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Microscopic modelling of the flow properties of polymers 
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Abstract 

The understanding of the flow behaviour of polymeric liquids is of great interest from 
a practical as well as a theoretical point of view. An important part of the research 
in this field consists of the development of suitable models, describing the rheological 
properties of the materials. Depending upon its purpose, such a model may be based 
upon empirical knowledge of the macroscopical flow behaviour or on information 
about the microstructure of the materials. Moreover, for a given system, different types 
of modelling may be possible. In order to provide an overview of the various approaches 
in this area the basic principles of some important models are discussed: continuum, 
bead-rod-spring, transient network, reptation and configuration tensor models. 
Emphasis has been put on a consistent treatment of the fundamentals of the various 
models and their interrelationship, rather than considering any of them in much detail. 

This review was received in August 1989. 
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Microscopic modelling of the flow properties of polymers 

1. Introduction 

3 

The understanding of the flow behaviour of polymeric liquids is important since these 
systems are used in many industrial processes. Moreover they are also present in many 
biological systems. So, from a practical point of view there is a great need for research 
in this area. From a purely scientific point of view, polymeric liquids are also very 
interesting, since on one hand they show a flow behaviour with striking qualitative 
differences from ordinary liquids, while on the other hand they possess a well defined 
and relatively simple microstructure. 

The flow behaviour of polymeric systems is a very extensive and complicated area. 
At present it is even an important part of a separate branch of science called rheology 
(the science of deformation and flow of materials). In the present review we will treat 
a part of this field in some detail. First, however, we will now give a somewhat broader 
overview. 

In the processing and application of polymeric liquids one has to deal with flow 
problems, as in ordinary fluid mechanics. The difference from ordinary fluid mechanics, 
however, is that the differential equation by which the flow is determined is no longer 
the Navier-Stokes equation but a far more complicated equation or set of equations 
which may be different for different polymers. Moreover, whereas in ordinary fluid 
mechanics the fluid properties are completely specified by the value of one parameter, 
the viscosity, in the case of polymeric liquids one has to specify a number of material 
parameters or functions. Even if this has been done, the solution of flow problems is 
a complicated task which in most cases has to be treated numerically. In the present 
review we will not deal with this subject. For an introduction we refer to the textbooks 
of Crochet et a1 (1984), Tanner (1985) and Pearson (1985). 

The reason that the flow equations may be different for different materials is the 
differences in the underlying constitutive equations. These equations reflect the specific 
mechanical properties of the material. Well known examples are Newton’s law for 
viscous fluids and Hooke’s law for elastic materials. A central problem in polymer 
rheology is the determination of adequate constitutive equations for polymeric systems. 
In the study of these equations one does not consider complicated flow situations, but 
certain simple and well defined flow geometries in which critical tests on the validity 
of constitutive equations are possible. In such experiments the values of material 
parameters and functions in the constitutive equations may also be measured. The 
branch of rheology which is concerned with these types of measurements is called 
rheometry. For an introduction we refer to the book of Walters (1965) on this subject. 

The development of constitutive equations may be based upon continuum 
mechanics. This method offers the possibility of combining general results about the 
shape of constitutive equations, based upon general principles, with empirical results 
obtained from rheological measurements. As a result one may arrive at useful forms 
of the constitutive equations. In 52 the principles of continuum mechanics and the 
macroscopic theory of constitutive equations will be discussed. For further reference 
we refer to the textbook by Bird et a1 (1987a) and the book of Astarita and Marrucci 
(1974). 

A problem with the continuum approach is that even if one arrives at a constitutive 
equation which properly describes the rheometrical data it is not possible to relate the 
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parameters of that equation to molecular properties or other aspects of the microstruc- 
ture of the system. Furthermore it is hard to obtain specific information about the 
constitutive equation from macroscopic considerations alone. In order to solve these 
problems theories have been developed, based upon our knowledge of the molecular 
structure of polymeric liquids. At first, these theories were concerned with particular 
types of rheological behaviour like linear viscoelasticity and simple shear flow, but 
later on attention was also directed to the derivation of full constitutive equations. At 
present, both directions are of interest. By restricting to one particular type of flow it 
is possible to retain more details about the microstructure. This is of interest in cases 
where rheological measurements are used to measure molecular quantities. The deriva- 
tion of the total constitutive equation from molecular considerations is primarily of 
interest in relation to the macroscopical theories based upon continuum mechanics. 
The main part of the present review is also devoted to molecular theories. We will 
treat this subject with emphasis on the basic structure of each theory rather than by 
considering many details and special cases. We will also concentrate on a particular 
aspect, namely micro-rheological modelling, i.e. the use of more or less artificial 
structures in order to represent the real microstructure. A model may be considered 
as an image of the real system, simplified in such a way that it is tractable to mathematical 
analysis and still represents features of the system that are expected to be important 
for its behaviour. 

Important steps in the process of modelling are: the definition of the model structure; 
its evolution in time; and the relation between microscopic forces and the macroscopic 
stress tensor. These items and some general aspects of micro-rheological modelling 
will be discussed in B 3. 

In 00  4-7 three important special classes of models will be discussed in some detail. 
These are bead-rod-spring models, transient-network models, reptation models and 
configuration tensor models. 

We will not discuss the various special cases of each type of model, but rather treat 
some representative examples. We will also not consider in detail the predictions of 
the rheological behaviour of the various models. For such more detailed information 
we refer to textbooks on the subject (e.g. Doi and Edwards (1986), Bird et a1 (1987b). 
Larson (1988)). Instead, in the present review, we will try to give a consistent treatment 
of the principles of each of the types of model in order to obtain an overview and to 
gain insight into the possibilities of applying, combining or extending the various 
approaches. In § 8 we will return to this point. 

2. Continuum mechanics 

2. I .  Introduction 

The main part of the present review deals with microscopical theories of the rheological 
behaviour of polymeric liquids. First, however, we will consider the underlying macro- 
scopical framework. Without such a framework it would hardly be possible to formulate 
general microscopical theories of the flow behaviour of polymeric liquids. Indeed, in 
the historical development we see the important impact on those molecular theories 
of the modern formulation of continuum mechanics and the macroscopical theories 
of constitutive equations. 

Important achievements in this respect were a theory on constitutive equations by 
Oldroyd (1950) and the famous theory on ‘simple materials’ by No11 (1958). In the 



Microscopic modelling of the flow properties of polymers 5 

present review we will follow the treatment of No11 and especially his so called ‘simple 
fluid theory’. For an extensive treatment we refer to the article of Truesdell and No11 
(1965). 

The theory will be outlined in the following parts: first ( 9  2.2) the description of 
deformation and stresses in a continuum and the general formulation of constitutive 
equations, then (in 9 2.3) some special types of flow and the associated rheological 
material functions and finally ( 3  2.4), some special constitutive equations. 

2.2. Simple fluid theory 

We start our discussion of simple fluid theory with a brief treatment of some kinematical 
notions. First we note that the deformation history of a continuum is fully specified 
by the function 5 = &(X, T ) .  Here 6 is the position at time T of a particle which is 
located at a position X in an arbitrary reference configuration K .  (In this section by 
‘particle’ we mean a material point in the continuum.) 

Often, especially for fluids, the configuration at the ‘present’ time t is chosen as a 
reference configuration. In this, so called, relative description the deformation function 
becomes 

5 = &r(x, 7).  

The gradient of this function 

a&, F r ( 7 ) = -  
dX 

is called the relative deformation gradient. On this tensor several measures of deforma- 
tion are based. For later use we mention the polar decomposition of F, in an orthogonal 
‘rotation tensor’ R, and the positive definite and symmetric ‘stretch tensors’ U, and VI 

F r = R , *  U,= V , .  RI .  (2.3) 

C, = FT * F, and C,’ = F, * FYT (2.4) 

Furthermore we will use the strain tensors of Cauchy and Finger, given by 

respectively. 

ment vectors U, ( T )  = & - x and the displacement gradient tensor 
In the case of small deformations it is often useful to consider the field of displace- 

au, 
ax 

H, = - = F, - 1. 

The symmetrical part 
E, = $(HI + H:) 

is the (relative) infinitesimal strain tensor. In deformations in which HI is small in 
the sense that IH,(<< 1 the strain tensors C, and C;’ may be approximated as 

c, -- 1+2E, and c, ’ = 1 - 2E,. (2.7) 

By taking the time derivative with respect to 7 for T = t of the relative deformation 
function (2.1) we obtain the velocity field v ( x ,  t ) .  The gradient of this field will be 
denoted by 

av T L = - = ( V u ) .  
ax 
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The symmetric part of L is the rate of strain tensor 

D = + ( L + L T )  (2.9) 

w = t ( L  - LT). (2.10) 

and the skew symmetrical part, the vorticity tensor 

Among the various higher-order rates of strain the most well known are the Rivlin- 
Ericksen tensors: 

(2.11) 

In particular A ,  = 2 0 .  
We will now considerthe description of the state of stress in a continuum. According 

to a fundamental theorem of Cauchy this is specified completely by a second-order 
tensor field T(x,  t ) .  The tensor T, called the stress tensor, determines the traction t on 
an arbitrary surface element dS in the continuum by the relation t = T .  n in which n 
is the unit normal on the surface element. The stress tensor field is governed by 
balances of momentum and of moment of momentum. The former leads to the equation 
of motion 

pd=div T + p b  (2.12) 

in which p is the mass density, d the acceleration field and b an external body force 
field (per unit mass). The latter implies for an ordinary continuum the symmetry of 
the stress tensor: T = TT.  

In the present review we will only consider incompressible materials. In that case, 
due to the incompressibility constraint, the stress tensor will contain a part that cannot 
contribute to the stress power in any deformation compatible with the constraint. This 
part may be proved to be an isotropic tensor, so we have 

T = p l +  TE. (2.13) 

The scalar p in this expression is often called the undetermined pressure, since in a 
given deformation history its value is not determined by a constitutive equation. 
Instead, in a specific flow problem, the value of p is determined by the equation of 
motion (2.12) and the boundary conditions. The quantity TE in (2.13), called the extra 
stress tensor, is the part of the stress tensor that for a given flow history is determined 
by a constitutive equation. If no particular flow problem is specified, the pressure term 
in (2.13) is undetermined, so the extra stress TE is determined only up to an arbitrary 
isotropic term. This may be used to simplify the formulation of constitutive equations. 

We now arrive at the main subject of this section: the simple fluid theory. For a 
thorough discussion of this theory, we again refer to the original papers of No11 (1958) 
and Truesdell and No11 (1965). Here we present only a brief outline for the case of 
incompressible fluids. 

A simple material is defined (No11 1958) as a material in which the extra stress 
tensor is a functional of the history of the deformation gradient evaluated at a fixed 
particle of the continuum. In the incompressible case we have 

(2.14) 
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The index K in the functional F” and the deformation gradient F denotes a dependence 
upon the reference configuration. A fluid is defined (Noll 1958) as a substance with 
such a high degree of symmetry that the constitutive equation is independent of the 
choice of the reference configuration. In that case the functional 9; in (2.14) becomes 
independent of K and instead of FK(7) the relative deformation gradient (2.2) may 
be used. So we obtain 

T E = 9 ’ { F r ( ~ ) } .  (2.15) 

The next step is the application of the principle of material frame indifference (Noll 
1958). This means that equation (2.15) has to be invariant under a particular class of 
transformations T -$ T*, .F1( T) + Fr( T)* called changes of frame. So for arbitrary 
changes of frame we have 

(2.16) 

in which the functional 9’ remains the same. The physical significance of a change 
of frame is a change from one observer to another one with a different position and 
orientation and a given relative motion with respect to the first one (see Appendix 1 ) .  
So the requirement (2.16) upon the constitutive equation implies that such an equation 
should be invariant under arbitrary translations and rotations in space. 

From (2.16) it may be proved (see Appendix 1) that the constitutive equation 
(2.15) reduces to 

(2.17) 

in which C,(T) is the relative Cauchy deformation tensor defined by (2.4). From the 
principle of material frame indifference it also follows that the functional 9 in (2.17) 
is isotropic, i.e. 

r 1 

F { Q .  C,(T) * QT}= Q .  F {Cr(T)} * Q’ 
7=-m T=-m 

(2.18) 

for arbitrary constant orthogonal tensors Q. 
A direct consequence of (2.18) is that under static conditions, i.e. at the ‘rest history’, 

C,(T) = 1 (--CO< T <  l), the extra stress becomes of the form TE = - p l .  So in simple 
fluid theory the usual property of a fluid of being a substance unable to maintain shear 
stresses at rest is a consequence of the definition (2.15) and the principle of material 
frame indifference. 

The next principle by which a further reduction of the general constitutive equation 
(2.17) is possible is the principle of fading memory (Coleman and No11 (1961)). This 
principle expresses the physical experience that large, fast and/or recent deformations 
have more influence upon the present stress than deformations that are small, slow 
and/or less recent. It is possible to state this property in a precise mathematical form, 
by defining a norm /I . ( 1  in the space of deformation histories, such that deformation 
histories which are expected to have a small (large) contribution to the present strain 
will have a small (large) magnitude corresponding to that norm. 

The most important result that can be obtained from the principle of fading memory 
is an expansion for histories close to the rest history, in the sense that /I C,(T) - 111 is 
small (--CO c T < 1). Under certain smoothness assumptions Coleman and No11 (1961) 
obtained an expansion of the functional (2.17) in a series of polynomial functionals. 
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Under certain further assumptions of a rather formal mathematical nature this 
expansion can be transformed into a multiple integral expansion, originally proposed 
by Green and Rivlin (1957). In a somewhat simplified form, derived by Pipkin (1964), 
this expansion reads 

T e  = j;m P ( t - T )  ( C, ( 7 )  - 1 ) dT 

1 1  

Y( t - T ~ ,  f - T 2 ) (  cr( 71) - 1) - ( c r ( T 2 )  - 1) d71 dT2-k. . . (2.19) 
+ I_, I_, 

where the remainder term goes to zero faster than ~ / C ' , ( T ) - ~ ~ ~ "  if the expansion is 
taken up to a n-tuple integral. 

2.3. Special flows 

In some special types of flow a further reduction of the general constitutive equation 
(2.17) or the integral expansion (2.19) is possible without making any further assump- 
tions about specific properties of the fluid. Three properties of the flow are important 
in this context: (i) the magnitude of the deformations, (ii) the rates of deformation 
and (iii) the complexity of the flow geometry. If any of these properties is of a particular 
type, considerable simplification of the constitutive equation is possible. 

In the case of small deformations the norm 11 C, (T)  - 111 will be small and only the 
first term in the integral expansion (2.19) remains significant. Moreover, on using 
(2.7), the tensor C , ( T )  may be expressed by the infinitesimal strain tensor E, and (2.19) 
becomes 

TE = 2 j:s p( r -  7 ) E r ( 7 )  d7. (2.20) 

This is the classical expression of linear viscoelasticity for the case of an incompressible 
fluid. So we see that for small deformations an explicit reduced form of the general 
constitutive equation (2.17) may be obtained. In this expression the material properties 
are fully described by one function, the so-called memory function ~ ( t ) .  This function 
is closely related to the relaxation function G( t ) ,  describing the material response 
upon a sudden step in strain. This can be seen by considering a step-strain history 

for r < O < t  
for O < 7 < t '  

E , ( 7 ) =  (2.21) 

The stress response then becomes TE = 2G( t ) E  in which G( t )  is the relaxation function. 
From (2.20) and (2.21) we see that 

d 
p(s)  ds or p(r)=- dt  G(t) .  (2.22) 

Besides the relaxation function many other functions are used in specifying the material 
properties in linear viscoelasticity. For a discussion of these functions and their 
interrelationships we refer to textbooks like the one by Ferry (1980). 

