Hamiltonian properties of graphs with large neighborhood unions

Douglas Bauer*

Department of Pure and Applied Mathematics, Stevens Institute of Technology, Hoboken, NJ 07030, USA

Genghua Fan

Department of Systems Design Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1

Henk Jan Veldman

Faculty of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands

Received 10 April 1989 Revised 17 April 1990

Abstract

Bauer, D., G. Fan and H.J. Veldman, Hamiltonian properties of graphs with large neighborhood unions, Discrete Mathematics 96 (1991) 33-49.

Let G be a graph of order n, $\sigma_k = \min\{\sum_{i=1}^k d(v_i): \{v_1, \ldots, v_k\}$ is an independent set of vertices in G}, NC = $\min\{|N(u) \cup N(v)|: uv \notin E(G)\}$ and NC2 = $\min\{|N(u) \cup N(v)|: uv \notin E(G)\}$ and NC2 = $\min\{|N(u) \cup N(v)|: uv \notin E(G)\}$ and NC2 = $\min\{|N(u) \cup N(v)|: uv \notin E(G)\}$ and NC2 = $\min\{|N(u) \cup N(v)|: uv \notin E(G)\}$ and NC2 = $\min\{|N(u) \cup N(v)|: uv \notin E(G)\}$ and NC2 = $\min\{|N(u) \cup N(v)|: d(u, v) = 2\}$. Ore proved that G is hamiltonian if $\sigma_2 \ge n \ge 3$, while Faudree et al. proved that G is hamiltonian if G is 2-connected and NC $\ge \frac{1}{3}(2n-1)$. It is shown that both results are generalized by a recent result of Bauer et al. Various other existing results in hamiltonian graph theory involving degree-sums or cardinalities of neighborhood unions are also compared in terms of generality. Furthermore, some new results are proved. In particular, it is shown that the bound $\frac{1}{3}(2n-1)$ on NC in the result of Faudree et al. can be lowered to $\frac{1}{3}(2n-3)$, which is best possible. Also, G is shown to have a cycle of length at least $\min\{n, 2(NC2)\}$ if G is 2-connected and $\sigma_3 \ge n + 2$. A D_{λ} -cycle (D_{λ} -path) of G is a cycle (path) C such that every component of G - V(C) has order smaller than λ . Sufficient conditions of Lindquester for the existence of Hamilton cycles and paths involving NC2 are extended to D_{λ} -cycles and D_{λ} -paths.

1. Incroduction

We use [4] for terminology and notation not defined here and consider simple graphs only.

* This research was supported in part by the National Security Agency under grant number MDA904-89-H-2008.

0012-365X/91/\$03.50 (C) 1991 - Elsevier Science Publishers B.V. All rights reserved

Throughout, let G be a graph of order n. If G has a Hamilton cycle (a cycle containing every vertex of G), then G is called hamiltonian. The graph G is traceable if G has a Hamilton path (a path containing every vertex of G), and Hamilton-connected if every two vertices of G are connected by a Hamilton path. The number of vertices in a maximum independent set of G is denoted by $\alpha(G)$ and the set of vertices adjacent to a vertex v by N(v). We denote by $\sigma_k(G)$ the minimum value of the degree-sum of any k pairwise non-adjacent vertices if $k \leq \alpha(G)$; if $k > \alpha(G)$, we set $\sigma_k(G) = k(n-1)$. Instead of $\sigma_1(G)$ we use the more common notation $\delta(G)$. If G is noncomplete, then NC(G) denotes

 $\min\{|N(u) \cup N(v)| : uv \notin E(G)\};\$

if G is complete, we set NC(G) = n - 1. If G has a noncomplete component, then NC2(G) denotes

 $\min\{|N(u) \cup N(v)|: d(u, v) = 2\},\$

where d(u, v) is the distance between u and v; otherwise, NC2(G) = n - 1. If no ambiguity can arise we sometimes write α instead of $\alpha(G)$, σ_k instead of $\sigma_k(G)$, etc.

We mention two classical results in order of increasing generality.

Theorem 1 [7]. If $\delta(G) \ge \frac{1}{2}n > 1$, then G is hamiltonian.

Theorem 2 [17]. If $\sigma_2(G) \ge n \ge 3$, then G is hamiltonian.

In recent literature on hamiltonian graph theory many results appear in which certain vertex sets are required to have large neighborhood unions instead of large degree-sums. Two such results are the following.

Theorem 3 [9]. If G is 2-connected and $NC(G) \ge \frac{1}{3}(2n-1)$, then G is hamiltonian.

Theorem 4 [8]. If G is 2-connected and $NC(G) \ge n - \delta(G)$, then G is hamiltonian.

Theorems 3 and 2 are incomparable in the sense that neither theorem implies the other. Theorem 3 is not even comparable to Theorem 1. It is easily seen that Theorem 4 is more general than Theorem 1, but Theorems 4 and 2 are incomparable again.

Sufficient conditions in terms of neighborhood unions were also obtained for other hamiltonian properties.

Theorem 5 [9]. If G is 3-connected and $NC(G) \ge \frac{1}{3}(2n+1)$, then G is Hamilton-connected.

Theorem 6 [9]. If G is 2-connected and NC(G) $\ge \frac{1}{2}(n-1)$, then G is traceable.

The following three results are due to Lindquester.

Theorem 7 [16]. If G is 2-connected and NC2(G) $\geq \frac{1}{3}(2n-1)$, then G is hamiltonian.

Theorem 8 [16]. If G is 3-connected and NC2(G) $\ge \frac{2}{3}n$, then G is Hamilton-connected.

Theorem 9 [16]. If G is 2-connected and NC2(G) $\ge \frac{1}{3}(2n-4)$, then G is traceable.

Since $NC2(G) \ge NC(G)$, Theorem 7 is more general than Theorem 3 and Theorem 8 is more general than Theorem 5. Theorem 9 does not imply Theorem 6, but it was conjectured in [16] that Theorems 6 and 9 admit the following improvement.

Conjecture 10 [16]. If G is 2-connected and NC2(G) $\ge \frac{1}{2}(n-1)$, then G is traceable.

In addition to establishing some new results we also compare a number of existing results in terms of generality.

