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Tutorial Paper 

Robust Control and   -Optimization Tutorial 
Paper* 

H U I B E R T  K W A K E R N A A K t  

Robust control systems may successfully be designed by ~'=-optimization, 
in particular, by reformulating the design problem as a mixed sensitivity 

problem. 

Key Words--~=-optimal control; robust control. 

Abstract--The paper presents a tutorial exposition of 
~=-optimal regulation theory, emphasizing the relevance of 
the mixed sensitivity problem for robust control system 
design. 

1. INTRODUCTION 
T H E  I N V E S T I G A T I O N  O F  ~®-optimization of control 
systems began in 1979 with a conference paper by 
Zames (1979), who considered the minimization of 
the oo-norm of the sensitivity function of a 
single-input-single-output linear feedback system. 
The work dealt with some of the basic questions of 
"classical" control theory, and immediately caught a 
great deal of attention. It was soon extended to more 
general problems, in particular when it was recognized 
that the approach allows dealing with robustness far 
more directly than other optimization methods. 

The name "~K~-optimization" is somewhat un- 
fortunate. ~® is one member of the family of spaces 
introduced by the mathematician Hardy. It is the 
space of functions on the complex plane that are 
analytic and bounded in the right-half plane. The 
space plays an important role in the deeper  
mathematics needed to solve K-op t ima l  control 
problems. 

This paper presents a tutorial exposition of the 
subject. The emphasis is on explaining the relevance 
of K-opt imizat ion for control engineering. The paper 
presents few new results, and does not at all do justice 
to the extensive theoretical and mathematical 
literature on the subject. The presentation is limited 
to single-input-single-output (SISO) control systems. 
Many of the arguments carry over to the mult i- input-  

* Received 6 February 1992; revised 6 July 1992; received 
in final form 23 August 1992. The original version of this 
paper was presented at the IFAC Symposium on Design 
Methods of Control Systems which was held in Ziirich, 
Switzerland during September 1991. The Published Proceed- 
ings of this IFAC Meeting may be ordered from: Pergamon 
Press Ltd, Headington Hill Hall, Oxford, OX3 0BW, U.K. 
This paper was recommended for publication in revised form 
by Editor K. J. Astr6m. 

t Systems and Control Group, Department of Applied 
Mathematics, University of Twente, P.O. Box 217, 7500 AE 
Enschede, The Netherlands. 

255 

multi-output case but their implementation is 
necessarily more complex. 

We preview some of the contents. In Section 2 we 
use Zames'  original minimum-sensitivity problem to 
introduce ~®-optimization. Section 3 is devoted to a 
discussion of stability robustness. A well-known 
stability robustness criterion first proposed by Doyle 
(1979) demonstrates the relevance of the oo-norm for 
robustness. Doyle's criterion in its original form has 
severe shortcomings, owing to the oversimplified 
representation of plant perturbations. In Section 4 it is 
explained how the criterion quite easily can be 
extended to a much more powerful result that applies 
to a very general perturbation model. In Section 5 this 
result is used for a perturbation model that for lack of 
a better name we refer to as numerator-denominator  
perturbations. It leads to the "mixed sensitivity" ~® 
stability robustness test. It is only slightly more 
complicated than Doyle's original test, and far less 
conservative for low-frequency perturbations. 

Minimization of the mixed sensitivity criterion 
results in "optimal" robustness. In Section 6 the 
resulting mixed sensitivity problem is discussed in 
some detail. It is shown that it can be used not only 
for robustness optimization or robustness improve- 
ment, but also for design for performance. The design 
method based on the mixed sensitivity criterion 
features frequency response shaping, type k control 
and specified high-frequency roll-off, and direct 
control over the closed-loop bandwidth and time 
response by means of dominant pole placement. 

To illustrate these features two design examples are 
included. In Section 7 a textbook example is discussed 
that is simple enough to be completely transparent. In 
Section 8 the application of the mixed sensitivity 
method to a benchmark example involving ship course 
control is described. 

Sections 9-11 briefly review the theory needed to 
solve ~ - o p t i m a l  regulation problems. In Section 9 it 
is shown that the mixed sensitivity problem is a special 
case of the so-called "standard" ~®-optimal regulation 
problem. In Section 10 the frequency domain solution 
of the standard problem is outlined, while Section 11 
describes the main features of the state space solution. 
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We do not go into much detail, because the theory is 
not easy, and the development of algorithms that can 
be used unthinkingly for applications is best left to 
specialists. 

V-S-q 
"t/  
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FIG. 3. Equivalent representation of the system of Fig. 1. 

