows a reduction in

In this le, the ition set of state 7
is not identical with the other two sets because its next
state structure has a different pattern. Both the input word
set and the have to be id 1, as is the case
for srates 1 and 5. Afier state coding, the transitions of
siaies 1 and 5 can be merged. However, the transitions
from state 7 cannot be implemented in the same PLA as
the merged set of states 1 and 5 . The output function
generates the static code part, in case of state 1 it generates
00, of state 5 : 10, and for state 7 this code is don’t care :
22

ib6 AJW.M. ten Berg

Opiimization

The next algorithm detects the number of redund

Microprogramming methods {10] use that knowledge
extensively to generate the controlpath function which can

productterms in a FSM for a dbits wide LSB part of the
state code. Firsts it removes all transitions starting from
states that have more than 2**dbits of next states. Then it
generates maximal clusters of states with identical input
wvectors. From these clusters the algorithm makes new ones
that contzin the next state collections in a matrix form with
one row of rexi siates for each state. For partial state
ending, 2 clusizr should contain only unique states.
Therefore the algorithm searches for a maximal unigue
sub-matrix. It discards non-unique states from a
state/transition matrix one by one until a sub-matrix with
unique states remains. The reduction in transitions is then
obtained by counting the number of states in the unique
submatix minus one row, because one row is actually
implemented. From this follows also the number of
redundant productierms. In table 7, column #PTS_a gives
the reduction of productterms of the transition function.
This method is suited best for control functions with a few
transitions per statc and disjoint next-state sets.

#PTS| #S ‘ #PTS_a|#PTS ¢ |#PTS s | #PTSt
bbara | 60 m| & 15 36 []
bosse | 56 15 3 1 29 7
bxas | 24 [8 1 16 [
beect | 28 7 [7 17 [
cse 91 % o 4 47 [
dk14 | 56 7 [} 7 24 2
duts | 32 4 0 5 16 0
dk16 | 108 | 27 | 68 26 59 o
da7 | 32] 8 9 15 °
dke7 14 7 2 5 3 [
dk512| 30 15 15 12 13 [
donfl | 96 24 8 13 7 0
ex? 138 | 20 2 21 98 31
ex2 72 2 28 18 4 0
ex3 36 10 12 9 19 0
exd 21 14 2 13 - 1
ex5 32 9 8 8 17 0
ext 34 8 [9 1 0
ex7 36 10 % 10 - v
keyo | 170 | 19 0 4 123 3
lion 1 4 3 3 - [
korg | 25 9 [[[
plan | 118 | a8 | 3¢ 50 28 8
51 07 | 20 k] 23 27 s
sand | 84 | 32 | 34 82 95 36
sct 186 {121 | 10 120 28 7
shift 16 8 14] 12 0
styr 166 | 30 [56 77 26
tav 49 4 [23 - [
wa0s | 14 4 [[- [
watl | 25 1 0 8 16)

- “no data available rom {]
#PTS_a = productierm reduction for partial addressing

X roducttenm reduction far a counter
#PTS 5= reduction by st i
#FTS_t = productierm reduction equivalent of topol. part.

Table 7. Algorithm results : productterm reduction.

be impl d efficiently with this technique.
3.3 State Assignment.,

As is clear from section 2, logic minimization with state
assignment reduce also the number of productterms of a
PLA implementation. Therefore, we consider it as another
design altemative. Table 7 shows the results of
NOVA/ESPRESSO [9] as #PTS - #PTSmin in column
#PTS_s. Unfortunately NOVA does not supply data for all
machines in the MCNC set.

3.4 Topological Partitioning.

This problem concerns the division of a single PLA into
several smaller PLA’s such that the AND- and OR-planes
of the PLA’s become densely used, which reduces the 1otal
silicon area occupied. Several algorithms are known for
this problem {12}, {13}, [14]. We selccted the algorithm of
Hennessy {13] and extended it to FSM’s by viewing all
productterms in a state as an emtity, which simplifies
implementation and reduces computational complexity.
For more details on the algorithm we refer 1o [14]. One
variant of this topological paritioning algorithm
minimizes the total area of the PLA’s, if possible. It

also for input/output buffers, power and ground
overhead. The last column of table 7, called #PTS_t,
shows the converted results. The original results are in
terms area reduction. These were canverted to numbers of
productterms which take the equal amount of area, to make
topological partitiuning results comparable with the results
of the other algorithms.

