
Micmprocessing and Microprogramming 35 (1992) 151-158
North-Holland 151

Estimators for Logic Minimization and Implementation
Selection of Finite State Machines

A.J.W.M. ten Berg

Unive~ity of Tweate
Faculty of Computer Science
EO.Box 217, NL 7500 AE Ensehede, The Netherlands

This paper considers two estimation prnblems which occur during the implementation design for a f-mite
state machine (FSM). The first is a precise estimation of the znduction of a programmed logic aaray
implementation (PLA) for a FSM by logic minimization. The second concerns se]cctiou of
implementation alternatives based on such estimations. Estimations give the designer a quick overview of
the impact of an optimization method for FSM implamantation without running the acreal
time-cousuming algorithms. The method uses curve-fitting on results found in literetm~ for logic
minimization preceded by state-assignment. Our estimations om'~lare by 0.97 to those
results.State-grnph statistics can also he used for seluction of the most profitable optimization from a set
of alternatives. We tested selection between a counter based impl~memation, pmtial state coding,
state-essignment and topological partitioning. The goal is selection of the alternative which has the
highest probability to deliver the largest minimization of the FSM. This selection method is also
empirically verified by comparing its results with results obtained by framing specific optimization
algorithms on machines of the MCNC benchmark set.

1 Introduction

A considerable problem in synthesis is the selection of the
minimal implementation alternative for Finite State
Machines. Meay implementation ahematives are known
[2][5] for specific hardware configurations. Each of these
implementations has its specific optimization or
minimization algorithms [2],[3],[12]. Thus, for a
comparison of alternatives, the designer must execute all
optimization algorithms. Unfortaontely, this takes large
computational efforts. Equal problems arise also in design
piaoning [15], were design plans must be build. Quick
estimations of optimizations can be of groat help in such
situations. Estimations improve the efficiency of the
design process. One can identify two types of estimatious
for evaluation of design altereatives.

The first estimation type is the prediction of results of
complex and therefore dine-consuming optimizations.
Such optimizatioor are usually bound to one
implementation. An important example of such an
optimization is the two-level logic minimization problem
for Finite State Machines (FSM) implemented in a single
FLA. However, only if the state-assignment problem [3],
[4] is solved, the minimal FLA is ob~ioed. The
state-assignmem assigns binary codes to intenml FSM
states such that a two-level or a multi-level logic
optimization has its maximal effect. In this ease we

consider only two-level logic ie. PLA implementafio~
The exact amount of minimization is not the most
interesting to know. In most cases the relative
minimization potential is far more useful for ~ designer.
In other words, whether application of logic minimizarion
with stata-assignment will reduce the machine size by
20% 50% or maybe even 70%.

The second estimation type concerns the selection pmb!em
among implementation ultematives. For selection, no~ the
accuracy of estimation for each individual alternative is
important, bat its selectivity. Therefore, such astinLnlians
must have a reasonable correlation with the seselts of thcir
optimization algorithm and preferably a low cmrnlation
with the results of other optimizations. Selactim~
estimations deliver the alternative with the highear
probability of ob~iulng the minimal implementation.

In order to test the cstimaress, we ran optimization
algorithms for each altereative on the MCNC benchmark
set of FSM's. This henclanark set is used widely for the
comparison of state-assignmont algorithms.
correlation coefficient betwean estimations and algorithm
results provides us an empirical verification. The set of
alternatives contains a counter, partial state code
generation, state-assignment and topological pat~tioning.
Section 2 discusses the curve-fit estimation method for

152 A.J. W.M. ten Berg

store-assignment. Section 3 explains the optimizatians for
each ulternadve and also the statistical measures used for
the selection.