In Section 2 it is shown that a recent result in [2] is a common generalization of Theorems 2, 3 and 4 (and Theorem 1). Using another result in [2] it is further shown that the bound $\frac{1}{3}(2n-1)$ in Theorem 3 can be lowered to $\frac{1}{3}(2n-3)$, which is best possible for all $n \ge 5$. A new common generalization of Theorems 2, 3 and 4 is also established.

Section 3 is concerned with hamiltonian properties of $K_{1,3}$ -free graphs, i.e., graphs containing no induced subgraph isomorphic to $K_{1,3}$. It is shown that several results and a conjecture in [10] are implied by results of Broersma [5] and Zhang [19].

In Section 4 the results in [16] are extended to so-called D_{λ} -cycles and D_{λ} -paths. As in [18], a cycle C of G is called a D_{λ} -cycle if every component of G - V(C) has order smaller than λ . D_1 -cycles are Hamilton cycles, while D_2 -cycles are sometimes called *dominating cycles*. The definition of a D_{λ} -path is analogous to that of a D_{λ} -cycle. Section 4 also contains an extension of Theorem 6 to D_{λ} -paths.

2. Long cycles

We start by showing that Theorems 2, 3 and 4 are all generalized by the following recent result, where c(G) denotes the length of a longest cycle in G.

Theorem 11 [2]. If G is 2-connected and $\sigma_3(G) \ge n+2$, then $c(G) \ge \min\{n, n+\frac{1}{3}\sigma_3(G) - \alpha(G)\}$.

A key lemma for our observations is the following.

Lemma 12. $\sigma_3(G) \ge 3NC(G) - n + 3$ for $n \ge 3$.

Proof. We assume $\alpha \ge 3$. Let $\{v_1, v_2, v_3\}$ be an independent set of three vertices in G such that $\sum_{i=1}^{3} d(v_i) = \sigma_3$. Then

$$|N(v_1) \cup N(v_2)| \ge NC$$
, $|N(v_1) \cup N(v_3)| \ge NC$ and $|N(v_2) \cup N(v_3)| \ge NC$.

Setting

$$d = |N(v_1) \cap N(v_2)| + |N(v_1) \cap N(v_3)| + |N(v_2) \cap N(v_3)|$$

and adding the three inequalities, we obtain

$$2\sigma_3 - d \ge 3NC. \tag{1}$$

Set $t = |N(v_1) \cap N(v_2) \cap N(v_3)|$. Using (1) we have

$$n-3 \ge |N(v_1) \cup N(v_2) \cup N(v_3)| = \sigma_3 - d + t \ge \frac{1}{2}(3NC + d) - d + t,$$

whence

$$d \ge 3NC + 2t - 2n + 6 \ge 3NC - 2n + 6.$$
(2)

Combination of (1) and (2) completes the proof. \Box

We need two more lemmas. Their proofs are simple and are hence omitted.

Lemma 13. $\sigma_3(G) \ge \frac{3}{2}\sigma_2(G)$.

Lemma 14. $\alpha(G) \leq n - \operatorname{NC}(G)$.

Proposition 15. If G satisfies the hypothesis of Theorem 2, then G is hamiltonian by Theorem 11.

Proof. Assume $\sigma_2 \ge n \ge 3$. Then G is 2-connected and hence $\sigma_3 \ge \sigma_2 + 2 \ge n + 2$. By Lemmas 13 and 14 and the obvious fact that $NC \ge \frac{1}{2}\sigma_2$,

$$n + \frac{1}{3}\sigma_3 - \alpha \ge n + \frac{1}{2}\sigma_2 - (n - NC) = \frac{1}{2}\sigma_2 + NC \ge \sigma_2 \ge n.$$

Hence G is hamiltonian by Theorem 11. \Box

Proposition 16. If G satisfies the hypothesis of Theorem 3, then G is hamiltonian by Theorem 11.

36

Proof. Assume G is 2-connected and NC $\ge \frac{1}{3}(2n-1)$. By Lemma 12, $\sigma_3 \ge n+2$. Using Lemma 14 we obtain

$$n + \frac{1}{3}\sigma_3 - \alpha \ge n + \frac{1}{3}(n+2) - (n - NC) \ge \frac{1}{3}(n+2) + \frac{1}{3}(2n-1) > n.$$

Hence G is hamiltonian by Theorem 11. \Box

Proposition 17. If G satisfies the hypothesis of Theorem 4, then G is hamiltonian by Theorem 11.

Proof. Assume G is 2-connected and $NC \ge n - \delta$. If $\delta \le \frac{1}{3}(n+1)$, then $NC \ge \frac{1}{3}(2n-1)$ and we are done by Proposition 16. Hence assume $\delta \ge \frac{1}{3}(n+2)$. Then $\sigma_3 \ge 3\delta \ge n+2$ and, by Lemma 14,

$$n+\frac{1}{3}\sigma_3-\alpha \ge n+\frac{1}{3}\sigma_3-(n-\mathrm{NC})\ge \frac{1}{3}\sigma_3+n-\delta\ge n.$$

Hence G is hamiltonian by Theorem 11. \Box

We now show that the bound $\frac{1}{3}(2n-1)$ in Theorem 3 can be lowered to $\frac{1}{3}(2n-3)$ by using a result in [2] which is closely related to Theorem 11. The graph G is called 1-tough if $\omega(G-S) \leq |S|$ for every subset S of V(G) such that $\omega(G-S) > 1$, where $\omega(G-S)$ denotes the number of components of G-S.

Theorem 18 [2]. If G is 1-tough and $\sigma_3(G) \ge n \ge 3$, then $c(G) \ge \min\{n, n + \frac{1}{3}\sigma_3(G) - \alpha(G)\}$.

Corollary 19. If G is 2-connected and NC(G) $\geq \frac{1}{3}(2n-3)$, then G is hamiltonian.

Proof. Let G be 2-connected with NC $\ge \frac{1}{3}(2n-3)$. It is easily checked that G is hamiltonian if $n \le 6$. We assume $n \ge 7$ and show that G is then hamiltonian by Theorem 18.

We first prove that G is 1-tough. Assuming the contrary, let S be a subset of V(G) such that $\omega(G-S) \ge |S|+1$, G_1 a smallest component of G-S and G_2 a smallest component of $G - (S \cup V(G_1))$. Then

$$|V(G_1)| + |V(G_2)| \le 2\left(\frac{n-|S|}{|S|+1}\right)$$
 and $2 \le |S| \le \frac{1}{2}(n-1)$.

