# Hamiltonian properties of graphs with large neighborhood unions 

Douglas Bauer*<br>Department of Pure and Applied Mathematics, Stevens Institute of Technology, Hoboken, NJ 07030, USA<br>Genghua Fan<br>Department of Systems Design Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1

Henk Jan Veldman<br>Faculty of Applied Matt ematics, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands

Received 10 April 1989
Revised 17 April 1990


#### Abstract

Bauer, D., G. Fan and H.J. Veldman, Hamiltonian properties of graphs with large neighborhood unions, Discrete Mathematics 96 (1991) 33-49. Let $G$ be a graph of order $n, \sigma_{k}=\min \left\{\sum_{i=1}^{k} d\left(v_{i}\right):\left\{v_{1}, \ldots, v_{k}\right\}\right.$ is an independent set of vertices in $G\}, \quad \mathrm{NC}=\min \{|N(u) \cup N(v)|: u v \notin E(G)\} \quad$ and $\quad \mathrm{NC} 2=\min \{\mid N(u) \cup$ $N(v) \mid ; d(u, v)=2\}$. O:- proved that $G$ is hamiltonian if $\sigma_{2} \geqslant n \geqslant 3$, while Faudree et al. proved that $G$ is hamiltonian if $G$ is 2 -connected and $N C \geqslant \frac{1}{3}(2 n-1)$. It is shown that both results are generalized by a recent result of Bauer et al. Various other existing results in hamiltonian graph theory involving degree-sums or cardinalities of neighborhood unions are also compared in terms of generality. Furthermore, some new results are proved. In particular, it is shown that the bound $\frac{1}{3}(2 n-1)$ on NC in the result of Faudree et al. can be lowered to $\frac{1}{3}(2 n-3)$, which is best possible. Also, $G$ is shown to have a cycle of length at least $\min \{n, 2(\mathrm{NC} 2)\}$ if $G$ is 2 -connected and $\sigma_{3} \geqslant n+2$. A $D_{\lambda}$-cycle ( $D_{\lambda}$-path) of $G$ is a cycle (path) $C$ such that every component of $G-V(C)$ has order smaller than $\lambda$. Sufficient conditions of Lindquester for the existence of Hamilton cycles and paths involving $N C 2$ are extended to $D_{\lambda}$-cycles and $D_{\lambda}$-paths.


## 1. Incroduction

We use [4] for terminology and notation not defined here and consider simple graphs only.

[^0]Throughout, let $G$ be a graph of order $n$. If $G$ has a Hamilton cycle (a cycle containing every vertex of $G$ ), then $G$ is called hamiltonian. The graph $G$ is traceable if $G$ has a Hamilton path (a path containing every vertex of $G$ ), and Hamilton-connected if every two vertices of $G$ are connected by a Hamilton path. The number of vertices in a maximum independent set of $G$ is denoted by $\alpha(G)$ and the set of vertices adjacent to a vertex $v$ by $N(v)$. We denote by $\sigma_{k}(G)$ the minimum value of the degree-sum of any $k$ pairwise non-adjacent vertices if $k \leqslant \alpha(G)$; if $k>\alpha(G)$, we set $\sigma_{k}(G)=k(n-1)$. Instead of $\sigma_{1}(G)$ we use the more common notation $\delta(G)$. If $G$ is noncomplete, then $\operatorname{NC}(G)$ denotes

$$
\min \{|N(u) \cup N(v)|: u v \notin E(G)\} ;
$$

if $G$ is complete, we set $\mathrm{NC}(G)=n-1$. If $G$ has a noncomplete component, then $\mathrm{NC} 2(G)$ denotes

$$
\min \{|N(u) \cup N(v)|: d(u, v)=2\}
$$

where $d(u, v)$ is the distance between $u$ and $v$; otherwise, $\operatorname{NC2}(G)=n-1$. If no ambiguity can arise we sometimes write $\alpha$ instead of $\alpha(G), \sigma_{k}$ instead of $\sigma_{k}(G)$, etc.

We mention two classical results in order of increasing generality.
Theorem 1 [7]. If $\delta(G) \geqslant \frac{1}{2} n>1$, then $G$ is hamiltonian.
Theorem 2 [17]. If $\sigma_{2}(G) \geqslant n \geqslant 3$, then $G$ is hamiltonian.
In recent literature on hamiltonian graph theory many results appear in which certain vertex sets are required to have large neighborhood unions instead of large degree-sums. Two such results are the following.

Theorem 3 [9]. If $G$ is 2-connected and $\mathrm{NC}(G) \geqslant \frac{1}{3}(2 n-1)$, then $G$ is hamiltonian.

Theorem 4 [8]. If $G$ is 2-connected and $\mathrm{NC}(G) \geqslant n-\delta(G)$, then $G$ is hamiltonian.

Theorems 3 and 2 are incomparable in the sense that neither theorem implies the other. Theorem 3 is not even comparable to Theorem 1. It is easily seen that Theorem 4 is more general than Theorem 1, but Theorems 4 and 2 are incomparable again.

Sufficient conditions in terms of neighborhood unions were also obtained for other hamiltonian properties.

Theorem 5 [9]. If $G$ is 3-connected and $\mathrm{NC}(G) \geqslant \frac{1}{3}(2 n+1)$, then $G$ is Hamiltonconnected.

Theorem 6 [9]. If $G$ is 2-connected and $\mathrm{NC}(G) \geqslant \frac{1}{2}(n-1)$, then $G$ is traceable.
The following three results are due to Lindquester.
Theorem 7 [16]. If $G$ is 2-connected and $\operatorname{NC2}(G) \geqslant \frac{1}{3}(2 n-1)$, then $G$ is hamiltonian.

Theorem 8 [16]. If $G$ is 3-connected and $\mathrm{NC2}(G) \geqslant \frac{2}{3} n$, then $G$ is Hamilton-. connected.

Theorem 9 [16]. If $G$ is 2 -connected and $\operatorname{NC2}(G) \geqslant \frac{1}{3}(2 n-4)$, then $G$ is traceable.
Since $\operatorname{NC} 2(G) \geqslant \mathrm{NC}(G)$, Theorem 7 is more general than Theorem 3 and Theorem 8 is more general than Theorem 5 . Theorem 9 does not imply Theorem 6 , but it was conjectured in [16] that Theorems 6 and 9 admit the following improvement.

Conjecture 10 [16]. If $G$ is 2 -connected and $\mathrm{NC} 2(G) \geqslant \frac{1}{2}(n-1)$, then $G$ is traceable.

In addition to establishing some new results we also compare a number of existing results in terms of generality.

In Section 2 it is shown that a recent result in [2] is a common generalization of Theorems 2, 3 and 4 (and Theorem 1). Using another result in [2] it is further shown that the bound $\frac{1}{3}(2 n-1)$ in Theorem 3 can be lowered to $\frac{1}{3}(2 n-3)$, which is best possible for all $n \geqslant 5$. A new common generalization of Theorems 2, 3 and 4 is also established.

Section 3 is concerned with hamiltonian properties of $K_{1,3}$ free graphs, i.e., graphs containing no induced subgraph isomorphic to $K_{1,3}$. It is shown that several results and a conjecture in [10] are implied by results of Broersma [5] and Zhang [19].

In Section 4 the results in ${ }_{[16]}$ are extended to so-called $D_{\lambda}$-cycles and $D_{\lambda}$-paths. As in [18], a cycle $C$ of $G$ is called a $D_{\lambda}$-cycle if every component of $G-V(C)$ has order smaller than $\lambda$. $D_{1}$-cycles are Hamilton cycles, while $D_{2}$-cycles are sometimes called dominating cycles. The definition of a $D_{\lambda}$-path is analogous to that of a $D_{\lambda}$-cycle. Section 4 also contains an extension of Theorem 6 to $D_{\lambda}$-paths.

