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Industrial summary 

A so called 'three-section' model for air bending is presented. It is assumed that a state of plane strain exists and that Bernoulli's 
law is valid. The material behaviour is described with Swift's equation, and the change of Young's modulus under deformation 
is addressed. As compared with other models, the model described in the paper is capable of generating information such as 
required punch displacement and the unfolded blank size, very accurately. With in-process measurement of the spring-back angle, 
the punch displacement can be calculated even more accurately. 

1. Introduction 

In the small-batch-part manufacturing of  sheet metal 
components, manufacturing departments are facing de- 
creasing batch sizes, an increasing variety of  parts and 
increasing accuracy demands. This holds especially for 
sub-contractors, since these companies have to produce 
parts for different customers which are used for totally 
different applications. As a consequence, standardiza- 
tion of  bend radii, sheet material and thicknesses can not 
be obtained. As a result of the variety of  parts, tool 
change times can become a problem, as indicated by 
Kroeze [l]. 

The air bending process offers the advantage that 
many less tool changes are required as compared with 
bottoming. However, the calculation of  the unfolded 
blank size and of  the required punch displacement 
presents some problems. The lack of  adequate process 
models hampers the industrial use of air bending in 
many cases, and in other cases companies have even 
abandoned the use of air bending for this reason. 

The increasing accuracy-demands present an addi- 
tional problem. As a result of  these demands, in bending, 
the bend angle obtained must lie within a very narrow 
range. Due to variations in the sheet thickness and the 
mechanical properties of  the sheet material, this can be 
a problem. Especially, the influence of  the aforemen- 
tioned variations on the spring-back angle presents a 
problem. In bottoming, the required bend angle is often 
obtained with a time consuming trial-and-error method. 
During this trial-and-error cycle, tool changes may be 
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required, since the bend angle under loading conditions 
is determined completely by the geometry of the tools, 
and the spring-back angle is predominantly determined 
by the mechanical behaviour and the thickness of  the 
sheet: the process force has only a minor influence on the 
spring-back angle. As a result, for a given material and 
sheet thickness, only a very limited range of bend angles 
can be obtained with the use of one tool set. The air 
bending process offers the advantage that a large range 
of bend angles can be obtained with one set of tools. 
Provided that the sheet geometry under loading can be 
predicted adequately, in-process control of the spring- 
back angle can result in better accuracy. 

2. Process models for air bending 

A simple model for air bending is the rigid-plastic 
model. In this model, the sheet geometry is described by 
a circular section and two straight sections, and there is 
no spring-back. This type of model is often used as a 
reference to describe the effect of spring-back and other 
phenomena on the sheet geometry. The sheet geometry 
for a rigid-plastic model is shown in Fig. 1. 
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Fig. 1. Rigid plastic model. 
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Fig. 2. Sheet geometry according to a 'three section' model. 

When the rigid-plastic model is extended with the 
spring-back effect, a so called 'circular-straight' model 
is obtained. According to such a model, the sheet 
geometry after unloading consists of  two straight sec- 
tions and a circular section. Under loading conditions, 
these sections are also deformed elastically, which re- 
sults in a larger required punch displacement when 
compared to a rigid-plastic model. 

Basically different models are referred to here as 
'three section' models. In these models, three types of  
deformed sections can be determined in a bent sheet 
under loading conditions: (i) a wrap-around zone under 
the punch, which has an inner radius equal to the 
punch radius; (ii) two elasto-plastically deformed zones 
in which the local bend radius varies; and (iii) two 
elastically-deformed only sections. For  monolithic 
sheet, the sheet material on the outside of the die 
shoulders remains straight. The corresponding sheet 
geometry is shown in Fig. 2. Other models in which the 
influence of  the section with varying radius is addressed 
are described by Stelson [2] and by Wang [3]. 

3. Material behaviour 

The description of the material behaviour is very 
important in a three-section model (Streppel [4]). In this 
paper, it is assumed that a state of  plane strain exists 
and that Bernoulli's law is valid (see also Fig. 3): 
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Fig. 3. Strain according to Bernoulli's law, stress according to 
Hooke's Law and Swift's equation. 
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Elastic behaviour according to Hooke's law can be 
written as follows for a state of plane strain: 

E 
o-~=E'e,, with E ' -  l - v  2 (2) 

As the stress-strain relationship for plastic deforma- 
tion, Swift's equation (sometimes referred to as ex- 
tended Ludwik-Nadai)  is adopted here: 

a ,  = C'(c, + ~)" with C' : C (3) 

With these adoptions, the relationship between the local 
bending moment and the local curvature can be deter- 
mined, as described in Section 3.1. 

