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The semantical insufficiency of (spatiaI) economic theories necessitates the making of additional 
assumptions - thereby introducing substantial specification uncertainty - in order to arrive at 
a fully specified econometric model. The traditional or current approach to econometric 
modell ing treats specification uncertainty inadequately. This proposition is illustrated by two 
well-known examples from the spatial economic literature. Two alternative specification 
strategies for spatial economic modell ing - designed to improve the current spatial econometric 
modell ing approach - are proposed. One of these strategies is used for a specification analysis 
of agricultural output in Eire. 

1. Introduction 

Ideally, spatial economic theories should provide the researcher with 
sufficient a priori information to enable the construction of fully speczfzed 
spatial econometric models. In such a situation the researcher can make an 
unambiguous choice from a wide range of possible model specifications and 
appropriate - i.e., in accordance with criteria such as unbiasedness, 
consistency, efficiency, etc. - econometric/statistical methods. 

Unfortunately, this is not the common situation in (spatial) economics [cf. 
Blommestein (1981a, b), and section 27. In the natural sciences, physical 
theories often suggest, for example, detailed forms for correlograms, spectra 
and frequency responses, which may be compared against empirical data [cf. 
Heine (1955), Whittle (1954, 1956, 1962)-j. Hepple (1974) remarked like we did 
for (spatial) economics, that in human geography these theories rarely exist. 

-As a consequence, researchers from the social sciences are confronted with 
substantial specification uncertainty. In order to arrive at a fully specified 

*The author is indebted to P. Nijkamp, F.C. Palm and N.V. Ponsen for helpful comments 
and suggestions on earlier versions of this manuscript. The comments of the referee are also 
gratefully acknowledged. Any remaining errors are those of the author. 
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econometric model, the so-called traditional approach to econometric model- 
building employs to a large extent informal or judgemental information, non- 
independent pre-tests, etc. [see Zellner (1979), and section 21. The large-scale, 
non-systematic use of informal information in the modelbuilding process 
inspired several authors to harsh methodological criticism of the traditional 
(or current) econometric modell ing approach [see for example Sargent and 
Sims (1977), Sims (1980)]. In section 3 some examples are given of the 
traditional approach to econometric modell ing in spatial economics [see also 
Blommestein (1981a, b)]. 

The proposed specification methodologies - designed to improve the 
current econometric modell ing approach - differ quite substantively from 
each other. These differences can be partly explained by the treatment of 
different specification aspects (dynamic structure, direction of causality, 
functional form, structural/regression equations, etc.) and partly by a different 
(implicit or explicit) methodological view on econometric model building. ’ 
This last matter will be further elaborated by a discussion of two of these 
specification methodologies, while concentrating on the specification of the 
spatial dynamics in a number of typical linear spatial economic models in 
regression equation form. 

For this reason I shall present spatial versions’ of common factor analysis 
(COMFAC) and economic factor analysis (ECONFAC), put forward 
respectively by. Sargan (1975, 198Oa), and Blommestein and Palm (1980) in a 
time-domain context. The justification for this are the distinct technical and 
methodological problems connected to spatial models in general [cf. Cliff and 
Ord (1975, 1981)) Bennett and Chorley (1978), Bennett (1979)], and the 
modell ing of spatial dynamics in particular (see section 4). The latter aspect 
will be further illustrated by presenting some empirical results in section 5. 

2. The nature of spatial economic hypotheses and its consequences for the 
construction of spatial econometric models 

In the introduction it was ascertained that (spatial) economic theories 
generate insufficient information for a complete specification of econometric 
relationships. It is of fundamental importance, therefore, to have a proper 
understanding of the relationship(s) between the nature of (spatial) economic 

‘Thus the recent proposed specification strategies differ from each other in two respects: (i) 
Treatment of different specification aspects, such as (within the context of multi-equations 
temporal systems) testing the lag length, stability of parameters, and block exogeneity [Sims 
(19&O)], testing overindentifying restrictions [Hendry and Anderson (1977)], checking the 
implications of restricted structural models for transfer functions and final equations [Zellner 
and Palm (1974, 1975), Palm (1977)], testing inter - and intra - equation restrictions [Sargent 
(1981)7. This article focusses on the specification of single-equation spatiaE systems [see 
Blommestein (1982) for the specification of spatio (-temporal) multi-equations systems]. (ii) A 
different methodological view on econometric modelbuilding (see section 4 and footnote 10). 

ZSpatio-temporal versions are considered in Blommestein (1981a). 
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hypotheses and its consequences for the specification of (spatial) econometric 
models. 

Basic economic theories describe so-called generic structures, i.e., a general 
description of social (economic) structures by a set of concepts, relations and 
the like, in logical form. Next, with the aid of Hempel’s ‘bridge principle’, the 
concepts, relations, and the like from basis economic theories are ‘translated’ 
for the construction of specific economic theories. The bridge principle of Hempel 
(1952, 1966) indicates how the fundamental entities and processes (formulated 
according to Hempel’s internal principle) of a basic theory are connected 
with its corresponding empirical domain. Hempel (1952, 1966) notes that an 
operationalization of basic theories is necessary to enable the testing of those 
theories [cf. also Samuelson (1947)]. 

However, unlike the specific theories in the natural -sciences, a specific 
economic theory is more than just a testable representation of a basic 
economic theory [Klant (1979)]. As a result of the lack of restrictions (due to 
the presence of, among others, so-called general ceteris paribus clauses) it is 
possible to deduce so many interpretations that a falsification of basic 
economic theories becomes very difficult. Papandreou (1958) calls these 
theories semanticaZEy insufficient. A specific economic theory is, therefore, in 
fact an augmented theory [Papandreou (1958)1, i.e., an interpretation 
(operationalization) of a basic theory consisting partly of the specification 
(according to Hempel’s bridge principle) of relations, concepts and the like 
from a basic theory, and partly of additional assumptions with respect to 
functional forms, lag structures, stochastic properties, the classification of 
variables into endogenous and exogenous variables, the direction of causality, 
and the like. 