2. SENSITIVITY 
~-opt imiza t ion  of control systems deals with the 

minimization of the peak value of certain closed-loop 
frequency response functions. To clarify this, consider 
by way of example the basic SISO feedback system of 
Fig. 1. The plant has transfer function P and the 
compensator has transfer function C. The signal v 
represents a disturbance acting on the system and z is 
the control system output. Then from the signal 
balance equation :~ = ~ -  PC~, with the circumflex 
denoting the Laplace transform, it follows that 

= S0, where 

1 
S = 1 + P--~' (1) 

is the sensitivity function of the feedback system. As 
the name implies, the sensitivity function characterizes 
the sensitivity of the control system output to 
disturbances. Ideally, S = 0. 

The problem originally considered by Zames (1979, 
1981) is that of finding a compensator C that makes 
the closed-loop system stable and minimizes the peak 
value of the sensitivity function. This peak value (see 
Fig. 2) is defined as 

IISll~ = max IS(jto)l, (2) 
~ o ~ R  

where ~ denotes the set of real numbers. Because for 
some functions the peak value may not be assumed 
for any finite frequency, we replace the maximum 

" 0  

FIG. 1. SISO feedback loop. 

s e n s i t i v i t y  ISJ 

Ilsll  

I I I 

( d  

FIG. 2. IlSll~ as peak value. 

here and in the following by the supremum or least 
upper bound, so that 

IISIl~ = sup LS(jto)l. (3) 
( o ~ R  

The justification of this problem is that if the peak 
value mmsml® of the sensitivity function S is small, then 
the magnitude of S necessarily is small for all 
frequencies, so that disturbances are uniformly 
attenuated over all frequencies. Minimization of IISll~ 
is worst-case optimization, because it amounts to 
minimizing the effect on the output of the worst 
disturbance (namely, a harmonic disturbance at the 
frequency where ISJ has its peak value). 

The worst-case model has an important mathemati- 
cal interpretation. Suppose that the disturbance v has 
unknown frequency content, but finite energy IIvll~. 
The number 

tlvtt2 = X/f lv(t)2 dt, (4 )  

is known as the 2-norm of the disturbance v. The 
energy of v is the square of the 2-norm. Then the 
norm IISlJ of the system S as in Fig. 3 with input v and 
output z induced by the 2-norm is defined as 

Ilzl12 
S U  IlSll = ~: mt~m~<~ [Iv 112 (5)  

Hence, in engineering terms the norm is directly 
related to the energy gain for the input with the worst 
possible frequency distribution. Using Parseval's 
theorem, it is not difficult to recognize that 

IlSll = IlSll~. (6) 
Hence, the peak value is precisely the norm of the 
system induced by the 2-norms on the input and 
output signals. This norm is known as the oo-norm of 
the system. 

It follows that ~ -op t imiza t ion  is concerned with 
the minimization of system norms. It is useful to be 
aware of this when studying theoretical papers on 
g(~-optimization. 

Worst-case optimization suggests a game theory 
paradigm: The designer wishes to determine the 
compensator C that offers the best protection against 
the worst disturbance that nature has in store. This 
explains why in many theoretical papers ~ -  
optimization is treated from the point of view of 
differential game theory. 

A little contemplation reveals that minimization of 
IISIk as it stands is not a useful design tool. The 
frequency response function of every physical plant 
and compensator decreases at high frequencies. This 
means that often the sensitivity S can be made small at 
low frequencies but eventually reaches the asymptotic 
value one for high frequencies. Just how small S is at 
low frequencies is not reflected in the peak value but 
is of paramount importance for the control system 
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performance. For this reason, it is customary to 
introduce a frequency dependent weighting function 
W and consider the minimization of 

IIWSIl~ = sup IW(jwS(jw)]. (7) 
t o E R  

Characteristically, W is large at low frequencies but 
decreases at high frequencies. 

The weighted sensitivity minimization problem thus 
defined has interesting aspects. Unfortunately, it does 
not account adequately for basic bandwidth limita- 
tions owing to restricted plant capacity, caused by the 
inability of the plant to absorb inputs that are too 
large. Before going into this deeper we consider the 
question of robustness. 

3. ROBUSTNESS 
We illustrate the connection between peak value 

minimization and design for robustness by considering 
in Fig. 4 the Nyquist plot of the loop gain L = PC of 
the SISO feedback system of Fig. 1. In particular, we 
study whether the feedback system remains stable 
under a perturbation of the loop gain from its nominal 
value Lo to the actual value L. 

For simplicity we take the system to be open-loop 
stable (that is, L represents a stable system). 
Naturally, we also assume that the nominal closed- 
loop system is well-designed so that it is stable. Then 
by the Nyquist stability criterion the Nyquist plot of 
the nominal loop gain Lo does not encircle the point 
- 1 .  The actual closed-loop system is stable if also the 
loop gain L does not encircle the point -1 .  

