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Abstract 

Bauer, D., G. Fan and H.J. Veldman, Hamiltonian properties of graphs with large 
neighborhood unions, Discrete Mathematics 96 (1991) 33-49. 

Let G be a graph of order n, a k =min{~ki=ld(vi): {V 1 . . . . .  Vn} is an independent set 
of vertices in G}, NC=min{IN(u)  13N(v) l :uv~E(G)}  and NC2=min{IN(u) t3 
N(v)l: d(u, v)=2}. O.~ proved that G is hamiltonian if o2~>n ~>3, while Faudree et al. 
proved that G is hamiltonian if G is 2-connected and NC ~> -~(2n - 1). It is shown that both 
results are generalized by a recent result ef Bauer et al. Various other existing results in 
hamiltonian graph theory involving degree-sums or cardinalities of neighborhood unions are 
also compdred in terms of generality. Furthermore, some new results are proved. In particular, 
it is shown that the bound ~(2n - 1) on NC in the result of Faudree et al. can be lowered to 
~ ( 2 n -  3), which is best possible. Also, G is shown to have a cycle of length at least 
min{n, 2(NC2)} if G is 2-connected and 03 ~> n + 2. A Dx-cycle (Dx-path) of G is a cycle (path) 
C such that every component of G - V(C) has order smaller than 2. Sufficient conditions of 
Lindquester for the existence of Hamilton cycles and paths involving NC2 are extended to 
Dx-cycles and D~-paths. 

1. Introduction 

We use [4] for terminology and notation not defined here and consider simple 
graphs only. 
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Throughout, let G be a graph of order n. If G has a Hamilton cycle (a cycle 
containing every vertex of G), then G is called hamiltonian. The graph G is 
traceable if G has a Hamilton path (a path containing every vertex of G),  and 
Hamilton-connected if every two vertices of G are connected by a Hamilton path. 
The number of vertices in a maximum independent set of G is denoted by re(G) 
and the set of vertices adjacent to a vertex v by N(v) .  We denote by Ok(G) the 
minimum value of the degree-sum of any k pairwise non-adjacent vertices if 
k ~< tr(G); if k > or(G), we set trk(G) = k(n  - 1). Instead of a l (G)  we use the 
more common notation 6(G).  If G is noncomplete,  then NC(G) denotes 

min{lN(u) tA N(v)[: uo ~ E(G)} ;  

if G is complete, we set NC(G)  = n - 1. If G has a noncomplete component,  then 
NC2(G) denotes 

min{lN(u) t.J N(v)l: d(u, v) = 2}, 

where d(u, v) is the distance between u and v; otherwise, NC2(G) = n - 1. If no 
ambiguity can arise we sometimes write tr instead of tr(G), Ok instead of try(G), 

etc. 
We mention two classical results in order of increasing generality. 

Theorem 1 [7]. I f  6 (G)  >>- ½n > 1, then G is hamiltonian. 

Theorem 2 [17]. I f  o2(G) >1 n >! 3, then G is hamiltonian. 

In recent literature on hamiltonian graph theory many results appear in which 
certain vertex sets are required to have large neighborhood unions instead of 
large degree-sums. Two such results are the following. 

Theorem 3 [9], I f  G is 2-connected and N C ( G ) > ~ ( 2 n - 1 ) ,  then G is 
hamiltonian. 

Theorem 4 [8]. I f  G is 2-connected and N C ( G ) ~ > n - 6 ( G ) ,  then G is 
hamiltonian. 

Theorems 3 and 2 are incomparable in the sense that neither theorem implies 
the other. Theorem 3 is not even comparable to Theorem 1. It is easily seen that 
Theorem 4 is more general than Theorem 1, but Theorems 4 and 2 are 
incomparable again. 

Sufficient conditions in terms of neighborhood unions were also obtained for 
other hamiltonian properties. 

Theorem 5 [9]. I f  G is 3-connected and NC(G)  1> ½(2n + 1), then G is Hamilton- 
connected. 
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Theorem 6 [9]. I f  G is 2-connected and NC(G) I> ~(n - 1), then G is traceable. 

The following three results are due to Lindquester. 

Theorem 7 [16]. I f  G is 2-connected and NC2(G)~>I (2n-  1), then G is 
hamiltonian. 

' l]leorem 8 [16]. I f  G is 3-connected and NC2(G)>! 2n, then G is Hamiltor~ ~. 
connected. 

Theorem 9 [16]. I f  G is 2-connected and NC2(G) t> -~(2n - 4), then G is traceable. 

Since NC2(G)~>NC(G), Theorem 7 is more general than Theorem 3 an~ 
Theorem 8 is more general than Theorem 5. Theorem 9 does not imply Theore~ 
6, but it was conjectured in [16] that Theorems 6 and 9 admit the following 
improvement. 

Conjecture 10 [16]. If G is 2-connected and NC2 ( G) ~  > ½(n-  1), then G is 
traceable. 

In addition to establishing some new results we also compare a number of 
existing results in terms of generality. 