In the words of 3.S. Cramer (1969, p. 2): ‘Unfortunately economic theorists 
set great store by generality, and their models are therefore as a rule 
insufficiently specific to permit an empirical application. As a consequence, 
virtually all econometric studies add specific hypotheses of their own which 
are appropriate to the particular situation under review. The convenient 
approximations are dictated by the requirements of statistical estimation; 
they are based on common sense rather than on abstract economic theory.’ 

The semantical insufficiency of (spatial) economic theories necessitates the 
making of additional assumptions - thereby introducing substantial 
specification uncertainty - in order to arrive at a fully specified econometric 
model. The current or traditional approach to econometric modell ing ‘solves’ 
this kind of specification uncertainty rather informally (compare the 
aforegiven citation from J.S. Cramer’s book), i.e., a priori information, 
information obtained from non-independent (pre-)tests, etc. are employed in 
an ad hoc, unsystematic fashion. According to Zellner (1979), traditional 
econometric analyses like many statistical analyses, tend to concentrate 
attention mainly on given models - thereby implicitly ignoring a great deal 
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of specification uncertainty - and relatively little on systematic (=formal) 
methods for checking whether formulated models are consistent with 
information in sample data and for improving (i.e., repairing defects of) 
proposed models. 

The methodology of the traditional approach to econometric modell ing is 
conveniently summarized by Palm (1981) as follows [see for more details 
Zellner (1979) and references therein]: 

-The researcher specifies an initial model, iI4, making (rather informally) 
use of preliminary data analyses, and, a priori information obtained from 
sources like economic theories, institutional considerations, previous 
empirical studies, etc. 

-Next, an appropriate (i.e., in accordance with statistical criteria such as 
unbiasedness, consistency and efficiency) estimation procedure is chosen, 
provided M , is the true (!) model. 

-Estimation results are judged (diagnostic checking phase) on the basis of 
conventional criteria such as, significance, ‘expected’ sign and magnitude 
of parameter estimates; R2 values; multicollinearity, heteroscedasticity, 
spatial (-temporal) autocorrelation in the residuals; and forecasting 
performance. 

-MO is respecified (variables are dropped and/or added; the choice for an 
alternative functional form; modification of the error structure) and - 
subsequently - re-estimated, when estimation results of M , are not 
satisfactory as judged by one or more of the criteria mentioned above. 
This iterative process continues until a satisfactorily version - M , say - 
is obtained. 

Zellner (1979) notes that the main problem with the traditional approach 
to econometric modell ing is that in evaluating the adequacy of MO - as well 
as reformulations of M , - a good deal of judgement or prior information is 
employed, usually rather informally. Therefore, the rather informal use of 
convential criteria in judging fitted models, may lead to the acceptance of 
m isspecified models. 

The absence of systematic ( = formal) methods for comprehensively 
analyzing sample evidence, diagnostic checking results from initial and 
respecified models, etc., may lead to invalid and/or contradictionary results. 
For example, Palm (1981) points to the fact that different final model 
specifications have been reported in the economic literature, although similar 
data sets and modelbuilding objectives were employed. Further, specification 
errors vitally and differently affect the large sample properties of alternative 
estimation and testing procedures [cf. Zellner (197917. The procedures chosen 
in a particular situation from the large variety of mainly asymptotically 
justified estimation and testing techniques - under the assumption that the 
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model is correctly specified - may, therefore, possess undesirable statistical 
properties. 

These observations clearly indicate the need for proper formal sequential 
testing procedures for model construction purposes. Unfortunately, formal 
procedures which are both comprehensively (i.e., covering the entire 
modelbuilding process) and operationaly, remain to be developed [cf. Zellner 
(1977, 1979)]. H owever, some progress has been made by the development of 
(semi-)formal model specification procedures, which cover different parts of 
the modelbuilding process. Section 4 provides some details on two of these 
semi-formal specification procedures in a spatial context. First, however, 
some examples and consequences of the traditional approach to econometric 
modell ing in spatial economics are briefly discussed in the next section. 

3. Examples of the traditional approach to econometric modell ing in spatial 
economics 

In this section two well-known examples of modell ing spatial phenomena, 
as reported in the spatial economic literature, will be compared with the 
description in the previous section of the methodology of the traditional 
approach to econometric modelling. 

3.1. Trunsport expansion in developing countries 

Taaffe et al. (1963) argued that the expansion of transportation networks 
plays an important role in the economic growth of developing countries. 
They conjectured that expansion is influenced by many specific economic, 
geographical and social forces. In particular, the relationships between road 
m ileages (Y), population (X,) and area (X,) has been investigated for Ghana 
and Nigeria with the help of regression analysis. The following results were, 
among others, obtained (standard errors in parentheses): 

Ghana 

In Y= 1.27+0.52lnX,, RZ = 0.49, 
(0.087 

In Y = 1.73 + 0.25 In Xz4 R2 = 0.10, 
(0.12) 

lnY=0.16+0,631nX,+0.411nX2, R2 = 0.76, 
(0.063) (0.065) 

(1) 

(21 

(3) 
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Nigeria ’ 

in Y= 1.02+0.58lnX,, R2 = 0.65, (4) 
(0.06) 

In Y = 0.43 + 0.76 In X,,. R2 = 0.49, (5) 
(0.11) 

In Y = 0.01 + 0.45 In X, + 0.48 In X,, R2 = 0.82. (6) 
(0.05) (0.07) 

Regressions (3) and (6) were judged, according to ‘convential’ criteria as 
goodness-of-fit and size of standard errors, as the best by both Taaffe et al. 
(1963), and Cliff and Ord (19Sl). In addition the residuals J? from the 
regressions were tested for first-order spatial autocorrelation using the I 
statistic and weighted join-count statistics BB and BW [see for details Cliff 
and Ord (1973, 1981)]. For both Nigeria and Ghana, the high values of R2 
for the multiple regressions and the very small degree of spatial 
autocorrelation among the residuals, led Cliff and Ord (198 1) to conclude 
‘that these models are acceptable descriptions of the data’. 