If $v_1 \in V(G_1)$ and $v_2 \in V(G_2)$, then

$$NC \le |N(v_1) \cup N(v_2)| \le 2\left(\frac{n-|S|}{|S|+1}\right) - 2 + |S| \le \frac{1}{3}(2n-4).$$

This contradiction shows that G is 1-tough.

By Lemmas 12 and 14,

$$n+\frac{1}{3}\sigma_3-\alpha \ge n+\frac{1}{3}n-(n-\mathrm{NC})\ge n-1.$$

From Theorem 18 we conclude that G is hamiltonian unless

$$\sigma_3 = n$$
, NC = $\frac{1}{3}(2n-3)$ and $\alpha = \frac{1}{3}(n+3)$. (3)

The proof is now completed by showing that G cannot satisfy (3). Suppose (3) holds. Let S be an independent set with $|S| = \alpha = \frac{1}{3}(n+3)$ and set T = V(G) - S. Let $\{v_1, v_2, v_3\}$ be an independent set with $\sum_{i=1}^{3} d(v_i) = \sigma_3 = n$. For any $u \in T$,

u is adjacent to all but at most one vertex of S, (4)

otherwise NC < $|T| = \frac{1}{3}(2n - 3)$. In particular, every vertex of T has degree at least $\frac{1}{3}n$. We now derive contradictions in four cases.

Case 1: $v_1, v_2, v_3 \in T$.

Then $d(v_1) = d(v_2) = d(v_3) = \frac{1}{3}n$, implying that $N(v_i) \subseteq S$ (*i* = 1, 2, 3). Hence, since $n \ge 7$,

$$NC \le |N(v_1) \cup N(v_2)| \le |S| = \frac{1}{3}(n+3) < \frac{1}{3}(2n-3),$$

a contradiction.

Case 2: $v_1, v_2 \in T$ and $v_3 \in S$. Then $N(v_1) \cap N(v_2) \supseteq S - \{v_3\}$. Hence

$$d(v_1) + d(v_2) = |N(v_1) \cup N(v_2)| + |N(v_1) \cap N(v_2)|$$

$$\geq \frac{1}{3}(2n-3) + |S| - 1 = n - 1.$$

It follows that $d(v_3) \leq 1$, contradicting the fact that G is 2-connected.

Case 3: $v_1 \in T$ and $v_2, v_3 \in S$.

Then v_1 is adjacent to at most |S| - 2 vertices of S, contradicting (4). Case 4: $v_1, v_2, v_3 \in S$.

By (4), every vertex of T is adjacent to at least two vertices in $\{v_1, v_2, v_3\}$. Since $n \ge 7$, we obtain

$$\sum_{i=1}^{3} d(v_i) \ge 2 |T| = \frac{2}{3}(2n-3) > n,$$

contradicting (3). \Box

For a real number r, let [r] denote the smallest integer greater than or equal to r. Corollary 19 is best possible in the sense that for every $n \ge 5$ there exists a nonhamiltonian graph of order n with NC = $\lfloor \frac{1}{3}(2n-3) \rfloor - 1$. For $n \ge 5$, define the graph G_n as the join of K_2 and the graph of order n-2 consisting of three disjoint complete subgraphs, the orders of which pairwise differ by at most one. G_n is nonhamiltonian and NC(G_n) = $\lfloor \frac{1}{3}(2n-3) \rfloor - 1$.

Note that the graph G_n is not 1-tough. For $n \ge 7$ and $n \ne 2 \pmod{3}$ there also exist extremal graphs for Corollary 19 which are 1-tough. For $n \ge 7$, construct the graph H_n from the join of K_1 and the graph of order n - 1 consisting of three disjoint complete subgraphs, the orders of which pairwise differ by at most one, by choosing a vertex in each of the three complete subgraphs and adding the

edges of a triangle between the three vertices. The graph H_n is 1-tough and nonhamiltonian and, if $n \not\equiv 2 \pmod{3}$, $NC(H_n) = \left[\frac{1}{3}(2n-3)\right] - 1$. Another 1-tough extremal graph for Corollary 19 is the Petersen graph.

For $n \equiv 2 \pmod{3}$ the graph H_n shows that the bound on NC in Corollary 19 cannot be lowered by two if G is 1-tough.

For future reference we describe another class of 1-tough non-hamiltonian graphs. For $n \ge 9$, construct the graph J_n of order *n* from three disjoint complete graphs A_1, A_2, A_3 with

 $||V(A_i)| - |V(A_i)|| \le 1$ for $1 \le i < j \le 3$

by choosing, for i = 1, 2, 3, two distinct vertices x_i and y_i in A_i and adding the edges $x_1x_2, x_1x_3, x_2x_3, y_1y_2, y_1y_3, y_2y_3$. If $n \equiv 0 \pmod{3}$, then NC2 $(J_n) = \frac{1}{3}(2n-3)$. In Section 4 (Corollary 38) it is shown that in the hypothesis of Corollary 19 NC can be replaced by NC2 unless $n \equiv 0 \pmod{3}$ and G is isomorphic to J_n . Note that for $n \equiv 0 \pmod{3}$ the graph J_n is also an extremal graph for Corollary 19.

Corollary 19 is also contained in the following recent result, stated in [11] as a consequence of a more general result.

Theorem 20 [11]. If G is 2-connected and, for every pair of non-adjacent vertices u and v, $3|N(u) \cup N(v)| + \max\{2, |N(u) \cap N(v)|\} \ge 2n - 1$, then G is hamiltonian.

We have observed that Theorem 11 implies Theorems 2, 3 and 4. Using Lemmas 21 and 22 below we establish another common generalization of Theorems 2, 3 and 4. We need some additional notation. If C is a cycle of G, we denote by \vec{C} the cycle C with a given orientation. If $u, v \in V(C)$, then $u\vec{C}v$ denotes the consecutive vertices on C from u to v in the direction specified by \vec{C} . The same vertices, in reverse order, are given by $v\vec{C}u$. We will consider $u\vec{C}v$ and $v\vec{C}u$ both as paths and as vertex sets. We use u^+ to denote the successor of u on \vec{C} and u^- to denote its predecessor. If $A \subseteq V(C)$, then $A^+ = \{v^+: v \in A\}$. The set A^- is analogously defined. In Section 4 we use similar notation for paths instead of cycles.

A central lemma in [2] is the following.