In Section 2 it is shown that a recent result in [2] is a common generalization of 
Theorems 2, 3 and 4 (and Theorem 1). Using another result in [2] it is further 
shown that the bound ](2n - 1) in Theorem 3 can be lowered to l(2n - 3), which 
is best possible for all n 1> 5. A new common generalization of Theorems 2, 3 and 
4 is also established. 

Section 3 is concerned with hamiltonian properties of Kl.3-free graphs, i.e., 
graphs containing no induced subgraph isomorphic to K1.3. It is shown that 
several results and a conjecture in [10] are implied by results of Broersma [5] and 
Zhang [19]. 

In Section 4 the results in [16] are extended to so-called Dx-cycles and 
Dx-paths. As in [18], a cycle C of G is called a D~-cycle if every component of 
G -  V(C) has order smaller than ;t. Drcycles are Hamilton cycles, while 
D2-cycles are sometimes called dominating cycles. The definition of a D~-path is 
analogous to that of a Dx-cycle. Section 4 also contains an extension of Theorem 
6 to Dx-paths. 

2. Long cycles 

We start by showing that Theorems 2, 3 and 4 are all generalized by the 
following recent result, where c(G) denotes the length of a longest cycle in G. 
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Theorem 11 [2]. I f  G ~ 2-connected and o3(G)/> n + 2, then c(G) >I rain{n, n + 

 o3(c) - o r ( c )} .  

A key lemma for  our  observat ions is the following. 

Lemma 12. o3(G) I> 3 N C ( G )  - n + 3 for n >t 3. 

Proof, We assume or/> 3. Let  {Va, v2, v3} be an independent  set o f  three vertices 

in G such that Z~=a d(vi) = 03. Then  

IN(v,)  to N(vg l  >>- NC,  IN(v1) tO N(v3)[ i> N C  and [N(v2) to N(v3)[/> NC. 

Setting 

d = I N ( v 0  tq N(v2)I + I N ( v 0  t-) N(v3)I + IN(vz) n N(v3)l 

and adding the three inequalities, we obtain 

203 -- d I> 3NC. (1) 

Set t = [N(va) N N(v2) t') N(v3)[. Using (1) we have 

n - 3 t> [N(va) U N(v2) to N(u3)[ = 0"3 - -  d + t/> ½(3NC + d)  - d + t, 

whence 

d/> 3NC + 2t - 2n + 6 I> 3NC - 2n + 6. (2) 

Combinat ion of  (1) and (2) completes  the proof.  []  

We need two more  lemmas. Their  proofs are simple and are hence omitted.  

Lemma 13, 0`3(G) >I 30`2(G). 

Lemma 14. 0r(G) ~< n - NC(G) .  

Proposi t ion 15. I f  G satisfies the hypothesis of  Theorem 2, then G is hamiltonian 
by Theorem 11o 

Proof .  Assume 0`2 ~> n />  3. Then  G is 2-connected and hence o3/> 0`2 + 2 ~> n + 2. 
By Lemmas  13 and 14 and the obvious fact that  NC I> ½o2, 

n .-b l o  3 - -  O( ~ n + ½0`2 -- (n -- NC) = ½0"2 + NC >t oz >- n. 

Hence G is hamiltonian by T he o re m  11. [] 

Proposition 16. I f  G satisfies the hypothesis of  Theorem 3, then G is hamiltonian 
by Theorem 11. 
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I'rooL Assume G is 2-connected and NC >/½(2n - 1). By Lemma 12, 03 ~> n + 2. 
UAng Lemma 14 we obtain 

n --[- l f f  3 - -  o:  ~ n -~- ~(~ + 2) --" (n -- NC) ~- l (n  + 2) + I(2n - 1) > n. 

Iqence G is hamiltonian by Theorem 11. [] 

Proposition 17. If G satisfies the hypothesis of  Theorem 4, then G is hamiltonian 
by Theorem 11. 

Proof. Assume G is 2-connected and NC 1> n -  6. If 6 ~ ~(n + 1), then N C ~  > 
i(2n - 1) and we are done by Proposition 16. Hence assume 6 I> 1(n + 2). Then 
03 I> 36 >/n + 2 and, by Lemma 14, 

n + 1 o 3 -  cr~>n + 1 o 3 -  ( n - N C ) ~ > 1 o 3 + n -  6>~n. 

Hence G is hamiltonian by Theorem 11. [] 

We now show that the bound I ( 2 n -  1) in Theorem 3 can be lowered to 
~ ( 2 n -  3) by using a result in [2] which is closely related to Theorem 11. The 
graph G is called 1-tough if o~(G - S) <~ ISI for every subset S of V(G) such that 
to(G - S) > i ,  where to(G - S) denotes the number of components of G - S. 

Theorem 18 [2]. If G is 1-tough and o3(G)~> n I> 3, then c(G)>t min{n, n + 

Io3(G)- o~(G)}. 

Coronary 19. I f  G is 2-connected and NC(G) ~> 1(2n - 3), then G is hamiltonian. 