2 State-assignment result estimation

What we try to estimate is ~.he maximal redimtion of a PLA
implementation of a FSM by logic minimization. This
problem includes the state-assignment problem, which
must be solved optimal in order to obtain the maximal
profit out of logic minimization. The stere-assignmem
problem is very complex and as problem hard to estimam.
The FSM structure however is much simpler and therefore
we can estimate the maximal profit of logic minimization
for it.
In other enginee~ng sciences as for exarr~ple in chemisa'y,
curve-fitting is usually applied to model complex physical
processes. In chemistry, the behaviour of reactors is
modelled by volume, pressure and temperature parameters,
which axe very global compared m the actual molecular
reactions. Then, curve-fit methods can supply
understanding and prediction of the macro-molecular
behaviour of the complete reactor. Therefore, we
investigate a curve-fitting method for the esdmation of two
level logic minimization. Analogue to the example we
have to identify global FSM parameters as input for the
estimation polynomial

The curve-fit methnd delivers_ the coefficients C for a
polynomial in the form of (1). ~ t e input data for the
curve-fit are the results from NOVA [9]. NOVA performs
near-optimal state-assignmems for PLA implementations,
and it obtains its minimization results with ESPRESSO
[111, which is a widely known two level logic minimizer.
The number of coefficients of the polynomial minus one is
the order of the polynemial. Wc applied mathematical APL
programs for regression analysis [1] to compute the
coefficients C of the polynomial curve. These programs
apply a least square's method for this computation.

Polynomial of order 4 :

POLY(x) = Cl.x**4 + C2.x*'3 + C3.x*'2 +
C4.x + C5 (1)

The ftrst problem is to determine the parameter(s) x of the
FSM that give a curve close to the NOVA/ESPRESSO
sesult,:. The second problem is the order of the polynomial.
This order must be small et~mpared to the set of data from
which the polyn.omial is derived. NOVA 19] provides
resul~s for 25 machines from the MCNC benchmark set
(table 1 }. For a proper c~arve, the polynomial ~der must be
small compared to the number of samples. Therefore we
use a polynomial of a third order, which is small enough.

2 . 1 Finite State Machine parameters.

Next, we identify some curve parameters, for which we
need first some FSM definitions. Cardiuality of a set of
elements is denoted by #. For example: #I is the number of
symbols in the input alphabet. A binary coded symbol is
called a word. A Finite State Machine is defined by the
quintuplet FSM = <I, O, S, OUT, TRS > given by :

1 = {it..ik} Input alphabet where ix is a binary
coded symbol

O=[oI..Ont] OutpUt alphabet where Ox is a
binary ceded symbol

S =[Sl..Sv] State alphabet, where Sx is
symbolic.

o := OUT (s , i) Mealy Output function
o := OUT (s) Moore Output function
s" := TRS (s , i) Transition function

A second specification of a FSM is given by a set
PTS=[ptl,.ptn} of four tuples <input word, state, next
state, output word> denoted as pt=<i,s,s',o> wl-.ich are
called productterms. The FSM's in the benchmark set are
all of the Mealy type. Now we can write the estimation of
the minimized number of productterms #PTSmin in (2).

#PTSmin = PCLY(x) * #PTS

We select various parameters, and combinations of them,
for the x in (2) and tested their quality. First we compute
the polynomial coefficients. Then, the estimations of
#PTSmin are compared with the NOVA/ESPRESSO [9]
results. This comparison includes the correlation
coefficient and the average difference between the
algorithm minimization and the estimated minimization
#PTSmin. Examination of the FSM structure in relation
with the NOVA [9] results shows two important FSM
parameters. The first parameter is the number of
productterms per state #PTS/#S. One expects that for logic
minimization, a high number of productterms for a state
causes a relatively high minimization potential, Because, i f
more productterms sba~ the same state code then larger
cubes can be expected. A second parameter is the number
of output variables #O. Roughly, the higher this number,
the more difficult it becomes to combine productterms.
Thus the number of output variables contributes in a
reverse way to minimization. Therefore we use this
parameter inverted (1/#O) when we combine it with other
parameters as #PTS/#S. Furthermore, the number of inpu:
variables #I may be interesting. Although #I is mosdy
related to #PTS/#S and therefore only a limited effect can
be expected from its use.

Estimators for logic minimization for FSM 1.53

A combination of more FSM parameters in x P.quires a
weighting mechanism. This to make sure that value ranges
of parameters become overlapping. Thus, we presume an
equal importance of both parameters. The value range of
the #PTS/#S parameter is roughly from I to 10. The 1/#O
parameter is always between 0 and I. Therefore this last
parameter is multiplied with a factor 10. Another
alternative would be the use of complex curve fitti~ Z,
which can obtain a polynomial for sets of parameters.
However, the results of parameter bulaociog are quite good
in this case, which makes complex curve-fitting
superfluous hem.