Lemma 21 [2]. Assume $\delta(G) \ge 2$, $\sigma_3(G) \ge n$ and G contains a longest cycle \tilde{C} which is a D_2 -cycle. If $u \in V(G) - V(C)$ and A = N(u), then $(V(G) - V(C)) \cup A^+$ is an independent set.

The first part of the next lemma is a result of Bondy [3]; the second part is implicit in the proof of [2, Theorem 10].

Lemma 22. Assume G is 2-connected and $\sigma_3(G) \ge n + 2$. Then every longest cycle of G is a D_2 -cycle. Moreover, G contains a longest cycle C such that $\max\{d(v): v \in V(G) - V(C)\} \ge \frac{1}{3}(n + 2)$.

Suppose G satisfies the hypothesis of one of Theorems 2, 3 and 4. Then $\sigma_3(G) \ge n+2$, as observed in the proofs of Propositions 15, 16 and 17. Furthermore, it is easily seen that NC2(G) $\ge \frac{1}{2}n$. Hence G is hamiltonian by the following result.

Theorem 23. If G is 2-connected and $\sigma_3(G) \ge n+2$, then $c(G) \ge \min\{n, 2(NC2(G))\}$.

Proof. Assume G is 2-connected and $\sigma_3 \ge n + 2$. We are done if G is hamiltonian. Otherwise, by Lemma 22, G contains a longest cycle \vec{C} such that C is a D_2 -cycle and V(G) - V(C) contains a vertex u with $d(u) \ge \frac{1}{3}(n+2)$. Set A = N(u). Clearly, $A \cap A^+ = \emptyset$. Since $d(u) > \frac{1}{3} |V(C)|$, C contains a vertex v such that $v^+, v^- \in A$. In particular, d(u, v) = 2. Set $B = N(u) \cup N(v)$. By Lemma 21, $B \subseteq V(C)$. We claim that $B \cap B^+ = \emptyset$. Assuming the contrary, let w be a vertex in $B \cap B^+$. It is clearly impossible that $w \in N(u)$ and $w^- \in N(u)$. If $w \in N(u)$ and $w^- \in N(v)$, then the cycle $v^+ uw \vec{C}vw^- \vec{C}v^+$ is longer than C, a contradiction. If $w \in N(v)$ and $w^- \in N(v)$ and $w^- \in N(v)$, then the cycle $v^- uw^- \vec{C}vw\vec{C}v^-$ contradicts the choice of C. Finally, if $w \in N(v)$ and $w^- \in N(v)$, then the cycle of C. Hence, indeed, $B \cap B^+ = \emptyset$. It follows that $|V(C)| \ge 2|B| \ge 2(NC2)$. \Box

Theorem 23 is best possible in two different senses. We first note that if G is a complete bipartite graph, then c(G) = 2(NC2(G)), so the conclusion of Theorem 23 cannot be strengthened. We next observe that the condition $\sigma_3(G) \ge n+2$ cannot be relaxed: the graph G_n (defined after Corollary 19) has $\sigma_3(G_n) = n + 1$, while $c(G_n) = NC2(G_n) + 2$ if $n \equiv 2 \pmod{3}$ and $c(G_n) = NC2(G_n) + 3$ otherwise. In this context we mention the following result.

Theorem 24 [13]. Let G be 2-connected and noncomplete. Then $c(G) \ge NC2(G) + 2$. If NC2(G) is odd and n > NC2(G) + 3, then $c(G) \ge NC2(G) + 3$.

The following result is closely related to Theorem 23 and will appear elsewhere.

Theorem 25 [6]. If G is 2-connected and G contains a D_2 -cycle, then $c(G) \ge \min\{n, 2NC(G)\}$ unless G is the Petersen graph.

A variation of Theorem 23 for 1-tough graphs is the following.

Theorem 26. If G is 1-tough and $\sigma_3(G) \ge n \ge 3$, then $c(G) \ge \min\{n, 2(NC2(G))\}$.

The proof of Theorem 26 is omitted, since it is almost identical to the proof of Theorem 23. We note that Theorem 26, too, implies Corollary 19: if G is 2-connected and $NC(G) \ge \frac{1}{3}(2n-3)$, then, as in the proof of Corollary 19, G is 1-tough and $\sigma_3(G) \ge n$, so that, by Theorem 26,

$$c(G) \ge \min\{n, 2(\operatorname{NC2}(G))\} \ge \min\{n, 2\operatorname{NC}(G)\}$$
$$\ge \min\{n, \left\lceil \frac{2}{3}(2n-3) \right\rceil\} \ge n \quad (n \ge 4).$$

We conjecture that Theorem 26 admits the following improvement.

Conjecture 27. If G is 1-tough and $\sigma_3(G) \ge n \ge 3$, then $c(G) \ge \min\{n, 2(NC2(G)) + 4\}$.

If true, Conjecture 27 would imply the following recent improvement of Jung's Theorem [15].

Theorem 28 [1]. If G is 1-tough, $\sigma_3(G) \ge n \ge 3$ and, for all vertices x, y, d(x, y) = 2 implies $\max\{d(x), d(y)\} \ge s$, then $c(G) \ge \min\{n, 2s + 4\}$.

3. Hamilton cycles and paths in K_{1,3}-free graphs

We state a result occurring in [10]. The graph G is homogeneously traceable if for every vertex v of G there exists a Hamilton path of G starting at v. Clearly, every hamiltonian graph is homogeneously traceable.

Theorem 29 [10]. Let G be 3-connected and $K_{1,3}$ -free. If $NC(G) \ge \frac{1}{3}(2n-4)$, then G is homogeneously traceable.

It is conjectured in [10] that, under the hypothesis of Theorem 29, G is in fact hamiltonian.

Conjecture 30 [10]. Let G be 3-connected and $K_{1,3}$ -free. If NC(G) $\ge \frac{1}{3}(2n-4)$, then G is hamiltonian.

The following result was independently obtained by Broersma and Zhang.

Theorem 31 [5, 19]. Let G be 2-connected and $K_{1,3}$ -free. If $\sigma_3(G) \ge n-2$, then G is hamiltonian.

More generally, Zhang [19] proved that G is hamiltonian if G is k-connected and $K_{1,3}$ -free with $\sigma_{k+1}(G) \ge n - k$ ($k \ge 2$). The following consequence of Theorem 31 and Lemma 12 improves Theorem 29 and Conjecture 30. **Corollary 32.** Let G be 2-connected and $K_{1,3}$ -free. If $NC(G) \ge \frac{1}{3}(2n-5)$, then G is hamiltonian.