Proof. Let  G be 2-connected with NC ~> I(2n - 3 ) .  It is easily checked that G is 
hamiltonian if n ~< 6. We assume n/> 7 and show that G is then hamiltopian by 

Theorem 18. 
We first prove that G is 1-tough. Assuming the contrary, let S be a subset of 

V(G) such that o~(G - S) >/[SI + 1, (;1 a smallest component of G - S and (;2 a 
smallest component of G - (S U V(G1)). Then 

(n- INl~ and 2 <~ ISl ~< ½(n - 1). IV(G01 + IV(Ge)I ~<2 \lSI + 1/ 

If v~ e V(G1) and v2 e V(G2), then 

NC <~ IN(v,) O N(v2)I ~ 2( ~ )  - 2 + ISI <- I(2n - 4 )  • 

This contradiction saows that G is 1-tough. 
By Lemmas 12 and ~4, 

n + 1 o 3 -  a~ :~ n + I n  - ( n  - NC) ~>n - 1. 
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From Theorem 18 we conclude that G is hamiltonian unless 

tr3 = n, NC = ~(2n - 3) and o~ = -~(n + 3). (3) 

The proof is now completed by showing that G cannot satisfy (3). Suppose (3) 
holds. Let S be an independent set with ISI -- a: -- k(n + 3) and set T = V ( G )  - S. 

)'~'i=1 d(vi)  = ( 7  3 = n. For any u e T, Let {Vl, v2, On} be an independent set with 3 

u is adjacent to all but at most one vertex of S, (4) 

otherwise N C <  ITI = ½ ( 2 n - 3 ) .  In particular, every vertex of T has degree at 
least ~3n. We now derive contradictions in four cases. 

Case 1: vl, v2, v3 ~ T. 
Then d ( v  0 = d(v2) = d(v3) = -~n, implying that N(v i )  ~_ S (i = 1, 2, 3). Hence,  

since n t> 7, 

NC ~< IN(v0 tO N(vz) l  <- ISl = ~(n + 3) < ](2n - 3), 

a contradiction. 
Case 2: vl ,  vz e T and v3 ~ S. 
Then N ( v l )  f'l N(V2) D S - -  {133}. Hence 

d(vO + d(v2) = IN(v1) U/V(v2)I + IN(v1) n N(vgl  

t> A(2n - 3 )  + ISl - 1 = n - 1. 

It follows that d(v3) <~ 1, contradicting the fact that G is 2-connected. 
Case 3: vl  ~ T and v2, v3 e S. 
Then vl is adjacent to at most ISI - 2 vertices of S, contradicting (4). 
Case 4: v~, v2, v3 e S. 
By (4), every vertex of T is adjacent to at least two vertices in {ol, v2, v3}. 

Since n t> 7, we obtain 

3 

~', d(vi)  I>2 ITI = ~(2n - 3) > n ,  
i = I  

contradicting (3). [] 

For a real number r, let [r] denote the smallest integer greater than or equal to 
r. Corollary 19 is best possible in the sense that for every n/> 5 there exists a 
nonhamiltonian graph of order n with NC = [~(2n - 3)] - 1. For n I> 5, define the 
graph G, as the join of K2 and the graph of order n -  2 consisting of three 
disjoint complete subgraphs, the orders of which pairwise differ by at most one. 
G, is nonhamiltonian and NC(G,)  = [~(2n - 3)] - 1. 

Note that the graph G, is not 1-tough. For n >~ 7 and n ~ 2 (mod 3) there also 
exist extremal graphs for Corollary 19 which are 1-tough. For n/> 7, construct 
the graph H,  from the join of KI and the graph of order n - 1 consisting of three 
disjoint complete subgraphs, the orders of which pairwise differ by at most one, 
by choosing a vertex in each of the three complete subgraphs and adding the 
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edges of a triangle between the three vertices. The graph Hn is 1-tough and 
nonhamiltonian and, if n ~ 2 (mod 3), NC(Hn) = [~(2n - 3)] - 1. Another 1- 
tough extremal graph for Corollary 19 is the Petersen graph. 

For n -  2 (mod 3) the graph H,  shows that the bound on NC in Corollary 19 
cannot be lowered by two if G is 1-tough. 

For future reference we describe another class of 1-tough non-hamiltonian 
graphs. For n/> 9, construct the graph Jn of order  n from three disjoint complete 
graphs A1, A2, A3 with 

IIV(A~)I-IV(Aj)II<~I for l ~ < i < j ~ < 3  

by choosing, for i = 1, 2, 3, two distinct vertices xi and Yi in Ai and adding the 
edges xlx2, XlX3, X2X3, Yl Y2, Y~ Y'_,, Y2Y3. If n -- 0 (mod 3), then NC2(J,) = ~(2n - 3). 
In Section 4 (Corollary 38) it is shown that in the hypothesis of Corollary 19 NC 
can be replaced by NC2 unless n = 0 (mod 3) and G is isomorphic to J~. Note 
that for n -- 0 (mod 3) the graph J,  is also an extremal graph for Corollary 19. 

Corollary 19 is also contained in the following recent result, stated in [11] as a 
consequence of a more general result. 

Theorem 20 [11]. I f  G is 2-connected and, for every pair o f  non-adjacent 
vertices u and v, 3 IN(u) t_J N(v)) + max{2, IN(u) N N(v)l} t> 2n - 1, then G is 
hamiltonian. 