It is easy to see by inspection of Fig. 4 that the 
Nyquist plot L definitely does not encircle the point 
- 1  if for every frequency ~o the distance I L ( # o ) -  
Lo(jta)l between any point L(jto) on the plot of L and 
the corresponding point Lo(#o) on the plot of L0 is 
less than the distance ]Lo(jw)+ 11 between the point 
Lo(jw) and the point - 1 ,  that is, if 

IL(jto) - Lo(j¢o)] < [Lo(jto) + 11 for all w c ~. (8) 

This is equivalent to 

IL(jo)) - Lo(jw)l ILo(j~o) < 1, for all ~o ~ ~. 
IL,,(#o)l IL0(#o) + 11 

(9) 

Define the complementary sensitivity function To of 
the nominal closed-loop system as 

1 Lo 
T o = I - S , , = I  l + L o  I + L , ,  (10) 

Im 

FIG. 4. Stability under perturbation. 

Re 

with So the nominal sensitivity function. Then it 
follows from (9) that if 

]L(j to)-  Lo(jO))l. ITo(jo))l < 1, for all to e R, (11) 
ILo(jo))l 

the perturbed closed-loop system is stable. 
The factor IL(jo))-Lo(jto)l/ILo(jto)l in this ex- 

pression is the relative size of the perturbation of the 
loop gain L from its nominal value Lo. Suppose that 
this relative perturbation as a function of frequency is 
known to be bounded by 

IL(jo)) - Lo(jco)l 
--" IW(#o)h for all to ~ R, (12) 

ILo(jw)l 

with W a given frequency dependent function. Then 

IL(jo)) - L0(j¢o)l 
ITo(ja0l 

I t (Po) l  

= I t (#o)  - to(jo))l/IZo(jo~)l. IW(jo))To(jo))l 
IW(j~o)l 

< IW(jco)To(jc,)l. (13) 
Hence, if 

tW(po)To(jo))l < 1, for all ~o ~ R, (14) 

by (11) the closed-loop system is stable for all 
perturbations bounded by (12). Indeed, it may be 
shown that the condition (14) is not only sufficient but 
also necessary for the closed-loop system to be stable 
for all perturbations bounded by (12). 

We obtained the condition (14) under the 
assumption that the open-loop system is stable. It may 
be proved that it also holds for open-loop unstable 
systems, as long as the nominal and the perturbed 
open-loop system have the same number of right-half 
plane poles. The result may also be extended to 
multivariable systems (Doyle, 1979). 

Using the norm notation introduced in (3) the 
condition (14) for robust stability may be rewritten as 

IIWToll~ < 1. (15) 

This explicitly demonstrates the relevance of the 
a-norm, that is, the peak value, for robustness 
characterization. The peak value criterion arises from 
the Nyquist stability criterion, which forbids the 
Nyquist plot of the loop gain to cross the point - 1 .  

For stability robustness the feedback system need 
be designed such that IIWToll~ is less than one. It is 
tempting to consider the problem of minimizing the 
norm IIWT,,Ik with respect to all compensators that 
stabilize the closed-loop system as a way of optimizing 
robustness. Stability seldom is the sole design target, 
though, and robustness optimization may easily lead 
to useless results. If the system is open-loop stable, for 
instance, and all perturbations that may arise leave it 
stable, IIWToll~ may be made equal to zero, and, 
hence, minimal, by simply letting C = 0, so that also 
L0 = 0 and To = 0. This optimizes stability robustness, 
but does nothing to improve control system 
performance, such as its sensitivity and response 
properties. In Section 5 we introduce an alternative 
stability robustness criterion that allows consideration 
of the response properties as well. 
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It is important to note that although it looks very 
plausible to characterize the plant perturbations by 
the bound (12), the bound may in fact allow far more 
perturbations than may actually occur. By way of 
example, suppose that the perturbations are caused by 
variation of a single parameter. Then if these 
variations have an important effect on the loop gain it 
may be necessary to choose W quite large to satisfy 
the bound. This large bound also allows many other 
perturbations, however, including such that change 
the order of the plant. Because of this the robustness 
stability test (14) may easily fail even if the actual 
parameter perturbations do not destabilize the 
feedback system. 

This phenomenon, usually referred to as conserva- 
tiveness, seriously handicaps the applicability of the 
robustness stability analysis described in this section. 
The model is mainly suited to deal with high- 
frequency uncertainty caused by parasitic effects and 
unmodelled dynamics that cause the envelope defined 
by (12) to be densely filled. 

4. A GENERAL PERTURBATION MODEL 
In the preceding section we considered perturba- 

tions of the form Lo--*L, where [L( f lo ) -  Lo(flo)[/ 
ILo(jco)l-< IW(jo~)l for all o~ ~ R. Equivalently, we 
may write 

Lo---~ Lo(1 + 6LW), (16) 

where 6L is any frequency dependent function such 
that 16L(po)l- 1 for all ~o e •, that is, such that 

116LII~ -< 1. (17) 

This perturbation may be represented as in the block 
diagram of Fig. 5. Because at this point we are only 
interested in stability the disturbance has been 
omitted. The functions W and 6L are represented as 
frequency response functions of stable systems. 