The graph J_n is $K_{1,3}$ -free and $NC(J_n) = \lfloor \frac{1}{3}(2n-5) \rfloor - 1$, showing that Corollary 32 is best possible for all $n \ge 9$.

Another improvement of Conjecture 30 was recently obtained by Li and Virlouvet.

Theorem 33 [14]. Let G be 3-connected and $K_{1,3}$ -free. If $NC(G) > \frac{11}{21}(n-7)$, then G is hamiltonian.

Broersma proved an analogoue of Theorem 31 for traceable graphs.

Theorem 34 [5]. Let G be connected and $K_{1,3}$ -free. If $\sigma_3(G) \ge n-2$, then G is traceable.

Combination with Lemma 12 yields the following.

Corollary 35. Let G be connected and $K_{1,3}$ -free. If $NC(G) \ge \frac{1}{3}(2n-5)$, then G is traceable.

A weaker version of Corollary 35, with $\frac{1}{3}(2n-5)$ replaced by $\frac{1}{3}(2n-3)$, occurs in [10]. The connected nontraceable graph J'_n obtained from J_n by deleting the edges y_1y_2 , y_1y_3 , y_2y_3 is $K_{1,3}$ -free and NC $(J'_n) = \lfloor \frac{1}{3}(2n-5) \rfloor - 1$, showing that Corollary 35 is best possible.

4. D_{λ} -cycles and D_{λ} -paths

In order to extend Theorems 6-9 to results on D_{λ} -cycles and D_{λ} -paths we introduce some additional terminology and notation. Let H, H_1 , H_2 be subgraphs of G and t, λ positive integers. By N(H) we denote the set of vertices in V(G) - V (H) that are adjacent to at least one vertex of H. The vertices in N(H)are called *neighbors* of H. The *distance* $d(H_1, H_2)$ between H_1 and H_2 is the length of a shortest path in G starting at a vertex of H_1 and ending at a vertex of H_2 . We call H_1 and H_2 remote if $d(H_1, H_2) \ge 2$. If H is connected and u and v are neighbors of H, then uHv denotes a (u, v)-path of length at least 2 with all internal vertices in H; uH denotes a nontrivial path starting at u such that all other vertices of the path are in H; Hu is analogously defined. By $\omega_t(H)$ we denote the number of components of H with at least t vertices; in particular, $\omega_1(H) = \omega(H)$. If G contains two remote connected subgraphs of order λ , then $NC_{\lambda}(G)$ denotes min $\{|N(H_1) \cup N(H_2)|: H_1$ and H_2 are remote connected subgraphs of order $\lambda\}$; otherwise we set $NC_{\lambda}(G) = n - 2\lambda + 1$. If G contains two connected subgraphs of order λ at distance 2, then NC2_{λ}(G) denotes min{ $|N(H_1) \cup N(H_2)|$: H_1 and H_2 are connected subgraphs of order λ with $d(H_1, H_2) = 2$; otherwise, NC2_{λ}(G) = $n - 2\lambda + 1$. In particular, NC₁(G) = NC(G) and NC2₁(G) = NC2(G). The following lemma is easily established; we omit its proof.

Lemma 36. If $t \ge \lambda$, then $NC_t(G) \ge NC_\lambda(G) - 2(t-\lambda)$ and $NC_t(G) \ge NC_\lambda(G) - 2(t-\lambda)$.

If \vec{H} is an oriented cycle or path and $v \in V(H)$, then we call H_1 an (\vec{H}, v, t) -subgraph if each of the following requirements holds:

(i) H_1 is connected and has order t,

(ii) $\emptyset \neq V(H_1) \cap V(H) = v H w$ for some vertex $w \in V(H)$,

(iii) if H_2 satisfies (i) and (ii), then $V(H_1) \cap V(H) \subseteq V(H_2) \cap V(H)$.

An (H, v, t)-subgraph is similarly defined. (in (ii), replace vHw by vHw). We are now ready to state and prove the following result.

Theorem 37. If G is 2-connected and $NC2_{\lambda}(G) \ge \frac{1}{3}(2n+3) - 2\lambda$, then G contains a L_3 -cycle unless $n \equiv 0 \pmod{3}$, $n \ge 3\lambda + 6$ and G is a spanning subgraph of J_n .

Proof. Assume G satisfies the conditions of the theorem, but G contains no D_{λ} -cycle. Set $t + 1 = \min\{i: G \text{ has a } D_i\text{-cycle}\}$, so that $t \ge \lambda$. Let \vec{C} be a $D_{t+1}\text{-cycle}$ of G for which $\omega_t(G - V(C))$ is minimum. Since G has no $D_i\text{-cycle}$, G - V(C) has a component H_0 of order t. Let v_1, \ldots, v_k be the neighbors of H_0 , occurring on \vec{C} in the order of their indices. Since G is 2-connected, $k \ge 2$. As in the proof of [18, Theorem 2] there exists, for $i = 1, \ldots, k$, a (\vec{C}, v_i^+, t) -subgraph H_i such that H_0, H_1, \ldots, H_k are pairwise remote. Let u_i be the first vertex on $v_i^+ \vec{C} v_{i+1}$ such that $u_i \notin V(H_i)$ $(i = 1, \ldots, k;$ indices mod k). Set

$$U = V(G) - (V(H_0) \cup V(H_1) \cup V(H_k))$$
 and $W = U - \{u_1, v_1\}.$

Define the function $f: W \rightarrow U$ by

$$f(v) = \begin{cases} v^- & \text{if } v \in u_1^+ \vec{C} v_k, \\ v^+ & \text{if } v \in u_k \vec{C} v_1^-, \\ v & \text{if } v \notin V(C). \end{cases}$$

We show that

if
$$v \in (N(H_1) \cap W) - \{v_1^-\}$$
, then $f(v) \notin N(H_0) \cup N(H_k)$. (5)