We have observed that Theorem 11 implies Theorems 2, 3 and 4. Using 
Lemmas 21 and 22 below we establish another common generalization of 
Theorems 2, 3 and 4. We need some additional notation. If C is a cycle of G, we 
denote by C the cycle C with a given orientation. IS u, v ~ V(C) ,  then uCv 
denotes the consecutive vertices on C from u to v in the direction specified by t~. 
The same vertices, in reverse order,  are given by vCu. We will consider uCv 
and vCu both as paths and as vertex sets. We use u ÷ to denote the successor of u 
on C and u -  to denote its predecessor. I rA  ~_ V(C),  then A ÷ = {v+: v cA}.  The 
set A -  is analogously defined. In Section 4 we use similar notation for paths 
instead of cycles. 

A central lemma in [2] is the following. 

Lemma 21 [2]. Assume 6(G)>t 2, o3(G)>~ n and G contains a longest cycle 
which is a D2-cycle. l f  u e V (G)  - V(C)  and A = N(u),  then (V (G )  - V(C))  t.J A + 
is an independent set. 

The first part of the next lemma is a result of Bondy [3]; the second part is 
implicit in the proof of [2, Theorem 10]. 

Lemma 22. Assume G is 2-connected and o3(G) I> n + 2. Then every longest cycle 
o f  G is a D2-cycle. Moreover, G contains a longest cycle C such that 
max{d(v): v e V(G)  - V(C)} t> 13(n + 2). 
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Suppose G satisfies the hypothesis of one of Theorems 2, 3 and 4. Then 
o3(G)>~n +2 ,  as observed in the proofs of Propositions 15, 16 and 17. 
Furthermore, it is easily seen that NC2(G)I> ½n. Hence G is hamiltonian by the 

following result. 

Theorem 23. I f  G is 2-connected and o 3 (G )>~n +2 ,  then c( G ) >! 
rain{n, 2(NCE(G))}. 

Proof. Assume G is 2-connected and o3 I> n + 2. We are done if G is hamil- 
tonian. Otherwise, by Lemma 22, G contains a longest cycle (~ such that C is a 
D2-cycle and V ( G ) - V ( C )  contains a vertex u with d(u)>~(n +2) .  Set 
A = N(u). Clearly, A O A + = ~t. Since d(u) > ~ IV(C)I, C contains a vertex v such 
that v +, v - c A .  In particular, d(u, v ) =  2. Set B = N(u)U N(v). By Lemma 21, 
B ~_ V(C). We claim that B O B ÷ = I~. Assuming the contrary, let w be a vertex 
in B O B +. It is clearly impossible that w ~ N ( u )  and w -  e N(u). If w e N(u) and 
w - e  N(v), then the cycle v+uwCvw-Cv + is longer than C, a contradiction. If 
w ~ N(v) and w - e  N(u), then the cycle v -uw-CvwCv-  contradicts the choice 
of C. Finally, if w e N ( v )  and w - e N ( v ) ,  then the cycle v-uv+Cw-vwCv - 
contradicts the choice of C Hence, indeed, B O B + = O .  It follows that 

IV(C)I/>2 IBI~>2(NC2). [] 

Theorem 23 is best possible in two different senses. We first note that if G is a 
complete bipartite graph, then c(G) = 2(NC2(G)),  so the conclusion of Theorem 
23 cannot be strengthened. We next observe that °:he condition o3(G)t> n + 2 
cannot be relaxed: the graph Gn (defined after Corollary 19) has o3(Gn) = n + 1, 
while c(Gn) = NC2(Gn) + 2 if n --- 2 (mod 3) and c(G,,) = NC2(G~) + 3 otherwise. 
In this context we mention the following result. 

Theorem ?.4 [13]. Let G be 2-connected and noncomplete. Then c(G)>~ 
NC2(G) + 2. If  NC2(G) is odd and n > NC2(G) + 3, then c(G) >! NC2(G) + 3. 

The following result is closely related to Theorem 23 and will appear 

elsewhere. 

Theorem 25 [6]. If  G is 2-connected and G contains a D2-cycle, then c(G)>i 
rain{n, 2NC(G)} unless G is the Petersen graph. 

A variation of Theorem 23 for 1-tough graphs is the following. 

Theorem 26. If  G is 1-tough and o3(G) I> n/> 3, then c( G ) >I 
min{n, 2(NC2(G))}. 
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The proof of Theorem 26 is omitted, since it is almost identical to the proof of 
Theorem 23. We note that Theorem 26, too, implies Corollary 19: if G is 
2-connected and NC(G) i> ~(2n - 3), then, as in the proof of Corollary 19, G is 
1-tough and o3(G) I> n, so that, by Theorem 26, 

c(G) >t min{n, 2(NC2(G))} >I min{n, 2NC(G)} 

t> min{n, [~(2n - 3)] } 1> n (n i> 4). 

We conjecture that Theorem 26 admits the following improvement. 

Conjecture 27. If G is 1-tough and o3(G) l>nl>3, then c(G)>>- 
min{n, 2(NC2(G)) + 4}. 

If true, Conjecture 27 would imply the following recent improvement of Jung's 
Theorem [15]. 