3.2. Economic effects of road accessibility 

O’Sullivan (1969) analyzed some spatial economic effects of road 
accessibility in Eire. For this purpose an index of arterial road accessibility 
(ARA) was constructed, defined for a vertex i in a road network of the T 
class roads in Eire as 

A(i, r)= 5 dij, 
j-1 

(7) 

where A(i, r) represents the index for County r, J is the number of vertices in 
the network, and di, is the distance in miles by road on the shortest path 
between the ith and jth vertices. 

One feature of the Irish economy related by O’Sullivan to the ARA index 
(X,) was the percentage of gross agricultural output (in value terms) of each 
county consumed by itself (Y). O’Sullivan conjectured the hypothesis (model 
M,) that remote areas will tend to be more selfsufficient, so that Y and X, 
should be positively correlated. Application of ordinary least squares (OLS) 
by O’Sullivan supported that hypothesis (see also section 5). 

The residuals E*, of the fitted model M,, were analyzed by Cliff and Ord 
(1973, 1981) with the help of the spatial autocorrelation test statistic I [see 
for details Cliff and Ord (1973, 1981)]. The test indicated significant positive 
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spatial autocorrelation [see table 8.2 in Cliff and Ord (1981, p. 21011. In 
order to break up the pattern of spatial autocorrelation in the residuals Cliff 
and Ord tried a series of regressions with Y as dependent variable and X, 
(ARA) and X2 (6 alternative versions were tried), as independent variables 
(model M , say). Since the residuals of all these regressions still displayed 
significant positive spatial autocorrefation, Cliff and Ord (1973, 1981) decided 
to use a linear regression model (model M , say) with an autoregressive 
model for the error terms [see also Ord (1975)-J: 

Y=X/?+ U,, and 

u, =pwu, +l3,, 

(8) 

(9) 

where Y is a (R x I) column vector with observations on the dependent 
variable; X a (R x K) with observations on K (non)stochastic regressors; ‘b a 
(IS x I) vector with to be estimated parameters; U1 a (R x 1) vector with error 
terms generated by a first-order Markov process: with to be estimated 
parameter 1~1 c 1; W  a (R x R) weighting matrix3 with elements w,,, 20, 
Vr#rk{l,...,R) and w, =0, representing the nature of interaction between 
any pair of spatial units r and r’; and E, -NID (0, &, I,). 

By comparing the anaIyses of both Taaffe et al. (1963) and Cliff and Ord 
(1981) with Palm’s summary of the traditional approach to econometric 
modell ing (see section 2), it can be shown that both analyses fit into that 
description: 

-Specification of an intial model M ,: Taaffe et al. (1963) choose the eqs. (1) 
and (4), while Cliff and Ord (1981) started with O’Sullivan’s model Y = &z 
+plx, -tE,, [z =(I. *. l)T, E, -NNID (0, &I& and PO, fir parameters].* 

-Choice of an appropriate estimation procgdure, under the assumption that 
M , is the true model: In the first instance, both groups of researchers used 
OLS. 

- R2 values and/or extent of spatial autocorrelation were used as diagnostic 
criteria. 

-Low RZ values and/or significant spatial autocorrelation led to 
respecifications of 1M 0: Taaffe et al. (1963), tried several alternative models 
(including non-log versions). 5 As has been indicated above, regressions (3) 

3Also known as the (first order) spatial lag operator or contiguity matrix [cf. CIiff and Ord 
(1973, 19X1)]. 

%=(l...l)r is a (Rx 1) unity column vector in transposed form; I, is a (R x R) identity 
matrix. 

‘Uncertainty with respect to functional forms can formally be incorporated by using the 
transformations suggested by Box and Cox (1964). For example, a linear model specified as Y, 
= c/$X, r + U, is transformed into the general form a,( Y,.) = ~&Ii(Xi ,) + V,, r E { 1,. . ., R}, where 
n(z) = (2’ - 1)/11, 2 z=- 0 is the well-known Box-Cox transformation. Since .I,, AI,. . ., R, are- to be 
estimated parameters, the functional form is partly determined by the data. Special cases: (i) 
,I+ 1, i.e., a linear model, (ii) J-+0, i.e., a log-linear model. 

R.S.U.E.- D 
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and (6) were accepted as satisfactorily models (i-e., model M f). Similarly 
Cliff and Ord (1981) also tried a series of regressions (models M , and M ,). 
Although model M , Ceqs. (8) and (9)] was accepted as final version, there 
is still some evidence of spatial autocorrelation among the residuals (see 
section 5 for further details). 