Here we just mention the complex dynamic modulus G", defined by 

f =  G*if (2.23) 
in which f is the complex stress response upon the harmonic strain 

j f ~ ~ )  1) (2.24) 
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with I? = E  exp ( iot) .  The real and imaginary parts G’(o)  and G ” ( w )  of G* are called 
the storage modulus and the loss modulus, respectively. By substitution of (2.24) in 
the integral expression (2.20) and using (2.23) it  may be proved that 

G’(o) = .lom G(s) sin ws d s  

G ” ( w )  = .lom G(s) cos ws ds. 

Here we have also used the fact that, since 
lim G( t )  = 0. 
1-Cc 

(2.25) 

we are dealing with a fluid, 

In flows in which the deformations are not necessarily small, but the norm 
1 1  C,( T )  - 111 is still small, for instance since the deformations are sufficiently slow, the 
stress response can be approximated by the first term of (2.19). Here we are in the 
domain of what is called ‘finite viscoelasticity’, which means that the equations are 
linear in the strain measure, but the strain measure itself is geometrically nonlinear. 
In this case the isotropic term is often omitted (which is allowed since the fluid is 
incompressible) and we obtain 

a, = P ( f  - 7)C,(7) d7. (2.26) 

It is important to note that the strain measure in this expression is by no means unique. 
In fact, instead of (2.26) we could have taken any equation TE=FL=-oc{M} as a 
starting point in which M is an isotropic function of C (  7) and accordingly a different 
integral expansion would have been obtained. The total value TE of all such expansions 
will be the same, but if one considers just a finite number of terms the choice of the 
strain measure becomes significant. Of the infinite number of alternatives of equation 
(2.26) we mention only the one based upon the Finger strain tensor: 

= l:m p ( t - 7) c;’ ( T )  dT. (2.27) 

In $4 4.2 and 5.2 it will be shown that constitutive equations of this type also follow 
from particular types of molecular models. 

Next we consider the class of slow flows. The qualification ‘slow’ can be given a 
precise meaning by the concept of retardation of a flow history. Coleman and No11 
(1960) have shown that the functional (2.17) based upon the retarded motion can be 
approximated by a polynomial of Rivlin-Ericksen tensors (2.11). In this way one 
obtains a series of approximations 

TE = Ti + Tz+ T3 + . . . (2.28) 

where 

T,  = TA1 

T3 = PIA3 + Pr(Ai . A,+ Az * A I )  +P.?(trA2)A,. 

T2 = &,A2+ a 2 A f  (2.29) 

If only the term with TI is retained we obtain the constitutive equation of a Newtonian 
fluid. If the terms up to T2 are retained one often speaks of a second-order fluid and 
so on. If the integral expansion (2.19) is valid, relations between the constants in 
(2.29) and the memory functions in (2.19) may be derived. 



10 R J J Jongschaap 

A third property of the flow which may enable a simplification of the general 
constitutive equation in particular cases is the flow geometry. This geometry may be 
so simple that the functional (2.17) of a strain history reduces to a function of some 
flow characteristics. We first illustrate this for the steady simple shear flow. In this 
flow the velocity U is in the x direction with a gradient in the y direction, so U = v (  y ) i ,  
here i is a unit vector in the x direction. The velocity gradient tensor becomes 

L = y N  (2.30) 

in which j is a constant, the rate of shear, and N = i j  is a dyadic, based upon the unit 
vectors i and j in the x and y directions respectively. The relative deformation gradient 
and the relative Cauchy tensor become 

.F,( T )  = 1 + (7- t )  YN (2.31) 

and 

Cl( 7) = 1 + ( T - t )  j ( N  + N T )  + (7- t ) ’ j Z N T  * N. (2.32) 

The tensor C,(T) is fully determined by two constants: the scalar i, and the tensor N. 
This means that if the strain history in the function (2.17) in this type of flow is also 
fully determined by these two quantities. So the extra-stress response becomes 

(2.33) 

in whichfis a function. One might say that the flow history leaves so little to remember 
that the functional 9 reduces to the function f: Next the isotropy (2.18) of the 
constitutive equation is used. This implies also that the function f is isotropic, and 
by making use of representation theorems of isotropic tensor functions (Spencer and 
Rivlin 1959, 1960) the following result is obtained 

T E = 7 ( y ) ( N + N T ) + ~ i ( j ) N .  N T + g Z ( j ) N T .  N. (2.34) 

The relatively simple shape of this expression is a consequence of the property N 2  = 0 
of the tensor N. For arbitary tensors N on the basis of isotropy arguments alone, 
instead of (2.34), a far more complicated result would have been obtained. 

From (2.34) we see that the material behaviour is completely specified by just three 
functions: T (  y ) ,  rI( +) and c2( j ) .  Such functions are called viscometric functions. 
Conventionally, not this set, but the following viscometric functions and coefficients 
are used. 

( 1 )  The shear stress function ~ ( j )  and the viscosity q(y): 

T (  P) = 71 ( ? = TE(xy). (2.35) 

(2) The first normal stress function N , ( j j  and coefficient t),(+) 

N , ( j )  = 4%(W= T&)- TE(YY). (2.36) 

(3) The second normal stress function N 2 ( j )  and coefficient $z(i.) 
N2(f )=(J12(? )?2=  TE(YY)- TE(zz)- (2.37) 

As a next special class of flows we now consider flows with a constant (in the 

L = 0 (-a5 t 5 0 0 )  L = constant. (2.38) 

material sense) velocity gradient: 
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The differential equation, with the given initial condition, 

F,( t )  = 1 (2.39) 
d 
- F,(  7) = L * F,( 7) 
dT 

then has the unique solution 

F, ( 7) = exp ( 7 - t )  L. (2.40) 

In this sense, motions with a constant velocity gradient have an exponential flow 
history. In the case that L = yN and N 2  = 0 the series expansion of (2.40) reduces to 
(2.31) and the steady shear flow is reobtained. The class of flows with L2 # 0 but L3 = 0 
contains the subclass of doubly superimposed shear flows. The class with L" # 0 for 
all n = 1,2,3, . . . contains some interesting subclasses: triply superimposed shear flows, 
steady pure shear flows, steady simple extensions and the Maxwell orthogonal 
rheometer flows (Maxwell and Chartaff 1965, Huiigol 1969). Here we consider in 
more detail just the extensional flows. In that case L =  D is symmetric and in an 
appropriate orthogonal basis the tensors D and F,(T) have the following matrix 
representations: 

D =  0 6 2  exp( 7 - r ) i 2  . (2.41) i (4 0 ") F,(7)=(exP(;-t)4 0 0 0 

0 0 $3 0 0 exp(T-t)d, 

Here E i  ( i  = 1,2,3) are constants, the so-called elongation rates. In incompressible 
fluids tr D = 0, and therefore d l  + &+ E3 = 0. The most important special case is the 
uniaxial extension: E l  = -?$, d2 = - ~ i ,  i3 = E. 

By arguments similar to the ones used in (2.33) the stress response in flows with 
a constant veiocity gradient may be shown to be 

TE = f ( L )  (2.42) 

1 1 

in which f is an isotropic function. In extensional flows we have 

TE = f ( D )  = 4ol + r#q D -k &D2 (2.43) 

in which the scalars 4; are functions of the principal invariants of the tensor D. In 
the case of a uniaxial extension the stress response is usually specified by the elonga- 
tional viscosity qE, defined as 

(2.44) 

So far we have considered only plane flows with straight flow lines. It is, however, 
possible to generalise the simple shear flow to the more general class of viscometric 
flows (Coleman 1962) and the flows with a constant velocity gradient to the class of 
motions with a constant stretch history (MCSH) (No11 1962). A full discussion of those 
flows can be found in many textbooks (e.g. Zahorski 1982). Here we will mention 
only some of the basic motions. The viscometric flows are a special case of the MCSH, 

therefore we will first consider the latter. 
According to the definition of a MCSH and a theorem of No11 (1962), in such a 

motion the relative deformation gradient is given by 

F , ( T )  = QT(7) exp(T-t)Mo - Q(t )  (2.45) 
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in which the tensor Q is orthogonal and the tensor MO is constant. From the transforma- 
tion rules for a change of frame (see Appendix 1) it follows that a *-frame exists in 
which FT( 7) has the form 

(2.46) 

So, for a moving observer in the *-frame the flow is of the type (2.40) with a constant 
velocity gradient L* = MO.  Since, by the principle of material frame indifference (see 
0 2.2), the stress response is known in any frame if it is known in a particular one, we 
first consider the stress response in the *-frame. Similar to (2.42) we have 

FT( T )  = exp( T - t)Mo. 

f TX E -  - 9 (C:(T)}=C(Mo).  
r= -m 

From the principle of material frame indifference it follows that 
I 

TE= *F {C,(T)}. 
7 = - ' X  

(2.47) 

(2.48) 

Finally, noting that Cf( 7) is the same function of M = Q'( t )  - MO - Q(  t )  as CT( T )  is 
of MO, which may be proved from (2.44) and (2.45), we see that 

TE(f) = G ( M ( f ) )  (2.49) 
in which G is the same function as in equation (2.47). This result, in principle, 
determines the stress response in arbitrary MCSHS and in viscometric flows. The time 
dependence in (2.49) is a trivial one, since it is just a consequence of the change of 
frame. In the *-frame, the stress response and the tensor MO as well, are constants. 

2.4. Special constitutive equations 

In arbitrary flows the constitutive equations obtained from simple fluid theory are too 
general for practical applications. For specific classes of materials, however, from 
empirical as well as from microscopical considerations, special constitutive equations 
may be obtained. In this section some examples of such equations for polymeric 
systems will be discussed. 

First we have the so-called generalised Newtonian fluids. These are of the type 
TE = 2170 in which 7 is a function of = ~ ( 1 1 ~ )  of the second invariant of the rate 
of strain tensor. In steady shear flows then 7 = v(  y ) ,  a shear-rate-dependent viscosity. 
For this function many empiricisms exist. For high shear rates the simple 'power-law' 

7 = my"-' (2.50) 
with the parameters m and n, usually gives a good description. If the law shear-rate 
region is included more elaborate functions like the Carreau model 

(2.51) 

(Carreau 1968) may be used. 
A disadvantage of the generalised Newtonian fluids is that they do not predict 

normal stress differences in steady shear flow and no relaxation effects in transient 
flows. A simple generalisation showing both non-Newtonian viscosity and normal 
stress effects is the so-called Reiner-Rivlin fluid. Here one assumes TE =f(0) where 
f is an isotropic function, so (omitting isotropic terms) 

(2.52) TE = 410 + 420' 
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in which 4,  = c#J~(II~, I I ID) .  The equality of normal stress functions, predicted by this 
model, however, is at variance with experimental data. A similar type of constitutive 
equation is the CEF equation (Crimale et a1 1958) 

T E  = TA 1 -4" I A2 + ('4'1 + '4'2)A: (2.53) 

in which 7, !Pl and W2 are the viscometric functions (2.35-7) in which for arbitrary 
flow the shear rate y is changed into an invariant of the rate of strain tensor. For 
viscometric flows this equation is equivalent to the general equation (2.15). For slow 
flows it may be considered as a second-order fluid in the retarded motion expansion 
(2.29). For arbitrary flows, however, it is an empirical constitutive equation. 

Relaxation phenomena may be described by constitutive equations which are 
differential equations. The simplest cases are the so-called generalised Maxwell models. 
These are of the form 

(2.54) 

in which h and 7 are constant parameters and S / 5 t  is a convective time derivative 
(see Appendix 2), so 

s 
(2.55) 

In any of those cases a different type of model is obtained (the 'corotational', 'lower 
convected', 'upper convected'. . . and so on). At the level of continuum mechanics 
there is no  fundamental reason for preferring any type of convected derivative. In 
practice the choice is based upon empirical and microscopic considerations. The 
corotational derivative is related to a frame of reference rotating with the vorticity of 
the macroscopic flow (Goddard and Miller 1966, Goddard 1967, Huilgol 1978). This 
turns out to be relevant in dilute solutions of rigid molecules (Abded-Khalic er al 1974, 
Bird er al 1974). Later on in this review it will be shown that the upper convected 
derivative is consistent with particular microscopical models, based upon deformable 
particles. A slight generalisation of these models, obtained by introducing some kind 
of slip of the microstructure, leads to the Gordon and Schowalter convective derivative 
TE (Gordon and Schowalter 1972, Phan-Thien and Tanner 1977, Johnson and 
Segalman 1977). 

Models in which time derivatives of the rate of strain tensor also occur are of the 
Jeffrey type 

c 

5 s 
at 

TE + A - TE = 277 (D  + h2 g D )  . (2.56) 

Again 6/6r may be taken to be one of the various convected time derivatives. In the 
case that the lower convected derivative is chosen the model is also known as the 
Oldroyd A-fluid and in the case of the upper convected derivative one speaks of the 
Oldroyd B-fluid. If the general derivatives (A2.18) are used the model contains, besides 
the three parameters A I ,  A 2  and 7, five additional parameters in the derivatives (not 
six, since one term in the derivative of D drops out because tr D = 0 as a result of the 
assumed incompressibility). This is known as the Oldroyd eight-constant model 
(Oldroyd 1958, 1961). 
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So far we have considered differential equations with constant coefficients (quasi- 
linear models). Often, however, in order to improve the rheological predictions 
particular nonlinearities are introduced in the model. 

By taking the relaxation time A in the upper convected Maxwell model to be a 
function of the second invariant of the rate of strain tensor and the viscosity equal to 
7) = GA where G is a constant, the White-Metzner (1963) model is obtained: 

D 
TE + A ( 11,) TE = 2 Gh ( I I O  )D. (2.57) 

This model has the advantage of being relatively simple and yet giving reasonable 
predictions for the shear-rate-dependent viscosity and first normal stress functions. 

Nonlinearities in the Maxwell model may also be introduced by using stress- 
dependent coefficients or by adding nonlinear stress-dependent terms. An example of 
the first category is the Phan-Thien-Tanner (1977) model (see also 0 5.3) 

- 
u(tr TE)TE+hpEf;=2t7(1 - 5 ) D  (2.58) 

in which also the Gordon-Schowalter convected derivative (A2.16) has been used. An 
example of the second kind is a model proposed by Giesekus (1982) (see also 0 7.3) 

(2.59) 
Besides the special constitutive equations of the differential type one often considers 
equations of the integral type. The starting point here is the integral expansion (2.19). 
The convergence of this expansion may be shown (Bird et a1 1975) to be strongly 
dependent upon the strain measure, used in the expansion. In (2.19) the expansion 
was based upon the tensor C, ( T ) .  In practice one usually takes only the single integral 
term and optimises the choice of the strain measure and the memory function. As 
noted already, the Finger tensor CF'( T )  often turns out to be a reasonable choice, so 
one starting point will be equation (2.27). 