## 2. Long cycles

We start by showing that Theorems 2,3 and 4 are all generalized by the following recent result, where $c(G)$ denotes the length of a longest cycle in $G$.

Theorem 11 [2]. If $G$ is 2 -connected and $\sigma_{3}(G) \geqslant n+2$, then $c(G) \geqslant \min \{n, n+$ $\left.\frac{1}{3} \sigma_{3}(G)-\alpha(G)\right\}$.

A key lemma for our observations is the following.
Lemma 12. $\sigma_{3}(G) \geqslant 3 \mathrm{NC}(G)-n+3$ for $n \geqslant 3$.
Proof. We assume $\alpha \geqslant 3$. Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be an independent set of three vertices in $G$ such that $\sum_{i=1}^{3} d\left(v_{i}\right)=\sigma_{3}$. Then

$$
\left|N\left(v_{1}\right) \cup N\left(v_{2}\right)\right| \geqslant \mathrm{NC}, \quad\left|N\left(v_{1}\right) \cup N\left(v_{3}\right)\right| \geqslant \mathrm{NC} \quad \text { and } \quad\left|N\left(v_{2}\right) \cup N\left(v_{3}\right)\right| \geqslant \mathrm{NC} .
$$

Setting

$$
d=\left|N\left(v_{1}\right) \cap N\left(v_{2}\right)\right|+\left|N\left(v_{1}\right) \cap N\left(v_{3}\right)\right|+\left|N\left(v_{2}\right) \cap N\left(v_{3}\right)\right|
$$

and adding the three inequalities, we obtain

$$
\begin{equation*}
2 \sigma_{3}-d \geqslant 3 \mathrm{NC.} \tag{1}
\end{equation*}
$$

Set $t=\left|N\left(v_{1}\right) \cap N\left(v_{2}\right) \cap N\left(v_{3}\right)\right|$. Using (1) we have

$$
n-3 \geqslant\left|N\left(v_{1}\right) \cup N\left(v_{2}\right) \cup N\left(v_{3}\right)\right|=\sigma_{3}-d+t \geqslant \frac{1}{2}(3 \mathrm{NC}+d)-d+t,
$$

whence

$$
\begin{equation*}
d \geqslant 3 \mathrm{NC}+2 t-2 n+6 \geqslant 3 \mathrm{NC}-2 n+6 \tag{2}
\end{equation*}
$$

Combination of (1) and (2) completes the proof.
We need two more lemmas. Their proofs are simple and are hence omitted.
Lemma 13. $\sigma_{3}(G) \geqslant \frac{3}{2} \sigma_{2}(G)$.
Lemma 14. $\alpha(G) \leqslant n-\mathrm{NC}(G)$.
Proposition 15. If $G$ satisfies the hypothesis of Theorem 2, then $G$ is hamiltonian by Theorem 11.

Proof. Assume $\sigma_{2} \geqslant n \geqslant 3$. Then $G$ is 2 -connected and hence $\sigma_{3} \geqslant \sigma_{2}+2 \geqslant n+2$. By Lemmas 13 and 14 and the obvious fact that $\mathrm{NC} \geqslant \frac{1}{2} \sigma_{2}$,

$$
n+\frac{1}{3} \sigma_{3}-\alpha \geqslant n+\frac{1}{2} \sigma_{2}-(n-\mathrm{NC})=\frac{1}{2} \sigma_{2}+\mathrm{NC} \geqslant \sigma_{2} \geqslant n .
$$

Hence $G$ is hamiltonian by Theorem 11.
Proposition 16. If $G$ satisfies the hypothesis of Theorem 3, then $G$ is hamiltonian by Theorem 11.

Iroof. Assume $G$ is 2 -connected and $\mathrm{NC} \geqslant \frac{1}{3}(2 n-1)$. By Lemma 12, $\sigma_{3} \geqslant n+2$. Uהing Lemma 14 we obtain

$$
n+\frac{1}{3} \sigma_{3}-\alpha \geqslant n+\frac{1}{3}(n+2)-(n-\mathrm{NC}) \geqslant \frac{1}{3}(n+2)+\frac{1}{3}(2 n-1)>n .
$$

Hence $G$ is hamiltonian by Theorem 11.
Proposition 17. If $G$ satisfies the hypothesis of Theorem 4, then $G$ is hamiltonian by Theorem 11.

Proof. Assume $G$ is 2 -connected and $\mathrm{NC} \geqslant n-\delta$. If $\delta \leqslant \frac{1}{3}(n+1)$, then $\mathrm{NC} \geqslant$ $\frac{1}{3}(2 n-1)$ and we are done by Proposition 16. Hence assume $\delta \geqslant \frac{1}{3}(n+2)$. Then $\sigma_{3} \geqslant 3 \delta \geqslant n+2$ and, by Lemma 14 ,

$$
n+\frac{1}{3} \sigma_{3}-\alpha \geqslant n+\frac{1}{3} \sigma_{3}-(n-\mathrm{NC}) \geqslant \frac{1}{3} \sigma_{3}+n-\delta \geqslant n .
$$

Hence $G$ is hamiltonian by Theorem 11.
We now show that the bound $\frac{1}{3}(2 n-1)$ in Theorem 3 can be lowered to $\frac{1}{2}(2 n-3)$ by using a result in [2] which is closely related to Theorem 11. The graph $G$ is called 1-tough if $\omega(G-S) \leqslant|S|$ for every subset $S$ of $V(G)$ such that $\omega(G-S)>1$, where $\omega(G-S)$ denotes the number of components of $G-S$.

Theorem 18 [2]. If $G$ is 1 -tough and $\sigma_{3}(G) \geqslant n \geqslant 3$, then $c(G) \geqslant \min \{n, n+$ $\left.{ }_{3}{ }_{3} \sigma_{3}(G)-\alpha(G)\right\}$.

Corollary 19. If $G$ is 2 -connected and $\mathrm{NC}(G) \geqslant \frac{1}{3}(2 n-3)$, then $G$ is hamiltonian.
Proof. Let $G$ be 2 -connected with $\mathrm{NC} \geqslant \frac{1}{3}(2 n-3)$. It is easily checked that $G$ is hamiltonian if $n \leqslant 6$. We assume $n \geqslant 7$ and show that $G$ is then hamiltonian by Theorem 18.

We first prove that $G$ is 1 -tough. Assuming the contrary, let $S$ be a subset of $V(G)$ such that $\omega(G-S) \geqslant|S|+1, G_{1}$ a smallest component of $G-S$ and $G_{2}$ a smallest component of $G-\left(S \cup V\left(G_{1}\right)\right)$. Then

$$
\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right| \leqslant 2\left(\frac{n-|S|}{|S|+1}\right) \quad \text { and } \quad 2 \leqslant|S| \leqslant \frac{1}{2}(n-1) .
$$

If $v_{1} \in V\left(G_{1}\right)$ and $v_{2} \in V\left(G_{2}\right)$, then

$$
N C \leqslant\left|N\left(v_{1}\right) \cup N\left(v_{2}\right)\right| \leqslant 2\left(\frac{n-|S|}{|S|+1}\right)-2+|S| \leqslant \frac{1}{3}(2 n-4)
$$

This contradiction shows that $G$ is 1-tough.
By Lemmas 12 and 14 ,

$$
n+\frac{1}{3} \sigma_{3}-\alpha \geqslant n+\frac{1}{3} n-(n-N C) \geqslant n-1 .
$$

From Theorem 18 we conclude that $G$ is hamiltonian unless

$$
\begin{equation*}
\sigma_{3}=n, \quad \mathrm{NC}=\frac{1}{3}(2 n-3) \quad \text { and } \quad \alpha=\frac{1}{3}(n+3) . \tag{3}
\end{equation*}
$$

The proof is now completed by showing that $G$ cannot satisfy (3). Suppose (3) holds. Let $S$ be an independent set with $|S|=\alpha=\frac{1}{3}(n+3)$ and set $T=V(G)-S$. Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be an independent set with $\sum_{i=1}^{3} d\left(v_{i}\right)=\sigma_{3}=n$. For any $u \in T$,
$u$ is adjacent to all but at most one vertex of $S$,
otherwise $\mathrm{NC}<|T|=\frac{1}{3}(2 n-3)$. In particular, every vertex of $T$ has degree at least $\frac{1}{3} n$. We now derive contradictions in four cases.