3.5 FSM analysis.

This section explains how the estimations for selection are
made. Both the state-graph structure and I and O word
densities are analysed. The most abvious analysis concerns
the division of numbers of transitions per state. We started
with simple estimations based on observations and
computed the comelation coefficients.- Then we wied o
improve these correlations by exploring closely related
alternatives. The tables do nat show these alternatives for
sake of clarity. We discuss only the final estimations in the
temainder of this section. Table 8 shows the reduction of
productterms #PTS-#PTSmin for each estimation.

The column ‘subset]’ of table 8 estimates countable
transiti It esti the ge number of countable
wransitions as the number of siates times the average
number of productterms for a transition (#S*#PTS/#TRS).
We know that just one countable transition can occur for

Esti for logic

each state and also the ge number of p in
4 transition. This gives the average expectation of the
number of productterms io be saved.

subset1}subset2 | subset3 | subsetd

bbara 18 [80
bbsse | 21 12 38
bbtas 12 24 24
beect 8 28 28
cse 26 8 H
dk14 14 o 56
k15 10] 32

dk16 28 108 108
dk17 11 az 32

2= mapa - o
ogmwoN N-ococomo=wooy

dk27 1 8 0

k512 15 30]

donfl 24 % 96

ext 37 2 130

ex2 24 72 72

exd 12 36 38

exd 186 10 0

x5 11 32 32

ax6 8 16]

ex7 13 36 36

kayk 70 12 1568

tion 4 2 0

lion9 9 4 0 0
plan 77 46 52 52
s1 26 20 86 22
sand 65 44 138 69
scf 133 32 34 133
shift 8 16 o 0
styr 54 4 153 14
1av 48 [} 43 0
ra04 7 8 [} 0
frall 11 16 0 2

Table 8. Productterm reduction estimations.

Columin ’subset2’ is for partial state coding. The number of
productterms per state relates strongly to the number of
code bits generated by the wransition function. We choose
for two bits. This allows at most four next states in a state.
Therefore we count all productterms of states which have
exactly two or four productterms (#{pt leaving s} = 2,4).

Next, column ’subset3’ is for state assignment. A high
number of productterms per state gives on average better
logic minimization results. We d the total number of
productterms of states with four or more productterms
(#(pt leaving s} >= 4). After some experiments, this
number gave the highest correlation with state-assignment
results.

The last column *subset4” of table 8 shows the productterm
reduction equivalent of the area saved with topological
partitioning. This equivalent gives companhxhly wnh lhe

lor FSM 157

number lies between 0 and 1. The lower this number the
higher the possible area savings by 1opological
partitioning. The next formula was derived experimentally
to correspond with the op results from 3.4, #PTS
=1/ #Is/4S + C* #0s/#8) were #s is the total of active
input variables counted over all states. #Os is the cutpat
variable equivalent of this. C=50 is an experimentally
derived constant to balance both parameters.

3.6 Results.

Table 9 lists the computed comelation coefficients between
the estimated reduction in #PTS of table 8 and the
algorithm resulis in table 7. Table 9 shows quite high
corrclations on the main diagonal and reasomable low
comelation coefficients with other optimization
estintions, However, there is one exception, which is the
correlation between counter and topologxcal pamuomng.
Both the counter and topol

correlate highly with each athers a!gonthm results.

opt.method subsett subset2 subset3 | subseld
caunter 0.95 0.7 046 0.95
parnt.address ¢22 0.78 024 o018
state-assign. 045 o0.1g a.93 0.27
tapol partit. 0.86 0.03 0.34 0.97

Table 9. Correlation coefficients of estimatieas.

One can give two explanations for this. The first is that we
measure the wrong parameters for both estimations. But,
because the subsets 1 and 4 are based one totally different
parameters which are independent by nature, this
explanation is not founded. The second explanation is that
both optimizations are highly comelated for the FSM’s in
this benchmark set. To check this assumption, we
computed also all the correlations between the results of
the optimization algorithms. Table 10 lists them. All
coefficients on the main diag are one, as exp
Furthermore, this table shows that the second explanation
is correct, because the counter and topological partitioning
algorithm results are here also highly correlated. In faci,
the coefficients in table 9 resemble those in table 10 quite
closely, which shows that our estimations for altemative
selection are quite reliable.

other subsets, which is needed for a correct d
of the correlation coefficients.

This number of productterms is derived from the average
number of input/output variables active per state. This

opt.methad counter | part.addr | state-ass. |topolpant.
counter 1.00 0.28 041 0.91
part.address 0.28 100 0.15 0.10
state-assign. 241 0.15 1.00 032
topal.partit. 0.91 010 0.32 1.00
Table 10. Correlations b pti jor results.