Although this model, known as Lodge's rubber-like liquid (Lodge 1964) has some 
attractive features, it is not capable of describing-even qualitatively-many of the 
rheological properties of polymeric liquids. (See, for instance, Tanner (1983) for a 
discussion of the usefulness of the Lodge model and some ;elated models in various 
types of flow.) 

In order to improve the Lodge model, one may consider the case of norl' I inear 
memory functions. In that case we have 

P = P ( t - 7, 0)  (2.60) 
where { I }  stands for a set of invariants of the rate of strain tensor D ( T ) ,  the stress 
tensor TE(7) or of the Finger tensor C; ' (T) .  An example of the first type is the model 
of Bird and Carreau (1968). An example of the second category is the model of 
Phan-Thien and Tanner (1977). A disadvantage of this type of model is that the 
constitutive equation is no longer explicit, but instead an integral equation in stress. 
In the third case we have 

(2.61) 
in which I and I I  are the two first principal invariants of the Finger tensor: I = tr C;'(  7); 

I1 = tr C,( T ) .  The corresponding constitutive equation is a special case of the Rivlin- 
Sawyers equation 

/.L = p ( t - 7, I, 11) 

[ $ l ( t - T ,  I, 1I)CI(7)+$,( t -7 ,  I , I I ) C ; ' ( ~ ) ] ~ T  (2.62) 
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which may be proved (Rivlin and Sawyers 1971) to be the most general constitutive 
equation of a fluid under the assumption that the effects on the stress at time t of the 
deformations at different past times t' are independent of each other. In the case that 
a potential W (  t - T, I, II) exists, such that 

(2.63) 

(2.62) is the famous K-BKZ equation (Kaye 1962, Bernstein et a1 1963). The functions 
$l in (2.62) may contain a common factor k ( t  - 7). In that case the integrand becomes 
separable, i.e. a product of a time-dependent and a strain-dependent function: 

(2.64) 

A well known special case is the model of Wagner (1979) in which 4, = 0 and 
&= H ( I ,  11) the so-called damping function (see also 0 5.3). The general case (2.64) 
belongs to the class of equations of the type 

(2.65) 

in which M, ( T )  is a generalised strain measure. Equation (2.64) is obtained if M,( T) 
is supposed to be an isotropic function of the tensor C, ( T ) .  

A different class of generalised strain measures is obtained by defining M, (7) by 
the differential equation 

(2.66) 

in which r(t, T) is an entrainment law as was used in the definition of convective 
derivatives (see Appendix 2). In the lower convected case we have 

so 

(2.67) 

(2.68) 

and in the upper convected case 

so 

(2.70) 

In these cases we reobtain constitutive equations of the type (2.65). For the co-rotational 
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case, however, the strain measure becomes (Goddard 1967, 1979) 

kf,(T)=1+2 g ' f (T)*D(T)*R, (T)dT  (2.71) 

in which R, is the mean rotation tensor used in (A2.13). In this case M , ( T )  is not 
expressible as a function of C,(T). 

If the entrainment law is based upon the Gordon-Schowalter convected derivative 
(see Appendix 2) the corresponding strain tensor becomes 

5,; 

(2.72) 

in which C:'(T)  is the Finger tensor, based upon the effective deformation gradient 
@,(T) .  Also in this case, the strain tensor M,(T)  is not expressible as a function of 
C, (7). For a further discussion on this type of 'noholonomic' strain we refer to a paper 
by Goddard (1979). 

Partial integration of (2.653 and substitution of (2.66) gives 

TE=2[;= v ( t - T ) r ( t ,  ' T ) : ~ ( T )  d.r (2.73) 

(2.74) 

By using the different entrainment laws, alternative forms of the constitutive equations 
corresponding to the expressions (2.68), (2.70), (2.71) and (2.72) of M,( 7) are obtained. 

3. Elements of modelling 

3.1. Introduction 

In continuum mechanics a material is represented by a particular model: the continuum. 
In § 2 we have seen that this model provides a very useful framework for a phenomeno- 
logical treatment of constitutive equations and special types of flow. The continuum 
model, however, is not able to represent any specific information about the microstruc- 
ture of the system. Instead, one has to deal with a number of unspecified model 
parameters. 

In order to relate these parameters of a system to aspects of its microstructure one 
needs microscopical models in which the real microstructure is represented by an 
artificial structure, similar to the original one, but of a more or less simplified shape. 
Actually there are many ways of representing a given system by a microscopical model. 
A polymer melt, for instance, may be represented by a coil of entangled chains (Bueche 
1956), by a bead-rod chain in a medium with anisotropic viscous friction (Curtiss and 
Bird 1981), by a Gaussian chain confined in a tube (de Gennes 1971) and so on. Which 
type of modelling is useful in a given situation depends upon the purpose. In the 
context of processing, for instance, one usually needs less detailed models than in the 
development of new materials with specific mechanical properties. 

Three important elements of any micro-rheological model are: the structure by 
which the system is represented, the evolution equations, describing the changes of 
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structure in time, and finally the averaging procedure, connecting the macroscopic 
stress tensor with microscopic stresses and forces. These items will be discussed in 
00 3.2 and 3.3. 

3.2. Structure 

A polymeric chain may be represented by model representations at various levels of 
description. A rather refined description is a chain of coupled rods with fixed bond 
length and angles in which the rotation around the rods may be taken as hindered 
(Flory 1969) or free (Kirkwood 1967). A more crude representation of the polymeric 
chain is a freely jointed chain or ‘Kramers chain’ of N beads, connected by N - 1 
rods (Kramers 1944). The beads do not represent atoms of the polymer chain but 
merely points in the model in which the frictional forces are acting and the rods have 
a length in accordance with the requirement of free jointedness. It is also possible to 
represent larger parts of the molecule by beads, connected by elastic springs, instead 
of rods. In that case one obtains the bead-spring model, well known from the theory 
of Rouse (1953) and Zimm (1956) for the viscoelastic behaviour of dilute polymer 
solutions. A very crude description of the molecule, which, however, is often useful 
because of its simplicity, is an elastic dumbbell, consisting of two beads, connected 
by one spring. Rod-like molecules may be modelled by a rigid dumbbell, consisting 
of two beads, connected by a rod. Some bead-rod-spring models will be discussed 
in § 4.2; for an extensive treatment we refer to the textbook of Bird et ai (1987b). 

So far we have only considered the representation of one polymer molecule by a 
model. This is often sufficient in dilute systems. In concentrated systems, however, 
the model should also represent the intermolecular interactions. A simple but rather 
successful approach is the transient-network model (Lodge 1956, Yamamoto 1956) in 
which the strongly interacting polymer molecules are represented by a temporary 
network of segments which are created and annihilated with prescribed probabilities. 
This model will be discussed in 9 5. 

A less artificial model for a concentrated polymeric system than a temporary network 
is a set of ‘entangled’ molecules. In such a system the molecules interact with each 
other by entanglements in which some kind of slip occurs if the molecules are in 
relative motion. For a review on this type of theory we refer to Graessley (1974). 
Although rather successful in the prediction of some rheological functions, the existing 
entanglement theories are not entirely satisfactory because of the many ad hoc assump- 
tions that are involved. A rigorous treatment of a system of entangled polymers, 
however, turns out to be an extremely difficult mathematical problem. 

A rather successful class of models for concentrated systems are the reptation 
theories. These are mean field theories, in which one central molecule is embedded 
in some kind of special environment, representing the topological constraints caused 
by the neighbouring molecules. Two important cases are the tube model (de Gennes 
1971, Doi and Edwards 1978, 1979) in which the molecule is confined in a tube, and 
the model of Curtiss and Bird (1981) in which the molecule is embedded in a viscous 
fluid with hydrodynamic forces determined by an anisotropic Stokes’ law. As a result, 
in both cases, the motion of the central molecule will be one along its own contour, 
in some average sense. This ‘snake-like’ motion is called reptation. Reptation models 
will be discussed in § 6. 

Having specified the model representation of a molecule, or a whole set of entangled 
molecules, we next have to specify the state of the system. The most detailed description 
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of this state would be the specification of all coordinates and momenta associated with 
the total system (in the chosen model representation). Such a detailed description of 
state may be useful for computer simulations but not for further analytical considera- 
tions. The next level of description is the use of probability distributions. In the 
most fundamental one uses a probability density a( P, Q, t )  of generalised momenta 
and coordinates. An extensive discussion of this so-called phase-space kinetic approach 
can be found in the textbook by Bird et a1 (1987b). In many cases, however, it is 
sufficient to assume equilibrium in momentum space and consider only the configura- 
tiona! distribution function *( q, t )  in order to specify the state of a system. In some 
cases the microstate of a system may be sufficiently well characterised by a set of 
structure tensors { S } .  These may be moments of the distribution function %' but also 
a set of variables that are introduced ad hoc. In the latter case we are dealing with 
the configurational tensor models, to be discussed in 8 7. 

At any level of description of state one needs equations determining the evolution 
of state. At the lowest level of description these equations are the mechanical equations 
of motion and at the phase-space kinetic level this is the classical Liouville equation 
for the distribution function @( P, Q, t ) .  At the next level of description specific model 
assumptions may be introduced in the evolution equations. In the case of bead-rod- 
spring models the treatment is usually based upon the theory of Brownian motion (see 
for instance the book by Wax (1954) in which some of the classical papers on this 
subject are collected) and a Smoluchowski equation of the type 

in which l? is a linear differential operator depending on Q and t (see also Doi and 
Edwards (1986) for further details). The specific form of the operator r depends upon 
the details of the model. In general one may distinguish convective, diffusive and 
kinetic contributions. In the bead-rod-spring models, which will be discussed in 8 4, 
the operator r is of a purely convective and diffusive nature. This follows from a 
consideration of the balance of hydrodynamic, Brownian and interaction forces. With 
Brownian forces we mean the force field in Q space, usually given by an expression like 

a 
aQ 

f B  = -kT- In 9( Q, t )  

which may be considered as the force field associated with the diffusive part of the 
motion in space. 

In transient network models, to be discussed in 0 5, the evolution equation is of 
the form 

a*(Qy t ,  = - r [Y(  Q, t ) ]  + A( Q, t )  
at  

(3.3) 

in which the operator r is of a purely convective nature and a source term A is added 
in order to describe the processes of creation and annihilation of structural elements. 

Reptation models, to be discussed in 8 6 ,  may also be based upon a differential 
equation of the type (3.3). In that case the operator I' is convective as well as diffusive. 

At the level of description where the state of a system is described by a set of 
structure tensors S the evolution equations usually are of the type 

s= f(S, L)  (3.4) 
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in which L is the macroscopic velocity gradient (2.8). Such equations may be derived 
from the underlying evolution equations for +( Q, t )  or introduced as ad hoc assump- 
tions, at the level of the structure tensors. A discussion of rheological models based 
upon this level of description will be given in 9 7. 

3.3. The average stress tensor 

In order to predict macroscopic rheological properties, a micro-rheological model 
should contain an expression which relates the macroscopic stress tensor to the variables 
by which the microstructure is described. So, depending upon the level of description 
of the microstructure there will be various expressions of the stress tensor of a given 
system. There are also several procedures for deriving these expressions. Most of 
them are based upon some kind of averaging. In disperse systems one often employs 
the method of volume averaging (Batchelor 1970) which may be useful in other kinds 
of systems too (Jongschaap and Doeksen 1983). An elementary, but very useful 
procedure, due to Kramers (1944), is based upon the averaging of all forces, transmitted 
through a plane in the medium. A more fundamental approach, due to Irving and 
Kirkwood (1950), is based upon a statistical mechanical derivation of the macroscopical 
transport equations. This method has been investigated extensively by Curtiss, Bird 
and Hassager (see chapter 17 of the textbook by Bird er al (1987b)). 

An expression for the average stress tensor may also be derived from a virtual work 
principle. This approach is based upon the macroscopic expression 

W =  V T :  L (3.5) 

for the stress power in a volume V of a continuum. By equating this to a microscopic 
expression for W an expression for T may be derived. This method, applied by 
Batchelor (1977) to disperse systems and by Doi (1983) to polymeric systems, will also 
be taken as a starting point in this review (closely following a paper by Jongschaap 
(1987)). An advantage is that it may be applied consistently to various levels of 
description of the microstructure (see 0 3.1). 

As a simple illustration we consider a set cy of particles, which may be a subset of 
a larger system, consisting of other kinds of particles. In a homogeneous deformation 
in which the particles of the subset cy are forced to move affinely with the macroscopic 
deformation the power supplied to the subset becomes 

Here, the force f P' is the total force acting upon the particle i due to influences from 
outside the subset a. 

Instead of the velocity gradient L and the power W,, one could also consider 
virtual displacements and the associated virtual work S W,. In the following we will 
keep the notations of (3.5) and (3.6) but still consider the processes as virtual. So, in 
these considerations the time is treated as an arbitrary parameter specifying the virtual 
displacements and the tensor L as a virtual displacement gradient. 

By identifying the expressions (3.5) and (3.6) an expression for the contribution 
T, of the subset CY to the stress tensor is obtained: 

1 
V i ea  

T, =- C f : ' r i .  (3.7) 
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In the case of a dilute polymer solution in which the molecules are modelled by 
bead-rod-spring systems this expression may be applied to a subset p consisting of a 
large number of molecules. Then the forces f;' are the hydrodynamic forces f y  on 
the beads and by changing the summation into an ensemble average we obtain 

in which n = N /  V is the number density of molecules and the summation is restricted 
to one molecule. This expression may also be derived by the method of volume 
averaging. In that case, for a particle of an arbitrary shape, the particle contribution 
becomes 

in which U is the stress tensor inside a particle. By transforming the volume integral 
(3.9) into a surface integral (see Batchelor 1970) one obtains 

Tp = n ( IaVp U. nr dS). (3.10) 

In applying this formula to a bead-rod-spring model the contribution of a bead to 
the integral becomes f yri  and the result (3.8) is reobtained. 

The expressions (3.9) and (3.10) are also relevant in the case of reptation models 
of polymeric liquids (see P 6). In that case we consider a polymer molecule modelled 
as a particle with the shape of a rope. If e is the local tangent vector along its contour 
and the stress is taken to be U = uee we obtain from (3.9) 

Tp = n( loL aee dS) (3.1 1) 

in which L is the contour length. An expression of this type was used by Doi and 
Edwards (1978, 1979). If, on the other hand (3.10) is applied to the case of a rope 
we obtain 

TP = n( JOLfr dS) (3.12) 

in which f is the external force, acting upon it. An equation of this type was used by 
Curtiss and Bird (1981) in their kinetic theory of polymer melts. In their case f was 
an anisotropic hydrodynamic force. 