#1 #0

bbam 4 2
bbsse 7
bbtas 2 2
beect 3 4
cse 7 7
dk14 0 5
dk15 3 5
dk16 2 3
dk17 2 3
dk27 1 2
dk512 1 3
donf[2 1
exl 9 19
ex2 2 2
cx3 2 2
ex5 2 2
ex6 5 8
keyb 7 2
plan 7 19
s l 8 6
sand 11 9
scf 27 56
shilt 1 1
styr 9 10
tral 1 2 1

#PTS #S

6O 10
56 16
24 6
28 7
91 16
56 7
32 4
108 27
32 8
14 7
30 15
96 24
138 20
72 19
36 10
32 9
34 8
170 19
115 48
107 2O
184 32
166 121
16 El

166 30
25 11

Table l . Data of MCNC FSM set.

Table l gives the MCNC FSM data and Table 2 shows a
comparison of FSM parameters and some combinations of
them. Clearly x=(10/#O) + (#PTS/#S) delivers the bust
result with a correlation coefficient of 0.97 with the NOVA
results and an average dfffemnee of 6.1% in #PTSmin

parameter : x Corr.Coeff. Av.Oifl.%

#PTS/#$ 0.94 10.3
#0 0.94 9.5
(10/#0)+(#PT$/#$) 0.97 6.1
#1+(IOI#O)+(#PTSt#S) 0.92 11.2
#1 0.92 11.2
#1+(10/#0) 0.93 10.4
#1+(# PTS/#S) 0.92 12.1

Table 2. Estimations for several FSM parameters
compared.

compared with t ic NOVA msuhs. Then, Table 3 gives d ~
coefficients of the polynomial for x=(10/#O)+(#PTS/#S).
Table 4 shows in the second column the produ~erms after
minimization #PTSmin, comput(~ with ~ polyF~rfl~a].
The first column shows the number of ~ s
obtained by NOVA/ESPRESSO. Table 5 gives the
pcrcemile diffc'cnccs between esdmadou and algorithm,
related to the original #PTS of the machines.

coelficient orde~

-3.23 E -4 x'*3
9.60 E -3 xn2

-0.13 x--1
1.03 1

Table 3. Coefficients of estimation polynomial.

Tbuse tables show the remarkable ~m~c~si,~a of [;.~
estimations. CenaJaly, because the estimations are based
on only two lpcametcrs of tbu FSM and a third order
polynomial. This gives sufficient conf'~ence in tim
usefulness of this type of estimations for ixcdicdon of the
impact of logic minimization including slate-assignmem.
The two largest exceptions am machines sl and exl. sh~
analysed these machines into further detail but did not
identify a clear cause. Further research coneems
estimations fo: other optimization algorithms used in

%Dift.

NOVA estim.

bbar~ 24 23
tYosse 27 ~5
b~as 181
I~ect 44 45

dk14 ~96 23
dk15 13
dk16 5a
dk17 87 16
dk27 7
dk512 17 1B
dOflll 23 25
ext ~ 67
ex2 32
~x3 17 17
ex5 15 15
ex6 ~3 20

47 44
I plan 87 86

89 93
138 140

shift 4 6

i 9 e

Table 4. NOVA results with Table 5. Percentiie
estimations, diffemnocs.

ex5 0.0
mark1 S.O
ira11 O.S
styr 1.2
ffoar~ 1.6
~yb 1.7
dk14 -1.8
donll -2.1
sand -2.2
c~e -2.2
sd *2.5
plan 2.6
ex3 2.7
dX17" 3.1
dk512 "3.4
dklS -3.8
ex2 -56
dk27 7.1
ex6 8.8
dk15 9.3
bbsse -1P..5
bb~s -12.5
shift o12.5
beect -14.3
exl -19.6
Sl 24.2

154 A.J.W.M. ten Berg

microarchitecture synthesis. The next section discusses a
different type of estimations that c~n select a
mieroarchitecmre from several alternatives. This requires a
selective character instead of a high precision.