158 AJWM. ten Berg

How must we interpret FSM estimations on alternatives
with regard to these correlations ?. In case the estimations
for a FSM result in just one high estimation number, the
selection is evident. When equal or nearly equa! estimation
figures occur for altematives, one selects the altemative
which has the higher comrelation coefficient in table 9,
because the costelation coefficient expresses the
probability to be the best altemmative. But, if the FSM has
equal estimation figures for subsets 1 and 4. no selection
can be made based the correlation coefficients. Thus, only
in this case one has to run both optimization algorithms. It
is likely that both alternatives have about equal
minimization potentials. Concluding, for most cases our
estimations give a clear indication of the probably best
alternarive, which helps the designer to choose among
alternative implementations.

4 Congl

For the estimation of logic minimization including

! i we lude from the comelation
coefficient of 0.97 with an average size difference of 6%
compared to the algorithm results, that it is reliable enough
to apply it in synthesis decisions. It gives a good
expectation of what size reductions are feasible with logic
minimization for a FSM without the need for extensive
computations. Although the high state-assignment problem
complexity, the FSM swucture is less complex, which
explains the high quality of our results.

The seclection estimators, also based on FSM statistics,
show comelation coefficients around 0.9 and
cross-correlation coefficients that are typically below 0.4.
Only the highly correlated resuits of two optimizations in
the aliernatives set distort these results partially. On
average, these correlations help to retrieve information on
which design alternatives are the most suitable for a
certzin FSM. This selection method saves detailed

putations for all for the al ives.
This. makes this type of estimation methods also suitable
for planning based design systems [15]. At this moment
we extend our research on curve-fitting to other
imgl tion hnig as multi-level logic
implememations. Also, on the ficld of implementation
selection, research for more elaborated sets of alternative
implementations is carried out.

References

fi] Thomson, N., APL Programs for the Mathematics
Classroom., (Springer Verlag, New York, 1989).

12}

31

[41

[5]

[6]

g

i8]

19}

{10

[11]

(12}

[13]

[14}

{15]

Amann, R., Algorithmische entwurfsverfahren fuer
kombinierte plas werke unter ver

Dissertation, (VDI

van zachlern, Verlag,
Duesseldorf, 1987).

DeMicheli, G., Optimal State Assignment for Finite
State Machines, IEEE Trans. Comp. Aided Design,
vol. CAD-4, (1985) pp. 269-284.

Devadas, S. and Newton, R., Exact Algorithms for
Output Encoding, State Assignment, and Four-Level
Boolean Minimization, IEEE Trans. on CAD.
Vol.10. No.1. January 1991, pp. 13-27.

QObrebska, M., Efficiency and Performance
Comparisan of Different Design Methodologies for
Control Parts of Microprocessors, Microprocessing
and Microprogramming 10, (1982) pp.163-178.
Tredennick, N, The "Cultures"” of
Microprogramming, Proc. of the 15th annual
workshop on Microprogramming- Micro-15, 1982,
pp. 79-83.

Paulin, P.G., Horizontal Partitioning of PLA-based
Finite State Machines, Proc, of the 26th ACM/IEEE
Design Automation Conference, 1989, pp. 333-338.
Tarroux, G. et al, Optimization of
Micro-Conwrollers by Partitioning, Proc. EDAC
1991, Amsterdam, Feb. 1991, pp. 368-373.

Villa, T. and Sangiovanni-Vincentelli A., NOVA;
Staic Assignment of Finite State Machines for
Optimal Two-Level Logic implementation, IEEE
Trans. on CAD, vol. 9 no. 9. sept 1990, pp. 905924,
Husson, 8.8., Microprogrammin Principles and
Practices, Prentice Hall, 1970,

Brayton, R.K.,, et al, Logic Minimization
Algorithms for VLSI Synthesis, Kluwer Academic
Publ., 1984.

De Micheli, G. and Santomauro, M., "Smile ; A
Computer Program for partitioning of programmed
logic arrays", Computer Aided design, vol 15 No. 2,
March 1983, pp. 89-97.

Hennessy,J., "Partitioning Programmable Logic
Arrays Summary", [EEE Proc. Int. Conf. on
Computer Aided Design, IEEE 1983, pp. 180-181.
ten Berg, AJWM. "Floorplan Optimized
Topological Partitioning of Programmed Logic
Arrays" accepted for publication at the WG 10.5
IFIP Workshop on Synthesis, Generation and
Portability of Library Blocks for ASIC design.
Grenoble, March 1992,

Knapp, D.W. and Parker, A.C., "The ADAM Design
Planning Engine", TEEE Trans. on Comp. Aided
Des., Vol. 10, No. 7, July 1991, pp. 829 - 345.