In the procedure of volume averaging it is evident that the result (3.8) is unaffected 
by constraints (e.g. rigid rods). The derivation, based upon a virtual work principle, 
seems, however, not to be valid in that case since constraints may prevent the system 
from following the virtual deformation used in (3.6). This, however, is not true. The 
virtual work principle, used to derive (3.8) is still valid in constrained systems. The 
reason is that the stress in a constrained system is based upon an equilibrium of internal 
forces. If a system with constraints is changed into one without constraints which is 
still able to resist the internal forces (for instance by changing a rigid rod into a spring 
with a modulus, sufficient to keep its length fixed for the given force) the stress will 
remain unaltered. An expression for the stress tensor is obtained then by considering 
virtual motions of the unconstrained system. 
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The expression (3.8) for the stress tensor may be specified further by introducing 
an expression fo r fH  or by eliminating f by using an equilibrium of forces. This will 
be illustrated now for the case of a dumbbell model. Denoting the end-to-end vector 
of the dumbbell by q and its centre by ro we obtain from (3.8) Tp = n ( f t r O ) +  n(  f Hq) 
in which f 0" = f +fF, the total hydrodynamic force on the centre and f = ;( f 2" -fy), 
an 'internal' hydrodynamic force. In the first term f 0" is balanced by a Brownian force 
f ," = -kT(d/dro)  In + associated with the spatial diffusion of the whole particle. By 
partial integration it can be shown that this term becomes n( f : r O )  = -nkT 1. This 
contribution is of no further interest and will be omitted in the subsequent discussion; 
so we have 

(3.13) 

From Stokes' law of hydrodynamic resistance it follows that 

f H "  - L  A 4  - 4 ) .  (3.14) 

If this expression is introduced in (3.13) making use of the symmetry of the stress 
tensor and the fact that d/dt(qq) =(4q)+ (qq)  one obtains 

(3.15) 

in which 8/22 denotes an upper convected derivative (see Appendix 2). This is an 
example of a Giesekus expression of the stress tensor (Giesekus 1962). 

We now introduce the Brownian force (3.2) 

a 
84 

f * = -kT-  In + 
and the connector force 

f l= -kTIn+o=tcq  

Then, the equilibrium of forces becomes 
in which K is a spring modulus. 

f H + f B -  f '  = 0. 

With this result, the stress tensor expression (3.13) becomes 

Tp = - n ( f  Bq)+ d f ' q )  

or, on substituting (3.16) and (3.17) and integration by parts: 

T,=-nkT l+n tc (qq) .  

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

This result, the so-called 'Kramers expression' (Kramers 1944) may, also be derived 
by averaging the forces transmitted by the connectors and the momentum transfer 
through a plane in the fluid (see for example Bird et a1 1987b). 

If the dumbbell is rigid, a constraint 

141 = q = constant (3.21) 

is imposed upon the vector q. The consequences of this constraint may be expressed 
conveniently by introducing the projection operator 

P = 1 - e e  (3.22) 
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with e = q/ lq I .  The force f may then be decomposed as 

f H = P . f H + ( l - P )  * f". (3.23) 

The first term, perpendicular to e, is balanced by the Brownian force P-fB  as can be 
seen by multiplying the balance of forces (3.18) by P and noting that P. f ' = O .  The 
second term in (3.23) is balanced by f', which is a constraining force, determined by 
the external force f '. The expression (3.13) for T, now becomes 

T , = - n ( P .  f B q ) + n ( ( l - P )  * f H q ) .  (3.24) 

After substitution the expressions (3.22) for P, (3.16) for f B ,  (3.14) for f" and 
performing an integration by parts in the first term, the expression for particle contribu- 
tion to the stress tensor of a dilute solution of dumbbells is obtained: 

Tp = nkT(3ee- l )+&i~~(eeee) :I ) .  (3.25) 

So far we have considered dilute solutions of constrained or unconstrained subsystems. 
We now return to the general case of a subset CY of a system of N clusters (a, b, . . .) 
of M particles (i,j, .. .) each. Then for the contribution Ta of the subset CY to the stress 
tensor, from (3.7) we obtain 

(3.26) 

where fc is the force acting upon particle i in a cluster a from influences outside the 
subset CY. We rewrite this expression as 

in which 

f : '=CfL 
i 

the total force on the cluster a, and 

1 
r, = - ria 

Mi 

(3.27) 

(3.28) 

(3.29) 

the centre of the cluster. 
As an example, consider a network consisting of N rod-like segments, connected 

with each other at their end points. By considering a segment as a subset CY consisting 
of one cluster a and noting that on each segment just two forces f 2 apply, and the 
total forcef,"' vanishes, we obtain from (3.27) T, = (1/ V)fkq , ,  in which q, is a segment 
vector and f b  is the external force acting upon the particle at the endpoint of the 
vector qa. (This force is also equal to the force fa, transmitted through the segment.) 
By introducing an appropriate ensemble average the total stress tensor for the network 
may be written now as 

Tp = n ( f d  (3.30) 

in which f and q correspond to f h  and q& respectively and n = N /  V .  
As a second application of the expression (3.27) we consider a subset p of 

macromolecules in a concentrated solution. According to the equilibrium of forces 
we have 

(3.31) f :'+ f: +f: = 0 
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in which f f  is the force on macromolecule a due to interactions with the other 
macromolecules of the subset p and f ," the Brownian force on molecule a. On using 
(3.31), the identity 

(3.32) 
a a b  

a E p  ( a # b ;  a , b ~ p l  

which may be derived by assuming pair interactions f a b  = -ha and (3.29), we obtain 
from (3.27) 

(3.33) 

or, after changing the summations into appropriate ensemble averages, 

Tp = T ~ + n ( f ~ ( r i - r o ) ) + ~ n C f O a r O a .  (3.34) 
a 

In this expression, which was first derived by Fixman (1965) in a different way, Tp" 
(usually an isotropic stress) results from the Brownian force term in (3.33) and f y ,  
the average frictional force on particle i of a cluster, results from averaging the force 
fyc for a particular configuration of molecule a with respect to the configurations of 
all other molecules. The angular brackets in (3.34) denote an average with respect to 
the internal configurations of a molecule with fixed ro and the overbar in the last term 
an average for fixed roa with respect to the configurations of all other molecules. 

For concentrated polymer solutions or melts, an interesting result may be derived 
if the intermolecular forces are assumed to be of a very short range near the beads 
( i , j , .  . .). In that case the terms in the summation in the last term of (3.33) will differ 
from zero only if rob == (ria - ra )  - ( r i b  - r b ) .  Then, on writing f a b  = f ( i a l l i b )  it may be 
proved that 

in which 

From (3.33) and (3.35) we obtain 

(3.35) 

(3.36) 

a s p  a E P  

in which f 2 + f 7;' is the force acting on particle i of molecule a caused by 
interactions with particles in or outside the subset p not belonging to the same molecule 
a. Averaging of the result (3.36) gives 

Tp = T + n ( f !  ( ri - Po)). (3.37) 

This expression, in which f is similar to f :;, was first derived by Curtiss and Bird 
(1981) in their kinetic theory for polymer melts. 

i 
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This concludes our review of expressions for the macroscopic stress tensor in terms 
of microscopic variables in which we have focused the discussion mainly upon the 
consequences of the fundamental expression (3.7), derived from a virtual work prin- 
ciple. For other methods of derivation we refer especially to the textbook of Bird et 
al (1987b). 

A very general and elegant expression for the reversible part of the stress tensor 
has been provided by Grmela (1985, 1986) on the basis of a bracket formulation of 
diffusion convection equations. This expression reads 

(3.38) 

Here CP is a structural variable, like a tensor S or a configurational distribution function 
+(q, t ) ;  6 is the material time derivative of @ and ch- the part of ch that is odd in the 
sense that &-(@, L)  = -&-(a, -L)  and A = A{@} is the free energy functional of the 
system. In general, the derivative SA/S@ is a functional derivative and the multiplica- 
tion * an appropriate integration or contraction. In § 7.2 this expression will be 
discussed further for the case that @ is a structure tensor. 

4. Bead-rod-spring models 

4.1. Introduction 

The external forces on a polymer molecule in a dilute solution are the hydrodynamic 
forces due to the motion of the solvent. In bead-rod-spring models, the action of 
these forces is localised in a number of beads along the polymeric chain. The connectors 
between the beads may be rods or springs, in order to model stiff or elastic parts 
respectively of the chain. In general the chain may be branched and the connections 
between the rods may be constrained. 

For a full analysis of general bead-rod-spring models we refer to chapter 16 of 
the textbook by Bird er al (1987b). In the next section we will illustrate some of the 
main features of these models by considering three special cases, the simplest case-the 
elastic dumbbell model-the bead-rod model as an example with a constraint and the 
Rouse-Zimm model in which a normal mode analysis is involved. 

4.2. Examples 

Since many features of general bead-rod-spring models are already present in the 
elastic dumbbell model, we start our discussion with a brief treatment of this model. 
In 0 3.3 we have already seen that the polymer contribution to the stress tensor may 
be represented in this case by the Kramers form (2.35). In order to derive a constitutive 
equation from this expression one needs information about the second moment (qq) 
of the distribution function +(q, r ) .  To this end we consider the evolution equation 
for $, which is based upon the continuity equation 

and the equation of motion for the flux 4 
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which follows from the equilibrium of forces (3.18) and the expressions (3.14), (3.16) 
and (3.17) f o r f H , f B  andf ' .  Substitution of (4.2) in (4.1) gives an evolution equation 
of the Smoluchowski type (cf equation (3 .1)) .  In this case, however, we do not need 
this equation. Instead, by multiplying (4.1) with the dyadic qq and integration we obtain 

and upon substitution of q as given by (4.2) 

4kT 4~ 

(4.3) 

(4.4) 

in which S /  6t denotes the upper convected derivative, defined in (A2.12). By eliminat- 
ing (qq) from (3.20) and (4.4) we obtain a constitutive equation of the upper convected 
Maxwell type (cf equation (2.54)) 

Tp+hTp =2nkThD (4.5) 

with h = 5 / 4 ~ .  
A derivation solely based upon a consideration of the second moment (qq) is not 

possible if the spring-force modulus K is no longer a constant, but dependent upon 
141. In that case, the substitution of (4.2) into (4.3) gives rise to a term containing the 
quantity (Kqq) which cannot be eliminated. A useful form of a nonlinear spring force 
law is the so-called FENE (finite extensible nonlinear elastic) expression 

An analysis and further references about the dumbbell model based upon this form 
may be found in the textbook of Bird et a1 (1987b). 

Next we consider the bead-spring model, on which the classical theories of Rouse 
(1953) and Zimm (1956) on the viscoelastic behaviour of polymer solutions are based. 
(Our treatment closely follows the one of Lodge and Wu (1971).) In the bead-spring 
model a polymer chain is modelled by a set of M beads at positions r l ,  r,, . . . rM 
connected by linear springs. The spring vectors will be denoted by i, , &, . . . iMPl. 
The connection between these two sets of vectors is given by the equations 

G..r. V J  = 2. 1 (4.7) 

in which G, = a,+', - 6 ,  j .  We also define a centre ro by the equations 

H0,q = ro. (4.8) 

By requiring that C j  Hoj = 1, ro acquires the meaning of a weighted average of the bead 
positions. The matrix HoJ will be specified later on. The equations (4.7) and (4.8) will 
be abbreviated now as 

G r = i  Hr = ro (4.9) 

and a similar matrix notation will be employed in the following treatment as long as 
possible. 

The set of equations (4.9) may be inverted. So we also have the inverse transfor- 
mation 

J i +  Kr, = r. (4.10) 
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The matrices J and K ,  which are fully determined by G and H may be used now to 
define the forces i: and fo associated with any set of forces (fi ,fi . . .fM) =f; acting 
upon the beads 

j=JTf fo=KTf: (4.11) 

By inversion of this set of equations, we also have 

f = G T J + H T f O .  (4.12) 

Noting that for a virtual displacement 6r of the bead coordinates the virtual work 
becomes 6 W = f6v = 6rGTf+ 8rHTfo =f6F+fo6ro, we see that f and fo may be con- 
sidered as forces associated with the springs and the centre respectively. 

Just as in the elastic dumbbell model where we needed an equation of motion for 
the flux q in configuration space, we now need an expression for 6 This may be derived 
from the balance of forces 

f " + f = O .  (4.13) 

Here, f=f"+f' with f "  the Brownian forces on the beads and f' the forces on the 
beads due to interactions (spring forces) with other beads. We now substitute f = 
-5( i - v )  in which ZJ represents the set of fluid velocities at the beads, obtaining 

-{(I: - v )  +f= 0. (4.14) 

Now it becomes relevant to make a particular choice for the matrix H (i.e. for the 
choice of the centre ro). We take H to be orthogonal to G in the sense that 

G H ~  = 0. (4.15) 

From the form of the G matrix one readily shows that H becomes 

(4.16) 

So, in this case ro is the centre, in the usual sense. Later on we will see that in the 
case of hydrodynamic interaction between the beads this becomes different. 

By multiplying (4.14) with G and making use of (4.9), (4.12) and (4.13) we obtain 

A -  
5 

j = L .  r '+-f:  

In this expression A = GGT is the well known Rouse matrix 

-2 1 0 e . .  0 
A = [  -1 2 -1 ii j:/ 

0 0 ... -1 2 

and the force $=p+f' where 

(4.17) 

(4.18) 

and 
'1 f = - K E  

(4.19) 

(4.20) 
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The equation (4.17) may be simplified by a transformation to normal coordinates. This 
is achieved by an orthogonal matrix R : RRT = 1 which diagonalises A :  RART = 2 = 
$ag( a,] a,, . . . aMFl)  and transforms the coordinates and forces according to r^ = RF7 
f = Rf. Then (4.17) becomes 

ai 
5 

Pi=L.?i+-f; .  

(here we return again to the explicit notation). 
The equation of continuity, transformed into normal coordinates, reads 

A 

Analogously to (4.4) one may derive from (4.21) and (4.22) 

6 A A  2aikT 2 a , ~  
- ( Firi) = - 1 - - (riri). 
6t 5 c 

(4.21) 

(4.22) 

(4.23) 

The stress tensor expression for the bead-spring model of the Kramers type (3.20) 
reads Tp = X i  K., with 

Ti = -nkT 1 + n K (  E;;}. (4.24) 

This may readily be expressed in normal coordinates: 

T, = -nkT 1 + ~ K ( ? , J .  (4.25) 

Now, from (4.23) and (4.25) we may eliminate the tensor (riri), obtaining the constitutive 
equation 

V 
T. + Ai'l;. = 2nkTAiD (4.26) 

with 

(4.27) 

So we see that the Rouse model leads to a set of upper-convected Maxwell equations 
with relaxation times, determined by the characteristic values ai at the matrix A. 

It is evident that for nonlinear (branched, star-shaped, etc) model structures the 
matrix G and so the matrix A will be different while most of the analysis outlined 
above will remain more or less the same. In that case the set of characteristic values 
{ai} and so the relaxation spectra will be different. Other modifications are the 
introduction of different friction coefficients for different beads and/or different spring 
constants for different springs. This may be included in the present formalism by the 
introduction of matrices Go and/or K~ instead of the scalar coefficients G and/or K 

used above and some minor modifications in the analysis. Also in that case the main 
effect will be a change of the relaxation spectrum. 