3 Implementation alternative selection by estimations.

The second type of estimation problem is the selection
among implementatioo alternatives. In most cases, the
designer has to choose from a set of alternative
implementations. Unfed'innately, each implementation
ttsually requires its own specific optimization. Therefore a
proper comparison between alternatives requires execution
of all the optimization algorithms. Estimations can provide
the designer quickly with information on the alternatives.
Then, the designer can deduct which of the alternatives are
most promising for a more detailed comparison. We
implemented a set of implementation alternatives and
computed results of their optimization algorithms for the
machines in the MCNC benchmark set. Next is the FSM
analysis which is the base for the estimations. The problem
is to identify those FSM parameters that have a selective
character.. Therefore, these parameters must provide a high
correlation between the estimation and its optimization
algorithm results and a low correlation with the other
alternatives.

We focus mainly on the ~ansitinn function in the FSM,
because quite a number of different alternatives is
available to implement it. First we explain each of the
ditto'natives shortly with theirs related optimization
problem. Some optimization algorithms originate from
literature and some where necessarily self-devaloped. The
alternatives set contains a counter implementation, partial
state coding, state assignment and topological partitioning.
These are all quite common to FSM's and not restricted to
veery specific types of FSM's as other more dedicated
optlmizations 171,[81 are.

3.1 A counter implementation.

Algorithms for optimal embedding of a counter in the
tlmrsition fonctloa of r. FSM are studied extensively in [2].
The counter implements the countable transitions. This
makes these transitions redundant in the transitinn PLA
and therefore removable. The PLA generates the signal to,
counter activation by default in case an input pattern does
not match any of its produetterms. The counter must be
lendable to accept codes generated by the PLA in case of
noo-countablc transitions. The counter connects to the
wansition function output, thus it affects only transition
uod~.

The optimization coupled to this implementation is ~-.~
coding of transitions such that the countable transitions
cover the highest posalble number of prodactterms (PTS).
Thus, the algorithm must identify a collection of la"ansition
chains that cover a maximum number of productterms.
Such an algorithm is given in 121. That algnrithm handles
only Moore type machines and incorporates also other
constraints for the code assignment which make it less
suitable for our purpose. Because the MCNC benchmark
set contains Mealy machines, we developed a different
algorithm better suited to Mealy machines.

Countable transition chain Cti :

Cti = trsl..trSk [Code(trSi+l)=Code(lrsi)+ 1 where
1<= i <= k(3)

The total number of productterms implemented by a
counter is then :

n

PTSC = Y-#pt(Cti) where n is the number of
countable chains

i=l

The objective of the algorithm is to code TItS such that
PTSC is maximal. Therefore all transitions get a weight
assigned representing their number of prodectterms : wi
#pt(trsi). The algorithm removes first all transitions of
which the start state is equal to the next state, because
transition cycles are not countable. It sorts the transitions
to decreasing weights. In the next phase, the algorithm
builds chains of transitions. It starts with the first
unmarked transition and scans the list for follow-up
transitions. Thus, the transitions with the highest weight
are selected first. The algorithm proceeds with this until it
encounters a cycle, or it finds no follow-up transition.
Furthermore, it marks only the state which is at the head of
a chain. Through this way of state marking a state may
occur in more than one chain. It occurs however only once
as head of a chain. This redundancy avoids io,:al optima.
The algorithm generates new chains as long as there exist
unmarked states that have unmarked successors. Next, the
chains are sorted according their cumulative weights, again
in a decreasing order. To retrieve the final collection of
countable chains, the algorithm takes chains from the head
of the list. Chains that contain states which do also occur
in previoesly selected chains are rejected. The algorithm
codes the states according the chains selected. This
algorithm iterates until no improvement occurs in the
PTSC. Table 6 shows the results for this algorithm on the
MCNC FSM benchmark set. Column d.Cntrl shows the
number of countable productterm~ before optimization,
d.Cntr2 after optimization. These results are also in table 7,
column #PTS e.

Estimators for logic minimization ~or FSM 1 5 5

Table 6.