Figure 5 is a special case of the configuration of Fig. 
6, where H represents the dashed block in Fig. 5. In 
the block diagram of Fig. 6 the perturbation 6 is 
isolated from the rest of the system H. 

By the small gain theorem (see for instance Desoer 
and Vidyasagar, 1975) a sufficient condition for the 
closed-loop system of Fig. k to be stable is that the 
norm IlnOll of the loop map 1-1"6 be less than 1. By 

H 

FIG. 5. Feeback loop with perturbation. 

FIG. 6. General perturbation model. 

the inequality IIHrll ~ IIHll" 11611 this is guaranteed if 
IIHIl" 11611<1. Taking in particular the oo-norm it 
follows that the perturbed system is stable for all 
perturbations 6 whose oo-norm is, at most 1 if 

Itnll= < 1. (18) 

The perturbation model of Fig. 6 with the 
corresponding condition (18) for stability with respect 
to all perturbations such that IlOll=-<l is simple yet 
very general. The condition (18) is not only sufficient 
but also necessary. 

To illustrate its application we specialize the result 
to the configuration of Fig. 5. H is the transfer 
function from p to q after opening the loop by 
removing the block "6".  Inspection of Fig. 5 shows 
that £ =/~ - LoL so that 

1 
= ~ / ~ .  (19) 

By further inspection we have 

L0 
7t = -WLo2 = - W  1 + Lo ~ = -WTo:,  (20) 

so that the transfer function H is given by 

Hence, by 
guaranteed if 

H = -WTo. (21) 

(18) stability under perturbation is 

IIWT,,II~ < 1. (22) 

This is precisely the stability robustness criterion of 
Section 3. 

The general model of Fig. 6 with the necessary and 
sufficient condition IIHI[= < 1 for robust stability with 
respect to all perturbations such that I161k-< 1 applies 
to SISO as well as MIMO systems. It was conceived 
by Doyle (1984). To use the condition for MIMO 
systems we need discuss how the o~-norm is defined for 
such systems. Consider a stable MIMO system with 
input u, output y and transfer matrix F as in Fig. 7. 
The oo-norm of the system is the norm induced by the 
lIO~ls 

Ilull2=~/f~uH(t)u(t)dt,  

Ilyll2 ~- ~/f~_y"(t)y(t)dt, (23) 

FIG. 7. MIMO system. 
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of the input and output,  respectively. The superscript 
n denotes the complex conjugate transpose. Again 
using Parseval's theorem, it may be shown that the 
norm of the system induced by these signal norms is 

IIFII~ = sup IIF(jw)ll2, (24) 
t o c z R  

where for a constant complex-valued matrix A the 
notation IIAll2 indicates the spectral norm 

IIAII2 = max oi(A),  (25) 
i 

with ai the ith singular valuer. It follows from 
(24)-(25) that the 0o-norm IIFIl~ of the stable system 
with transfer matrix F is found by first computing for 
each frequency the largest singular value of the 
frequency response matrix F(j to) ,  and then taking the 
maximum of all these largest singular values over 
frequency. 

In the following section we discuss a further 
application of the basic stability robustness result. 

5. NUMERATOR-DENOMINATOR 
PERTURBATIONS 

In this section we discuss the application of the 
general stability robustness result to what we call 
numerator-denominator  perturbations, or coprime 
factor uncertainty, as they are also known. The model 
may be traced to Vidyasagar (Vidyasagar et al., 1982; 
Vidyasagar, 1985) and Kwakernaak (1983, 1986). It 
relies on the representation of the plant transfer 
function P in the block diagram of Fig. 1 in fractional 
form as 

N 
P D (26) 

In particular, if P is rational, N obviously can be taken 
as the numerator polynomial and D as the 
denominator polynomial. It is not necessary to do 
this, however, and indeed it sometimes is useful to 
arrange N and D differently. The numera tor -  
denominator perturbation model represents perturba- 
tions in the form 

Po = - ~  ~ P = No + M6NW2 (27) 
Do + M 6 o W t  ' 

where the subscripts on N and D denote the nominal 
system. The terms M6oV¢~ and M6NW2 model the 
uncertainty in the denominator and the numerator,  
respectively. The frequency dependent functions MW, 
and MW2 represent the largest possible perturbations 
of the denominator and numerator,  respectively, and 
60 and 6N are frequency dependent functions of 
magnitude not greater than one. The factor M is 
included for added flexibility. Its use (for partial pole 
placement) becomes clear in Section 6. 

f If A is an n x m matrix, the singular values of A are the 
min (n, m) largest of the m nonnegative numbers g / ( ~ ) ,  
i =  1, 2 , . . . ,  m. Here ).i denotes the ith eigenvalue. The 
singular values are also the min (n, m) largest of the n 
numbers ~/~i(AAH), i = 1, 2 . . . . .  n. 

~ L  

F1G. 8. Numerator-denominator perturbation model. 