Both Taafe et al. (1963), and Cliff and Ord (1981) used a testing framework 
- commonly applied in the traditional approach to econometric modell ing 
- what has been called by M izon (1977) the ‘re2rerse’ procedure which, 
starting from the most restricted’ model (which is often the simplest; 
in this case model M ,), tests sequentially the need for more general models 
like M , and M ,. This is equal to an extension of the parameterset (y,> in the 
following way: 

B,=ii, 

H 012: MzWt?+~o #Oo, YI #O, YZ =O, B, > B,, (10) 
-----------------I------- 

H o~.~...N:MN(L~~)~Yo~O, Y~#Q Y~#Q--A-I#O, YN=@ 
BN>BN-- 

in which hypothesis Ho indicates that model Mo(Lfo) is the most simplest 
(most restricted) model with polynomial matrices yJ(Lfoj) in L:O~ of orders 
Bojz ti(ti is a non-negative lower bound); LF”j is a spatial lag operator 
operating on variable j (see for more technical details section 4); and 
hypothesis Ho 1 2. _ _ N corresponds to the finally retained (i.e., the first 
hypothesis not rejected) model [in our case the models (3) (6) and MJ. 
Naturally, extensions of M ,(LfO) [M,(L?) say] are not necessarily 
characterized by higher order (B, > B,) spatial lags, since adding, more 
regressors [like in the models (3), (6) and M ,] also leads to more general 
models. 

It has been noted by M izon (1977), that a testing framework like (10) has 
no optimal statistical properties, and has a number of unfavorable 
characteristics: The absence of an a priori specified maintained hyputhesis 
introduces arbitrary elements (see also section 4) in the testing procedure, 
which means that is difficult to analyze the statistical power of the reverse 
procedure. The fact that the test statistics used in a framework like (10) are 
not independent, makes this analysis even more difficult Esee Hogg (1961)f. 

These problems together with other objections to the traditional approach 
to econometric modell ing (see the sections 2 and 4), may lead to acceptance 
of m isspecified models. For this reason alternative strategies for (spatial) 
economic modell ing are considered next. 
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4. Spatial econometric specification analysis: Some details dn specification 
testing procedures 

In section 3 the treatment of specification uncertainty by both Taaffe et al., 
and Cliff and Ord, were judged as unsatisfactorily. Both approaches tackled 
specification uncertainty _ resulting from the lack of detailed information in, 
for example, modell ing error dynamics and/or systematic dynamics - in 
accordance with the traditional approach to econometric modelling. 
Alternatively, more systematic frameworks for specifying spatial economic 
relationships - viz., spatial versions of common factor analysis and economic 
factor analysis - will be presented next. 

A major objective of both common factor analysis (COMFAC) and 
economic factor analysis (ECONFAC)6 is to m itigate the risk of 
m isspecification due to exclusion of variables and/or long lags when there is 
insufficient detailed theoretical knowledge about the correct specification, 
which is - as explained above - the common situation in (spatial) 
economics. For this reason, both COMFAC and ECONFAC start with a 
fairly general model (i.e., the maintained hypothesis) such that the ‘true’ 
model is nested within it. The recommendation to start the specification 
analysis with a fairly general (=‘unrestricted’) model is motivated further by 
Zellner and Palm’s (1974) consideration that rejection of a ‘restricted’ model 
when it is true, will be a less serious error than using a restricted model 
when the restrictions are imposed incorrectly. They argue that the use of 
improperly unrestricted models, involves carrying along some extra 
parameters which may be a less serious problem than the imposition of 
incorrect restrictions which Iead to incorrect values of the parameters. 
Consider the following class of (linear) dynamic models in regression 
equation form: 

in temporal systems y(L) = (y,(L), yl(L), . . ., Y~(L))~ denotes a vector of (-I( + 1) 
scalar polynomials in the temporal lag operator L of orders no, IZ~, . . .,nK 
respectively, with y,(L) operating on the (normalized) (TX 1) vector Y with 
observations on the dependent variable, and y,(L) on (T x 1) vectors Xj, 
jE (1,. . ., K) with regressor variables; 2 = [YX]; and E a (T x 1) vector with 
white noise error terms. 

In spatial systems formulation (11) may be somewhat more complicated 
than for the ‘common’ (= temporal) econometric case. This mainly as a result 
of the increasing complexity specifying higher order (> 1) spatial lags in the 
case of non-binary weights and/or irregular lattices [see Blommestein (1981a, 

‘%ZOMFAC and ECONFAC should not be confused with the well-known factor analysis 
model as presented in, for example, Harman (1970). 
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b)]. In temporal systems the njth lag is defined as L”jX, =X,-,, whereas in 
purely spatial systems circular routes T-+Y’--+.*.--+T may have to be 
eliminated. Thus, higher-order spatial lags Li. J are obtained by powering the 
(R x R) weighting _ or contiguity matrix W(Li = w) and eliminating circular 
routes. For example, the third order spatial lag, Lz, is defined for the (R x 1) 
vector Xj as 

where C,=(W3--dzW--wdz--d3+G3)S3; A, and A, are (R x R) diagonal 
matrices with elements 6,, and Ssr, corresponding to the leading diagonals of 
W2 and W3; G, a (R x R) matrix with typical element w,,, w,,, w,,,; and S, a 
(R x R) diagonal scaling matrix [cf. Cliff et al. (1975) and references therein, 
for more details]. 

System (11) can then be reformulated as [Blommestein (19S1a)17 

y(L,) vet 2 = E, 

in which y(L,) is a (R x (R(K + 1))) su er matrix p - consisting of K + 1 (R x R) 
pblynomial matrices yj(LF) in LF of orders nj, j E (0, 1,. . . , K); Z= 
EYX, * * .X,] a (Rx(K+l)) matrix with spatial observatiotis; E, - NID 
(0, ~2,) a (R x 1) vector with error terms; with ‘vet’ denoting an operation of 
vectorizing a matrix, stacking column after column. 

In both the COMFAC- and ECONFAC framework the values of 
rzj,jE(O,l ,‘.., K} - denoting the largest lag for each variable - are taken to 
be sufficiently large that E, may be treated as white .noise. For a priori 
chosen’ maximum polynomial orders 6’ for nj, j E (0, 1, . . . , K} model (11’) 
constitutes the maintained hypothesis (i.e., most general hypothesis). 