#PTS

bbara 60
bbsse ~44
I~tas

dk14 ~
dkl 5
dk16 108
dk17
0k27 ~4
dk512 30
donfl 96
exl 138
ex2 72
ex3
ex4
ex5 32

ex6 ~6
ex7
keyb 170
llon 11
t]on9 255
plan
=31 107
sand 184
SC| 166
shi~ 16
styr 166
lay 49
trao4 14
tral 1 25

I

d.' 11 ;ntrl 8 a . c ~ - 15 11

10 11
4 , 7
4 ' 14
5 7
3 5
11 26
7 9
3 5
7 i 12
7 13
3 21
6 i 18

13
4 l e
3 ! 9
6 I to

12 ! 44
3 I 3
6 ~
6 5o
6 I 23

,* ! e
8 56
2 23
5 6
1 8

Improvement in countable productterms.

3.2 Partlal state coding

Partial state coding is not a common optimization type in
eontrolpath synthesis systems. However, many manual
dcsigos of processor controlpaths [10] use this method to
implement state Iransifioas. It reduces the number of
productterms in case several states have identical transition
sn'uctm~s anti active input variable sets. The ~raositica
function generags just a part of the next addsess (sta;e
code), Often only the two least sigaificant bits (LSB). The

Figure l . ~xample of partial cotiing of sueessor states.

oulput function generates tim miter, the most signil"a:am.,
bits (MSB) of t i c next address. By this, these MSB bits
must be identical in all next states of a ce'aain state. This
state code generation is feasible because stags usually
have only a small number of next shales as shown ~ figure
l. That makes it possible m code the local seleedon Of tim
next state in a few bits. Than the MSB bits Of the sta~
code can be equal among all aext states of a state. That
makes it possible to generate the MSB part with ~ ~ l p u t
function. In case several states have idemical sets Of in~, ~
vectors and transitions, they C, an share a set of
prodectterms in the mms~on PLA. This reduces t im
number of producuerms and output variables in
transition PLA. Note the cost o f additionRl output variables
for the MSB bits in tim output function. The optimization
problem is m find the maximal number of compatibie
transition sets. As stated before, transition sets g*¢
compatible in case all inputs ale identical and the sets of
next states contain cqua] subsets of ststes. Fm'r l lcrmore
these sets may contain each state only once to prevent
multiple codes for a single state. In case not all st~cs ave
parlially codeabie, the transition function decomposes into
two PLA's, of which one generates the usual complete next
state code for all state teansitions that c imnot be
implemented by partial state coding.

C¢2Sl s2
~ 1 2 sl s,?.

100s s3

Shoe co~ing :

=3=~10 C~ ~01

sii=1o/IO lo l lx11

R g u r c 2. Example Of productterm reduct ion by partial
codes

The example of figure 2 shows a reduction in
prodecttetms. In this example, the n'ansifion set of state 7
is not identical with the other two sets because its next
slate smactor¢ has a different pattern. Both the input word
set and the tl'ansidons have to be identical, as is the ease
to: s!ates I and 5. After state coding, the transitions of
sta~s 1 and 5 can be merged. However, the ffi~lSilions
from state 7 cannot be implemented in the same PLA as
the merged set o f smtas 1 and 5 . The output funct ion
generates the static code part, in case of state 1 it generates
00, of state 5 : 10, and for state 7 this code is don't cam :
22.

; . 5 5 A.J.W.M. ten Berg

Optimizat ion

Tim next algorithm detects the number of redundant
productterms in a FSM for a dbits wide LSB part of the
staZe code. Firsts it removes ail transitions starting from
states that have more than 2**dbits of next states. Then it
generates maximal clusters of states with identical input
vectors. From these dusters the algorithm makes new ones
that contain t i e next state collections ira a matrix form with
one row of r~ext states for each state. For partial state
ending, ." clusi~r shotdd contain only unique states.
Therefore the algorithm searches for a maximal unique
sub-matrix, It discards non-unique states ~ a
state/transition matrix one by one until a sub-matrlx with
unique states temalns. The reduction ','n transitions is then
obtained by counting the number of states in the unique
solymatrix minus one row, because one row is actually
implemented. From this follows also the number of
redundant productterms. In table 7, column #PTS_a gives
the reduction of prodnctterms of the transition function,
This method is suited best for control functions with a few
transitions per state and d~,sjolnt next-state sets.