One modification that will be discussed now in more detail is the inclusion of 
hydrodynamic interaction. This, in fact, is the improvement to the Rouse theory, given 
by Zimm (1956). The point is that in the expression for the hydrodynamic forces f r y  
used so far, we took ui = v0+ L .  ( ri - ro) as the velocity of the solvent at the beads, in 
applying Stokes' law. In fact, the velocities ui at the beads are also determined by the 

5 A .  =- 
' 2aiK' 
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disturbance of the flow field due to the other beads. If this disturbance is included, 
the hydrodynamic forces become 

(4.28) 

in which a, is the Oseen tensor, determining the disturbance of the velocity field at 
ri due to the force acting at 5.  Usually a pre-averaging is used, in which 0, is 
replaced by its average (a,}, with respect to the (Gaussian) equilibrium distribution 
$,( rl , r2 , . . . rM,  t ) .  Analogous to (4.14) we now obtain from the equilibrium of forces 

(4.29) - G( i - V )  + Zf = 0. 

Here we have used again the abbreviated notation, in which 2 denotes the matrix 

2, = 6, + (1 - s,)t(n,},. (4.30) 

Explicit expressions of a,, (a,}, and 2, can be found in 0 15.4 of Bird et al (1987b). 
Following the previous analysis of the Rouse model we introduce a matrix G and 
spring vectors r' as before, but instead of H a different matrix H' (to be determined 
later on). Introducing in (4.29) an expression forf analogous to (4.12) and multiplica- 
tion by G gives 

-[(; - L - r') + GZH'~~-;+ GZG~J: = 0. (4.31) 

We now use the freedom in the choice of H' by requiring 

GZHrT = 0. (4.32) 

By this equation H '  is uniquely defined. The associated centre r; = H'r is called the 
centre of resistance of the molecule. 

From (4.31) and (4.32) we obtain 

(4.33) 

with A'= GZGT, a modified Rouse matrix. This equation is completely similar to 
(4.17) and so is the subsequent analysis. The Zimm theory, therefore, yields the same 
form (4.26) of constitutive equation as the Rouse theory. Only the relaxation spectrum 
will be different, because of the difference between the matrices A and A'. 

Experimental evidence shows that the inclusion of hydrodynamic interaction indeed 
gives a significant improvement of the predictions of the theory as compared with 
experimental data (especially on linear viscoelastic response) of dilute polymer solu- 
tions. Strangely enough, the Rouse model-although intended for dilute systems 
only-often gives better predictions for more concentrated systems. This may be caused 
by the shielding of hydrodynamic interaction. 

We now continue our overview of bead-rod-spring models by considering the effect 
of constraints. In general, the (holonomic) constraints may be represented by a set of 
equations 

q r ,  . . . r M )  = 0 p = (1 ,2, .  . .3M -f) (4.34) 

where f is the number of degrees of freedom of the system. 

9 3.8)). 
Constraints can be handled by two methods (see also Doi and Edwards (1986, 
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(i) The method, adopted by Kirkwood (1949, 1967) in which the motion of the 
model structure is described by a set of independent generalised coordinates Qi 
( i  = 1,2, .  . . f). This method has also been employed in the general treatment of 
arbitrary bead-rod-chain systems in chapter 16 of the textbook by Bird et a1 (1987b). 

(ii> A method, used by Fixman (1974, 1975) in which the motion of the model 
structure is still described by the set of bead vectors { r j }  in the full 3M-dimensional 
configuration space but constrained by the equations (4.34). In the equation of motion 
constraining forces then appear which may be evaluated by the method of Lagrangian 
multipliers. 

One may also apply a method based upon projection operators like the operator 
P associated with the rigidity constraint in the rigid dumbbell model discussed in § 3.2. 
This method will be illustrated now. Referring to the literature cited above for a full 
discussion of constrained bead-rod-spring systems we will restrict the discussion here 
to the rigid dumbbell model. For this model the force f' becomes a constraining force 
in the direction of the unit vector e = q/Iql .  So if we multiply the balance of forces 
analogous to (3.18) with the projection operator P defined in (3.22) the term P * f '  will 
vanish and analogously to (4.2) we obtain 

(4.35) 

or, since P. q = q = qe, and qP.  a/dq = a/ae the rotation gradient operator, also 

2kT a 
e = ( l - e e ) - L - e - - -  

542 ae In 
(4.36) 

This equation determines the rotational flux, which has to be substituted into the 
rotational continuity equation 

2.k a 
- - - ( $ e )  

at ae 
(4.37) 

to give an evolution (Smoluchowski) equation for the distribution function $. With a 
solution of this equation, which in most cases has to be determined numerically, the 
stress tensor may be calculated by performing the averages in the expression (3.25). 
In this case it is not possible to derive an explicit constitutive equation by eliminating 
the moments (ee)  and (eeee) since no evolution equations exist from which together 
with the stress tensor expression both moments can be eliminated simultaneously. 

5. Transient-network models 

5.1. Introduction 

Many theories about the rheological behaviour of melts and concentrated solutions 
are based upon the transient-network concept, originally developed by Green and 
Tobolsky (1947), Lodge (1956) and Yamamoto (1956). For a review of these theories 
we refer to the paper by Lodge et a1 (1982) and to chapter 20 of the book by Bird et 
a1 (1987b). In the present paper we will not enter into the details of any particular 
model, but merely discuss some general aspects of this type of model. 



30 R J J Jongschaap 

The transient-network model is proposed to describe a concentrated polymer 
solution or melt. In such a system the molecules will have many interactions with 
each other. A number of these will have the character of an entanglement and behave 
like a temporary bond. An idealised picture of a system like this is a network, consisting 
of Gaussian segments which are created and annihilated at certain rates. The polymer 
contribution to the stress tensor of this system is given by (see also equation (3.30)) 

Tp = n 4 4 d  (5.1) 

in which n is the number density of segments, q the segment vector and the angular 
brackets denote an average with respect to the (one)-segment distribution function 
+(q, t).  The further specification of any transient-network model requires the 
specification of the kinetics of creation and destruction of segments, of the evolution 
of the distribution function and some other properties of.the transient network. These 
will be discussed in the next section. 

5.2. The Lodge model 

In this section we will give an outline of the common structure of most transient 
network theories for polymeric liquids. Although our treatment will be somewhat 
different and slightly more general, it is essentially an outline of the theory of Lodge 
(1956). 

We start with the expression (5.1) of the stress tensor. In a more explicit notztion 
this equation reads 

Tp = nK 44% t )qq d3q. (5.2) J 
In order to develop this expression further, more information is needed about the 
evolution of the distribution function 4. In the transient-network model this evolution 
is determined by creation and loss processes and by the affine convection of segments. 
This may be summarised in mathematical form as follows 

+(q, f )  = Ir J- P(G t ’ ) S ( 4 - @ ( 4 ’ ,  t’, t ) ) J ( q ’ )  d3q’dt’. (5.3) 

In this expression p (  t, t’) dt‘ is the probability per segment, present at time t, of being 
created at time t’, &q‘)  d3q the probability per segment created at t’ of being created 
with its segment vector in an element d3q around q’ and 

-02 

4(q’,  t’, 1 )  = F;’( t ’ )  * q’ (5.4) 

expressing the assumption of the affine motion of the segments. 

Gaussian equilibrium distribution, so we have 
In the theory of Lodge the creation distribution &q’) is taken to be equal to the 

kT 
(q’q’)‘=- 1 

K 
(5.5) 

in which ( )’ denotes an average with respect to $(q’ ) .  

with respect to q and q’, on using (5.4) and (5 .5 )  we obtain 
We now substitute the expression (5.3) for + in (5.2). By performing the integrations 

T p = n k T ~ ~ m p ( f y  r‘)Cr(t’)-’ dt’. 
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This integral expression already shows some features of the transient-network model. 
The G;' tensor appears as a result of the assumption (5.4) of affine motion. In order 
to get more specific results we have to look closer at the kinetics of creation and loss 
of segments. First we define a function 

n'( t, t ' )  = n ( t )p (  t, t ' )  (5.7) 

being the number of segments created per unit time at t' and still existing at time t. 
Since I:, p (  t, t ' )  dt'= 1, as can be seen by integrating (5.8) with respect to q it follows 
that 

fi(t, t ')  = n ( t ) .  (5.8) 

Furthermore we define the creation rate 

1 

n0 
g (  t') = - n"( t', t ' )  (5 .9 )  

in which no is the segment density at equilibrium, and an annihilation rate h ( t )  by 

a 
at 
-n ' ( t ,  t ' ) = - h ( t ) n ' ( t ,  t ' ) .  (5.10) 

By differentiating the expression (5.8) with respect to t (at constant t ' )  and making 
use of (5.7), (5.9) and (5.10) we obtain a rate equation for the total number of segments 

dn - = gno - hn 
dt  

or, expressed by the ratio x = n / n o ,  

dx 
d t  
- = g - hx. 

(5.11) 

(5.12) 

From (5.9) and (5.10) a formal solution for r7 may be derived. If this solution is 
substituted in (5.6) one obtains the constitutive equation 

(5.13) 

in which Go = n0kT 
In order to obtain more explicit constitutive equations the creation and loss functions 

g and h have to be specified. In general these quantities may depend upon macroscopic 
flow variables, like the invariants of the rate of strain tensor, or of strain tensors like 
C;'(t ') .  Sometimes a stress dependence is assumed. In that case the expressions (5.6) 
and (5.13) become integral equations instead of explicit expressions for TE. 

In the simplest case (the one corresponding to the original formulation by Lodge) 
one takes g and h to be constant. Then (5.11) implies 
expression (5.13) reduces to 

( t - t ' )  
Tp = Go I' exp( -7) Cy'( t ' )  dt' 

-X 

that g =  h, n = n o  and the 

(5.14) 

with A = g-' = h-'. 
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We now return again to the fundamental expression (5.3) for the evolution of $. 
On differentiating this expression to t and writing the time derivative of the delta 
function as 

aS(q -4 )  aq a a 
- 6 (  q - 4) = 
at aq a t  aq { 6 ( q  - 6 ) d  e - = - - .  

the following differential equation for $ is obtained 

(5.15) 

(5.16) 

Here we used the fact that p (  r, t )  = g/x and the relation ap( t, t ’ ) / a t  = - ( g / x ) p (  t, t ’ )  
which can be proved by differentiation of the normalisation condition ji, p( t, t‘)  d t  = 1. 
From (5.16) one may readily obtain a differential equation for the total segment 
distribution 9 ( q ,  t )  = nQ(q, t ) .  This equation becomes 

(5.17) 

with $,, = no$. 
This equation is usually proposed directly in transient-network models since it has 

an obvious heuristic interpretation: The rate of change of the total distribution function 
? of all segments changes as a result of convection (the first term in the right-hand 
side of (5.17)), creation (the second term) and loss (the last term). Creation of segments 
takes place in the equilibrium distribution Go= noG and the loss of segments is 
proportional to the actual distribution 9. 

A constitutive equation may readily be obtained from (5.17) by multiplication with 
44 and integration. On using again the stress-tensor expression (5.1), the assumption 
of affine motion (5.4) which in differential form becomes 

q = L * q  (5.18) 

and (5.5) for the average with respect to G one obtains an equation of the upper- 
conventional Maxwell type (cf § 2.4) 

T,+A?,=GI (5.19) 

(with A = h-’ and G = AgG,). 
This equation may be shown to be equivalent to the integral forms (5.6) and (5.13). 

Since we assume incompressibility, an arbitrary isotropic stress may be added to T’ 
(see 0 2.2). If, for this purpose, the stress -nkT 1 is used we obtain from (5.19) the 
equivalent form 

v 
Tp + A Tp = 2 qD (5.20) 

(with A = h-’ and 7 = KG,A = &TA) which is similar to the constitutive equation (4.5) 
of the dumbbell model. 

This concludes our general outline of the Lodge model. In the next section we 
will discuss some special cases and generalisations of this model. 

5.3. Generalisations 

The transient-network model offers attractive possibilities for a semi-empirical 
modelling of the rheological behaviour of polymeric liquids. By making specific choices 
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for the kinetic functions g and h and introducing additional modifications (to be 
discussed below) various models may be generated. We now will discuss some examples 
of such modifications. 

First we note the possibility of introducing a relaxation spectrum { h i ,  Gj} instead 
of one relaxation strength Go as has been used so far. This is usually done by considering 
a number of different kinds of segments, identified by a number i, called the complexity. 
Then we have 

T , = C T ,  (5.21) 
with K., given by a constitutive equation similar to (5.20), 

0 
Ti + hiTi = 2hiGiD 

with Gi = nikT, hi = h;’ and dn,/dt = gi - hini. 

Carreau 1972, De Kee and Carreau 1979) one uses the Rouse spectrum 

(5.22) 

The relaxation spectrum is often left unspecified; in some cases (Meister 1971, 

(5.23) 

determined by three parameters: ai, hi and G or some special form of the same type 
(Bird and Carreau 1968). Contrary to the Rouse model (see 0 4.2) where the relaxation 
spectrum was derived, expressions like (5.23) must be considered as purely empirical, 
since the transient-network model offers no possibility of deriving a relaxation spectrum. 

A second generalisation of the model, described in the preceding section, is the 
introduction of non-affine convection of the segments. In that case the function 
cj(q’, t’, t )  in (5.3) is not given by (5.4) but by some other convection law. A well 
known type of non-affine convection, proposed by Phan-Thien and Tanner (1977), is 
of the type 

(5.24) 

In this expression kf(;r(’) is an effective deformation gradient tensor, different from the 
tensor Ff(t’). Corresponding to (5.18) we have 

q = L * q  (5.25) 

Cj(q’, t’, t )  = F;’(t’) * 4’. 

in which 

1‘= I 

is an effective velocity gradient tensor. In the Phan-Thien-Tanner model one assumes 
Z = L - ~ D  (OS 5 <  1). (5.26) 

A similar effective velocity gradient (see also Appendix 2) was introduced earlier in 
a modified dumbbell model by Gordon and Schowalter (1972); it was used also by 
Johnson and Segalman (1977, 1981) in a phenomenological model. 

It is not difficult to incorporate this type of non-affine convection in the transient- 
network theory. The only changes are that the Finger tensor C;’(t‘)  in (5.6) and (5.13) 
becomes e;’(t’), based upon f i l ( t ’ ) ,  defined in (5.24) and that everywhere in the 
analyses the velocity gradient L should be replaced by L” (D by 6, etc). The convected 
derivative in (5.19) then becomes the Gordon and Schowalter derivative T, defined by 
(A2.16). The resulting constitutive equation is of the form (2.58) with U =  1. 

C 
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Non-affine convections of type different from (5.25) are far more difficult to handle 
in transient-network theory. Examples are (see Larson 1983) non-extending non-affine 
convection 

q = L . q - ( e -  D .  e)q (5.27) 

which is also relevant to reptation models (§ 6), and partially extending non-affine 
convection 

(5.28) 

used in a theory of polymer melts by Larson (1984) and in a transient network theory 
of concentrated dispersions by Kamphuis et a1 (1984), and the quasi-linear non-affine 
convection 

q = L e  q - [(e. D .  e ) q  

l j = q . Z : L  (5.29) 

(in which 2 is a fourth-order tensor), discussed by Larson (1983, 1985). 
The assumptions about the kinetics of transient-network models are contained in 

the expressions of the coefficients g and h in (5.13). We have already discussed the 
simplest case (Lodge 1956) in which g and h are constant. This case is attractive for 
its simplicity but not very realistic in its predictions of rheological behaviour. 