Assuming the contrary to (5), let v be a vertex in $(N(H_1) \cap W) - \{v_1^-\}$ such that $f(v) \in N(H_0) \cup N(H_k)$. If $v \in u_1^+ \vec{C}v_k$ and $f(v) \in N(H_0)$, then $v^- = v_i$ for some $i \in \{2, \ldots, k-1\}$ and we obtain the contradiction that H_1 and H_i are not remote. If $v \in u_1^+ \vec{C}v_k$ and $f(v) \in N(H_k)$, then G contains the cycle

$$C' = v_1 H_0 v_k \tilde{C} v H_1 u_1 \tilde{C} v^- H_k u_k \tilde{C} v_1.$$

By the way H_1 and H_k were chosen and the fact that H_1 and H_k are remote, we have $\omega_t(G - V(C')) < \omega_t(G - V(C))$, contradicting the choice of C. If $v \in u_k C v_1^-$, then, since $u_k C v_1^-$ contains no neighbors of H_0 , $f(v) \in N(H_k)$. But then the cycle

$$v_1H_0v_k\bar{C}u_1H_1v\bar{C}u_kH_kv^+\bar{C}v_1$$

contradicts the choice of C. If $v \notin V(C)$, then clearly $f(v) \notin N(H_0)$, whence $f(v) \in N(H_k)$; but then the cycle $v_1H_0v_k\bar{C}u_1H_1vH_ku_k\bar{C}v_1$ contradicts the choice of C. Thus (5) holds.

Note that $d(H_0, H_k) = 2$ and f is an injection. Combining these facts with (5) and Lemma 36 we conclude that

$$\frac{1}{3}(2n+3) - 2t \le |N(H_0) \cup N(H_k)| \le n - |V(H_0) \cup V(H_1) \cup V(H_k)| - (|N(H_1) \cap W| - \varepsilon) = n - 3t - (|N(H_1)| - 2 - \varepsilon),$$
(6)

where $\varepsilon = 0$ if $v_1^- \notin N(H_1) \cap W$ and $\varepsilon = 1$ if $v_1^- \in N(H_1) \cap W$. Hence

$$|N(H_1)| \leq \frac{1}{3}(n+3) - t + \varepsilon.$$

$$\tag{7}$$

Since
$$|N(H_0) \cup N(H_1)| \ge \frac{1}{3}(2n+3) - 2t$$
 and $|N(H_0) \cap N(H_1)| \ge 1$, we obtain
 $k = |N(H_0)| \ge \frac{1}{3}(2n+3) - 2t - (\frac{1}{3}(n+3) - t + \varepsilon) + 1 = \frac{1}{3}(n+3) - t - \varepsilon.$
(8)

We now distinguish two cases, the first of which will turn out to yield a contradiction.

Case 1: For some $i \in \{1, ..., k\}, v_i^- \notin N(H_i)$.

Assume without loss of generality that $v_1 \notin N(H_1)$. Then $\varepsilon = 0$ in (6), (7) and (8). The fact that H_0, H_1, \ldots, H_k are pairwise remote and (8) imply

$$|N(H_0) \cup N(H_1)| \le n - (k+1)t \le n - (\frac{1}{3}(n+3) - t + 1)t$$

= $\frac{1}{3}(2n+3) - 2t + (t-1)(t - \frac{1}{3}(n-3)).$ (9)

Since G is 2-connected, we have $|N(H_1)| \ge 2$. Hence by (7), $t \le \frac{1}{3}(n-3)$. From (9) it now follows that t = 1 or $t = \frac{1}{3}(n-3)$.

Case 1.1: t = 1.

Let u be the vertex of H_0 and set R = V(G) - V(C), $S = \{v \in V(C): v^-, v^+ \in N(u)\}$. Using (8) we have

$$n \ge 2|S| + 3(|N(u)| - |S|) + |R| = 3|N(u)| + |R| - |S| \ge n + |R| - |S|,$$

implying that $|R| \leq |S|$. Since every vertex in R can be adjacent to at most one vertex in S while u is adjacent to no vertex in S, there exists a vertex v in S such that $N(v) \cap R = \emptyset$. Hence, if we set $B = N(u) \cup N(v)$, we have $B \subseteq V(C)$. Arguing as in the proof of Theorem 23 we obtain $B \cap B^+ = \emptyset$. But then

$$|n-1| \ge |V(C)| \ge 2 |B| \ge 2NC2 \ge \frac{2}{3}(2n-3),$$

whence $n \leq 3$, a contradiction.

Case 1.2: $t = \frac{1}{3}(n-3)$.

Since (9) holds with equality, (8) also holds with equality. In particular, $|N(H_0) \cap N(H_1)| = 1$, implying that

$$V(G) = V(H_0) \cup V(H_1) \cup V(H_2) \cup \{v_1, u_1, v_2\}.$$

The vertex u_1 is not in $N(H_2)$, otherwise the cycle $v_1H_0v_2H_2u_1\bar{C}v_1$ contradicts the choice of C. It follows that

$$|N(H_0) \cup N(H_2)| = 2 < 3 = \frac{1}{3}(2n+3) - 2t,$$

a contradiction.

Case 2: For all $i \in \{1, ..., k\}, v_i^- \in N(H_i)$.

Since H_i and H_{i+1} are remote and $v_{i+1} \in N(H_{i+1})$, we have $u_i \neq v_{i+1}$ (i = 1, ..., k; indices mod k). Also, $u_i \neq v_{i+1}$, otherwise the cycle

 $v_i H_0 v_{i+1} u_i H_{i+1} u_{i+1} \vec{C} v_i^- H_i v_i$

would contradict the choice of C. It follows that

$$n \ge t + k(t+3). \tag{10}$$

Combining (10) and (8), now with $\varepsilon = 1$, yields

 $n \ge t + (\frac{1}{3}n - t)(t+3),$

whence $n \le 3t + 6$. On the other hand, (10) implies $n \ge 3t + 6$, since $k \ge 2$. We conclude that n = 3t + 6, k = 2 and

$$V(G) = V(H_0) \cup V(H_1) \cup V(H_2) \cup \{v_1, u_1, u_1^+, v_2, u_2, u_2^+\}.$$

To prove that G is a spanning subgraph of J_n , we first observe that $N(u_i) \subseteq V(H_i) \cup \{u_i^+\}$ (i = 1, 2). Assuming the contrary, one easily finds a cycle that contradicts the choice of C.