It is not difficult to check that the perturbation (27) 
may be represented as in the block diagram of Fig. 8. 
Note that the perturbation 6o appears in a feedback 
loop. Including the plant in the control system 
configuration of Fig. 1 the block diagram may be 
arranged as in Fig. 9, where the block "6e"  is 
described by 

P = -6 , , 0 ,  + 6,,02 = [~-6,, 6~] 02 " 

# 

The dashed lines in Fig. 9 indicate how the situation 
may be reduced to the perturbation model of Fig. 6. 
For the application of condition (18) for robust 
stability we need to assume that the closed-loop 
system is stable, and that moreover M, W~, and W2 
have all their poles in the open left-half plane. 

The block marked " H "  has input p and output 
q = col (qt, q2). To find the transfer matrix H, we first 
inspect Fig. 9 to establish the signal balance equation 

= Do' (Mf f  - NoC~). It follows that 

D o l M  V 
(29) 

1 + DotNoC v 1 + PoC 1'' 

where we define V = D o ' M .  By further inspection we 
see that 

WIpVcff = Wl So Vp , ~, = WI~ = 1 + 

(30) 
w2cv ^ 

~ = - w 2 c e  = - 1 + e o C  p = - W 2 U o V p ,  

qz [ - - 7 - ]  qt 

I 

i 

H 

FIG. 9. Numerator-denominator perturbation model in 
feedback loop. 
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where 
1 C 

So - 1 + PoC' Uo = ~ PoC' (31) 

are the nominal sensitivity function and the nominal 
input sensitivity function, respectively, of the feed- 
back system. The input sensitivity function U is the 
transfer function from the disturbance to the plant 
input. It is related to the complementary sensitivity 
function T as T = PU. 

From (30) we see that the transfer matrix H in Fig. 
9 is given by 

tt = [ w, Sov ]. (32) 
- ~ u o v J  

It is easy to check that the 1 × 2 matrix A = [A~ A2] 
has the single singular value ~/IAd2+ IA212. Hence, 
the square of the ~-norm of the perturbation 
6. = [ - 6 0  6N] is 

116ILL = sup (16o(jto)l ~ + 16~,(jw)12). (33) 
t o U R  

The 2 x 1 matrix A = [A~ A2] r also has the single 
singular value ~/IAd 2 + IA2I 2. Hence, the square of the 
oo-norm of the system with transfer matrix H as given 
by (32) is 

IIHII$ = sup (IWl(jto)So(jto)V(jto)l  2 
t o e R  

+ IW2(jto)Uo(jw)V(jto)12). (34) 

It follows that the closed-loop system is stable for all 
numerator-denominator perturbations 6p = [ - 6 0  6N] 
satisfying the bound 

16o(jw)12+ 16N(jto)12- < 1, for all to e R, (35) 

if and only if the sensitivity function So and the input 
sensitivity function Uo satisfy the inequality 

II W~(Jto )So(Jto ) V (Jto )l 2 

+ IW2(jto)Uo(jto)V(jw)ll2<l, (36) 

for all to e R. 

sensitivity ISI 

denominator perturbation model (27) the relative 
perturbation of the denominator is given by 

D - Do M6oWi 
m 

Do Do 
- -  ~--" V W  1 6  D = W 1 6 D ,  (37) 

where w~ = VW~. Similarly, the relative perturbation 
of the numerator is 

N - N o  M6NWz VW2 
. . . .  6N = w26N, (38) 

No No eo 

where w2=W2V/Po. From (35) it follows with 
(37)-(38) that we consider perturbations satisfying 

oDo N - No l 2 
D____~ + No - 1 ,  

I w ,  I I ~  I 
(39) 

on the imaginary axis. Substituting VC~V = Wl and 
W2V=w2Po into (36) we see that the system is 
robustly stable for such perturbations if and only if 

ISowd2+ ITow2[2< 1,on the imaginary axis, (40) 

since PoUo = To. 
By (39), the functions wl and w2 are measures for 

the relative sizes of the perturbations in the 
denominator and the numerator of the plant transfer 
matrix P, respectively. The stability robustness test 
(40) then indicates that the nominal sensitivity 
function So should be small for those frequencies 
where the relative perturbations in the denominator 
are large, and that the nominal complementary 
sensitivity function To should be small for those 
frequencies where the relative perturbations in the 
numerator are large. 

Conversely, this interpretation provides us with an 
indication how to model perturbations compatibly 
with performance requirements. Customary perfor- 
mance specifications require the sensitivity function to 
be small at low frequencies, and to level off to one at 
high frequencies (see Fig. 10). Designing the system 

1 

c o m p l e m e n t a r y  

s e n s i t i v i t y  IT] 

I I I I 

Alternative interpretation 
It is useful to consider an alternative interpretation 

of this stability robustness result. For the numerator- 

FIo. 10. Bode magnitude plots of typical sensitivity and complementary sensitivity functions. 
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this way ensures disturbance attentuation over the 
widest possible frequency range given the plant 
capacity (that is, given the largest inputs the plant can 
absorb). 