bb~r~ 60 1 ~ 15 36 0

b txas 24 8 11 16 0
beect 28 7 0 7 17 0
¢s~ 91 16 0 :4 47 $
dk14 56 7 O 7 34 0
dk15 32 4 O 5 16 0
dS16 108 27 66 25 59 D
dk17 32 S B 9 15 0
dk?7 14 7 2 ' ~ 6 0
dk51~ 30 15 16 12 13 0
rant 96 24 B 13 73 O
a ~ 138 20 2 21 gEl 3 t
ex2 72 1~ 28 18 44 O
ex3 36 10 12 9 19 0
ex4 21 14 2 l a - 1
ex5 32 9 8 8 17 o
ex6 34 a o 9 11 o
. ; ' : j
key~ 170 19 44 123
lion 11 4 3 3 a

~oo ~;s :s o I & - o
~ 3a 28 18

107 20 3 23 27 5
nd 18~ 32 34 82 g5 36

scl 166 121 10 120 28 76
.~,hia 16 8 14 8 12 O

56 16S 3O 0 77 26
4S 4 O 23 0

ITd04 14 4 O 6 - O
2s . I o s , s o

- : no da la availalole from

PTS...a = prodtlcl lerm reduclkm Io¢ partial addressing
#PTS_c = productterm reduction tar a cour l l~
P T S ~ = p m d u ~ reduction by s ta t~ -ass ig~ent
P ' l~_t _ p m d ~ m reduction equivalent of repot, pan.

TabIe 7. Algorithm results : productmrm reduction.

Microprogramming methods [10] use that knowledge
extensively to generate the controlpath function which can
be implemented efficiently with this technique,

3.3 Slate AssignmunL

As is clear from section 2, logic minimization with state
assignment reduce also the number of produetterms of a
PLA implementation. Therefore, we consider it as another
design alternative. Table 7 shows the results of
NOVA/ESPRESSO [91 as #PTS - #PTSmin in column
#PTS_s. Unfortunately NOVA does not supply data for all
machines in the MCNC set.

3.4 Topological Partitioning.

This problem concerns the division of a single PLA into
several smaller PLA's such that the AND- and OR-planes
of the PLA's become densely used, which reduces the total
silicon area occupied. Several algorithms are known for
this problem [12), [13], [14 I. We selected the algorithm of
Henne56y 113] and extended it to FSM's by viewing all
productterms in a state as an emity, which simplifies
implementation and reduces computational complexity
For more details on the algorithm we refer to [14]. Oae
variant of this topological partitioning algorithm
minimizes the total area of the PLA's, if possible. It
accounts also for input/output buffers, power and ground
overhead. The last column of table 7, called #PTS_t,
shows the converted results. The original resuhs are in
terms area reduction. These were converted to numbers of
produetterms which take the equal amount of area, to make
topological partitioning results comparable with the results
of the other algorithms.

3.5 FSM analysis.

This section explains how the estimations for selection are
made. Both the state-graph structure and I and O word
densities are analysed. The most obvious analysis concerns
the division of numbers of transitions per state. We started
with simple estimations based on observations and
computed the correlation coefficients.-Then we Lded to
improve these correlations by exploring closely related
alternatives. The tables do not show these alternatives for
sake of clarity. We discuss only ,,he final estimations in the
remainder of this section, Table 8 shows the reduction of
productterms #PTS-#1PTSmin for each estimation.

The column 'subsetl ' of table 8 estimates countable
transitions, It estimates the average number of countable
transitions as the number of states times the average
number of prodoctterms for a transition (#S*#PTS/#TRS).
We know that just one countable transition can occur for

Estimators for logic minimization for FSM 157

each state and also the average number of prnductterms in
a transition. This gives the average expectation of the
number of producttenns to be saved.

subset1 subset2 subset3 subs~4

bbara 16 O 60 I
bb~se 21 12 30 12
bbtas 12 24 24 0
beeci a 28 2a 0
cse 26 8 91 7
dk14 14 0 56 1
ak15 10 0 32 0
dk16 28 108 108 2
dkl 7 11 32 32 0
dk27 11 8 0 0
ek512 15 30 0 0
donfl 24 96 96 1
exl 37 12 130 24
ex2 24 72 72 1
ex3 12 36 36 1
ex4 16 10 0 7
ex5 11 32 32 0
ex6 8 16 31 3
ex7 13 36 36 1
keyb 70 12 158 19
[!on 4 2 0 0
lion9 9 4 0 0
plan 77 46 52 52
sl 26 20 86 22
sand 6 5 44 138 69
scf 133 32 34 133
shiO 8 16 0 0
styr 54 4 153 37
lay 49 0 40 0
Ira04 7 8 8 0
, ,a l l 11 16 I o I 0

Table g. Pmducltenn reduclion estimations,

Column 'subset2' is for partial state coding. The number of
productterms per state relates strongly to the number of
code bits geoeratcd by the transition function. ~ choose
for two bits. This allows z~t most four next slates in a state.
Therefore we count all prodectterms of states which have
cxactiy two or four productterms (#{pt leaving s } = 2,4).