We next show that v_2^+ is the only vertex of H_2 adjacent to u_1^+ . Assuming the contrary, let x be a vertex of H_2 with $u_1^+x \in E(G)$ and $x \neq v_2^+$ and let \vec{P} be a (v_2^+, x) -path in H_2 . Consider the cycle

$$C' = v_1 H_0 v_2 v_2^+ P x u_1^+ u_1 H_1 u_2^+ v_1$$

and let H be the component of G - V(C') that contains u_2 . Then

$$V(H) \subseteq \{u_2\} \cup (V(H_2) - \{x, v_2^+\}),$$

so |V(H)| < t. Since the other two components of G - V(C') also have fewer than t vertices, C' contradicts the choice of C. Hence, indeed, v_2^+ is the only vertex of H_2 adjacent to u_1^+ . Similarly, v_1^+ is the only vertex of H_1 adjacent to u_2^+ .

Finally, $u_1^+u_2^+ \notin E(G)$, $u_1^+v_1 \notin E(G)$, $u_2^+v_2 \notin E(G)$, $v_1 \notin N(H_1 - v_1^+)$, $v_2 \notin N(H_2 - v_2^+)$, $v_1 \notin N(H_2)$ and $v_2 \notin N(H_1)$ by similar arguments. Thus G is a spanning subgraph of J_a , where

$$V(A_1) = V(H_0) \cup \{v_1, v_2\}, \quad V(A_2) = V(H_1) \cup \{u_1, u_1^+\} \text{ and } V(A_3) = V(H_2) \cup \{u_2, u_2^+\}. \quad \Box$$

If $n \ge 3\lambda + 2$, then the graph G_n has no D_{λ} -cycle while NC2_{λ} $(G_n) = \left[\frac{1}{3}(2n + 3)\right] - 2\lambda - 1$. Hence Theorem 37 is best possible.

Substituting $\lambda = 1$ and noting that NC2(H) $< \frac{1}{3}(2n-3)$ for every proper spanning subgraph H of J_n , we obtain the following improvement of Theorem 7.

Corollary 38. If G is 2-connected and NC2(G) $\geq \frac{1}{3}(2n-3)$, then G is hamiltonian unless $n \equiv 0 \pmod{3}$, $n \geq 9$ and G is isomorphic to J_n .

Note that Corollary 19, too, is implied by Corollary 38.

Theorem 37 also improves the following extension of Theorem 3, which is a special case of a more general theorem for k-connected graphs ($k \ge 2$).

Corollary 39 [12]. If G is 2-connected and $NC_{\lambda}(G) \ge \frac{1}{3}(2n+5) - 2\lambda$, then G contains a D_{λ} -cycle.

Theorems 40 and 41 below extend Theorems 8 and 9, respectively. The proofs are similar to the proof of Theorem 37 and are hence omitted.

Theorem 40. If G is 3-connected and $NC2_{\lambda}(G) \ge \frac{2}{3}n + 2 - 2\lambda$, then every two vertices are connected by a D_{λ} -path.

For $\lambda = 1$ we obtain Theorem 8. For $n \ge 6$ define the 3-connected graph L_n as the join of K_3 and the graph of order n - 3 consisting of three disjoint complete graphs, the orders of which pairwise differ by at most one. If $n \equiv 0 \pmod{3}$ and $n \ge 3\lambda + 3$, then NC2_{λ}(L_n) $= \frac{2}{3}n + 1 - 2\lambda$ while L_n contains two vertices which are not connected by a D_{λ} -path. Hence Theorem 40 is best possible for $n \equiv 0 \pmod{3}$. For $n \equiv 0 \pmod{3}$ the graph L_n shows that the bound on NC2_{λ} cannot be lowered by two.

Theorem 41. If G is 2-connected and NC2_{λ}(G) $\geq \frac{1}{3}(2n+2) - 2\lambda$, then G contains a D_{λ} -path.

For $\lambda = 1$ we obtain Theorem 9. We believe that Theorem 41 admits the following improvement, extending Conjecture 10.

Conjecture 42. If G is 2-connected and NC2_{λ}(G) $\ge \frac{1}{2}(n+3) - 2\lambda$, then G contains a D_{λ} -path.

We provide some evidence for Conjecture 42 by extending Theorem 6.

Theorem 43. If G is 2-connected and $NC_{\lambda}(G) \ge \frac{1}{2}(n+3) - 2\lambda$, then G contains a D_{λ} -path.

46

Proof. Assume G satisfies the conditions of the theorem, but G contains no D_{λ} -path. Set $t + 1 = \min\{i: G \text{ has a } D_i\text{-path}\}$, so that $t \ge \lambda$. Let \vec{P} be a D_{t+1} -path of G for which $\omega_t(G - V(P))$ is minimum and H_0 be a component of G - V(P) of order t. Set $k = |N(H_0)|$. Then $k \ge 2$. Let v_2, \ldots, v_{k+1} be the neighbors of H_0 , occurring on \vec{P} in the order of their indices, let v_1 be the first and w the last vertex of \vec{P} . A straightforward variation of the argument in the proof of Theorem 37 shows that

there exists a (\vec{P}, v_1, t) -subgraph H_1 , a (\vec{P}, w, t) -subgraph H_{k+1} and, for i = 2, ..., k, a (\vec{P}, v_i^+, t) -subgraph H_i such that $H_0, H_1, ..., H_{k+1}$ are pairwise remote.

Let u_i be the first vertex on $v_i^+ \vec{P} v_{i+1}$ such that $u_i \notin V(H_i)$ for $1 \le i \le k$, and let u_{k+1} be the last vertex on $v_{k+1} \vec{P} w$ such that $u_{k+1} \notin V(H_{k+1})$. Set

$$U = V(G) - (V(H_0) \cup V(H_1) \cup V(H_2) \cup V(H_{k+1})) \text{ and } W = U - \{v_2, u_{k+1}\}.$$

Define the function $f: W \rightarrow U$ by

$$f(v) = \begin{cases} v^+ & \text{if } v \in V(P), \\ v & \text{if } v \notin V(P). \end{cases}$$

We show that

if
$$v \in (N(H_0) \cup N(H_{k+1})) \cap W$$
, then $f(v) \notin N(H_0) \cup N(H_2)$. (11)

Assuming the contrary to (11), let v be a vertex in $(N(H_0) \cup N(H_{k+1})) \cap W$ such that $f(v) \in N(H_0) \cup N(H_2)$.