Case 1: $v_{1}, v_{2}, v_{3} \in T$.
Then $d\left(v_{1}\right)=d\left(v_{2}\right)=d\left(v_{3}\right)=\frac{1}{3} n$, implying that $N\left(v_{i}\right) \subseteq S(i=1,2,3)$. Hence, since $n \geqslant 7$,

$$
\mathrm{NC} \leqslant\left|N\left(v_{1}\right) \cup N\left(v_{2}\right)\right| \leqslant|S|=\frac{1}{3}(n+3)<\frac{1}{3}(2 n-3)
$$

a contradiction.
Case 2: $v_{1}, v_{2} \in T$ and $v_{3} \in S$.
Then $N\left(v_{1}\right) \cap N\left(v_{2}\right) \supseteq S-\left\{v_{3}\right\}$. Hence

$$
\begin{aligned}
d\left(v_{1}\right)+d\left(v_{2}\right) & =\left|N\left(v_{1}\right) \cup N\left(v_{2}\right)\right|+\left|N\left(v_{1}\right) \cap N\left(v_{2}\right)\right| \\
& \geqslant \frac{1}{3}(2 n-3)+|S|-1=n-1 .
\end{aligned}
$$

It follows that $d\left(v_{3}\right) \leqslant 1$, contradicting the fact that $G$ is 2 -connected.
Case 3: $v_{1} \in T$ and $v_{2}, v_{3} \in S$.
Then $v_{1}$ is adjacent to at most $|S|-2$ vertices of $S$, contradicting (4).
Case 4: $v_{1}, v_{2}, v_{3} \in S$.
By (4), every vertex of $T$ is adjacent to at least two vertices in $\left\{v_{1}, v_{2}, v_{3}\right\}$. Since $n \geqslant 7$, we obtain

$$
\sum_{i=1}^{3} d\left(v_{i}\right) \geqslant 2|T|=\frac{2}{3}(2 n-3)>n
$$

contradicting (3).
For a real number $r$, let $\lceil r\rceil$ denote the smallest integer greater than or equal to $r$. Coroilary 19 is best possible in the sense that for every $n \geqslant 5$ there exists a nonhamiltonian graph of order $n$ with $\mathrm{NC}=\left\lceil\frac{1}{3}(2 n-3)\right\rceil-1$. For $n \geqslant 5$, define the graph $G_{n}$ as the join of $K_{2}$ and the graph of order $n-2$ consisting of three disjoint complete subgraphs, the orders of which pairwise differ by at most one. $G_{n}$ is nonhamiltonian and $\mathrm{NC}\left(G_{n}\right)=\left\lceil\frac{1}{3}(2 n-3)\right\rceil-1$.

Note that the graph $G_{n}$ is not 1 -tough. For $n \geqslant 7$ and $n \neq 2(\bmod 3)$ there also exist extremal graphs for Corollary 19 which are 1 -tough. For $n \geqslant 7$, construct the graph $H_{n}$ from the join of $K_{1}$ and the graph of order $n-1$ consisting of three disjoint complete subgraphs, the orders of which pairwise differ by at most one, by choosing a vertex in each of the three complete subgraphs and adding the
edges of a triangle between the three vertices. The graph $H_{n}$ is 1-tough and nonhamiltonian and, if $n \neq 2(\bmod 3), \mathrm{NC}\left(H_{n}\right)=\left\lceil\frac{1}{3}(2 n-3)\right\rceil-1$. Another 1 tough extremal graph for Corollary 19 is the Petersen graph.
For $n \equiv 2(\bmod 3)$ the graph $H_{n}$ shows that the bound on NC in Corollary 19 cannot be lowered by two if $G$ is 1 -tough.

For future reference we describe another class of 1 -tough non-hamiltonian graphs. For $n \geqslant 9$, construct the graph $J_{n}$ of order $n$ from three disjoint complete graphs $A_{1}, A_{2}, A_{3}$ with

$$
\left\|V\left(A_{i}\right)|-| V\left(A_{j}\right)\right\| \leqslant 1 \quad \text { for } 1 \leqslant i<j \leqslant 3
$$

by choosing, for $i=1,2,3$, two distinct vertices $x_{i}$ and $y_{i}$ in $A_{i}$ and adding the edges $x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, y_{1} y_{2}, y_{1} y_{2}, y_{2} y_{3}$. If $n \equiv 0(\bmod 3)$, then $\operatorname{NC} 2\left(J_{n}\right)=\frac{1}{3}(2 n-3)$. In Section 4 (Corollary 38) it is shown that in the hypothesis of Corollary 19 NC can be replaced by NC 2 unless $n \equiv 0(\bmod 3)$ and $G$ is isomorphic to $J_{n}$. Note that for $n \equiv 0(\bmod 3)$ the graph $J_{n}$ is also an extremal graph for Corollary 19.

Corollary 19 is also contained in the following recent result, stated in [11] as a consequence of a more general result.

Theorem 20 [11]. If $G$ is 2-connected and, for every pair of non-adjacent vertices $u$ and $v, 3|N(u) \cup N(v)|+\max \{2,|N(u) \cap N(v)|\} \geqslant 2 n-1$, then $G$ is hamiltonian.

We have observed that Theorem 11 implies Theorems 2, 3 and 4. Using Lemmas 21 and 22 below we establish another common generalization of Theorems 2,3 and 4 . We need some additional notation. If $C$ is a cycle of $G$, we denote by $\vec{C}$ the cycle $C$ with a given orientation. It $u, v \in V(C)$, then $u \vec{C} v$ denotes the consecutive vertices on $C$ from $u$ to $v$ in the direction specified by $\vec{C}$. The same vertices, in reverse order, are given by $v \bar{C} u$. We will consider $u \vec{C} v$ and $v \dot{C} u$ both as paths and as vertex sets. We use $u^{+}$to denote the successor of $u$ on $\vec{C}$ and $u^{-}$to denote its predecessor. If $A \subseteq V(C)$, then $A^{+}=\left\{v^{+}: v \in A\right\}$. The set $A^{-}$is analogously defined. In Section 4 we use similar notation for paths instead of cycles.

A central lemma in [2] is the following.
Lemma 21 [2]. Assume $\delta(G) \geqslant 2, \sigma_{3}(G) \geqslant n$ and $G$ contains a longest cycle $\vec{C}$ which is a $D_{2}$-cycle. If $u \in V(G)-V(C)$ and $A=N(u)$, then $(V(G)-V(C)) \cup A^{+}$ is an independent set.

The first part of the next lemma is a result of Bondy [3]; the second part is implicit in the proof of [ 2 , Theorem 10].

Lemma 22. Assume $G$ is 2 -connected and $\sigma_{3}(G) \geqslant n+2$. Then every longesi cycle of $G$ is a $D_{2}$-cycle. Moreover, $G$ contains a longest cycle $C$ such that $\max \{d(v): v \in V(G)-V(C)\} \geqslant \frac{1}{3}(n+2)$.

Suppose $G$ satisfies the hypothesis of one of Theorems 2, 3 and 4. Then $\sigma_{3}(G) \geqslant n+2$, as observed in the proofs of Propositions 15, 16 and 17. Furthermore, it is easily seen that $\operatorname{NC2}(G) \geqslant \frac{1}{2} n$. Hence $G$ is hamiltonian by the following result.