This means that low-frequency perturbations are 
best modeled as denominator perturbations. The most 
important low-frequency perturbations are normally 
caused by parameter uncertainty, often referred to as 
structured uncertainty. On the other hand, high- 
frequency perturbations are best modeled as numera- 
tor perturbations, because (complementarily--see Fig. 
10) the complementary sensitivity function To is small 
at high frequencies. High-frequency perturbations are 
usually caused by parasitic effects and unmodeled 
dynamics, often known as unstructured uncertainty. 

The examples in Sections 7 and 8 illustrate the 
application of these ideas. 

6. THE MIXED SENSITIVITY PROBLEM 
In Section 5 it was found that stability robustness 

with respect to numerator-denominator perturbations 
such that 

16~,(jo~)12 + I~(jo9)12 --- 1, o g e R ,  (41) 

is guaranteed if IIHIl®<l, where (omitting the 
subscripts on S and U) 

IIHIIL = sup (IWl(jog)S(jog)V(jog)l 2 
¢oeR 

+ IW2(jog)U(jog)V(jog)12). (42) 

Given a feedback system with compensator C that 
does not satisfy this inequality one may look for a 
different compensator that does achieve inequality. 
An effective way of doing this is to consider the 
problem of minimizing IIH]]~ with respect to all 
compensators C that stabilize the system. If the 
minimal value of I]HII~ is greater than 1, no 
compensator exists that stabilizes the systems for all 
perturbations satisfying (41). In this case, stability 
robustness is only obtained for perturbations satisfying 
(41) with the right-hand side replaced with 1/~. 2. 

The problem of minimizing 

WISV 
: (43> 

(Kwakernaak, 1983, 1985) is a version of what is 
known as the mixed sensitivity problem (Verma and 
Jonckheere, 1984). The name derives from the fact 
that the optimization involves both the sensitivity and 
the input sensitivity function (or, in other versions, 
the complementary sensitivity function). 

In what follows we explain that the mixed sensitivity 
problem cannot only be used to verify stability 
robustness for a class of perturbations, but also to 
achieve a number of important design targets for the 
one-degree-of-freedom feedback configuration of 
Fig. 1. 

Frequency response shaping 
The mixed sensitivity problem may be used for 

performance design by shaping the sensitivity and 
input sensitivity functions. The reason is that the 

solution of the mixed sensitivity problem has the 
property that the frequency dependent function 

IWl(jO))S(jco)V(#o)l 2 + IW2(j~o)U(jo))V(jo))l 2, (44) 

whose peak value is minimized, actually is a constant 
(Kwakernaak, 1985). This is known as the equalizing 
property. If we denote the constant as ~?, with ). 
nonnegative, it immediately follows from 

iWt(jo2)S(jog)V(jog)]2 + iW2(jog)U(jog)V (jog)12 = ).2, 

(45) 

that for the optimal solution 

iW~(jog)S(jog)V (jog)l, < ).2, to ~ R,  
IW2(jo))U(jo))V(jog)l 2 <- X 2, o9 ~ R. (46) 

Hence, 

IS(jo))l-lw,(jog)V(jog)l, to ~ 0~, (47) 

). 
IU(jog)t < , to ~ R. (48) 

I W2(jo) ) V (jog )l 

By choosing the functions, W~, W2, and V suitably S 
and U may be made small in appropriate frequency 
regions. 

If the weighting functions are appropriately chosen 
(in particular, with W~ V large at low frequencies and 
W2V large at high frequencies) often the solution of 
the mixed sensitivity problem has the property that 
the first term of the criterion dominates at low 
frequencies and the second at high frequencies: 

dW~(jog)S(jog)V(jog)l~ 
dominates at low frequencies 

+~Wz(jog)U(jog)V(jog)]~ = A 2 
~ r  

dominates at high frequencies. 

(49) 

As a result, 

Z 
IS(jog)l IW,(jog)V(jog)l '  for to small, (50) 

). 
IU(jog)[ IW2(jog)v(jog)l '  for o9 large. (51) 

This allows quite effective control over the shape of 
the sensitivity and input sensitivity functions, and, 
hence, over the performance of the feedback system. 

Type k control and high-frequency roll-off 
In (50)-(51), equality may often be achieved 

asymptotically. Suppose that [Wl(jto)V(jog)l behaves 
as 1/o9 ~ as o9--*0. This is the case if W~(s)V(s) 
includes a factor s k in the denominator. Then ]S(jog)r 
behaves as ogk as to-*0,  which implies a type k 
control system, with excellent low-frequency distur- 
bance attenuation if k - 1. If k = 1, the system has an 
integrating action. 