COMFAC considers specializations of the form 

PGT) B(L) vet 2 = K  (13) 

where p(LT) is a (R x R) polynomial matrix in Lr of order m ; p(LJ is a 
(R x VW + 1))) matrix consisting of K + 1 (R x R) polynomial matrices 
fl,$L~pm) in Ly-” of orders nj-rn, j E (0, 1, . . ., K); and I/ -NID(O, &) a 

‘Since the systems (II) and (11’) are general initial models with serially and spatially 
uncorrelated disturbances respectively, the following advantages can - among others - be 
distinguished [see also Palm’s (1981) discussion of temporal systems]: (i) The interpretation of 
the parameters is facilitated by the inclusion of all the dynamics in the systematic part of the 
regression equations. (ii) In both (11) en (11’) OLS is BLUE when no lagged endogenous 
variables are present. However, the presence of lagged endogenous variables in (11) means that 
OLS yields consistent and asymptotically efficient - but biased -- estimators, while in (11’) OLS 
gives inconsistent estimators. 

‘It is pdssible, however, to test the lag length in the initial model. For example along the lines 
as indicated by Sargan (19XOb). 
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(R x 1) vector with error terms. The factorization in (13) will be valid if y(L,) 
in (11’) satisfies [cf. Sargan (1975), Blommestein (1981a)] 

which implies that the polynomials in y(L,) have a spatial common factor of 
p(L,“). It is possible for y(L,) to have at most p common roots (thus m dp), 
viz. p=min (nj), jE(U, 1,. . ., K). The presence of m spatial common factors in 
(11’) implies K restrictions on the yj(LF) [compare eq. (14)]. Dividing 
factorization (13) by p(L,“) yields 

/3(L,) vet 2 = U (15) 

which is a linear spatial dynamic model with errors generated by a spatiaE 
autoregressive process of order m, viz. U= V/&L?). A comparison of (ll’), 
(13) and (15) reveals the ‘interaction’ between systematic dynamics [y(L,), 
P(L); (=’ ex Pl ained’ part)] and error disturbance properties (= ‘unexplained’ 
part) in a dynamic equation [see, e.g., Sargan (1964), Palm (1981)]. 

The above analysis assumes that the orders of the lag polynomials are 
known and in practice this will not be the case. Hendry and Mizon (1978, 
1980) note, that two formally equivalent two-stage decision procedures might 
be adopted to solve this problem. However, the empirical implementation of 
these two approach might lead to different model choices. 

One procedure conducts sequential tests for reducing the order of 
dynamics for all K + 1 variables simultaneously, i.e., fi SF?, or for each 
variable separately, i.e., iij s C”, j E (0, 1, . . .,K), until a test statistic (to be 
discussed below) exceeds the chosen critical value. The second step is to test 
conditional on the previously determined order of dynamics (Vz or lzj> the 
factorization y(L,) = p(L,” fl(L,., using the sequence of ordered and nested 
hypotheses’ 

where #?(I,,) is a (R x (R(K + 1))) matrix consisting of K + 1 (R x R) polynomia1 
matrices pj(L? -&) in L$ -& of orders tij - ti, j E (0, 1, _ . ., K}; fi = min (fij). 

The alternative procedure first determines how many commoti factors 
ti I@ = min (K’), are consistent with the data at the chosen significance level, - 
within the a priori specified maintained hypothesis. Secondly, sequential 

‘Testing for autoregressive polynomials p(Lc) of orders F& = 1,2,3.. . implies the testing of one 
common root at the time and always treating it as real though it might be complex. This may 
lead to the incorrect conclusion that no common roots are present. This problem can be solved 
by testing for one pair of common factors - i.e., rfr = 2, 4, 6,. . _ - at a time, implying in case of 
complex roots testing for complex conjugate pairs jointly [Sargan (1977)]. 
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testing for zero roots from the set of ti common roots determined in the first 
step. 

Non-rejection of the common factor hypothesis may lead to restricted 
models which are non-sensical or difficult to interpret in terms of behavior 
of economic agents. For example in their study on the demand for money in 
the Netherlands, Blommestein and Palm (1980) found that non-rejection of 
the common factor hypothesis lead to a simpler model which was difficult to 
interpret along steady-state growth paths. For this kind of reasons, 
Blommestein and Palm (1980) continued their specification search procedure 
by imposing restrictions which could be interpreted in terms of economic 
behavior or other a priori considerations. In Blommestein (1981a) I 
introduced the generic term ‘economic factor’ analysis for this type of 
specification search procedures, in order to distinguish them from the 
statistical-mechanically type of procedures like common factor ana1ysis.l’ 

ECONFAC considers specializations of the form 

y”(L,) vet 2 = v* (17) 

in which y*(L,) is a (R x (R(K+ 1))) matrix consisting of K+ 1 (R x R) 
polynomial matrices y7 (L$) in L$ of orders nj* 5 ~j, j E (0, 1, . . ., K}; and Y* a 
(R x 1) vector with error terms, not necessarily white noise. 