First suppose $v \in u_1 \tilde{P}v_2^-$. Then $v \notin N(H_0)$, so $v \in N(H_{k+1})$. Also, $v \neq v_2^-$, otherwise the path $v_1 \tilde{P}v_2^- H_{k+1}u_{k+1}\tilde{P}v_2H_0$ would contradict the choice of *P*. It follows that $f(v) \notin N(H_0)$, so $f(v) \in N(H_2)$. But then the path

 $v_1 \vec{P} v H_{k+1} u_{k+1} \vec{P} u_2 H_2 v^+ \vec{P} v_2 H_0$

contradicts the choice of P.

Next suppose $v \in u_2 \vec{P}u_{k+1}^-$. If $v \in N(H_0)$, then $f(v) \notin N(H_0)$, so $f(v) \in N(H_2)$. But then the path $v_1 \vec{P}v_2 H_0 v \vec{P}u_2 H_2 v^+ \vec{P}w$ contradicts the choice of P. If $v \in N(H_{k+1})$ and $f(v) \in N(H_0)$, then the path $v_1 \vec{P}v H_{k+1} u_{k+1} \vec{P}v^+ H_0$ contradicts the choice of P. If $v \in N(H_{k+1})$ and $f(v) \in N(H_k)$, then the path

$$v_1 \vec{P} v_2 H_0 v_{k+1} \vec{P} v^+ H_2 u_2 \vec{P} v H_{k+1} u_{k+1} \vec{P} v_{k+1}^+$$

(where $u_{k+1}\tilde{P}v_{k+1}^+$ is understood to be empty if $u_{k+1} = v_{k+1}$) contradicts the choice of *P*.

Finally suppose $v \notin V(P)$. Clearly $v \notin N(H_0)$, so $v \in N(H_{k+1})$ and $f(v) = v \in N(H_2)$. But then the path

$$v_1 \vec{P} v_2 H_0 v_{k+1} \vec{P} u_2 H_2 v H_{k+1} u_{k+1} \vec{P} v_{k+1}^+$$

contradicts the choice of P. Hence (11) holds.

Using (11), Lemma 36 and the fact that f is an injection we conclude that

$$\frac{1}{2}(n+3) - 2t \le |N(H_0) \cup N(H_2)|$$

$$\le n - |V(H_0) \cup V(H_1) \cup V(H_2) \cup V(H_{k+1})|$$

$$- |(N(H_0) \cup N(H_{k+1})) \cap W|$$

$$= n - 4t - |N(H_0) \cup N(H_{k+1})| + 2$$

$$\le n - 4t + 2 - (\frac{1}{2}(n+3) - 2t) = \frac{1}{2}(n+1) - 2t.$$

This contradiction completes the proof. \Box

For $n \ge 6$ define the 2-connected graph M_n as the join of K_2 and the graph of order n-2 consisting of four disjoint complete graphs, the orders of which pairwise differ by at most one. If $n \ge 4\lambda + 2$ and $n \not\equiv 0 \pmod{4}$, then $NC_{\lambda}(M_n) = \lfloor \frac{1}{2}(n+3) \rfloor - 2\lambda - 1$ while M_n contains no D_{λ} -path. If $n \ge 6$ and n is even, then $NC(K_{n/2-1,n/2+1}) = \lfloor \frac{1}{2}(n+3) \rfloor - 2-1$ while $K_{n/2-1,n/2+1}$ contains no D_1 -path. Hence Theorem 43 is best possible if either $\lambda \ge 2$ and $n \not\equiv 0 \pmod{4}$ or $\lambda = 1$. The graph M_n shows that the bound on NC_{λ} cannot be lowered by two if $\lambda \ge 2$ and $n \equiv 0 \pmod{4}$.

References

- [1] D. Bauer, H.J. Broersma and H.J. Veldman, On generalizing a theorem of Jung, 1988, preprint.
- [2] D. Bauer, A. Morgana, E.F. Schmeichel and H.J. Veldman, Long cycles in graphs with large degree sums, Discrete Math. 79 (1989/90) 59-70.
- [3] J.A. Bondy, Longest paths and cycles in graphs of high degree, Research Report CORR80-16, Dept. of Combinatorics and Optimization, Univ. of Waterloo, Waterloo, Ont., Canada, 1980.
- [4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London, 1976) and (Elsevier, Amsterdam, 1976).
- [5] H.J. Broersma, Hamilton cycles in graphs and related topics, 1988, thesis.
- [6] H.J. Broersma and H.J. Veldman, Long dominating cycles and paths in graphs with large neighborhood unions, 1989, preprint.
- [7] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
- [8] R.J. Faudree, R.J. Gould, M.S. Jacobson and L. Lesniak, Neighborhood unions and highly hamiltonian graphs, J. Graph Theory 15 (1991) 29-38.
- [9] R.J. Faudree, R.J. Gould, M.S. Jacobson and R.H. Schelp, Neighborhood unions and hamiltonian properties in graphs, J. Combin. Theory Ser. B 47 (1989) 1–9.
- [10] R.J. Faudree, R.J. Gould and T.E. Lindquester, Hamiltonian properties and adjacency conditions in K(1,3)-free graphs, in: Proc. 6th Internat. Conf. Theory and Applications of Graphs, Kalamazoo, MI (1988).
- [11] E. Flandrin, H.A. Jung and H. Li, Hamiltonism, degree sum and neighborhood intersections, Discrete Math. 90 (i 21) 41-52.
- [12] P. Fraisse, D_{λ} -cycles and their applications for hamiltonian graphs, 1987, preprint.
- [13] R.J. Gould and T.E. Lindquester, Some extremal problems involving adjacency conditions for vertices at distance two, in: V.R. Kulli, ed., Recent Studies in Graph Theory (Vishwa, Gulbarga, India, 1989) 140-148.
- [14] H. Li and C. Virlouvet, Neighborhood conditions for claw-free hamiltonian graphs, Ars Combin. 29A (1990) 109-116.

- [15] H.A. Jung, On maximal circuits in finite graphs, Ann. Discrete Math. 3 (North-Holland, Amsterdam, 1978) 129-144.
- [16] T.E. Lindquester, The effects of distance and neighborhood union conditions on hamiltonian properties in graphs, J. Graph Theory 13 (1989) 335-352.
- [17] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
- [18] H.J. Veldman, Existence of D_{λ} -cycles and D_{λ} -paths, Discrete Math. 44 (1983) 309-316.
- [19] C.-Q. Zhang, Hamilton cycles in claw-free graphs, J. Graph Theory 12 (1988) 209-216.