Next, column "subset3" is for state assignment. A high
number of productterms per state gives on average heifer
logic minimization sesuits. We counted the total number of
product terms of states w i t h four or more product tenns

(#{pt leaving s} >= 4). After some experiments, this
number gave the highest correlation with state-assignment
reSalts.

The last column 'anbset4" of table 8 shows the produutterm
mdecdon equivalant of the a~a saved with topological
partitioning. This equivalent gives compatibility with the
other subsets, which is needed for a con~ct d¢terminatian
of the corr01ation coefficients.
This number of ptoductterms is derived from the average
number of input/antput vadablas active per state. This

number lies between 0 and I. The lower this nm'nber d'~
higher the possible area savings by mpologleal
partitioning. The next formula was der i ved experim~tally
to correspond with the optimization results from 3.4. #PTg
=11(#1s/#S + C* #Os/#S) were #Is is the ~ of 0clive
input variables counted over all states. #Os is tlm co~zt
variable equivalent of this. C=50 is an expedm~tal|y
d~'ived constant to balance both parameters.

3.6 Results.

Table 9 lists the computed correlation cocffn:lents between
the est imated reduc t ion i n # P T S o f table 8 and the

algorithm results in table 7. Table 9 shows quite high
correlations on the main diagonal and reasovable low
correlation coefficients with other optimization
¢stin.,ttions. However, them is one exception, which is the
correlation between counter and topological partitioning.
Both the counter and topological partitioning astimadons
cornelate highly with each others algorithm results. -! opt.method subset1 subset2 surest3 sbbse¢4

counter G.05 0.17 0.40 0.95
pa~.a~:lress 0,22 0.78 0,24 0.18
star , assign. 0.45 0.18 0.93 0.27
tapol.paflit, 0.88 0.03 0.34 0.97

Table 9. Correlation coefficients of astimaficas.

One can give two explanations for this. The fwst is that wv
measure the wrong pmm~ete~ for both estimations. But,
because the subsets 1 and 4 am based one totally different
parameters which are iedependcat by natu~, this
explanation is not foanded. The second explanation is that
both optimizations a~ highly con~lated for the FSM's in
this benchmark set. To check this assumption, wc
computed also all the con'vlafians hetwecn the results of
the optimization algorithms. Table 10 lists them. All
coefficients on the main diagonal am one, as ¢~ected.
Furthermore, zhls table shows that the second explanation
is co~n'ec t, because the counter and Topological petdtioning
algorithm results ~xe here also highly coffelated. In fact,
the coefficients in table 9 resemble those in table 10 quite
closely, which shows that our estimations for alternative
selection am quite reliable.

cpt.metb~d counter parl.addr state-ass, top01.part

COUnter 1.00 0.28 0.41 0.91
part.address 0.28 1,00 0.15 0.10
s!ate-aesJgn. 9.41 0.15 1.00 0.32
topoJ.~r6L 0.91 0.10 0.32 1.00

Table 10. Corre la t ions between op t im i za t i on results.

158 A.J.WM. ten Berg

How must we interpret FSM estimations on alternatives
with regard to these correlations ?. In case the esfimadoos
for a FSM result in just one high estimation numhex, the
selection is evident. When equal or nearly equal estimation
figures occur for altemativas, one selects the alternative
which has the higher correlation coefficient in table 9,
because the correlation coefficient expresses the
probability to he the best akeraative. But, i f the FSM has
equal estimation figures for subsets 1 and 4. no selection
can be made based the correlation coefficients. Thus, only
in this case one has to tun both optimization algorithms. It
is likely that both alternatives have about equal
minimization potentials. Concluding, for most eases our
estimations give a clear indication of the probab!y best
alternative, which helps the designer to choose among
alternative implementations.