Theorem 23. If $G$ is 2-connected and $\sigma_{3}(G) \geqslant n+2$, then $c(G) \geqslant$ $\min \{n, 2(\mathrm{NC} 2(G))\}$.

Proof. Assume $G$ is 2 -connected and $\sigma_{3} \geqslant n+2$. We are done if $G$ is hamiltonian. Otherwise, by Lemma 22, $G$ contains a longest cycle $\vec{C}$ such that $C$ is a $D_{2}$-cycle and $V(G)-V(C)$ contains a vertex $u$ with $d(u) \geqslant \frac{1}{3}(n+2)$. Set $A=N(u)$. Clearly, $A \cap A^{+}=\emptyset$. Since $d(u)>\frac{1}{3}|V(C)|, C$ contains a vertex $v$ such that $v^{+}, v^{-} \in A$. In particular, $d(u, v)=2$. Set $B=N(u) \cup N(v)$. By Lemma 21, $B \subseteq V(C)$. We claim that $B \cap B^{+}=\emptyset$. Assuming the contrary, let $w$ be a vertex in $B \cap B^{+}$. It is clearly impossible that $w \in N(u)$ and $w^{-} \in N(u)$. If $w \in N(u)$ and $w^{-} \in N(v)$, then the cycle $v^{+} u w \vec{C} v w^{-} \stackrel{C}{C} v^{+}$is longer than $C$, a contradiction. If $w \in N(v)$ and $w^{-} \in N(u)$, then the cycle $v^{-} u w^{-} \bar{C} v w \vec{C} v^{-}$contradicts the choice of $C$. Finally, if $w \in N(v)$ and $w^{-} \in N(v)$, then the cycle $v^{-} u v^{+} \vec{C} w^{-} v w \vec{C} v^{-}$ contradicts the choice of $C$. Hence, indeed, $B \cap B^{+}=\emptyset$. It follows that $|V(C)| \geqslant 2|B| \geqslant 2(\mathrm{NC} 2)$.

Theorem 23 is best possible in two different senses. We first note that if $G$ is a complete bipartite graph, then $c(G)=2(\mathrm{NC} 2(G))$, so the conclusion of Theorem 23 cannot be strengthened. We next observe that the condition $\sigma_{3}(G) \geqslant n+2$ cannot be relaxed: the graph $G_{n}$ (defined after Corollary 19) has $\sigma_{3}\left(G_{n}\right)=n+1$, while $c\left(G_{n}\right)=\operatorname{NC} 2\left(G_{n}\right)+2$ if $n \equiv 2(\bmod 3)$ and $c\left(G_{n}\right)=\operatorname{NC} 2\left(G_{n}\right)+3$ otherwise. In this context we mention the following result.

Theorem 24 [13]. Let $G$ be 2-connected and noncomplete. Then $c(G) \geqslant$ $\mathrm{NC} 2(G)+2$. If $\mathrm{NC} 2(G)$ is odd and $n>\operatorname{NC2}(G)+3$, then $c(G) \geqslant \mathrm{NC} 2(G)+3$.

The following result is closely related to Theorem 23 and will appear elsewhere.

Theorem 25 [6]. If $G$ is 2-connected and $G$ contains a $D_{2}$-cycle, then $c(G) \geqslant$ $\min \{n, 2 \mathrm{NC}(G)\}$ unless $G$ is the Petersen graph.

A variation of Theorem 23 for 1-tough graphs is the following.
Theorem 26. If $G$ is 1-tough and $\sigma_{3}(G) \geqslant n \geqslant 3$, then $c(G) \geqslant$ $\min \{n, 2(\mathrm{NC} 2(G))\}$.

The proof of Theorem 26 is omitted, since it is almost identical to the proof of Theorem 23. We note that Theorem 26, too, implies Corollary 19: if $G$ is 2 -connected and $\mathrm{NC}(G) \geqslant \frac{1}{3}(2 n-3)$, then, as in the proof of Corollary $19, G$ is 1 -tough and $\sigma_{3}(G) \geqslant n$, so that, by Theorem 26 ,

$$
\begin{aligned}
c(G) & \geqslant \min \{n, 2(\mathrm{NC} 2(G))\} \geqslant \min \{n, 2 \mathrm{NC}(G)\} \\
& \geqslant \min \left\{n,\left\lceil\frac{2}{3}(2 n-3)\right\rceil\right\} \geqslant n \quad(n \geqslant 4)
\end{aligned}
$$

We conjecture that Theorem 26 admits the following improvement.
Conjecture 27. If $G$ is 1 -tough and $\sigma_{3}(G) \geqslant n \geqslant 3$, then $c(G) \geqslant$ $\min \{n, 2(\mathrm{NC} 2(G))+4\}$.

If true, Conjecture 27 would imply the following recent improvement of Jung's Theorem [15].

Theorem 28 [1]. If $G$ is 1-tough, $\sigma_{3}(G) \geqslant n \geqslant 3$ and, for all vertices $x, y, d(x, y)=2$ implies $\max \{d(x), d(y)\} \geqslant s$, then $c(G) \geqslant \min \{n, 2 s+4\}$.

## 3. Hamilton cycles and paths in $K_{1,3}$-free graphs

We state a result occurring in [10]. The graph $G$ is homogeneously traceable if for every vertex $v$ of $G$ there exists a Hamilton path of $G$ starting at $v$. Clearly, every hamiltonian graph is homogeneously traceable.

Theorem 29 [10]. Let $G$ be 3 -connected and $K_{1,3}$-free. If $\mathrm{NC}(G) \geqslant \frac{1}{3}(2 n-4)$, then $G$ is homogeneously traceable.

It is conjectured in [10] that, under the hypothesis of Theorem 29, $G$ is in fact hamiltonian.

Conjecture 30 [10]. Let $G$ be 3 -connected and $K_{1,3}$ free. If $\mathrm{NC}(G) \geqslant \frac{1}{3}(2 n-4)$, then $G$ is hamiltonian.

The following result was independently obtained by Broersma and Zhang.
Theorem 31 [5, 19]. Let $G$ be 2-connected and $K_{1.3}$-free. If $\sigma_{3}(G) \geqslant n-2$, then $G$ is hamiltonian.

More generally, Zhang [19] proved that $G$ is hamiltonian if $G$ is $k$-connected and $K_{1,3}$-free with $\sigma_{k+1}(G) \geqslant n-k(k \geqslant 2)$. The following consequence of Theorem 31 and Lemma 12 improves Theorem 29 and Conjecture 30.

Corollary 32. Let $G$ be 2 -connected and $K_{1,3}$ free. If $\mathrm{NC}(G) \geqslant \frac{1}{3}(2 n-5)$, then $G$ is hamiltonian.

The graph $J_{n}$ is $K_{1,3}$-free and $\mathrm{NC}\left(J_{n}\right)=\left\lceil\frac{1}{3}(2 n-5)\right\rceil-1$, showing that Corollary 32 is best possible for all $n \geqslant 9$.

Another improvement of Conjecture 30 was recently obtained by Li and Virlouvet.

Theorem 33 [14]. Let $G$ be 3 -connected and $K_{1,3}$ free. If $\mathrm{NC}(G)>\frac{11}{21}(n-7)$, then $G$ is hamiltonian.

Broersma proved an analogoue $\mathrm{o}^{\mathrm{c}}$ Theorem 31 for traceable graphs.
Theorem 34 [3]. Let $G$ be connected and $K_{1,3}$ free. If $\sigma_{3}(G) \geqslant n-2$, then $G$ is traceable.

Combination with Lemma 12 yields the following.
Corollary 35. Let $G$ be connected and $K_{1,3}$ free. If $\mathrm{NC}(G) \geqslant \frac{1}{3}(2 n-5)$, then $G$ is traceable.