A first type of modification of the kinetics of the Lodge model are models with 
rate of strain dependent functions g and h. The objectivity and symmetry requirements 
of simple fluid theory require these functions to be isotropic. Usually one assumes 
dependence upon the second invariant of the rate of strain tensor 

g = g(IILl) h = ( I I D ) .  (5.30) 

Theories of this type have been proposed by Bogue (1966), Bird and Carreau (1968), 
Meister (1971) and Carreau (1972). As an example we give the kinetic functions of a 
model by Meister (1971) 

1 
Ai 

hi =- (1 f c A i m )  
1 

gi =- 
A i  

(5.31) 

in which Ai is the Rouse spectrum (5.23). The kinetic coefficients may also depend 
upon the macroscopic stress. Usually the excess stress T’ = TE - To with respect to the 
equilibrium value To is used for this purpose and a dependence of the first invariant 
IT, = tr T’ is assumed: 

g = g(tr T‘)  h = h(tr T’) .  (5.32) 

Examples of models with this type of kinetics are the models of Kaye (1966) and of 
Phan-Thien and Tanner (1977). In the latter model, the kinetic functions are given by 

1 tr TI 
g ,  = h . = - ( 1 + E --) ’ ’ Ai 

(5.33) 

in which E is a parameter. 
In some models the creation and annihilation functions are assumed to depend 

upon both the stresses T /  and on the segment densities ni,  or equivalently the concentra- 
tion ratios xi = n i / n i o ,  so 

hi = hi (x i ,  TI). (5.34) 
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Examples of this type are the model of Acierno et a1 (1976) often called the 'Marrucci 
model' and the model of Soong and Shen (1979). Both models were originally not 
formulated as transient-network models, but it has been proved (Jongschaap 1981, 
Doeksen et a1 1985) that such a formulation is still possible. The kinetic functions of 
the Marrucci model are 

1 
gi =- hioxp'" (5.35) 

(5.36) 

in which a is a parameter. 
Instead of assuming a dependence upon macroscopic flow properties, like 0, T 

and x, it seems more natural to assume a dependence of the kinetic functions upon 
the segment vector q:  

g = g ( q )  h = h ( q ) .  (5.37) 

This assumption was made already in the theory of Yamamoto (1956) which was 
developed at the same time as the Lodge (1956) model. For detailed considerations 
about the molecular foundations of the assumptions in this theory we refer to the 
papers of Wiegel (1969) and Wiegel and de Bats (1969). 

Although the results of the theory of Yamamoto are promising, at least for small 
shear rates, this type of modelling has not become very popular in transient-network 
theory. The main difficulty is that these models cannot be solved analytically and that 
no constitutive equation can be derived. Recently, however, a numerical approach 
has been presented (Petruccione and Biller 1988) which allows the solution of transient- 
network models of the Yamamoto type with little computational effort. Although some 
of their results are promising their conclusion is that the introduction of configurational- 
dependent creation and loss rates does not seem to represent a real improvement in 
fitting experimental data with transient-network models. They suggest that probably 
an extended approach to network theories is needed, which takes into account the 
cooperative dynamics of the creation and loss of segments. 

All modifications and generalisations of the Lodge model introduced so far may 
be formulated in the integral form (5.13) as well as in the differential form (5.19) of 
the model (although as already mentioned the integral formulation of models with 
stress-dependent kinetic functions is not very useful, since in that case the constitutive 
equation becomes an integral equation). 

An exception is a modification, first introduced by Wagner. This modification 
which can only be applied to the integral form consists of the introduction of a factor 
x( t, t ' ) ,  the so-called damping function in the integrand. In that case (5.13) becomes 

T p =  Go g ( t ' ) X ( t ,  t ' )  exp ( - I ' h ( f " )  dt")C;'(t') dt'. (5.38) 

In the theory of Wagner the damping function is assumed to depend upon the first 
principal invariants of the Finger tensor, I = tr C;'(t ' )  and II = tr Ct( t ' ) ,  so 

I_, t' 

x= %(I, 11). (5.39) 

In the case that the kinetic functions g and h are constant (and also in some other 
cases) the constitutive equation (5.38) then becomes of the K-BKZ type ((2.62) and 
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(2.63)). An example of a damping function is the one proposed by Wagner (1976) 

(5.40) 

in which n and 6 are dimensionless parameters. In order to improve the model, 
especially with respect to the description of recovery following start-up of steady 
elongational flow, Wagner and Stephenson (1979) modified their theory by replacing 
the damping function Yt by a functional. For further details we refer to their paper. 

6. Reptation models 

6.1. introduction 

Although the transient-network concept, discussed in P 5 ,  offers attractive facilities for 
the description of the rheological properties of concentrated polymer solutions and 
melts, this type of modelling is not entirely satisfactory. One of the reasons is that the 
transient-network model is not really a molecular model. Therefore instead of being 
expressed in molecular quantities like molecular mass, chain branching, etc its results 
are merely expressed in unspecified model parameters. 

A class of models which are closer to the molecular reality are the so-called reptation 
models. These models are based upon the concept of reptation, originally proposed 
by de Gennes (1971) and used in a rheological model by Doi and Edwards (1978, 
1979) and by Curtiss and Bird (1981) in a different way. As already stated in 0 3.1, 
reptation models are mean field theories, in which the environment of a molecule is 
modelled in some way in order to represent the topological constraints due to the 
neighbouring molecules and causing a reptating motion of the central molecule. 

In 80 6.2 and 6.3 we will discuss the two main approaches in this field. First in 
0 6.2 the tube model, used by Doi and Edwards (1978,1979) and in 0 6.3 the Curtiss-Bird 
theory (1981). 

6.2. Tube models 

The tube model in polymer rheology was first introduced by de Gennes (1971) who 
discussed the Brownian motion of an unattached polymer chain through a fixed 
network. He noted that the motion of the chain was always as if it were confined in 
a tube and that as a result of this motion the tube itself changes with time. Doi and 
Edwards (1978, 1979) used this concept in a model for the rheological behaviour of 
concentrated polymer solutions and melts. 

In their model the tube consists of N segments, each of a length a and a total 
length L = Nu. The size of the diameter of the tube is also of order a and the molecule 
is treated as a Gaussian chain, confined in the tube. The average contour of the 
molecular chain coincides with the centre line of the tube and is called the ‘primitive 
chain’. Due to the thermal motion of the molecule, the primitive chain will perform 
a diffusive motion in the tube along its own contour (reptation). Only at the ends of 
the tube may the chain (we will often use the word chain instead of ‘primitive chain’) 
choose arbitrary new directions, creating new randomly oriented tube elements. At 
the opposite end of the tube, at the same time, tube elements wil disappear since the 
chain is moving out. 
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The motion of the primitive chain in the tube is a diffusion process, governed by 
a diffusion equation. The probability densities by which the process of creation and 
loss of tube elements is described are determined by similar diffusion equations. In 
particular the probability density (P( t - t‘, s) of a tube element present at time t’ and 
still present at time t at a curvilinear position s along the primitive chain is determined 
by the diffusion equation 

a@ a‘@ 
- D- 

a t  as2 
-- 

under the boundary conditions @( t - t ’ ,  0) = a( t - t’, L)  = 0 and (P(0, s) = 1. The 
diffusion constant D is given by the Einstein relation 

kT D=- 
L t  

in which 6 is a friction coefficient per unit length of the primitive chain. We also need 
the function x( t - t’,  s) = ( d / a t ) ( P (  t - t’, s), which may be considered as the probability 
density for a tube element, created at time t’ to survive and to be at a position s along 
the primitive chain at time f. This function is given by the following expression 

where 

is a time constant, the so called disengagement time. 
Besides the diffusive motion, causing the creation and loss of tube elements, there 

is also a convective motion. It is assumed that the tube segments move affinely with 
the macroscopic flow. In particular, a unit vector e along a tube element will obey 
the convection law 

F,( t )  e‘ 
e = i (  e’, t’, t )  = 

IF&) ‘ e’l 

which implies for its rate of change 

e = L - e - D : e e e .  (6.6) 

Analogous to equation (5.3) of the transient-network model, a similar equation holds 
for the probability density $(e, t, s) of a tube element for having an orientation e at 
time t at a position s along the chain. This equation becomes 

$ (e, t, s) = j:w 1 ,y ( t - t ’ ,  s) 6 (e  - P( e’, t’, t)) f (e’) d’e’ dt’ 

in which the function P is given by (6.5) and the creation distribution function $ = 1/4n 
corresponds with the assumption of random orientations of creation of new tube 
elements. Similar to (5.16) it may be shown that $ obeys the evolution equation 

_- a a2* ( $ e )  4 D- a* - --. 
a t  ae as’ 

in which e is given by (6.6). 
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The stress tensor is calculated from an equation of the type (3 .11)  in which the 
average with respect to the whole chain is changed into N times an average with 
respect to the one-segment distribution function $(e, s, t ) ,  so 

Tp = nN (5ee) ds. I, (6.9) 

In this expression 6 = a/ N is the contribution of one segment to the stress a in the 
chain. The approximation used in (6.9) is essentially the so-called independent align- 
ment approximation introduced by Doi and Edwards, which states that the convective 
motion of segments of a primitive chain segment is given by (6.5), irrespective of its 
motion along the tube. This enables the simple analysis based upon a one-segment 
distribution given below. 

The stress a in the chain is calculated by Doi and Edwards from the force boundary 
conditions at the end of the tube, which are necessary in order to keep the monomer 
density per unit length of a Gaussian chain at its equilibrium value. The result is 
U = 3kT/a .  (This is also the entropic force, f = (3kT/Mb2)a ,  needed to keep the end 
points of a segment consisting of M monomer units of length b at a distance a = m.) 
The contribution per segment 6 = a/ N to the equilibrium stress also becomes 

- 3kT 
IT=-. 

L 
(6.10) 

A constitutive equation may be obtained now by substituting (6.10) in (6.9) and 
performing the averaging with respect to $(e, t, s), given by (6.7). In this way we obtain 

Tp = 3nNkT p (  t - t‘)(@)’ dt’ L (6.11) 

in which 

2 is the function given by (6.5) and (. . .)’ an average with respect to the creation 
distribution function $. Note that the quantity (ZZ)’ is a ‘universal tensor’, fully 
determined by the macroscopic deformation gradient F, ( t’)  and independent of material 
properties. 

Recently a modified tube model has been proposed by Jongschaap (1988). This 
model, called the reptating rope model, was intended to clarify some discrepancies 
between the Doi and Edwards model, described above, and the Curtiss-Bird model, 
which will be discussed in the next section. The model differs from the Doi and 
Edwards model in the sense that the primitive chain is no longer treated as the average 
of a Gaussian chain in which the internal stresses are determined by entropic forces, 
but as an inextensible rope in which the tensile stresses are determined by the external 
forces. The tube is of about the same (unspecified) diameter as the rope. Two kinds 
of forces are acting upon the rope: Brownian forces, due to the one-dimensional 
Brownian motion of the rope in the tube (the ends of the tube are acting as absorbing 
barriers), and hydrodynamic forces, due to the friction between the rope and the tube 
wall. The latter occurs because of the difference (U - v )  in velocity between the 
inextensible rope (so aulas = 0) and the affinely moving walls of the tube (so a u l a s  = 
e - D e). The resulting stress per segment due to both effects was proved to be 
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3 = eBi- 5‘ with 

@B=- kT 
L (6.13) 

due to Brownian forces and 

5’ = J 1; 1;; e( s‘, t )  D e( s’, t )  ds’ ds” (6.14) 

in which J is a frictional coefficient, due to frictional forces. 
The derivation of a constitutive equation is similar to the one described above in 

connection with the Doi and Edwards equation (6.11), if in addition one assumes that 

(6.15) 

This means that the rope should be mildly curved in some sense. A similar assumption 
of mild curvature is also made in the theory of Curtiss and Bird, to be described in 
the next section. 

(e(s’, t>e(s’, tMs, t>e(s, t ) >  = (e($, t )e(s,  t>e(s, t)e(s,  t)>. 

The constitutive equation of the reptating rope model finally becomes 

Tp = nNkT( p ( t  - t’){i?Z)’ dt’+ 4(  t - t’)D : (ZZZZ)’ dt’ 

in which 
Y f L  

$( t - t ’ )  = - ‘ J s(L-s)X(t-t’,s)ds. 
2kT (6.17) 

By inserting x = - ( a / d t ) @ ,  using the diffusion equation (6.1) and integrating by parts 
one obtains 4(t-  5 ’ )  = 1/L ,,“@(t- t’, s) ds. If we compare this with (6.12) we see 
that the functions 4 and p are related as 

(6.18) 

The assumption that the rope is inextensible may be justified by the fact that in relatively 
slow flows the length of the primitive chain (in the Doi and Edwards sense) is not 
expected to change very much. In flows with fast and sudden changes in the flow field 
such will be not the case. Then, instead of an inextensible rope an elastic rope is 
expected to be more appropriate. A theory of this kind has recently been worked out 
by Geurts and Jongschaap (1988). In that paper the mild curvature assumption (6.15) 
has also been reconsidered. 

In our brief introduction to the tube model we have concentrated on some basic 
principles and left out of consideration a lot of interesting topics which are still the 
subject of current research. Among these we have the phenomena of contour length 
fluctuations and of tube reorganisation. The latter is especially important in branched 
polymers, in linear polymers with polydispersity and in mixtures of different polymers. 
For an introduction to this field we refer to the book by Doi and Edwards (1986). 

6.3. The Curtiss-Bird model 

In the theory of Curtiss and Bird (1981) no tube was used in order to obtain a reptation 
motion. Instead, a molecule was represented by a Kramers chain, consisting of N 
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beads and N - 1 rods, each of length a and with orientation (unit) vectors ei. The 
reptation motion occurs since the friction forces on the beads are given by an anisotropic 
Stokes’ law. In particular, for the difference between the frictional forces on two 
subsequent beads, one assumes 

f i A  -fp = - N Ya& (ei - L ei ). (6.19) H 

Here, y is a model parameter, called the chain constraint exponent and li is a friction 
tensor, given by 

J j = a [ [ l - ( l - ~ ) e i e i ] .  (6.20) 

The parameter E, calied the link tension coefficient, determines the anisotropy of the 
friction. For E = 0 we have (f:, - fH) - ei = 0 which means that the tension in all links 
becomes zero, for E Z 0 the tension can vary from point to point. In (6.20) we have 
added a factor a in order to give [ the meaning of friction per unit length, like we 
did in the preceding section. Next, in order to derive a diffusion equation on the basis 
of their phase-space kinetic theory Curtiss and Bird introduced the so-called ‘reptation 
approximation’. This statement about the anisotropy of the Maxwellian velocity 
distribution reads 

kT 
2m 

( ui - u ) ( U. - u ) = - ( ei - + ei ) ( e, - 1 + ej 1. J (6.21) 

Here u i - v  is the velocity of bead i, with respect to the macroscopic velocity u, and 
the overbar denotes an average with respect to the velocity distribution. The idea is 
that on the average the relation velocity ui - U  of bead i should have approximately 
the same direction as the average of the directions of the two links associated with the 
bead. The next assumption needed in the theory is the ‘mild curvature assumption’. 
This means that orientations of adjacent links are assumed not to vary significantly. 
This assumption is similar to the one stated in equation (6.15) in the reptating rope 
model. 