Theorem 28 [1]. I f  G is 1-tough, o3(G)>~n>~3 and, for all vertices 
x, y, d(x, y) = 2 implies max{d(x), d(y)} >~ s, then c(G) >I min{n, 2s + 4}. 

3. Hamilton cycles and paths in K~-free graphs 

We state a result occurring in [10]. The graph G is homogeneously traceable if 
for every vertex v of G there exists a Hamilton path of G starting at v. Clearly, 
every hamiltonian graph is homogeneously traceable. 

Theorem 29 [10]. Let G be 3-connected and K1.3-free. I f  NC(G)/> ~(2n - 4), then 
G is homogeneously traceable. 

It is conjectured in [10] that, under the hypothesis of Theorem 29, G is in fact 
hamiltonian. 

Conjecture 30 [10]. Let G be 3-connected and Kl.a-free. If NC(G)>t ~(2n - 4 ) ,  
then G is hamiltonian. 

The following result was independently obtained by Broersma and Zhang. 

Theorem 31 [5, 19]. Let G be 2-connected and K1,3-free. I f  o3(G) >I n - 2, then G 
is hamiltonian. 

More generally, Zhang [19] proved that G is hamiltonian if G is k-connected 
and Kl.3-free with ok+~(G)>~n-k(k>~2).  The following consequence of 
Theorem 31 and [.emma 12 improves Theorem 29 and Conjecture 30. 
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Corollary 32. Let G be 2-connected and K1.3-free. I f N C ( G )  >1 ½(2n - 5), then G is 
hamiltonian. 

The graph Jn is K1.3-free and NC(Jn) = [~(2n - 5)] - 1, showing that Corollary 
32 is best possible for all n/> 9. 

Another improvement of Conjecture 30 was recently obtained by Li and 
Virlouvet. 

11 Theorem 33 [14]. Let G be 3-connected and K1.3-free. I f  NC(G) > ~ (n  - 7), then 
G is hamiltonian. 

Broersma proved an analogoue o~ Theorem 31 for traceable graphs. 

Theorem 34 [5]. Let G be connected and K1.3-free..If tr3(G ) >I n - 2 ,  then G is 
traceable. 

Combination with Lemma 12 yields the following. 

Corollary 35. Let G be connected and K1.3-free. I f  NC(G) i> l(2n - 5), then G is 
traceable. 

A weaker version of Corollary 35, with ~(2n - 5) replaced by ~(2n - 3), occurs 
in [10]. The connected nontraceable graph J'n obtained from Jn by deleting the 
edges YlY2, YlYa, Y2Y3 is K1.3-free and N C ( J ' ) =  [ I ( 2 n - 5 ) ] -  1, showing that 
Corollary 35 is best possible. 

4. Dwcycles and Dz-paths 

In order to extend Theorems 6-9 to results on Dx-cycles and Dx-paths we 
introduce some additional terminology and notation. Let H,/-/1,/-/2 be subgraphs 
of G and t, ~, positive integers. By N(H)  we denote the set of vertices in 
V(G) - I, ,,'t) that are adjacent to at least one vertex of H. The vertices in N(H)  
are called neighbors of H. The distance d(H~,//2) between/-/1 and H2 is the length 
of a shortest path in G starting at a vertex of H~ and ending at a vertex of HE. We 
call Hi and /-/2 remote if d(H1, HE)t> 2. If H is connected and u and v are 
neighbors of H, then uHv denotes a (u, v)-path of length at least 2 with all 
internal vertices in H; uH denotes a nontrivial path starting at u such that all 
other vertices of the path are in H;  Hu is analogously defined. By tot(H) we 
denote the number of components of H with at least t vertices; in particular, 
tot(H) = t0(H). If G contains two remote connected subgraphs of order ~,, then 
NCx(G) denotes min{IN(H1)UN(H2)I:H1 and 112 are remote connected 
subgraphs of order ~.}; otherwise we set NCx(G) = n . -  2~, + 1. If G contains two 
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connected subgraphs of order 3. at distance 2, then NC2x(G) denotes 
min{IN(H1)ON(Hz)I:H1 and //2 are connected subgrapns of order Z with 
d(H1,/--/2) = 2}; otherwise, NC2x(G) = n - 23. + 1. In particular, NCI(G) = 
NC(G) and NC21(G)= NC2(G). The following lemma is easily established; we 
omit its proof. 

Lemma 36. I f  t>13., then NC/(G) I > N C x ( G ) - 2 ( t - 3 . )  and NC2t(G)/> 
NC2x(G) - 2(t - 3.). 

If /~ is an oriented cycle or path and v e  V(H),  then we call H~ an 
(171, v, t)-subgraph if each of the following requirements holds: 

(i) /-/1 is connected and has order t, 
(ii) fl :/: V(H1) ("1 V(H)  = vfflw for some vertex w ~ V(H),  

(iii) if Hz satisfies (i) and (ii), then V(H1) fq V(H) ~ V(tt2) fq V(H). 
An (FI, v, t)-subgraph is similarly defined. (in (ii), replace vfflw by vHw). We 

are now ready to state and prove the following result. 

Theorem 37. f f  G is 2-connected and NC2x(G) t> ~(2n + 3) - 23., then G contains 
a E~-cycle unless n -~ 0 (mod 3), n >t 33. + 6 and G is a spanning subgraph of  J~. 