Likewise, suppose that tW2(jog)V(jog)I behaves as 
to" as w--*~. This is the case if W2V is nonproper, 
that is, if the degree of the numerator exceeds that of 
the denominator (by m). Then IU(jog)l behaves as 
to " as o9---> ~. From U = - C / ( 1  + PC)  it follows that 



262 H. KWAKERNAAK 

C = - U / ( 1  + UP). Hence, if P is strictly proper and 
m -> 0, also C behaves as to-m, and T = PC~(1 + PC) 
behaves as to-(,,+e), with e the pole excess of P. This 
means that by choosing m we pre-assign the 
high-frequency roll-off of the compensator transfer 
function, and that of the complementary and input 
sensitivity functions. This is important for robustness 
against high-frequency unstructured plant perturba- 
tions. 

Partial pole placement 
There is a further important property of the 

solution of the mixed sensitivity problem that needs to 
be discussed before considering an example. This 
concerns a pole cancellation phenomenon that is 
sometimes misunderstood. First note that the 
equalizing property implies that 

~(s)W,(-s)S(s)S(-s)V(s)V(-s) 
+ W 2 ( s ) W 2 ( - s ) U ( s ) U ( - s ) V ( s ) V ( - s )  =)2,  (52) 

for all s in the complex plane. Next we write the 
transfer function P and the weighting functions W~, 
WE, and V in rational form as 

P = N  A~ W - ' 4 2  V M (53) O' W,=-~, 2-B2, --~, 

with all numerators and denominators polynomials. 
Note that at this point we do not necessarily take the 
denominator of V equal to D as before. Then if the 
compensator transfer function is represented in 
rational form as C = Y / X  it easily follows that 

D X  D Y  
S = D X  + N Y '  U = D X  + N------~" (54) 

The denominator 

De, = D X  + NY, (55) 

is the closed-loop characteristic polynomial of the 
feedback system. Substituting S and U we easily 
obtain from (52) that 

D - O  . M - M .  ( A ? A ~ B ~ B 2 X - X  + A2A2B(B~ Y - Y )  

E - E .  B-~B1 • B2B2" D~DcI 

= Z 2, (56) 

where if A is any rational or polynomial function, A -  
is defined by A - ( s )  = A ( - s ) .  

Since the right-hand side of (56) is a constant, all 
factors in the numerator of the rational function on 
the left cancel against corresponding factors in the 
denominator. In particular, the factor D - D  cancels. If 
there are no cancellations between D - D  and 
E-EB-~B~B2B2, the closed-loop characteristic poly- 
nomial D¢~ (which by stability has left-half plane roots 
only) necessarily has among its roots the roots of D, 
where any roots of D in the right-half plane are 
mirrored into the left-half plane. 

This means that the open-loop poles (the roots of 
D), possibly after having been mirrored into the 
left-half plane, reappear as closed-loop poles. This 
phenomenon, which is not propitious for a good 
design, may be avoided, and indeed, turned into an 

advantage, by choosing the denominator polynomial 
E of V equal to the plant denominator polynomial D, 
so that 

M 
V = ~ .  (57) 

With this special choice of the denominator of V, the 
polynomial E cancels against D in (56), so that the 
open-loop poles do not reappear as closed-loop poles. 

Further inspection of (56) shows that if there are no 
cancellations between M - M  and E-EB~B1BEB2,  and 
we assume without loss of generality that M has 
left-half plane roots only, the polynomial M cancels 
against a corresponding factor in Dc~. If we take V 
proper (which ensures V(jto) to be finite at high 
frequencies) the polynomial M has the same degree as 
D, and, hence, the same number of roots as D. This 
means that choosing M is equivalent to reassigning the 
open-loop poles (the roots of D) to the locations of 
the roots of M. By suitably choosing the remaining 
weighting functions V¢~ and W2 these roots may often 
be arranged to be the dominant poles. 

This technique, known as partial pole placement 
(Kwakernaak, 1986; Postlethwaite et al., 1990), allows 
further control over the design. It is very useful in 
designing for a given bandwidth and good time 
response properties. 

In the design examples in Sections 7 and 8 it is 
illustrated how the ideas of partial pole placement and 
frequency shaping are combined. 

A fuller account of pole-zero cancellation phenom- 
ena in ~®-optimization problems is given by Sefton 
and Glover (1990). 

Design for  robustness 
As we have seen, the mixed sensitivity problem is a 

promising tool for frequency response shaping. By 
appropriate choices of the functions V, W1, and W2, 
the sensitivity function may be made small at low 
frequencies and the input sensitivity function (or 
equivalently, the complementary sensitivity function) 
small at high frequencies. These are necessary 
requirements for the system to perform adequately, 
that is, to attenuate disturbances sufficiently given the 
plant capacity and presence of measurement noise. 