A weaker version of Corollary 35, with $\frac{1}{3}(2 n-5)$ replaced by $\frac{1}{3}(2 n-3)$, occurs in [10]. The connected nontraceable graph $J_{n}^{\prime}$ obtained from $J_{n}$ by deleting the edges $y_{1} y_{2}, y_{1} y_{3}, y_{2} y_{3}$ is $K_{1,3}$ free and $\mathrm{NC}\left(J_{n}^{\prime}\right)=\left\lceil\frac{1}{3}(2 n-5)\right\rceil-1$, showing that Corollary 35 is best possible.

## 4. $\boldsymbol{D}_{\boldsymbol{\lambda}}$-cycles and $\boldsymbol{D}_{\boldsymbol{\lambda}}$-paths

In order to extend Theorems 6-9 to results on $D_{\lambda}$-cycles and $D_{\lambda}$-paths we introduce some additional terminology and notation. Let $H, H_{1}, H_{2}$ be subgraphs of $G$ and $t, \lambda$ positive integers. By $N(H)$ we denote the set of vertices in $V(G)-V, H)$ that are adjacent to at least one vertex of $H$. The vertices in $N(H)$ are called neighbors of $H$. The distance $d\left(H_{1}, H_{2}\right)$ between $H_{1}$ and $H_{2}$ is the length of a shortest path in $G$ starting at a vertex of $H_{1}$ and ending at a vertex of $H_{2}$. We call $H_{1}$ and $H_{2}$ remote if $d\left(H_{1}, H_{2}\right) \geqslant 2$. If $H$ is connected and $u$ and $v$ are neighbors of $H$, then $u H v$ denotes a ( $u, v$ )-path of length at least 2 with all internal vertices in $H ; u H$ denotes a nontrivial path starting at $u$ such that all other vertices of the path are in $H ; H u$ is analogously defined. By $\omega_{r}(H)$ we denote the number of components of $H$ with at least $t$ vertices; in particular, $\omega_{1}(H)=\omega(H)$. If $G$ contains two remote connected subgraphs of order $\lambda$, then $\mathrm{NC}_{\lambda}(G)$ denotes $\min \left\{\left|N\left(H_{1}\right) \cup N\left(H_{2}\right)\right|: H_{1}\right.$ and $H_{2}$ are remote connected subgraphs of order $\lambda\}$; otherwise we set $\mathrm{NC}_{\lambda}(G)=n$. $-2 \lambda+1$. If $G$ contains two
connected subgraphs of order $\lambda$ at distance 2, then $\mathrm{NC2}_{\lambda}(G)$ denotes $\min \left\{\left|N\left(H_{1}\right) \cup N\left(H_{2}\right)\right|: H_{1}\right.$ and $H_{2}$ are connected subgrapns of order $\lambda$ with $\left.d\left(H_{1}, H_{2}\right)=2\right\}$; otherwise, $\mathrm{NC}_{\lambda}(G)=n-2 \lambda+1$. In particular, $\mathrm{NC}_{1}(G)=$ $\mathrm{NC}(G)$ and $\mathrm{NC2}_{1}(G)=\mathrm{NC} 2(G)$. The following lemma is easily established; we omit its proof.

Lemma 36. If $t \geqslant \lambda$, then $\mathrm{NC}_{t}(G) \geqslant \mathrm{NC}_{\lambda}(G)-2(t-\lambda)$ and $\mathrm{NC}_{t}(G) \geqslant$ $\mathrm{NC}_{\lambda}(G)-2(t-\lambda)$.

If $\vec{H}$ is an oriented cycle or path and $v \in V(H)$, then we call $H_{1}$ an ( $\vec{H}, v, t$ )-subgraph if each of the following requirements holds:
(i) $H_{1}$ is connected and has order $t$,
(ii) $\emptyset \neq V\left(H_{1}\right) \cap V(H)=v \vec{H} w$ for some vertex $w \in V(H)$,
(iii) if $H_{2}$ satisfies (i) and (ii), then $V\left(H_{1}\right) \cap V(H) \subseteq V\left(H_{2}\right) \cap V(H)$.

An ( $\tilde{H}, v, t$ )-subgraph is similarly defined. In (ii), replace $v \vec{H} w$ by $v \tilde{H} w$ ). We are now ready to state and prove the following result.

Theorem 37. If $G$ is 2 -connected and $\mathrm{NC}_{\lambda}(G) \geqslant \frac{1}{3}(2 n+3)-2 \lambda$, then $G$ contains a $L_{2}-$ cycle unless $n \equiv 0(\bmod 3), n \geqslant 3 \lambda+6$ and $G$ is a spanning subgraph of $J_{n}$.

Proof. Assume $G$ satisfies the conditions of the theorem, but $G$ contains no $D_{\lambda}$-cycle. Set $t+i=\min \left\{i: G\right.$ has a $D_{i}$-cycle $\}$, so that $t \geqslant \lambda$. Let $\vec{C}$ be a $D_{t+1}$-cycle of $G$ for which $\omega_{t}(G-V(C))$ is minimum. Since $G$ has no $D_{t}$-cycle, $G-V(C)$ has a component $H_{0}$ of order $t$. Let $v_{1}, \ldots, v_{k}$ be the neighbors of $H_{0}$, occurring on $\vec{C}$ in the order of their indices. Since $G$ is 2 -connected, $k \geqslant 2$. As in the proof of [18, Theorem 2] there exists, for $i=1, \ldots, k$, a ( $\vec{C}, v_{i}^{+}, t$ )-subgraph $H_{i}$ such that $H_{0}, H_{1}, \ldots, H_{k}$ are pairwise remote. Let $u_{i}$ be the first vertex on $v_{i}^{+} \vec{C} v_{i+1}$ such that $u_{i} \notin V\left(H_{i}\right)(i=1, \ldots, k$; indices $\bmod k)$. Set

$$
U=V(\zeta)-\left(V\left(H_{0}\right) \cup V\left(H_{1}\right) \cup V\left(H_{k}\right)\right) \text { and } W=U-\left\{u_{1}, v_{1}\right\} .
$$

Define the function $f: W \rightarrow U$ by

$$
f(v)= \begin{cases}v^{-} & \text {if } v \in u_{1}^{+} \vec{C} v_{k}, \\ v^{+} & \text {if } v \in u_{k} \vec{C} v_{1}^{-}, \\ v & \text { if } v \notin V(C) .\end{cases}
$$

We show that

$$
\begin{equation*}
\text { if } v \in\left(N\left(H_{1}\right) \cap W\right)-\left\{v_{1}^{-}\right\} \text {, then } f(v) \notin N\left(H_{0}\right) \cup N\left(H_{k}\right) . \tag{5}
\end{equation*}
$$

Assuming the contrary to (5), let $v$ be a vertex in $\left(N\left(H_{1}\right) \cap W\right)-\left\{v_{1}^{-}\right\}$such that $f(v) \in N\left(H_{0}\right) \cup N\left(H_{k}\right)$. If $v \in u_{1}^{+} \vec{C} v_{k}$ and $f(v) \in N\left(H_{0}\right)$, then $v^{-}=v_{i}$ for some $i \in\{2, \ldots, k-1\}$ and we obtain the contradiction that $H_{1}$ and $H_{i}$ are not remote. If $v \in u_{1}^{+} \vec{C} v_{k}$ and $f(v) \in N\left(H_{k}\right)$, then $G$ contains the cycle

$$
C^{\prime}=v_{1} H_{0} v_{k} \overleftarrow{C} v H_{1} u_{1} \vec{C} v-H_{k} u_{k} \vec{C} v_{1} .
$$

By the way $H_{1}$ and $H_{k}$ were chosen and the fact that $H_{1}$ and $H_{k}$ are remote, we have $\omega_{t}\left(G-V\left(C^{\prime}\right)\right)<\omega_{t}(G-V(C))$, contradicting the choice of $C$. If $v \in$ $u_{k} \vec{C} v_{1}^{--}$, then, since $u_{k} \vec{C} v_{1}^{-}$contains no neighbors of $H_{0}, f(v) \in N\left(H_{k}\right)$. But then the cycle

$$
v_{1} H_{0} v_{k} \stackrel{\check{C}}{u_{1}} H_{1} v \stackrel{\rightharpoonup}{C} u_{k} H_{k} v^{+} \vec{C} v_{1}
$$

contradicts the choice of $C$. If $v \notin V(C)$, then clearly $f(v) \notin N\left(H_{0}\right)$, whence $f(v) \in N\left(H_{k}\right)$; but then the cycle $v_{1} H_{0} v_{k} \dot{C} u_{1} H_{1} v H_{k} u_{k} \vec{C} v_{1}$ contradicts the choice of $C$. Thus (5) holds.