Proof. A~sume G satisfies the conditions of the theorem, but G contains no 
Dx-cycle. Set t + i = min{i: G has a Di-cycle}, so that t I> 3.. Let (~ be a Dr+l-cycle 
of G for which tot(G - V(C))  is minimum. Since G has no D,-cycle, G - V(C)  
has a component H0 of order  t. Let  vl . . . . .  vk be the neighbors of H0, occurring 
on (~ in the order of their indices. Since G is 2-connected, k i> 2. As in the proof 
of [18, Theorem 2] there exists, for i = 1 . . . . .  k, a (t~, v[ ,  t)-subgraph Hi such 
that Ho, 1-11 . . . . .  Hk are pairwise remote. Let ui be the first vertex on v[Cvi÷~ 
such that ui ~ V(Hi) (i = 1 . . . . .  k; indices mod k). Set 

U = V(~3) - (V(Ho) t3 V(H1) O V(Hk)) and W = U - {Ul, v~}. 

Define the function f : W---> U by 

i -  if oeu~CVk,  
f ( v )  = + if v e ukCv?, 

if v ~ V(C).  

We show that 

if u e (N(H 0 N W) - {v~-}, then f ( v )  ~ N(Ho) U N(Hk). (5) 

Assuming the contrary to (5), let v be a vertex in (N(HO N W) - {v~-} such that 
f ( v )  e N(Ho) U N(Hk). If v e u~Cvk and f ( v )  e N(Ho), then v -  = Lt i for some 
i e {2 . . . . .  k - 1} and we obtain the contradiction that H1 and Hi are not remote. 
If v e u~Cvk and f ( v )  e N(Hk), then G contains the cycle 

C' = V1HoVkCvH1ulCv-HkukC-.v,. 
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By the way Hi and  Ilk were  chosen  and  the  fact  tha t  n~ and  Hk a re  r e mo te ,  we 

have a~t(G - V(C'))  < tot(G - V(C)),  cont rad ic t ing  the  choice  o f  C. I f  v e 

ukC-,v~-, then,  since ukCv-~ conta ins  no  ne ighbors  o f  Ho, f ( v )  e N(Hk). But  then  

the cycle 

vlHovkCulHl vCuI, Hkv + Cvl 

contradic ts  the choice of  C. I f  v ~ V(C), then  c lear ly  f ( v ) ~ N ( H o ) ,  whence  

f ( v )  e N(Hk);  bu t  then  the cycle vlHovkCulHlvHkukevl con t rad ic t s  the  choice  o f  

C. Thus (5) holds.  
Note  tha t  d(Ho, H~) = 2 and  f is an in jec t ion .  Combin ing  these  facts with (5) 

and L e m m a  36 we conc lude  that  

~(2n + 3) - 2t  ~< IN(H0) t.J N(Hk)I 

~<n -- I v ( n o )  O V(B,)  O V ( n k ) l -  ( I N ( n 0  N Wl - e) 

= n - 3t - (IN(n01 - 2 - e),  (6) 

where  e = 0 if v? ~ N(HO fq W and  e = 1 if v7 • N(H1) N W. H e n c e  

IN(H01 ~< ~(n + 3) - t + e. (7) 

Since IN(Ho) U N ( H 0 1 / >  ~(2n + 3) - 2t and  IN(Ho) f3 N(H~)I 1> 1, we ob t a in  

k = IN(Ho)I I> ~(2n + 3) - 2t - (-~(n + 3) - t + e) + 1 = ½(n + 3) - t - e. 

(8) 
W e  now dist inguish two cases,  the  first o f  which will turn  ou t  to  y ie ld  a 

contradic t ion.  

Case 1: For some i ~ {1 . . . . .  k}, v[- ~ N(Hi). 
Assume  wi thout  loss of  genera l i ty  that  v? ~ N(HO. Then  e = 0 in (6),  (7) and  

(8). The  fact that  H0, H1 . . . . .  Hk are  pa i rwise  r e m o t e  and  (8) imply  

IN(Ho) t2 N ( H 0 I  ~< n - (k  + 1)t ~< n - (~(n + 3) - t + 1)t 

= ~ ( 2 n  + 3 ) - -  2t + (t  - 1 ) ( t  - ~ (n  - 3 ) ) .  (9 )  

Since G is 2-connec ted ,  we have  I,N(H01 >/2. H e n c e  by (7), t ~< ½(n - 3). F r o m  (9) 

it now follows tha t  t = 1 or  t = ~(n - 3). 

Case 1.1: t = 1. 