An important complication is that Young's modulus 
decreases under deformation, as found, for instance, by 
Lems [5]. This results in a larger spring-back angle. 
This effect is addressed in Section 3.2. 

3. I. The relation between the local bending moment  and 

the local bend radius 

The bending moment can be split into an elastic 
contribution and an elastoplastic contribution and is 
calculated from: 

i 
Vep 

M = Me I + Mpl, M~I = 2 • E'~:,y dy, 

M N = 2 "  C'(c., + ~))" y dy (4) 
P 

According to Bernoulli, e~ equals y / R  m and Eq. (4) can 
be written as: 

2 E' ,~ 2 E,R~ 
Me, = ~ ~,, -" ~p = 5 - -'7,,e~p, 

Mpl = 2 • + c~ y dy (5) 
' ep 

The elasto-plastic contribution can be calculated after 
the following substitution: 

and thu  ,0, 

For the elasto-plastic contribution to the bending mo- 
menL Eqs 5 and 6 yield: 

f Vm,~ C'V"( Mpl = 2 " V- -  ~'~jR2~ d V  
*)Vmm 

f/ 'm,~ V") = 2 " C ' R ~ , ,  ( V " + ' - - ~  d V  
' n l in  

(7) 
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Fig. 4. A simple model for the change of Young's modulus. 

where 

Vmin Yep + eo and Vm~x S = - -  - + E0 (8) 
R,n 2Rm 

With Vmin and Vmax as defined above, Eq. (7) yields: 

m p l -  2 '  C'R~m[n@2 ( v ' + 2 - ,  - -max --m,nVn ~- 2]: 

n + l  1 ~0 t V n + 1 - -  Vmin ) (9) 
n + 1 "--max 

The last equation makes it possible to determine the 
local curvatures of  the sheet under loading conditions. 
This forms the basis of the three section model dis- 
cussed in this paper, and reported previously by De Vin 
[6,7]. 

[ E ' I ] 2 = 2  E' o 1 -  i / -  " cly (12) 
ep 

~ .';/2 
[E'l]3 = 2 " 0.84 • E'oy 2 dy (13) 

where y* is defined by Eq. (14): 

y* = min(s/2, (0.07 + eep)" Rm) (14) 

and: 

E ' I =  [E'I], + [E'I]2 + [E'/]3 (15) 

Note that [E'/]3 = 0 when y* = s/2. With: 

Yep = gep " Rm (16) 

and y* as defined in Eq. (14), the results of  the integra- 
tions can be expressed in Rm, E'o, s and eep. For a given 
sheet, E; ,  s and eep have a fixed value and R m is the 
only variable. Solving the integrals 11, 12 and 13 yields: 

2 
[E'/], = 5 (eep" Rm)3 E0 (17) 

[E'I]2 = + ~ Cep . (~,)3 _ (e~p. R m)3) 

0.32 ] 
- -  0 . 2 8 R , ~  ' ( ~ , ) 4  _ ( g e p '  Rm) 4) " E~) (18) 

= 1"68(83-- (y*) 3) (19) 
[E'I]s 3 \ 8 " E° 

With these equations, the spring-back and the local 
sheet curvature after unloading can be calculated. 

4. Experimental  results versus calculated results 

3.2. The influence o f  the changing Young's modulus on 
the spring-back 

Due to the change of  Young's modulus of elasticity 
(E') under deformation, the spring-back is larger than 
the spring-back calculated with a constant value of E'. 
A simple model for the change of  E'  is shown in Fig. 4, 
this model being based on data collected by Brinkman 
[8]. 