Note that $d\left(H_{0}, H_{k}\right)=2$ and $f$ is an injection. Combining these facts with (5) and Lemma 36 we conclude that

$$
\begin{align*}
\frac{1}{3}(2 n+3)-2 t & \leqslant\left|N\left(H_{0}\right) \cup N\left(H_{k}\right)\right| \\
& \leqslant n-\left|V\left(H_{0}\right) \cup V\left(H_{1}\right) \cup V\left(H_{k}\right)\right|-\left(\left|N\left(H_{1}\right) \cap W\right|-\varepsilon\right) \\
& =n-3 t-\left(\left|N\left(H_{1}\right)\right|-2-\varepsilon\right), \tag{6}
\end{align*}
$$

where $\varepsilon=0$ if $v_{1}^{-} \nsubseteq N\left(H_{1}\right) \cap W$ and $\varepsilon=1$ if $v_{1}^{-} \in N\left(H_{1}\right) \cap W$. Hence

$$
\begin{equation*}
\left|N\left(H_{1}\right)\right| \leqslant \frac{1}{3}(n+3)-t+\varepsilon . \tag{7}
\end{equation*}
$$

Since $\left|N\left(H_{0}\right) \cup N\left(H_{1}\right)\right| \geqslant \frac{1}{3}(2 n+3)-2 t$ and $\left|N\left(H_{0}\right) \cap N\left(H_{1}\right)\right| \geqslant 1$, we obtain

$$
\begin{equation*}
k=\left|N\left(H_{0}\right)\right| \geqslant \frac{1}{3}(2 n+3)-2 t-\left(\frac{1}{3}(n+3)-t+\varepsilon\right)+1=\frac{1}{3}(n+3)-t-\varepsilon . \tag{8}
\end{equation*}
$$

We now distinguish two cases, the first of which will turn out to yield a contradiction.

Case 1: For some $i \in\{1, \ldots, k\}, v_{i}^{-} \notin N\left(H_{i}\right)$.
Assume without loss of generality that $v_{1}^{-} \notin N\left(H_{1}\right)$. Then $\varepsilon=0$ in (6), (7) and (8). The fact that $H_{0}, H_{1}, \ldots, H_{k}$ are pairwise remote and (8) imply

$$
\begin{align*}
\left|N\left(H_{0}\right) \cup N\left(H_{1}\right)\right| & \leqslant n-(k+1) t \leqslant n-\left(\frac{1}{3}(n+3)-t+1\right) t \\
& =\frac{1}{3}(2 n+3)-2 t+(t-1)\left(t-\frac{1}{3}(n-3)\right) . \tag{9}
\end{align*}
$$

Since $G$ is 2-connected, we have $\left\{N\left(H_{1}\right) \mid \geqslant 2\right.$. Hence by (7), $t \leqslant \frac{1}{3}(n-3)$. From (9) it now follows that $t=1$ or $t=\frac{1}{3}(n-3)$.

Case 1.1: $t=1$.
Let $u$ be the vertex of $H_{0}$ and set $R=V(G)-V(C), S=\left\{v \in V(C): v^{-}, v^{+} \epsilon\right.$ $N(u)\}$. Using (8) we have

$$
n \geqslant 2|S|+3(|N(u)|-|S|)+|R|=3|N(u)|+|R|-|S| \geqslant n+|R|-|S|,
$$

implying that $|R| \leqslant|S|$. Since every vertex in $R$ can be adjacent to at most one vertex in $S$ while $u$ is adjacent to no vertex in $S$, there exists a vertex $v$ in $S$ such that $N(v) \cap R=\emptyset$. Hence, if we set $B=N(u) \cup N(v)$, we have $B \subseteq V(C)$. Arguing as in the proof of Theorem 23 we obtain $B \cap B^{+}=\emptyset$. But then

$$
n-1 \geqslant|V(C)| \geqslant 2|B| \geqslant 2 \mathrm{NC} 2 \geqslant \frac{2}{3}(2 n-3),
$$

whence $n \leqslant 3$, a contradiction.

Case 1.2: $t=\frac{1}{3}(n-3)$
Since (9) holds with equality, (8) also holds with equality. In particular, $\left|N\left(H_{0}\right) \cap N\left(H_{1}\right)\right|=1$, implying that

$$
V(G)=V\left(H_{0}\right) \cup V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup\left\{v_{1}, u_{1}, v_{2}\right\}
$$

The vertex $u_{1}$ is not in $N\left(H_{2}\right)$, otherwise the cycle $v_{1} H_{0} v_{2} H_{2} u_{1} \bar{C} v_{1}$ contradicts the choice of $C$. It follows that

$$
\left|N\left(H_{0}\right) \cup N\left(H_{2}\right)\right|=2<3=\frac{1}{3}(2 n+3)-2 t
$$

a contradiction.
Case 2: For all $i \in\{1, \ldots, k\}, v_{i}^{-} \in N\left(H_{i}\right)$.
Since $H_{i}$ and $H_{i+1}$ are remote and $v_{i+1}^{-} \in N\left(H_{i+1}\right)$, we have $u_{i} \neq v_{i+1}(i=$ $1, \ldots, k$; indices $\bmod k$ ). Also, $u_{i} \neq \boldsymbol{v}_{i+1}^{-}$, otherwise the cycle

$$
v_{i} H_{0} v_{i+1} u_{i} H_{i+1} u_{i+1} \vec{C} v_{i}^{-} H_{i} v_{i}
$$

would contradict the choice of $C$. It ollows that

$$
\begin{equation*}
n \geqslant t+k(t+3) \tag{10}
\end{equation*}
$$

Combining (10) and (8), now with $\varepsilon=1$, yields

$$
n \geqslant t+\left(\frac{1}{3} n-t\right)(t+3)
$$

whence $n \leqslant 3 t+6$. On the other hand, ( 10 ) implies $n \geqslant 3 t+6$, since $k \geqslant 2$. We conclude that $n=3 t+6, k=2$ and

$$
V(G)=V\left(H_{0}\right) \cup V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup\left\{v_{1}, u_{1}, u_{1}^{+}, v_{2}, u_{2}, u_{2}^{+}\right\}
$$

To prove that $G$ is a spanning subgraph of $J_{n}$, we first observe that $N\left(u_{i}\right) \subseteq V\left(H_{i}\right) \cup\left\{u_{i}^{+}\right\}(i=1,2)$. Assuming the contrary, one easily finds a cycle that contradicts the choice of $C$.