On the basis of these assumptions Curtiss and Bird were able to derive an evolution 
(diffusion) equation for the single-link distribution function $(e, s, t),  in which s = iL/ N 
is a continuous variable equivalent to the bead number i. After a lengthy calculation 
using the phase-space formalism an equation of the same shape as equation (6.8) of 
the Doi and Edwards theory was obtained. The only difference is that the diffusion 
constant D according to Curtiss and Bird differs by a factor 2/ N Y  from the one of 
Doi and Edwards. This difference is not very serious inasmuch as it enters in particular 
in the time constant Td (6.4) which is to be determined empirically. 

The solution of the diffusion equation is stated again in the form (6.3) and this is 
used to perform the averaging in the calculation of the stress tensor. To this end 
Curtiss and Bird use an expression similar to our expression (3.12). On using again 
the generalised Stokes’ law (6.19) for the frictional force, the mild curvature approxima- 
tion and the diffusion equation they obtain 

L 
Tp = n N 1 + y [ ~ o  s (L - s) (: (ee) - 2( 1 - E ) D  : (eeee) (6.22) 

in which 6 / S t  is the upper convected derivative (A2.12). This expression is of the 
same type as the Giesekus expression (3.15) discussed earlier. From the diffusion 
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equation (6.8) it can be proved that 

6 2 0  
- (ee} = - (ee)  - 2 0  : (eeee}. 
at NY (6.23) 

The diffusion coefficient 0 is given by (6.2). If the expression (6.23) is introduced in 
(6.22) and the averages are transformed into averages with respect to $(e’ )  by using 
the integral expression (6.7) of I)( e, f, s )  one finally obtains 

(6.24) pu(t - t’)(ee)’ dt’+ 2s T~ = nNkT ( J:m 
in which p and C#I are the same functions as used in equation (6.16). In fact, we see 
that the results (6.24) and (6.16) are identical, up to a factor 2~ in the last term (for 
E = 0.5 both results coincide). 

In our brief review we have had no opportunity to discuss the details of the 
Curtiss-Bird theory. To this end we refer to the original papers and the textbook by 
Bird et a1 (1987b). One of the main features of this approach, however, still should 
be mentioned. That is that it proves that the results of a tube model may also be 
derived in a phase-space kinetic theory based upon a kind of bead-rod-spring model 
and closely patterned after the dilute solution theories. In this way the possibility to 
circumvent the more or less artificial tube concept has been proved. On the other 
hand, it should be noted that the mathematical formulation of the tube models is far 
simpler than that of the Curtiss-Bird theory. 

) qb( t - t’) D : (eeee)’ dt’ J l  

7. Generalised continuum theories 

7.1. Introduction 

In § 2 we have seen that in the continuum approach it is possible to obtain results on 
the basis of a few general principles. In this way, however, no use is made of information 
about the microstructure of the materials. In order to retain the advantages of the 
continuum theory but still be able to include certain aspects of the microstructure 
various generalised continuum theories have been proposed. Well known examples 
are the theory of Ericksen (1960) in which with each material point in the continuum 
is associated a single preferred direction, the theory of Hand (1962) in which with 
each material point of the continuum is associated a second-order tensor, the theory 
of ‘microfluids’ by Eringen (1964) and theories based upon the Cosserat continuum 
(Cosserat and Cosserat 1907) in which each material point of the continuum has the 
geometric properties of a rigid body. We will not attempt to give a survey of these 
approaches here, but instead concentrate upon a recent theory by Grmela (1986a) 
which was shown to be especially relevant to polymeric systems (Grmela 1986ay by 
Ait-Kadi 1988, Ajji et a1 1989) and general enough to include some important earlier 
theories. We will follow here a treatment, presented recently (Jongschaap 1989), in 
which a new derivation and an extension of this theory was given. 

7.2. Conjguration tensor models 

During the flow of a material a part of the energy supply is stored and a part of it is 
dissipated. Under isothermal conditions the storage is described by the free-energy 
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functional A{@}  in which @ is a state variable, characterising the internal 
(macromolecular) structure of the fluid. In general @ may be a function, e.g. a 
configurational distribution function. In this review we will restrict ourselves to the 
case that @ is a symmetric second-order tensor S, the so-called configuration tensor. 
So we have A = A(S). 

The rate of energy dissipation U is the difference between the power input and the 
storage, so 

aA 
= T :  L -  A = T :  L- - :  S. as 

We now consider the transformation L+ -L, i.e. a 'macroscopic time reversal'. Denot- 
ing variables which are even or odd under this transformation with an upper index 
' + ' or ' - ' respectively, we have: U = U+ since by the second law of thermodynamics 
the dissipation should be positive, irrespective of the sign of L; aA/aS= (aA/aS)+ 
since A and S are state variables and L =  L-,  by definition. 

By taking the even part of (7.1) we obtain for the dissipation 

(7.2) 

From the parity of the variables and the inequality u>O it follows that the only 
admissible couplings among the variables in this expression are 

T-  =f( L)  S + = g  ($). (7.3) 

So, each term in (7.2) is purely dissipative. Therefore we define dissipative and 
reversible parts of T and S as 

T ~ =  T -  &D=$+ 

T ~ =  T+ S" = s-. (7.4) 

We now take the odd part of equation (7.1): 

(7.5) 

From the parity of the variables it now follows that the only admissible couplings are 

T " = k ( $ )  S" = m(L) .  

By differentiation of (7.5) with respect to L and using (7.6) we obtain 

(7.6) 

This is a special case of the general expression for the stress tensor (3.38), first derived 
by Grmela (1985). The derivation presented here is based upon a method by Martin 
et al  (1972). 

By introducing the generalised thermodynamic force M E dA/dS and the fourth- 
order tensor A = asR/aL we rewrite (7.7) as 

T" = M : A = : M (7.8) 
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in which the transposed fourth-order tensor A is defined by A;km = AkmO. In the second 
equation (7.6) we will consider the case that the function m is linear in L, so 

S R = n : ~ .  (7.9) 
If, also, the equations (7.3) are rewritten as 

T D = q : L  S D = - p : M  (7.10) 

in which q and #3 are fourth-order tensors, the results (7.8), (7.9) and (7.10) can be 
summarised in matrix form: 

(7.11) 

Similar expressions have been obtained in a different way by Martin et a1 (1972), 
Leonov (1976), Lhuillier and Ouibrahim (1980), Stickforth (1981, 1986) and others. 
The skew symmetry of the matrix in (7.11) is in accordance with Onsager-Casimir 
reciprocal relations (Onsager 1931, 1932, Casimir 1945) for the rate equations based 
upon the expression (7.1) of the dissipation. The formulation of specific forms of the 
present theory consists of a specification of tensors q, A and p and the function 
M = M ( S ) .  

7.3. Applications 

As a first example we discuss a model by Giesekus (1966, 1982). In this model there 
is reversible stress of the neo-Hookean type 

T R = p ( S - l )  (7.12) 

and rate equation for S 

(7.13) 

in which B = ~ - ‘ ( l +  aTR)  is a generalised mobility tensor. 
From (7.12) and (7.13) a constitutive equation of the type (2.59) is obtained. On 

the other hand it can be shown that the Giesekus model is consistent with the matrix 
formulation (7.11) if we define 

(7.14) 

p = B * A .  

As a second example we consider the Leonov model (Leonov 1976). To this end, on 
using (7.10) the expression (7.11) is rewritten in the form 

(7.15) 

The tensors LD and Y are given by LD = -A-’ : SD and v =A-’ : #3 : A-T. The result 
(7.15) is similar to an expression proposed by Leonov. There is, however, an important 
difference, namely that the off-diagonal elements in (7.15) are zero, whereas in the 
Leonov model they may be non-zero. This difference is a consequence of the different 
ways of defining the reversible and dissipative parts of T and L. In our approach this 
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was based upon a distinction between odd and even variables with respect to ‘macro- 
scopic time reversal’ while in the theory of Leonov it is based upon the concept of an 
elastic (recoverable) strain. A similar situation arises in theories based upon Eckart’s 
concept of a ‘variable relaxed state’ (Eckart 1948, Stickforth 1986). 

The applicability of the matrix formulation (7.11) is not restricted to generalised 
continuum models but may be applied to microscopic models as well. To this end the 
relevant thermodynamic variables have to be determined. In a configuration space 
description, for instance, we would start with the free energy as a functional of the 
distribution function: A = A{ $} and at the level of a description with a structure tensor, 
like S = (qq),  with the free energy as a function of S :  A = A ( S ) ,  as has already been 
done above. Often, however, it turns out to be useful to express the free energy as a 
function of the configuration itself. We will illustrate this for some micro-rheological 
models. 

First, consider the elastic dumbbell model (0 4.2). In that case, the thermodynamic 
force becomes 

a *  
a4 $0 

m = -fB+ f’= kT-ln-. (7.16) 

The associated free energy a = kT In $/$o may be considered as the local value in 
configuration space of the free-energy functional 

* A{$}= kT JI In-d3q I *o 
(7.17) 

which (within an additive constant) is the so called ‘dynamical free energy’, introduced 
by Doi (1983). By (3.19) the particle contribution to the stress tensor may be written 
as Tp = n ( ~ )  in which 

T = mq. (7.18) 

In order to obtain a matrix form of the type (7.11), we note that since r :  L =  mq:  L =  
m L q = m ( n2 - U,) is the total energy supplied to the dumbbell and ci = (aa/aq) q = 
m. q is the storage of energy, the dissipation becomes 

u = 7 : L -  m * 4. (7.19) 

Analogous to the derivation of (7.11) from (7.1) a similar expression may be obtained 
from (7.19). In the case of the dumbbell model we may derive a more specific result, 
using the expression (7.18) for 7 and the equation of motion (4.2) 

2 
5 

q = L - q -- m. 

So, the matrix equation, corresponding to the dissipation form (7.19) becomes 

(7.20) 

(7.21) 

Here, the transpose of a third-order tensor is defined as a:k = aikj. 
In the case of a rigid dumbbell, by equation (3.24) we have: T =  n(rR)+ n ( r D )  with 

rR = -P  f ‘q  and rD = (1 - P )  * f Hq. If again we define m = -f ’ S  f I ,  we obtain T~ = 
-P. mq, since in this case P .  f’ = 0. On the other hand, by substitution of the expression 
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for f 
expressions, collected in a matrix form similar to (7.1 l ) ,  become 

analogous to (3.14) we obtain: rD = fJq2eeee : D = iJq2( 1 - P)ee : L. These 

(7.22) 

As we see, the expressions (7.21) and (7.22) are very similar. The main difference is 
the diagonal element corresponding to T~ and the occurrence of the projection operator 
P in (7.22). 

As the next example of application we consider the reptation models, discussed in 
5 6. In the case of the Doi and Edwards model we have to deal with two motions: 
the change of orientation of the e vectors and a one-dimensional diffusion along the 
rope. The first process is determined by the equation of motion (6.6) which may be 
written as 

e = (1 - ee)e : L (7.23) 

and the second process by the diffusion law 

We now introduce two thermodynamic forces. First, the force 

a h $  
ae 

m = kT- 

associated with the motion of the e vectors and 

a In II/ 
as 

p = kT- 

(7.24) 

(7.25) 

(7.26) 

associated with the motion along the tube. We will show now that the stress tensor is 
given by T =  ( n l V / L f i ( T )  ds in which (similar to (7.23)) 

(7.27) 

This will be done by showing that (7.27) is in accordance with the Doi and Edwards 
result (6.1 1). To this end, first note that since e a/ae = 0 it follows from (7.25) that 
(7.27) reduces to T = me. Furthermore, in this expression, by (7.25) and (6.7) we have 

T = [( 1 - ee)e]’ m. 

a 
m =“I‘ 1 x( t - t’, s) 6 ( e  - Z)$(er )  d2e’ dt’. 

4~ -m 

So, the stress tensor becomes 

de 
(7.28) 

X ( t - t ’ , s )  - 6 ( e - P )  e&e’)d2e’d2edsdt’. 51 (a: 1 
(7.29) 

by parts with respect to e (note that 
r 

By performing an integration I (d 4 ) e  d2e = J (3ee - l )+  d2e) 
ae 

and an integration with respect to e’ and s we obtain 

T = - n k T  1 + 3  nNkT p( t - t ’ ) (Z i?) ’d t ’ .  (7.30) 
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This result differs only by an isotropic term from the Doi and Edward result (6.11). 
This proves the expression (7.27) for 7. 

So we see that also for the Doi and Edwards theory it is possible to give a matrix 
formulation similar to our general equation (7.11). In this case we have (:I = ( (1  -;)e: 0 .  O )(:;). (7.31) 

In the case of the reptating rope model an additional viscous stress comes into play. 
From (6.16) and (6.17) we see that this corresponds to a contribution T ~ =  
f{s(L-s)eeee: L to 7. As a result, the matrix representation (7.31) is changed into 

0: -[(l-ee)eIT. O 

0 .  D/kT 

&(L-s)eeee: -[(l-ee)e]' o 
(1 - ee)e: 0 .  (7.32) 

0: 0 .  

An important feature of the present formulation is the skew symmetry of the matrix. 
This implies a connection between the stress tensor expression and the equations of 
motion. An interesting example is the case of non-affine motion in a rubber-like 
network. In a permanent network the stress becomes T =  n ( ~ )  with 

T = m q  (7.33) 

in which the thermodynamic force na =da/dq is the spring force and q the vector of 
a segment in a network. In the case of affine motion we have 

q = L * q .  (7.34) 

Formulated in matrix form the expressions (7.23) and (7.34) become 

(;) = (:: -F*) (m") (7.35) 

with 

A = 14. (7.36) 

If we now assume slip in the motion of the segments, for instance slip in entanglements, 
instead of (7.33) we may have a non-affine convection of the type proposed in the 
Phan-Thien and Tanner (1977) model (equations (5.25) and (5.26)). In that case we 
have q = A : L with 

The corresponding matrix expression becomes 

--AT. (a)=(!: 0. )(-:)a 

(7.37) 

(7.38) 

From (7.35) and (7.38) we see that in the case of non-affine motion not only the 
equation of motion, but also the stress tensor expression should be modified. This 
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point has been discussed in another context by Larson (1981) and also by Maugin 
and Drouot (1983) and by Grmela (1985). In the present case we have 

T = ( ~ ) = ( A ~ *  m> 

= (1 -:) (mq)+ (isotropic term). (7.39) 

So far we have mainly reformulated a number of macroscopic theories in the framework 
of a particular type of generalised continuum theory. It should be stressed, however, 
that just the capability of such a coupling between the continuum approach and the 
micro-rheological models makes the present formalism useful. On one hand-as has 
been done in the examples-one may use information from microscopical theories in 
order to obtain explicit expressions for the matrix elements in (7.11) and for the 
free-energy function. On the other hand one may modify the microscopical theories, 
simply by making changes in the matrix elements or in the free-energy function. This 
is essentially what we did in the example on non-affine motion. In the latter case an 
essential condition upon the possible changes is the required skew symmetry of the 
matrix in (7.11). 