When plastic deformation occurs (e,.>ecp), the 
change in E' can be accounted for by redefining E'I  
according to Eq. (10): 

I 
s~2 

E ' I =  E'(ex)y 2 dy (10) 
d - s/2 

To calculate E'I, this integration must be split into 
three parts: 

fl '~  y~ 2 3 
[E'/]l = 2 '  E'o dy = ~ y~p E'o (1 1) 

Experiments have been carried out with cold rolled 
steel, with a sheet thickness of 1, 2 and 3 mm and a 
sheet width of 40 mm. The punch used is a Modufix ~ 
BX-4 punch with a radius of 3 ram. A conventional die 
and three Modufix ® dies have been used, as listed in 
Table 1. 

With the length correction as defined in Fig. 5, the 
results are listed in Fig. 6. The calculated values are 
much more accurate than the commonly used standard 
values. The calculated (absolute) length corrections are 
too low, except for a thickness of 3 mm. A possible 

Table 1 
The geometry of the dies 

Die id H (mm) Rd (mm) 

OZ-009 19.3 2.0 
OX-4 18.30 1.5 
OX-5 23.06 2.0 
OX-6 27.84 2.5 
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Fig. 5. Measured and calculated length correction (absolute values). 

explanation is that the plane strain assumption may not 
be valid for this sheet thickness and bend radius in 
combination with the sheet width. 

The calculated punch displacements are too low 
when compared with the experimental results. How- 
ever, the calculated sensitivities of the bend angle to the 
punch displacement show extremely good correlation 
with the measured values (within 0.4%). The calculated 
spring-back angles are significantly smaller than the 
measured spring-back angles for the complete set of 
experiments. This is remarkable, since the calculated 
spring-back angles are larger than those obtained from 
circular straight models, and the calculated bending 
moments show a very good correlation with the experi- 
mental values. A possible explanation is that Young's 
modulus may decrease by more than 16% or that the 
minimum value of the Young's modulus is reached at a 
lower value of strain. 

When the measured spring-back angles instead of the 
calculated values are used in the three section model, 
the calculated punch displacements (indicated by 'Cal- 
culated with correction' in Fig. 7) show a much better 
correlation with the experimental results. Therefore, 
in-process measurement of the spring-back angle can 
lead to significant improvements of accuracy in manu- 
facturing. One possible way to measure the spring-back 
is to retract the punch partially at the end of the 
loading cycle and measuring the corresponding reduc- 
tion of the punch force. 
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Fig. 6. The definition of the length correction AL o for the bend 
allowance. 
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Fig. 7. Punch displacements. 

5. Simulations,  carried out with the 'three section' 
model 

The model (described in more detail by De Vin in 
[6,7]) has been used to simulate the variation of the 
plane strain constant C' and the plane strain Young's 
modulus E~, as well as the die-width H. The influence 
on the required punch displacement and the unfolded 
blank size is discussed in Section 5.1. The variation of 
the strain hardening coefficient n is discussed in Section 
5.2. 

5. I. The variation of C', E'o and H 

It has been found that C' and El) have virtually no 
influence on the unfolded blank size, whereas the die- 
width H has a significant influence. As a result, varia- 
tions of the mechanical properties of the sheet material 
are negligible. An important consequence of the influ- 
ence of H is that the tool geometry must be known 
before the unfolded blank size of a part can be calcu- 
lated. The simulation results are shown in Fig. 8. The 
corresponding length correction calculated with the 
ASM and DIN standards is approx. - 1.4 mm (for cold 
rolled steel with a bend angle of 90 °, a sheet thickness 
of 1 mm and an inner bend radius of 3 ram). 

C' and E' 0 have been found to influence the required 
punch displacement as shown in Fig. 9. Further re- 
search has established that this influence is caused 
mainly by the influence on the spring-back angle. For 
the representation of the influence of the die-width H, 
the required punch displacement was divided by the 
corresponding displacement, calculated with a rigid- 
plastic model, as shown along the right-hand Y-axis. It 
must be noted that Z/Zrp < 1. AS a consequence, rigid- 
plastic models tend to over-bend the parts, and circu- 
lar-straight models do so even more. 
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Fig. 9. The influence of C', E' o and H on the punch displacement. 