We next show that $v_{2}^{+}$is the only vertex of $H_{2}$ adjacent to $u_{1}^{+}$. Assuming the contrary, let $x$ be a vertex of $H_{2}$ with $u_{1}^{+} x \in E(G)$ and $x \neq v_{2}^{+}$and let $\vec{P}$ be a ( $v_{2}^{+}, x$ )-path in $H_{2}$. Consider the cycle

$$
C^{\prime}=v_{1} H_{0} v_{2} v_{2}^{+} \vec{P} x u_{1}^{+} u_{1} H_{1} u_{2}^{+} v_{1}
$$

and let $H$ be the component of $G-V\left(C^{\prime}\right)$ that contains $u_{2}$. Then

$$
V(H) \subseteq\left\{u_{2}\right\} \cup^{\prime}\left(V\left(H_{2}\right)-\left\{x, v_{2}^{+}\right\}\right)
$$

so $|V(H)|<t$. Since the other two components of $G-V\left(C^{\prime}\right)$ also have fewer than $t$ vertices, $C^{\prime}$ contradicts the choice of $C$. Hence, indeed, $v_{2}^{+}$is the only vertex of $H_{2}$ adjacent to $u_{1}^{+}$. Similarly, $v_{1}^{+}$is the only vertex of $H_{1}$ adjacent to $u_{2}^{+}$.

Finally, $u_{1}^{+} u_{2}^{+} \notin E(G), \quad u_{1}^{+} v_{1} \notin E(G), \quad u_{2}^{+} v_{2} \notin E(G), \quad v_{1} \notin N\left(H_{1}-v_{1}^{+}\right), \quad v_{2} \notin$ $N\left(H_{2}-v_{2}^{+}\right), \quad v_{i} \notin N\left(H_{2}\right)$ and $v_{2} \notin N\left(H_{1}\right)$ by similar arguments. Thus $G$ is a spanning subgraph of $J_{n}$, where

$$
\begin{array}{ll}
V\left(A_{1}\right)=V\left(H_{0}^{j}\right) \cup\left\{v_{1}, v_{2}\right\}, & V\left(A_{2}\right)=V\left(H_{1}\right) \cup\left\{u_{1}, u_{1}^{+}\right\} \quad \text { and } \\
V\left(A_{3}\right)=V\left(H_{2}\right) \cup\left\{u_{2}, u_{2}^{+}\right\} . &
\end{array}
$$

If $n \equiv 3 \lambda+2$, then the graph $G_{n}$ has no $D_{\lambda}$-cycle while $\mathrm{NC}_{\lambda}\left(G_{n}\right)=\left\lceil\frac{1}{3}(2 n+\right.$ 3)] $-2 \lambda-1$. Hence Theorem 37 is best possible.

Substituting $\lambda=1$ and noting that $\operatorname{NC} 2(H)<\frac{1}{3}(2 n-3)$ for every proper spanning subgraph $H$ of $J_{n}$, we obtain the following improvement of Theorem 7 .

Corollary 38. If $G$ is 2 -connected and $\mathrm{NC} 2(G) \geqslant \frac{1}{3}(2 n-3)$, then $G$ is hamiltonian unless $n \equiv 0(\bmod 3), n \geqslant 9$ and $G$ is isomorphic to $J_{n}$.

Note that Corollary 19, too, is implied by Corollary 38.
Theorem 37 also improves the following extension of Theorem 3, which is a special case of a more general theorem for $k$-connected graphs ( $k \geqslant 2$ ).

Corollary 39 [12]. If $G$ is 2-connected and $\mathrm{NC}_{\lambda}(G) \geqslant \frac{1}{3}(2 n+5)-2 \lambda$, then $G$ contains a $D_{\lambda}$-cycle.

Theorems 40 and 41 below extend Theorems 8 and 9 , respectively. The proofs are similar to the proof of Theor ${ }^{\wedge} \mathrm{n} 37$ and are hence omitted.

Theorem 40. If $G$ is 3 -connected and $\mathrm{NC}_{\lambda}(G) \geqslant \frac{2}{3} n+2-2 \lambda$, then every two vertices are connected by a $D_{\lambda}$-path.

For $\lambda=1$ we obtain Theorem 8. For $n \geqslant 6$ define the 3 -connected graph $L_{n}$ as the join of $K_{3}$ and the graph of order $n-3$ consisting of three disjoint complete graphs, the orders of which pairwise differ by at most one. If $n \equiv 0(\bmod 3)$ and $n \geqslant 3 \lambda+3$, then $\mathrm{NC}_{\lambda}\left(L_{n}\right)=\frac{2}{3} n+1-2 \lambda$ while $L_{n}$ contains two vertices which are not connected by a $D_{\lambda}$-path. Hence Theorem 40 is best possible for $n \equiv 0(\bmod 3)$. For $n \not \equiv 0(\bmod 3)$ the graph $L_{n}$ shows that the bound on $\mathrm{NC}_{2}$ cannot be lowered by two.

Theorem 41. If $G$ is 2 -connected and $\mathrm{NC}_{\lambda}(G) \geqslant \frac{1}{3}(2 n+2)-2 \lambda$, then $G$ contains a $D_{\lambda}$-path.

For $\lambda=1$ we obtain Theorem 9. We believe that Theorem 41 admits the following improvement, extending Conjecture 10.

Conjecture 42. If $G$ is 2 -connected and $\mathrm{NC}_{\lambda}(G) \geqslant \frac{1}{2}(n+3)-2 \lambda$, then $G$ contains a $D_{\lambda}$-path.

We provide some evidence for Conjecture 42 by extending Theorem 6 .
Theorem 43. If $G$ is 2 -connected and $\mathrm{NC}_{\lambda}(G) \geqslant \frac{1}{2}(n+3)-2 \lambda$, then $G$ contains a $D_{\lambda}$-path.

Proof. Assume $G$ satisfies the conditions of the theorem, but $G$ contains no $D_{\lambda}$-path. Set $t+1=\min \left\{i: G\right.$ has a $D_{i}$-path $\}$, so that $t \geqslant \lambda$. Let $\vec{P}$ be a $D_{t+1}$-path of $G$ for which $\omega_{t}(G-V(P))$ is minimum and $H_{0}$ be a component of $G-V(P)$ of order $t$. Set $k=\left|N\left(H_{0}\right)\right|$. Then $k \geqslant 2$. Let $v_{2}, \ldots, v_{k+1}$ be the neighbors of $H_{0}$, occurring on $\vec{P}$ in the order of their indices, let $v_{1}$ be the first and $w$ the last vertex of $\vec{P}$. A straightforward variation of the argument in the proof of Theorem 37 shows that
there exists a $\left(\vec{P}, v_{1}, t\right)$-subgraph $H_{1}$, a $(\stackrel{P}{P}, w, t)$-subgraph $H_{k+1}$ and, for $i=2, \ldots, k$, a $\left(\vec{P}, v_{i}^{+}, t\right)$-subgraph $H_{i}$ such that $H_{0}, H_{1}, \ldots, H_{k+1}$ are pairwise remote.
Let $u_{i}$ be the first vertex on $v_{i}^{+} \vec{P} v_{i+1}$ such that $u_{i} \notin V\left(H_{i}\right)$ for $1 \leqslant i \leqslant k$, and let $u_{k+1}$ be the last vertex on $v_{k+1} \vec{P} w$ such that $u_{k+1} \notin V\left(H_{k+1}\right)$. Set

$$
U=V(G)-\left(V\left(H_{0}\right) \cup V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup V\left(H_{k+1}\right)\right) \text { and } W=U-\left\{v_{2}, u_{k+1}\right\} .
$$

Define the function $f: W \rightarrow U$ by

$$
f(v)= \begin{cases}v^{+} & \text {if } v \in V(P) \\ v & \text { if } v \notin V(P)\end{cases}
$$

We show that

$$
\begin{equation*}
\text { if } v \in\left(N\left(H_{0}\right) \cup N\left(H_{k+1}\right)\right) \cap W \text {, then } f(v) \notin N\left(H_{0}\right) \cup N\left(H_{2}\right) . \tag{11}
\end{equation*}
$$