, i ¢ - - _ ~.~.~e.H_...mo~_..s

For the estimation of logic minimization including
state-assignment, we conclude from the correlation
coefficient of 0.97 with an average size difference of 6%
compared to the algorithm results, that it is reliable enough
to apply it in synthesis decisions. It gives a good
expectation of what size reductions are feasible with logic
minimization for a FSM without the need for extensive
computations. Although the high state-assignment problem
complexity, the FSM structure is less complex, which
explains the high quality ofoor results

The selection estimators, also based on FSM statistics,
show correlation coefficients around 0.9 and
cross-correlation coefficients that are typically below 0.4.
Only the highly correlated results of two optimizatioos in
the alternatives set distort these results partially. On
average, these coo'elations help to retrieve information on
which design alternatives are the most suitable for a
cemJn FSM. This selection method saves detailed
computations for all opfimizations for the alternatives.
Thi.~ makes this type of estimation methods also suitable
for planning based design systems [15]. At this moment
we extend our research on curve-fitting to other
im[lemematioo techniques as multi-level logic
hnplemenmtions. Also, on the field of implementation
selection, re,~;earch for more elaborated sets of alternative
irnpl,ementarioos is carded out.

[2] Amann, R., AlgoIithmische entwurfsverfahign fuer
kombinierte pla/rom-steuerwerke unter verwendung
van zaehlern, Dissertation, (VDI Verlag,
Decsseldorf, 1987).

[3] DeMicheli, G., Optimal State Assignment for Finite
State Machines, 1EEE Trans. Comp. Aided Design,
eel. CAD-4, (1985) pp. 269-284.

[4] Devadas, S. and Newton, R., Exact Algorithms for
Output Encoding, State Assignment, and Four-Level
Boolean Minimization, IEEE Trans. on CAD.
VnlA0. No.1. January 1991, pp. 13-27.

[5] Obmbska, M., Efficiency and Performance
Comparison of Different Design Methodologies for
Control Parts of Microprocessors, Microprocessing
and Microprogramming 10, (1982) pp.163-178.

[6] Tredennick, N., The "Cultures" of
Microprogramming, Prec. of the 15th annual
workshop on Microprog~.mming- Mic~-15, 1982,
pp. 79-83.

|7] Paulin, P.G.. Horizontal Partitioning of PLA-based
Finite State Machines, l:hx~, of tile 26th ACM/IEEE
Design Automation Conference, 1989, pp. 333-338.

t8] Tarroux, G. et. at., Optimization of
Micro-Cootrollers by Partitioning, Prec. EDAC
1991, Amsterdam, Feb. 1991, pp. 368-373.

191 Villa, T. and Sangiovanni-Vinacntelli A., NOVA;
State Assignment of Finite State Machines for
Optimal Two-Level Logic implementation, IEEE
Trans. on CAD, eel. 9 no. 9. sept 1990, pp. 905-924.

[10] Husson, S.S., Microprogrammio Principles and
Practices, Prentice Hall, 1970.

[11] Bmytoo, R.K., et. oh, Logic Minimization
Algorithms for VLSI Synthesis, Kluwer Academic
Publ., 1984.

[12] De Micheli, G. and Santomauro, M., "Smile ; A
Computer Program for partitioning of programmed
logic arrays", Computer Aided design, eel 15 No. 2,
March 1983, pp. 89-97.

[13] Hennessy,L, "Partitioning Programmable Logic
Arrays Summary", IEEE Prec. Int. Conf. on
Computer Aided Design, IEEE 1983, pp. 180-181.

[14} ten Berg, A.J.W.M.. "Floorplan Optimized
Topological Partitioning of Programmed Logic
Arrays" accepted for publication at the WG 10.5
IFIP Workshop on Synthesis, Generation and
Portability of Library Blocks for ASIC design.
Grenoble, March 1992.

[15] Knapp, D.W. and Parker, A.C., "The ADAM Dasign
Planning Engine", IEEE Trans. on Comp. Aided
Des., Voh 10, No. 7, July 1991, pp. 829 - 845.

[1] Thomson, N., APL Programs for the Mathematics
C t a s s r ~ . , (Springer Vedag, New York, 1989).