5.2. The variation o f  the strain hardening coefficient n 

In simulations of  the bending process, often the 
material parameter n is varied also. The purpose of  
variations of  the strain-hardening coefficient n is usually 
to investigate the influence of  the strain-hardening. 
However, the actual strain hardening equals (3o-./~e,: it 
depends on the strain value whether an increase of  n 
results in greater or lesser strain hardening. Also, with 
a change in n, a number of effects is achieved simulta- 
neously: (i) the strain hardening changes; (ii) the transi- 
tion point between elastic and elasto-plastic behaviour 
moves; and (iii) the stress level changes. When, for 
instance, the value of  n is decreased, the stress level 
increases (~x < 1), the strain hardening for low strain 
values increases, the strain hardening for high strain 
values decreases and the elastic zone becomes larger. 

Simulations have been carried out with the use of  the 

bending model. Instead of just changing n, the parame- 
ters C' and e0 were changed also in such a way that the 
bending moment and the strain eep at the transition 
between elastic and elasto-plastic behaviour remained 
the same. The simulations have been carried out for a 
sheet thickness of  2 mm, an inner bend radius of 3 mm 
and the OX-5 die. The following results have been 
obtained (Table 2). 

The spring-back angle A~ is virtually uninfluenced by 
variation of  n when the bending moment Mrp remains 
the same. Possibly, the change in A~ for different values 
of  n results completely from the differences in the punch 
displacement (Z) for different values of  n, the bend 
angle being 90 ° for all three simulations. However, the 
position of  the centre point of  the circular section 
(indicated by/~ Y, see also Fig. 10) changes significantly. 
This indicates that the sheet geometry is different for 
the three values of n and, as a result, the length 
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Table 2 
Results obtained for three values of n 

, 0.153 0.204 
'i~ 0.0016 0.0065 
C'  564 615 
.~/,.p 424.6 424.5 
~:~ 2.558 2.456 
,~ Y 0.1495 0.1915 
ALo -2.310 2.367 
Z 8.41)3 8.222 

0.255 [ ] 
0.013 [ ] 

667 [N/mm 2] 
424.8 [Nmm/mm] 

2 .433  [degrees] 
0.2234 [mm] 
2.408 [mm] 
8.068 [mm] 

+? 
Fig. 10. The changed centre point position dY of the circular sec- 
tion. 
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Fig. 11. The local bend radii. 

correction AL0 is influenced as well. Furthermore, the 
required punch displacement (Z) is influenced strongly 
also. This emphasizes the need to determine material 
parameters correctly. The changed sheet geometry is 
illustrated in Fig. 11, showing the local bend radii for 
three different values of n. At position no. 1, the bend 
radius at the transition point between elastic and elasto- 
plastic deformation is shown, whilst position no. 41 
represents the bend radius at the contact point between 
the sheet and the punch. 

6. Conclusions and recommendations 

The principles of a three section model for air bend- 
ing have been discussed, and the equations describing 
the extended material model have been derived. It has 
been shown that the die-width influences the unfolded 
blank size of a part, which has major consequences, for 
instance in process planning. The calculated punch 
displacements show good correspondence with experi- 
mental results. Nevertheless, some improvements still 
seem to be possible. For instance, the in-process mea- 
surement of the spring-back angle can result in an 
improved accuracy of bent parts. 

Future work by the authors will include the use of 
other models for the change of Young's modulus. The 
bending model will also be extended with a simple 
model for elastic-plastic recovery during spring-back. 

7. Nomenclature 

C' constant in the Ludwik Nadai and Swift equa- 
tion (plane strain equivalent of C) 

EI~ Young's modulus for plane strain (nominal 
value) 

E0 Nominal value of Young's modulus 
H die-width (centre to centre of the die shoulders) 
I moment of inertia 
M bending moment 
n strain hardening coefficient 
R,i radius of the die shoulders 
R,,, radius of the middle layer of a sheet 
Rp punch radius 
s sheet thickness 
W distance between the (instantaneous) contact 

points between the sheet and the die shoulders 
x coordinate parallel with the sheet surface and 

perpendicular to the bend axis 
y coordinate perpendicular to the sheet thickness 
Z punch displacement 
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Greek 

ALo 
C~Y 

go 
v 

o- 

letters 
bend angle 
length correction 
change in the centre-point position of the circular 
section (for the 'three-section' model, compared 
with the rigid-plastic model) 
strain 
pre-strain 
Poisson's ratio of contraction 
stress 

Subscripts 
el elastic 
ep at the transition between elastic and elasto-plastic 

deformation 
pl plastic 
rp according to the rigid-plastic model 
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