The restrictions imposed on y(L,) to arrive at y*(L,) are to be based on 
economic theory considerations such as: non-linear cross-equation 
restrictions in rational expectations models [cf. Sargent (1981)]; partial 
adjustment models for endogenous variables [cf. Blommestein and Palm 
(19W1, ‘error correction’ mechanisms [cf. Hendry (1978), Blommestein and 
Palm (1980)] and/or ‘integral correction’ mechanisms [cf. Hendry and Von 
Ungern-Sternberg (1979)], exclusion restrictions as the result of some causal 
mechanism [see Palm (19Sl), Sargent (1981)], requirements of homogeneity 

“This two-fold classification into procedures which impose statistical-type of restrictions, [for 
example, Sargan (1973, Hendry and Mizon (1978, 1980), Sims (1980), Sargent and Sims (1977)] 
and procedures which impose economical ~ (or other a priori information) type of restrictions 
[for example Zellner and Palm (1974, 1975), Blommestein and Palm (19X0), Sargent (19Sl)], 
corresponds, respectively, with measurement without (much) theory and measurement with 
(much) theory. This classification of procedures is, as virtually any classification, not without 
problems: (i) Learner’s (1978) approach is, by combining both type of restrictions in a Bayesian 
framework, of a hybrid nature. (ii) Although Sargan (1975) and Hendry and Mizon (1978, 1980) 
aim (ex ante) at a parsimonious and theoretically plausible parametrization [see eq. (15)] that is 
not r-ejected by the data, it has been noted in Blommestein and Palm (1980), and Palm (1981) that 
COMFAC may yield (ex post) common factor restrictions [see eq. (16)] which are theoretically 
difficult to interpret. (iii) Sims (1980), and Sargent and Sims (1977) favor the generation of 
restrictions within a Walrasian - hence theoretical - framework. Since these kind of 
restrictions, usually, leads to very complex models [see, for example, Sargent (1981)] - which 
are often informationally too demanding - Sargent and Sims prefer to work, instead, which less 
parsimoniously parameterized (reflecting the absence of operational restrictions) multiple- 
equation systems. 
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of degree zero or one with respect to some or all explanatory variables yield 
testable restrictions on the parameters of the initial model M, [see Palm 
(19Sl)], dynamic long-run properties [see Currie (1981)]. 

In other words, a priori information derived from economic theor(y)ies is 
used to impose economically meaningful restrictions on y(&). It can be noted 
that the maintained hypothesis might be a useful empirical framework for 
confronting alternative (possibly competitive) economic hypotheses. Although 
we stressed until now the use of a priori information from economic theories 
in the (traditional) narrow sense, other sources of a priori information - to 
obtain meaningful restrictions on y(L,) to define y*(L,) - might (or have to) 
be used as well. For example, institutional considerations of policy 
intervention rules, changes of technologies, physical-geographical constraints 
(e.g., natural barriers), etc., constitute part -,of the (deterministic/stochastic) 
environment faced by - and potentially influence therefore- the -behavior of 
- private and public agents. Therefore - as has been forcefully stressed by 
Lucas and Sargent (1980), among others, in discussing specification and 
estimation of dynamic economic equilibrium models and ‘rational 
expectations’ models - instead of merely estimating the parameters of 
decision rules, the parameters of agent’s objective functions and (stochastic) 
environments should be jointly (thereby imposing testable restrictions on the 
parameters) estimated. 

Specification search procedures like ECONFAC which aim at selecting 
theoretically meaningful models,l ’ should - in principle - pay attention to 
the specification of the error term I’*, within the context of theorizing as 
well. For example, Hansen and Sargent (1980) developed two different 
models of the error terms, both of which have a behaviorial interpretation. 
However as has been noted by Sargent (1978), technical requirements of 
econometric identification and/or estimation, may enforce the researcher to 
impose restrictions which are partly not grounded in economic theory or 
other a priori information. It can be noted that these situations provide 
additional specific arguments to conduct econometric modelling within 
general, maintained hypotheses like (11) and (11’). 

In discussing ECONFAC, frequent use was made of the term 
‘interpretation’. The word interpretation refers both to the formulation of a 
correspondence between a definitional system (basic theory) and empirical 
observations (empirical domain), and the comparison of empirical results 
(estimation results and the like) with that correspondence (see also section 2). 
Unfortunately, as a result of the semantically insufficiency of (spatial) 
economic theories, it is not possible, in general, to establish a one-to-one 
mapping or correspondence; this in turn may lead to substantial specification 
uncertainty (see also our discussion in section 2). In ,, this section two 
procedures were proposed to tackle the problem of specification uncertainty. 

1 ‘Such as represented by eq. (17). 
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Both procedures employ a testing framework consisting of sequentially 
testing hypotheses of the following form: 

--------------- -*--------- - 

H R~:MR,(L~“)~yr,=yz,=~~-=yE,=O, ZN<lN--. 

The set with hypotheses (18) represents a sequence of ordered and nested 
hypotheses, whereby hypothesis HRn indicates that model MR, (L$‘) consists of 
polynomial matrices yj(L$) in LF of orders 1,. This sequence of ordered and 
nested hypotheses is equivalent to impose restrictions on the set with 
parameters (yli) such that, MRN c MRNpi,. . . c MRl c M (M is the model 
under the maintained hypothesis). It should be noted that the hypotheses are 
always tested against the immediateZy preceding hypothesis, and not all 
against the maintained hypothesis [cf. Mizon (1977)]. Sequential frameworks 
like (18), i.e., procedures which test sequentially hypotheses in increasing 
order of restrictiveness, are uniformly .most powerful (UMP) in the class of 
procedures with fix the probabilities of accepting a less restricted hypothesis 
than the true one [see Anderson (1971)]. Since each stage within the - two 
formally equivalent - 2-stage COMFAC procedures possesses a structure 
like (18), the test procedure within each stage is UMP. Although the same 
arguments are valid for the ECONFAC framework, one may face the 
additional difficulty of having to choose between 2 or more a priori plausible 
hypotheses to define y*(L,). Seen our discussion in 2 and our observation 
above on the lack of a one-to-one correspondence, this is not surprisingly of 
course. 