Assuming the contrary to (11), let $v$ be a vertex in $\left(N\left(H_{0}\right) \cup N\left(H_{k+1}\right)\right) \cap W$ such that $f(v) \in N\left(H_{0}\right) \cup N\left(H_{2}\right)$.
First suppose $v \in u_{1} \vec{P} v_{2}^{-}$. Then $v \notin N\left(H_{0}\right)$, so $v \in N\left(H_{;+1}\right)$. Also, $v \neq v_{2}^{-}$, otherwise the path $v_{1} \vec{P} v_{2}^{-} H_{k+1} u_{k+1} \stackrel{P}{P} v_{2} H_{0}$ would contradict the choice of $P$. It follows that $f(v) \notin N\left(H_{0}\right)$, so $f(v) \in N\left(H_{2}\right)$. But then the path

$$
v_{1} \vec{P} v H_{k+1} u_{k+1} \stackrel{\rightharpoonup}{P} u_{2} H_{2} v^{+} \vec{P} v_{2} H_{0}
$$

contradicts the choice of $P$.
Next suppose $v \in u_{2} \vec{P} u_{k+1}^{-}$. If $v \in N\left(H_{0}\right)$, then $f(v) \notin N\left(H_{0}\right)$, so $f(v) \in N\left(H_{2}\right)$. Eut then the path $v_{1} \vec{P} v_{2} H_{0} v \stackrel{\rightharpoonup}{P} u_{2} H_{2} v^{+} \vec{P} w$ contradicts the choice of $P$. If $v \in N\left(H_{k+1}\right)$ and $f(v) \in N\left(H_{0}\right)$, then the path $v_{1} \vec{P} v H_{k+1} u_{k+1} \stackrel{\tilde{P}}{ } v^{+} H_{0}$ contradicts the choice of $P$. If $v \in N\left(H_{k+1}\right)$ and $f(v) \in N\left(H_{2}\right)$, then the path

$$
v_{1} \vec{P} v_{2} H_{0} v_{k+1} \tilde{P} v^{+} H_{2} u_{2} \vec{P} v H_{k+1} u_{k+1} \stackrel{\Gamma}{P} v_{k+1}^{+}
$$

(where $u_{k+1} \tilde{P} v_{k+1}^{+}$is understood to be empty if $u_{k+1}=v_{k+1}$ ) contradicts the choice of $P$.

Finally suppose $v \notin V(P)$. Clearly $v \notin N\left(H_{0}\right)$, so $v \in N\left(H_{k+1}\right)$ and $f(v)=v \in$ $N\left(\mathrm{H}_{2}\right)$. But then the path

$$
v_{1} \vec{P} v_{2} H_{0} v_{k+1} \tilde{P} u_{2} H_{2} v H_{k+1} u_{k+1} \tilde{P} v_{k+1}^{+}
$$

contradicts the choice of $P$. Hence (11) holds.

Using (11), Lemma 36 and the fact that $f$ is an injection we conclude that

$$
\begin{aligned}
\frac{1}{2}(n+3)-2 t \leqslant & \left|N\left(H_{0}\right) \cup N\left(H_{2}\right)\right| \\
\leqslant & n-\left|V\left(H_{0}\right) \cup V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup V\left(H_{k+1}\right)\right| \\
& -\left|\left(N\left(H_{0}\right) \cup N\left(H_{k+1}\right)\right) \cap W\right| \\
= & n-4 t-\left|N\left(H_{0}\right) \cup N\left(H_{k+1}\right)\right|+2 \\
\leqslant & n-4 t+2-\left(\frac{1}{2}(n+3)-2 t\right)=\frac{1}{2}(n+1)-2 t .
\end{aligned}
$$

This contradiction completes the proof.
For $n \geqslant 6$ define the 2-connected graph $M_{n}$ as the join of $K_{2}$ and the graph of order $n-2$ consisting of four disjoint complete graphs, the orders of which pairwise differ by at most one. If $n \geqslant 4 \lambda+2$ and $n \neq 0(\bmod 4)$, then $\mathrm{NC}_{\lambda}\left(M_{n}\right)=\left\lceil\frac{1}{2}(n+3)\right\rceil-2 \lambda-1$ while $M_{n}$ contains no $D_{\lambda}$-path. If $n \geqslant 6$ and $n$ is even, then $\mathrm{NC}\left(K_{n / 2-1, n / 2+1}\right)=\left\lceil\frac{1}{2}(n+3)\right\rceil-2-1$ while $K_{n / 2-1, n / 2+1}$ contains no $D_{1}$-path. Hence Theorem 43 is best possible if either $\lambda \geqslant 2$ and $n \neq 0(\bmod 4)$ or $\lambda=1$. The graph $M_{n}$ shows that the bound on $\mathrm{NC}_{\lambda}$ cannot be lowered by two if $\lambda \geqslant 2$ and $n \equiv 0(\bmod 4)$.

## References

[1] D. Bauer, H.J. Broersna and H.J. Veldman, On generalizing a theorem of Jung, 1988, preprint.
[2] D. Bauer, A. Morgana, E.F. Schmeichel and H.J. Veldman, Long cycles in graphs with large degree sums, Discrete Math. 79 (1989/90) 59-70.
[3] J.A. Bondy, Longest paths and cycles in graphs of high degree, Research Report CORR80-16, Dept. of Combinatorics and Optimization, Univ. of Waterloo, Waterloo, Ont., Canada, 1980.
[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London, 1976) and (Elsevier, Amsterdam, 1976).
[5] H.J. Broersma, Hamilton cycles in graphs and related topics, 1988, thesis.
[6] H.J. Broersma and H.J. Veldman, Long dominating cycles and paths in graphs with large neighborhood unions, 1989, preprint.
[7] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
[8] R.J. Faudree, R.J. Gould, M.S. Jacobson and L. Lesniak, Neighborhood unions and highly hamiltonian graphs, J. Graph Theory 15 (1991) 29-38.
[9] R.J. Faudree, R.J. Gould, M.S. Jacobson and R.H. Schelp, Neighborhood unions and hamiltonian properties in graphs, J. Combin. Theory Ser. B 47 (1989) 1-9.
[10] R.J. Faudree, R.J. Gould and T.E. Lindquester, Hamiltonian properties and adjacency conditions in $K(1,3)$-free graphs, in: Proc. 6th Internat. Conf. Theory and Applications of Graphs, Kalamazoo, MI (1988).
[11] E. Flandrin, H.A. Jung and H. Li, Hamiltonism, degree sum and neighborhood intersections, Discrete Math. 90 (i 21) 41-52.
[12] P. Fraisse, $D_{\lambda}$-cycles and their applications for hamiltonian graphs, 1987, preprint.
[13] R.J. Gould and T.E. Lindquester, Some extremal problems involving adjacency conditions for vertices at distance two, in: V.R. Kulli, ed., Recent Studies in Graph Theory (Vishwa, Gulbarga, India, 1989) 140-148.
[14] H. Li and C. Virlouvet, Neighborhood conditions for claw-free hamiltonian graphs, Ars Combin. 29A (1990) 109-116.
[15] H.A. Jung, On maximal circuits in finite graphs, Ann. Discrete Math. 3 (North-Holland, Amsterdam, 1978) 129-144.
[16] T.E. Lindquester, The effects of distance and neighborhood union conditions on hamiltonian properties in graphs, J. Graph Theory 13 (1989) 335-352.
[17] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
[18] H.J. Veldman, Existence of $D_{\lambda}$-cycles and $D_{\lambda}$-paths, Discrete Math. 44 (1983) 309-316.
[19] C.-Q. Zhang, Hamilton cycles in claw-free graphs, J. Graph Theory 12 (1988) 209-216.


[^0]:    * This research was supported in part by the National Security Agency under grant number MDA904-89-H-2008.

    0012-365X/91/\$03.50 © 1991 - Elsevier Science Pablishers B.V. All rights reserved