Le t  u be the ver tex  of  H0 and set  R = V ( G ) -  V(C), S = {v • V(C) :  v - ,  v + • 

N(u)} .  Using (8) we have 

n ~>2 ISl + 3(iN(u)l - ISI) + IRI = 3 IN(u)l + Inl - I S I  ~>n + IRI - ISI, 

implying that  IRI ~< ISI. Since every  ver tex  in R can be  a d j a c e n t  to  at  mos t  one  

ver tex  in S while u is ad j acen t  to no ver tex  in S, there  exists  a ve r t ex  v in S such 

that  N(v) NR=O.  H e n c e ,  if we set B = N ( u ) t . J N ( v ) ,  we have B~_V(C).  
Arguing  as in the  p r o o f  of  T h e o r e m  23 we ob ta in  B N B ÷ = 0. But  then  

n - 1 ~ I V(C)l/> 2 IBI t> 2NC2 >/2(2n - 3), 

whence n <~ 3, a cont radic t ion .  
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Case 1.2: t = ~(n - 3)  
Since (9) holds with equality, (8) also holds with equality. In particular, 

[N(Ho) N N(H01 = 1, implying that 

v ( a )  = V(Ho) U V(H,) U V(H2) U {v,, u, ,  vz}. 

The vertex ul is not in N(H2), otherwise the cycle vlHov2H2Ul CVl contradicts the 
choice of C. It follows that 

[N(Ho) tO N(I:L:!'[ = 2 < 3 = ~(2n + 3) - 2t, 

a contradiction. 
Case 2: For all i e {i . . . . .  k}, v~" e N(Hi). 
Since Hi and /-/~+1 are remote and vT+l e N(Hi+l), we have ui~vi+~ (i = 

1 . . . . .  k; indices mod k). Also, ui 4: v,:÷l, otherwise the cycle 

viHo vi + 1 uitli + 1  Ui + 1C.vi-nivi 

would contradict the choice of C. It ~ollows that 

n >I t + k ( t  + 3). (10) 

Combining (10) and (8), now with e = 1, yields 

n >~ t + ( }n  - t ) ( t  + 3), 

whence n <~ 3t + 6. On the other hand, (10) implies n 1> 3t + 6, since k/> 2. We 
conclude that n = 3t + 6, k = 2 and 

V(G)  = V(Ho) tO v ( n , )  tO V(H2) tO {Vl, ul, u'~, v2, u2, u~}. 

To prove that G is a spanning subgraph of J , ,  we first observe that 
N(ui) ~_ V(HI) t0 {u +} (i = 1, 2). Assuming the contrary, one easily finds a cycle 
that contradicts the choice of C. 

We next show that v~ is the only vertex of 112 adjacent to u~-. Assuming the 
contrary, let x be a vertex of /42 with u~x e E(G)  and x :/: v + and let fi be a 
(v~, x)-path in HE. Consider the cycle 

C t  + ~  ÷ + =/51Hov21)2 Pxul  UlHlU2 01 

and let H be the component of G - V(C' )  that contains uz. Then 

V (H) {uz} L' (V (Hz) - {x, 

so IV(H)[ < t. Since the other two components of G - V(C' )  also have fewer than 
t vertices., C' contradicts the choice of C. Hence,  indeed, v~- is the only vertex of 
//2 adjacent to u~-. Similarly, v~ is the only vertex of / /1  adjacent to u~-. 

Finally, u~u~ ¢ E(G),  u~vl ~ E(G),  u~v2 ~ E(G),  vl ~ N(HI - v~), v2 q~ 
N(H2--v~),  v.,C.N(H2) and v2¢N(H1) by similar arguments. Thus G is a 
spanning subgraph of J , ,  where 

V(AO = V(V.,b) U {v,, v2}, V(A2) = V(HI) tO {ul, u~'} and 

V(A ) = V ( H 9  tO u-+,}. [] 
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If n ~:3). +2 ,  then the graph G,  has no D~-cycle while NC2~(G, )=  [](2n + 
3)] - 2). - 1. Hence Theorem 37 is be~t possible. 

Substituting ) .=  1 and noting that N C 2 ( H ) < ~ ( 2 n - 3 )  for every proper  
spanning subgraph H of  J,,  we obtain the following improvement of Theorem 7. 

Corollary 38. I f  G is 2-connected and NC2(G)/> ~(2n - 3), then G is hamiltonian 
unless n =- 0 (mod 3), n ~> 9 and G is isomorphic to J,. 

Note that Corollary 19, too, is implied by Corollary 38. 
Theorem 37 also improves the following extension of Theorem 3, which is a 

special case of a more general theorem for k-connected graphs (k/> 2). 

Corollary 39 [12]. If G is 2-connected and NCa(G)~> ½(2n + 5 ) -  2)., then G 
contains a Dx-cycle. 

Theorems 40 and 41 below extend Theorems 8 and 9, respectively. The proofs 
are similar to the proof of T h e o r - n  37 and are hence omitted. 

Theorem 40. I f  G is 3-connected and NC2x(G)/> ~n + 2 -  2)., then every two 
vertices are connected by a Dx-path. 

For ). = 1 we obtain Theorem 8. For n/> 6 define the 3-connected graph L ,  as 
the join o f / (3  and the graph of order n - 3 consisting of three disjoint complete 
graphs, the orders of which pairwise differ by at most one. If n ---- 0 (rood 3) and 
n/> 3). + 3, then NC2x(L,) = ~n + 1 - 2)- while L ,  contains two vertices which are 
not connected by a Dz-path. Hence Theorem 40 is best possible for n -- 0 (mod 3). 
For n ~ 0 (mod 3) the graph L ,  shows that the bound on NC2x cannot be lowered 
by two. 