The number of restrictions (-n, say) imposed on y(L,) to define, for example, 
factorizations like p,(L,“)&(L,) or yz(L,), can be tested by means of the 
likelihood ratio test (LIZ), the Wald test (W) or Lagrange multiplier test 
(LM). When H,: #,(y) = 0 is true - #,(y) is a (z, x 1) vector with restrictions, 
written in implicit form - the three test statistics (LR, W and LM) are 
asymtotically distributed as Xzm [cf. Sargan (1975) Hendry and Mizon (1978, 
1980); among others]. The test statistics can be used for each stage of the 
COMFAC- or ECONFAC procedure, whereby the set with to be tested 
hypotheses possesses a structure like (18). 

The choice of significance levels is very important in these multistage 
sequential testing procedures. In order to control the probability of Type I 
error for a procedure as a whole, one can use the Bonferroni inequality to 
provide a lower bound E* on the probability of lzot making a Type I error 
[cf. Savin (1980)]. 
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5. Spatial econometric specification analysis of consumption of agricultural 
output in Eire12 

In section 3 it was shown that Cliff and Ord (1973, 1981) re-analyzed some 
features of the Irish economy _ using O’Sullivan’s data _ in accordance 
with the traditional approach to econometric modelling. It has been argued 
in the sections 2, 3 and 4 that this approach tackles specification uncertainty 
unsatisfactorily. Alternative (systematic) specification strategies like 
ECONFAC and COMFAC were proposed. It was ascertained that the 
choice between COMFAC and ECONFAC is dependent on the 
(im)possibility of imposin.g theoretically meaningful restrictions. 

Cliff and Ord (1973, 1981) tried to improve O’Sullivan’s model (n/r,) by the 
reverse procedure (10). In the first instance they aimed at a ‘correctly’ 
specified model (AJ,), by extending model M, with a measure for the 
importance of rail transport (in fact a reuer.se ECONFAC analysis). Since the 
residuals ??, of model M, also exhibited significant positive autocorrelation 
according to the misspecification test I, Cliff and Ord (1981, p. 214) argued 
that ‘-. . an autoregressive model might be worth cofisidering, since such a 
model would allow for the persistence of regional variations such as those 
caused by inertia’. Further they add, that the high level of spatial 
autocorrelation suggests that ‘. . . “home” consumption of agricultural output 
is determined by historical and other (italics mine, HB) factors as well as 
road accessibility’. [Cliff and Ord (1981, p. 239).] We take these statements as 
evidence that Cliff and Ord made a shift in their specification search strategy 
from modifying model MO based on (spatial) economic theory arguments 
(model M,), to adaptions (model M,) based on sample evidence (information 
from raw or transformed data). For this reason we shall re-examine the 
specifications of some models - based on the O’Sullivan data - reported in 
Ord (1975), and Cliff and Ord (1973, 1981), within the COMFAC framework. 

Since the most common tests of misspecification, such as the I statistic, 
usually tests for a first-order spatial Markov scheme among the residuals, 
the detection of significant spatial autocorrelation, usually leads to the 
formulation of models with first order autoregressive errors. This implies 
(recall the description of the traditional approach to econometric modelling 
in section 2) that untested common factors are imposed which can lead to 
acceptance of models with a misspecified dynamic structure. The 
modification of model M, by Cliff and Ord (1973, 1981) [see also Ord 
(1975)], is an example of this modelling approach, as can be shown as 
follows. Consider the following spatial interaction model (M, say): 

Y=y,z+y1X1 +y2wx, -I-Y3WYCEl, (19) 

where Y, X, are (R x 1) vectors with observations (the O’Sullivan data) 

“The author is indebted to B. Tummers for computational assistance. 
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recorded at R ( = 26) counties; W a (R x R). contiguity matrix (W= &!) with 
elements defined by Cliff and Ord (1973, 1981) as w,,, = g,(r’)/d,,, [ql(r’) is the 
proportion of the interior boundary of County r which is in contact with 
County r’, and d,.,, is the distance between the (geometric) centers of Counties 
r and r’]; the weights were- scaled so that xrflw,,,=l, Vr~{l,2,....R); 
z=(ll... 1)” and E, -NNID (0, azl 1,) a (R x 1) vector with disturbances. 

Model h/l, [eq. (19)] is chosen in this study as the maintained hypothesis 
[compare also eq. (II’). The choice of an initial model is very important, 
since even if the specification searches are done efficiently they may result in 
a poor choice of model if the maintained hypothesis is chosen badly. For -this 
reason the assumptions underlying the estimated initial model should be 
carefully checked with the help of rnisspecijication (diagnostic) tests, like the I 
statistic, spatial correlogram analysis of the residuals, LA4 test statistic (the W 
and LR test statistics are usually associated with specification tests), etc. [see 
Blommestein and Palm (1980) among others, for an example in testing the 
adequacy of temporal models]. It is of interest to note that a testing 
framework like (10) has the structure of a series of misspecification tests, 
implying an analogy with the sequential use of LA4 test statistics [see Mizon 
(1977)-J. 