8. Discussion 

After an introduction to continuum mechanics and basic elements of micro-rheological 
modelling we have discussed four important classes of models: bead-rod-spring, 
transient network, reptation and configuration tensor models. Although it is evident 
that there are big differences between these models it is important to recognise the 
common structure in all of them. In each type of model a particular structure is defined 
with an equation, describing the evolution of it in time, and also an expression relating 
the stresses and forces in that structure to the macroscopic stress tensor. The evolution 
equation may consist of a convective, a diffusive and a kinetic part (in configuration 
tensor models we distinguished a reversible and a dissipative part) and the stress tensor 
of a reversible and a dissipative part. It is interesting to reconsider the various models 
from this point of view. 

In the bead-rod-spring models we have seen that the occurrence of dissipative 
stresses is directly related to the presence of constraints, i.e. rigid rods. Furthermore, 
the evolution equations do not contain kinetic terms. At this point the theory may be 
extended by including association and dissociation of bead-rod-spring structures or, 
more generally, time-dependent structures. In the latter case the Rouse matrix (4.18) 
or its equivalent will become time dependent. 

In the transient network theories the evolution equation has a convective and a 
kinetic part. A diffusive contribution may, however, be included if the ‘loss’ of segments 
is considered as a transition from a ‘fixed’ (network) to a ‘free’ state in which they act 
like elastic dumbbells. A theory of this kind has been worked out by Jongschaap et 
a1 (1983) and was generalised recently in the context of a configurational tensor model 
by Ajji et a1 (1989). 

In our treatment of reptation theories we have seen that the stress tensor is purely 
reversible in the Doi and Edwards theory. We have also seen how frictional forces 
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were included in the reptating rope model and that in that case-as in the Curtiss-Bird 
model-the stress tensor contains a reversible and a dissipative part. This also became 
clear in the matrix representations (7.31) and (7.32) in our treatment of reptation in 
the configuration tensor models. The evolution equation of the tube models contains 
a convective part, associated with the orientation of tube elements and a diffusive part 
associated with the motion of the chain along the tube. It is interesting therefore to 
consider the possibility of kinetic contributions. 

First we note that the process of creation and loss of tube elements is similar to 
the creation and loss of segments in transient-network models. It is indeed possible 
(Jongschaap and Kamphuis 1986) to formulate the Doi and Edwards theory analogous 
to the transient-network models. The main difference is that in that case the kinetics 
is no longer determined by simple rate equations of the type (5.11) but by a diffusion 
process. 

It is also possible to extend the reptation model by introducing additional kinetic 
processes. This could be done, for instance, by introducing the possibility of adherence 
and loss of parts of the chain to the tube wall. In this way, a kind of combined 
reptation and transient-network theory will result. 

The convective and diffusive motion in the Curtiss-Bird theory is more complicated 
than in the tube models since it is based upon the motion of a Kramers chain in a 
viscous medium. It might be of interest to consider similar models with other types 
of chain. A possibility close to the reptating rope model, discussed in 0 6, would be 
a worm-like chain with a prescribed flexibility and an anisotropic friction in a viscous 
medium. 

In the configuration tensor approach a clear distinction was made between reversible 
and dissipative parts of stress and of the evolution equations. This was illustrated in 
applications to some existing models. In these applications only convective and 
diffusive but no kinetic processes were discussed. It may be shown, however, that the 
theory is also applicable to transient-network theories. In that case, the structure tensor 
S as well as the number density of segments n should be included as a state variable. 

being capable of including many of the existing microscopical models, the configu- 
ration tensor approach, presented here, may be an attractive tool in formulating 
modifications of these models. The approach is also very flexible. In this paper only 
scalars and second-order tensors have been employed as state variables. In some cases 
it might be necessary to use higher-dimensional or higher-order tensors to represent 
the microstructure, for instance if one wants to describe the state of a Rouse chain, 
or the state of a liquid crystal. As already mentioned in § 7 it is also possible to use 
configurational distribution functions as state variables. In this way a given system 
may be treated at different levels of description in a unified formalism (see also Grmela 
1986a) and also the microscopic theories, based upon a configuration-space description 
may be reformulated in a compact and transparent way. As we have seen already, 
this offers the possibility of modifying the theories without entering into the details of 
the underlying microscopical considerations, such as the averaging procedures (see 
P 3)  or the derivation of the evolution equation. 

We close this section with a few remarks about the levels of description in the 
various models. As we have seen, each model may be considered as a simplified 
representation of a real material. Depending upon the detail of such a representation 
we speak of a certain level of description. Let us say that at a low level the model 
structure is very close to reality and that at a high level of description the model 
structure is a very simplified representation. 
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The lowest level of description that has been considered in the present paper was 
a level at which the structures were described by distributions in configuration space. 
This means that we did not consider the behaviour of individual particles, but rather 
the evolution of distribution functions and related quantities. One level of description 
lower would be a description in phase space. This description has been explored 
extensively by Bird and co-workers (see Bird et a1 1987b). An advantage is that less 
a priori assumptions have to be made in deriving the basic stress tensor and evolution 
expressions. On the other hand the formalism becomes more complicated. 

The next level of description is one in which not the probability densities but the 
individual particles are considered. This level has received little attention in the past, 
since an overwhelming number of coordinates is needed to describe a system in this 
way. Even a mean-field approach, in which the stochastic motion of only one particle 
is considered seems to be tractable only in the simplest cases. Recently, however, this 
situation has been changed, since powerful computers are available, by which simula- 
tions of various systems at this level of description become possible. An advantage 
of this method is that model structures which are too complex for an anaytical treatment 
may often still be used in numerical simulations. 

It is good to realise that the simple fluid theory discussed in 0 2.2 may also be 
considered as a model with a high level of description. At this level no information 
about the microstructure is retained, but, as we have seen, by introducing some plausible 
axioms it is possible to obtain a useful classification of constitutive equations and 
special types of flow. The configuration tensor approach discussed in 5 7 uses a level 
of description inbetween the simple fluid theory and the microscopical models. 

Which level of description is useful for a given material in a particular situation 
depends upon its purpose. In the context of flow problems a high level of description 
is often the most appropriate while a study of the influence of structural changes in 
materials on their flow behaviour requires a lower level of description. In any case 
one should try to achieve an optimum between mathematical simplicity, physical reality 
and usefulness. 

Appendix 1. Frames of reference 

The points, vectors and tensors, used in rheological models may be considered as the 
images of the corresponding physical quantities under a mapping from the real physical 
space to a three-dimensional Euclidean space. We may imagine this mapping to be 
the registration of a process by an observer. If one process is registered by different 
observers with different positions and orientations and with a relative motion with 
respect to each other their images of the same process will be different. The transforma- 
tion between such images is called a change of frame (No11 1958, Truesdell and No11 
1965). A moving point, described by x ( t )  in one frame becomes in a second frame 

x*( t )  = C( t )  + Q( t )  * (X - xg). (A1.l) 

Here c( t )  is a moving point, Q( t )  an orthogonal tensor and xo a fixed point. 
From ( A l . l )  it can be seen that the vector U = y  --x between two points transforms 

like U* = Q * U. Such types of vector are called objective. An objective tensor is one 
which transforms like S* = Q - S * QT. We see that if U = S * v and U, S and U are 
objective, then U* = S* * U*. 
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In continuum mechanics one uses objective as well as non-objective tensors. From 
(A l . l )  and the definition (2.2), for instance, it follows that the deformation gradient 
F, ( T )  transforms like 

(A1.2) 

under a change of frame. So this tensor is not objective. On the other hand from the 
basic expression t = To n and the objectivity of the vectors t and n it follows that the 
stress tensor T is objective: T* = Q .  T .  QT. 

For reference purposes we now list the transformation rules of some other important 
tensors of continuum mechanics. The relative Cauchy tensor (2.4): 

FAT)*= Q ( 7 )  * F,(T)  * QT(f )  

cT(r)=Q(t) * G ( 7 )  QT(f). 

L * = Q . L . Q ~ + Q . Q ~ .  
The velocity gradient tensor (2.8): 

The rate of strain tensor (2.9): 

(A1.3) 

(A1.4) 

D * = Q . D . Q ' .  (A1.5) 

The vorticity tensor (2.10): 
w*=Q.  w. Q'+Q. Q ~ ,  (A1.6) 

The Rivlin-Ericksen tensors (2.11) 

A:= Q .  A , .  Q ~ .  (A1.7) 

An important application of the concept of a change of frame is the principle of 
material frame indifference, discussed in 4 2.2. We will illustrate this now for the 
derivation of equation (2.17). 

By the principle of material frame indifference, the constitutive equation (2.15) 
should obey the equation 

Q ( t >  * T(f)  * QT(f)  = k' (Q(7)  F,(T) 9 Q'(t)) (A1.8) 

for arbitrary orthogonal tensor histories Q ( r )  (--CO< T <  t ) .  On using the polar 
decomposition theorem (2.3), F,(T)  is written as F,(T)  = R, (T)  U,(T). Since Q ( T )  is 
arbitrary we may take Q ( T ) = R : ( T ) .  'lien, Q ( t ) = I  and Q ( T ) - F , ( T ) =  U!(T), so 

%-=-CO 

T ( t ) =  F' { U [ ( T ) } .  (A1.9) 

Since U:(T)  = C,(T) this expression is equivalent to (2.17). We have now proved that 
this result is a necessary condition for frame indifference. That it is also sufficient may 
be proved by inspection. 

i = - m  

Appendix 2. Convected derivatives 

In the formulation of constitutive equations instead of the usual local (d/dt)M(x, t )  
or the material M = (d/dt)M(x( t ) ,  t )  time derivative one often makes use of so-called 
convected derivatives. These derivatives were first used in the formulation of constitu- 
tive equations in a classical paper by Oldroyd (1950). In this paper the presentation 
is based upon convected coordinates. Here we will give a coordinate-free treatment 
(see also Bolder 1969). 
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Let M (  7 )  be the value of a tensor field, associated with a certain particle at time 
T, and consider a linear transformation (fourth-order tensor) r( t, T )  by which M (  T )  

is transformed into fi( t, T )  = r( t, T )  : M (  7). This transformationnalled an entrain- 
ment law-is taken to be associative in the sense that 

r(t, 7 )  = r(t, s) : r(s, 7). W . 1 )  

It describes a way of 'dragging along' the tensor field M in a specified manner, related 
to the flow of the material. 

The convective derivative (S/ST)M, associated with the entrainment law r is defined 
then by the commutative diagram 

r 
M ( T ) -  M(T, t )  

So we have r: (S/St)M = (d/dr)(I':M). The quantity (~ /ST)M(T) ,  defined in this 
manner, can be proved to be independent of t and we also see that it vanishes if a(t, T )  becomes independent of T. In that case the change in M with 7 is entirely 
compensated by the entrainment law r. In general, one could say that (8/87)M(7) 
measures the change of M with respect to a given entrainment law. 

From diagram (A2.2), on performing the differentiation of a(t, T ) ,  the following 
expression for the convected derivative is obtained 

s - M = M + A  : M. 
ST 

In this expression A is a fourth-order tensor, given by 

(A2.4) 
d 

dT 
A = ~ ( 7 )  = r(t, T I - *  :- r(t, 7).  

This tensor may be proved to be independent of the time t. 

Then we have 
We now consider the case that A is a function of the velocity gradient tensor L. 

(A2.5) 
s 

-M=&f+f(D, W, M ) .  
6T 

In continuum mechanics it is useful to consider convected derivatives that are objective 
if M is an objective tensor (see Appendix 1). In that case from (A2.5) the following 
restriction upon the function f is obtained: 

f(D, W, M ) =  Q' * Q. M + M *  Q' - Q+ 
f ( Q * D * Q ' , Q -  W * Q ' + Q * Q ' , Q * M * Q ' ) .  (A2.6) 

By taking Q = l  and o = - W  we obtainf(D, W , M ) = - W . M + M *  W + g ( D , M )  
with g(D,  M )  = f(0, 0, M ) .  So the convected derivative becomes 

s 
- M = & f -  W *  M + M *  W + g ( D ,  M ) .  
ST 

(A2.7) 
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Furthermore, from the requirement of objectivity we see that the function g is 
isotropic, i.e. 

(A2.8) 

for arbitrary orthogonal tensors Q. If g is also assumed to be linear it may be 
represented as 

g ( Q .  D -  QTy Q *  i%f* Q’) = Q -  g(D,  M )  * Q’ 

g (Dy  M )  = a ( D  . M + Ma D )  + b ( D  : M)1+ cD tr M (A2.9) 
in which a, b and c are constants. 

By combining (A2.7) with the representation (A2.9) of the function g we obtain a 
general expression for convected derivatives. By choosing particular values for the 
constants a, b and c special convected derivatives are obtained: for a = b = c = 0, the 
so-called ‘co-rotational’ or ‘Jaumann’ derivative 

3 
M = M -  W -  M + M .  w (A2.10) 

for a = 1 and b = c = 0, the ‘lower convected’ derivative 

h= a+ L T .  M + M - e (A2.11) 

and for a = -1 and b = c = 0, the ‘upper convected’ derivative 

v 
M =  M -  L .  M - M .  (A2.12) 

These are the most well known cases. The corresponding entrainment law is 

a(ry 7) = I?:(.) M ( T )  * I?,(T) (A2.13) 

for the co-rotational derivative. Here Er(7) is the ‘mean rotation tensor’, defined as 
the solution of the differential equation (d/d7)@,(7) = W ( T )  I?,(T) with the initial 
condition E,( 7) = 1. For the lower convected derivative the corresponding entrainment 
law is 

(A2.14) M (  t, 7) = F,( 7)’ * M (  7) F,( T )  

and for the upper convected derivative 

M (  t, 7) = F,( 7)-’ * M (  7) - F,( 7)-‘. (A2.15) 

A more elaborate derivative, based upon (A2.7) and (A2.9) is the Gordon 
and Schowalter derivative 

0 
M =  & - 2. M - M .  Z T  (A2.16) 

with i, an ‘effective velocity gradient’ defined as L“ = L - 5 0  (Gordon and Schowalter 
1972). This corresponds to the case that in (A2.9) a = 5 - 1 and b = c = 0. The corre- 
sponding entrainment law is 

(A2.17) 

in which kr(7) is the solution of the equation (d/dT)i,(T) = i ( r )  i r ( 7 ) .  The general 
case with non-vanishing a, b and c was used by Oldroyd (1958). We will denote this 
derivative by 

(5) = A& - W .  M + M * W + a ( D  M + M - D )  + b( D : M )  1 + cD tr M. (A2.18) 

M (  t, 7) = Fr( 7 ) - l  * M (  T )  ’ &( T)-T 

abc 
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It is important to note that in continuum mechanics there is no special reason for 
using any particular type of convected derivative. From empirical or microscopical 
considerations, however, a preference for some types of convected derivatives in 
particular constitutive equations may be justified. 
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