Theorem 41. If G is 2-connected and NC2x(G) t> ~(2n + 2) - 2)., then G contains 
a D~-path. 

For ). = 1 we obtain Theorem 9. We believe that Theorem 41 admits the 
following improvement, e~:tending Conjecture 10. 

Conjecture 42. If G is 2-connected and NC2x(G)~>½(n + 3 ) - 2 ) . ,  then G 
contains a Dx-path. 

We provide some evidence for Conjecture 42 by extending Theorem 6. 

Theorem 43. I f  (7, is 2-connected and NC~(G) >I ½(n + 3) - 2)., then G contains a 
D~-path. 
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Proof. Assume G satisfies the conditions of the theorem, but G contains no 
Dx-path. Set t + 1 = min{i: G has a Di-path}, so that t/> it. Le t /3  be a D,+l-path 
of G for which ~ot(G - V(P) )  is minimum and Ho be a component of G - V(P)  of 
order t. Set k = [N(H0)[. Then k>~2. Let v2 . . . . .  Vk+l be the neighbors of H0, 
occurring on /3 in the order of their indices, let vl be the first and w the last 
vertex of /5. A straightforward variation of the argument in the proof of 
Theorem 37 shows that 

there exists a (/3, 01, t)-subgraph H1, a (/3, w, t)-subgraph Hk+ 1 and, for 
i = 2 . . . . .  k, a (/3, v;', t)-subgraph Hi such that Ho, H1 . . . . .  Hk+l are 
pairwise remote. 

Let ui be the first vertex on v~/3vi+l such that ui q V(Hi) for 1 ~< i ~< k, and let 
Uk+~ be the last vertex on vk+l/3w such that uk+l ~ V(Hk+I). Set 

U = V(G)  - (V(Ho) tA V(H1) tA V(H2) LI V(Hk+1)) and W = U -  {02, Uk+l}. 

Define the function f : W--~ U by 

~v + if v ~ V(P) ,  
f(v) [ v if v q. V(P).  

We show that 

if v ~ (N(Ho) U N(Hk+~)) N W, then f ( v )  ~ N(Ho) 0 N(H2). (11) 

Assuming the contrary to (11), let v be a vertex in (N(Ho) U N(Hk+I)) N W such 
that f ( v )  e N(Ho) U N(H2). 

First suppose v ~ ul/3v~. Then v ~ N(Ho), so v ~ N(H:,+I). Also, v :/: v~-, 
otherwise the path V~/3V~Hk+tUk+~/3V2Ho would contradict the choice ot P. It 
follows that f ( v )  ~ N(Ho), so f ( v )  ~ N(H2). But then the path 

vl/3vHk+,uk +,/3UEHzV + Pv2Ho 

contradicts the choice of P. 
Next suppose v ¢ u2/3u-~+l. If v ~ N(Ho), then f ( v )  ~ N(Ho), so f ( v )  ¢ N(Hz). 

But then the path v~/3VEHoV/3uzH2v+/3w contradicts the choice of P. If 
v ~ N(H~+I) and f ( v )  e N(Ho), then the path vl/3vHk+lUk+~/3v+Ho contradicts 
the choice of P. If v e N(Hk+O and f ( v )  ~ N(H2), then the path 

v , /3vzHoVk + , /3v + Hzuz /3V Hk + lUk + ,/3v ~+ , 

(where uk+IPv-~+~ is understood te be empty if uk+l = vk+~) contradicts the 
choice of P. 

Finally suppose v ~ V(P).  Clearly v ~ N(Ho), so v z N(Hk+O and f ( v )  = v e 
N(H2). But then the path 

Vl /3VEHoVk + , /3u2H2VHk + ,Uk + , /3V L , 

contradicts the choice of P. Hence (11) holds. 
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Using (11), Lemma 36 and the fact that  f is an injection we conclude that 

½(n + 3) - 2t ~< IN(Ho) U N(H2)I 

~<n - I v ( n 0 )  t3 V(HO O v ( n 2 )  u v(nk+oI 

- [(N(n0) LI N(Hk+O) fl WI 

= n - 4t - IN(H0) t_J N(Hk+OI + 2 

~< n -- 4t + 2 -- (½(n + 3) -- 2t) = ½(n + 1) -- 2t. 

This contradiction completes  the proof.  [] 

For  n 1> 6 define the 2-connected graph M.  as the join of  K2 and the graph of  
order  n -  2 consisting of  four  disjoint complete  graphs,  the orders  of  which 
pairwise differ by at most  one.  If  n > ~ 4 ~ . + 2  and n ~ 0 ( m o d 4 ) ,  then 
NCx(M.) = [½(n + 3)] - 2;t - 1 while Mn contains no Dx-path. If  n i> 6 and n is 

even, then NC(Kn/2_l.n/2+l) = [½(n , + 3 ) ] - 2 - 1  while Kn/2-1.n/2+l  contains no 
D~-path. Hence  T he o re m  43 is best possible if ei ther ~. ~> 2 and n * 0 (mod  4) or  
;t = 1. The graph M.  shows that  the bound  on NCx cannot  be lowered by two if 

Z I> 2 and n ~- 0 (mod 4). 
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