By imposing the sgatiaE common root restriction y2 = - y3y1 on model M2 
a specialization like (13) is 0btained.l 3 Since this specialization is equivalent 
to model A&, of Cliff and Ord (1973, 1981), we are in the position to test 
their model by calculating [see also Blommestein (1981a)l: (a) the ML 
estimates for model M, and M,, (b) the likelihood ratio A =L($)JL(Q2, 
where ,?,(I,@, and L(a), denote the .values of the likelihood functions of the 
models A4, and 1M, respectively. If H,: yz = -y3y1 holds, -2 InA is 
asymptotically distributed as X,2 with n: (= 1) degree(s) of freedom. The 
restriction imposed on model M2 can also be tested by calculating the Wald 
t&t statistic, defined as [see, e.g., Sargan (1975)-J: WT = R&y^)“V, 1 (y^)+(y^), 
with V,(j?) = (d+/ay) V&)(a#T/@) Iy = ?; V&y) the large sample covariance matrix 
of the parameters of the &restricted model and +(y”> a (7~ x 1) vector with 
(non)linear restrictions, written in implicit form, on the regression coefficients 
of the unrestricted model. If H,: ~$(f>=y^~ + y”3y”f =0 holds, WTAXZ. It can be 
noted that the use of WT only requires estimation of the unrestricted model, 
being very appropriate in cases whereby estimation methods more 
complicated than OLS have to be used (which is especially true for spatial 
interaction models like M, and M,!), or multiple optima of likelihood 
functions can be expected [see Sargan (1977)]. Estimated parameters of the 
models M,, M, and M, [resulting from a(n) (re)analysis of O’Sullivan’s data] 
are given in table 1. 

In section 2 it was ascertained that estimation and testing procedures are 
chosen under the assumption that the true model is known. In that case it is 
possible to evaluate the, mainly asymptotic, statistical properties of 

13The corresponding spatial common factor is equal to (I, --y3W). 
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Table 1 

Estimated spatial interaction modeIs. 

Estimated parameters with standard 
errors in brackets 

Estimation Explained 
Mode Constant X, WXI WY WU, method variance 

MO - 8.49 0.00527 - - OLS 0.700 
(0.0007) 

Ml - 1.32 0.0032 -0.021 - 0.76 ML 0.851 
(0.00067) (0.0009) (0.0002 1) 

M, 0.63 0.00245 - 0.00265 1.018 OLS 0.882 
(0.00068) (0.00213) (0.00023) 

M, - 7.479 0.0026 0.00036 0.62 - ML 0.891 
(0.00065) (0.0006) (0.00011) 

estimators and testing procedures. For example, it has been shown by several 
authors [cf. Ord (1975), Hepple (1976)] that for model A4, [see eqs. (8) and 
(9)] with p unknown, OLS yields inconsistent estimates. Similarly, as has 
been noted by Whittle (1954), ordinary least squares estimators are 
inconsistent in case of model M ,. The performance of estimation and 
testing procedures inJinite samples, has to be addressed by results from exact 
{or approximate) distribution theory or controlled experiments such as 
Monte Carlo studies. Unfortunately, not many finite sample results are 
available, especially for the spatial models considered above. It is possible of 
course, to evaluate estimation (or testing procedures) - given asymptotic 
results - on the basis of a particular ‘real’ dataset. For example, Ord (1975, 
p. 124) concludes from a comparison of the performance of OLS and ML for 
model M l, using O’Sullivans data, that the marked dzffeerences between the 
estimates, indicate the need for the use of the ML approach. 

Similarly, one m ight argue that the striking differences (see table 1) in 
estimated parameters of model M ,, using both OLS and ML, indicate the 
need for the use of the ML approach. However, in the first instance both 
conclusions are - in our opinion - not very meaningful. This proposition is 
based on the following reasoning: Estimation- and testing procedures are 
chosen tinder the implicit assumption that the model under investigation, is 
the true model. Unfortunately, as has been ascertained above, researchers 
from the social sciences are confronted with substantial specification 
uncertainty. In case the model is m isspecified, estimation- and testing results 
(parameter estimates, calculated test statistics, etc.) are distorted by 
specification errors. Ifi general, the precise (or even approximate) 
consequences of this distortion are not known for spatial econometric 
models. Consequently, a comparison of results of different estimation- and 
testing procedures in case of m isspecified models is not very meaningful. 
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However, application of specification testing procedures like COMFAC and 
ECONFAC, which aim at a m itigation of the risk of m isspecification, may 
put these comparisons between alternative econometric- and statistical 
procedures on a more solid basis. Naturally, only in those cases that a 
certain econometric model is not rejected according to both specification- and 
m isspecification tests. 

Returning to our case-study, it appears that according to both a 
specification test (LR-test) and a m isspecification test (I-statistic), model M1 
had to be rejected: Calculation of -21n II (see above, this section) yields 
a significant (at a=O.Ol) value of 12.46, Further, there is some evidence 

spatial 
plf/W/C 

autocorrelation among the residuals, because x=EI--8 
var (I/H,)]* = 2.0 [see Ord (1975, p. 124)]. Unfortunately, testing 

for autocorrelation among the residuals of model A4, also - yields an 
unsatisfactorily result, viz. x=2.053. However, it should be noted that due to 
the presence of an autoregressive component, the distribution of the test 
statistic I changes when either model M , or M , is used [cf. Ord (1975), Cliff 
and Ord -(1981)]. Therefore the values of x should be considered as a rough 
guide only. Nevertheless, model A&, deserves closer inspection [see 
Blommestein (198lb) for further details]. 

6. Summary and conclusions 

It was shown that (spatial) economic theories generate insufficient 
information for the specification of fully specified econometric models. 
Therefore researchers from the social sciences are confronted with substantial 
specification uncertainty. It was concluded - illustrated by two well-known 
examples from the spatial economic literature - that the traditional 
approach to spatial econometric modell ing treats specification uncertainty 
inadequately. 

Therefore, two alternative specification strategies for spatial economic 
modell ing were proposed. One of these strategies was used for a specification 
analysis of consumption of agricultural output in Eire. It was concluded that 
the linal specification selected by Cliff and Ord (1981) in a reanalysis of 
O’Sullivan’s (1969) data, must be rejected. 

Finally it was ascertained that the use of systematic specification search 
strategies enables a more meaningful comparison of alternative estimation- 
and testing procedures in case of ‘real’ datasets. 
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