On the other hand, as seen at the end of Section 5, 
a small sensitivity function S at low frequencies 
provides robustness against low-frequency perturba- 
tions in the plant denominator while a small 
complementary sensitivity function T at high fre- 
quencies protects against high-frequency perturbations 
in the plant numerator. Investigation of the 
low-frequency behavior of S and the high-frequency 
behavior of T permits to estimate the maximal size of 
the allowable perturbations. Conversely, any informa- 
tion that is available about the size of the 
perturbations may be used to select the weighting 
functions V, W~ and I4:2. The choice of these functions 
generally involves considerations about both perfor- 
mance and robustness. These design targets are not 
necessarily incompatible or competitive. 

It is clear that the crossover region is critical for 
robustness. The crossover region is the frequency 
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region where the magnitude of the loop gain 
L = PC--which generally is large for low frequencies 
and small for high frequencies----crosses over from 
values greater than 1 to values less than 1. In this 
region, neither the sensitivity function nor the 
complementary sensitivity function is small. 

Only for minimum-phase plants---that is, plants 
whose poles and zeros are all in the left-half 
plane---the sensitivity and complementary sensitivity 
functions can be molded more or less at will. The 
presence of right-half plane zeros or poles imposes 
important constraints. Right-half plane zeros constrain 
the bandwidth below which effective disturbance 
attenuation is possible, that is, for which S can be 
made small. In fact, the largest achievable bandwidth 
is determined by the right-half plane zero closest to 
the origin. Right-half plane poles limit the bandwidth 
of the complementary sensitivity function T, that is, 
the frequency above which T starts to roll off. Here, 
the smallest possible bandwidth is determined by the 
right-half plane pole furthest from the origin. If the 
plant has both fight-half plane poles and fight-half 
plane zeros the difficulties are aggravated. Especially 
if the right-half plane poles and zeros are close 
considerable peaking of the sensitivity and com- 
plementary sensitivity functions occurs. 

These results are discussed at length by Engell 
(1988) for the SISO case and Freudenberg and Looze 
(1988) for the scalar and multivariable cases. The 
results show that plants with right-half plane poles and 
zeros have serious robustness handicaps. 

7. EXAMPLE 1: DOUBLE INTEGRATOR 
In this section we illustrate the application of the 

mixed sensitivity problem to a textbook style design 
example that is simple enough to be completely 
transparent. Consider a SISO plant with nominal 
transfer function 

1 
Po(s) sZ. (58) 

The actual, perturbed plant has the transfer function 

e ( s )  = s2(1 g sO) '  (59) 

where g is nominally one and the parasitic time 
constant 0 is nominally 0. 

We start with a preliminary robustness analysis. The 
variations in the parasitic time constant 0 mainly 
cause high-frequency perturbations, while the low- 
frequency perturbations are primarily the effect of the 
variations in the gain g. Accordingly, we model the 
effect of the time constant as a numerator 
perturbation, and the gain variations as denominator 
perturbations, and write 

1 

l + s O  
P(s)= 52 (6o) 

g 

Correspondingly, the relative perturbations of the 

denominator and the numerator are 

O(s)  -- Do(s) 1 
= - -  1, (61) 

Do(s) g 

N(s)  - No(s) = - s O  (62) 
No(s) 1 + sO" 

The relative perturbation (61) of the denominator is 
constant over all frequencies, hence also in the 
crossover region. Because the plant is minimum- 
phase, trouble-free crossover may be achieved (that 
is, without undue peaking of the sensitivity and 
complementary sensitivity functions) and, hence, we 
expect that--in the absence of other perturbations--- 
variations in f l /g  - 11 up to almost 1 will be tolerated. 

The size of the relative perturbation (62) of the 
numerator is less than 1 for frequencies below 1/0, 
and equal to 1 for high frequencies. To prevent 
destabilization it is advisable to make the complemen- 
tary sensitivity small for frequencies greater than 1/0. 
As the complementary sensitivity starts to decrease at 
the closed-loop bandwidth, the largest possible value 
of 0 dictates the bandwidth. Assuming that perfor- 
mance requirements specify the system to have a 
closed-loop bandwidth of 1, we expect that--in the 
absence of other perturbations---values of the parasitic 
time constant 0 up to 1 will not destabilize the system. 

Thus, both for robustness and performance, we aim 
at a closed-loop bandwidth of 1 with small sensitivity 
at low frequencies and a sufficiently fast decrease of 
the complementary sensitivity at high frequencies with 
a smooth transition in the crossover region. To 
accomplish this with a mixed sensitivity design, we 
successively consider the choice of the functions 
V = M / D  (that is, of the polynomial M), Wt and WE. 

TO obtain a good time response corresponding to 
the bandwidth 1, which does not suffer from 
sluggishness or excessive overshoot, we assign two 
dominant poles to the locations ½V~ ( - 1  +j) .  This is 
achieved by choosing the polynomial M as 

M(s)  = [s - ½V~ ( - 1  +j)][s - ½V~ ( - 1  - J ) l  

= s 2 + sV~ + 1, (63) 

so that 

s 2 + s V ~ +  1 
V(s)  = s2 (64) 

We choose the weighting function W~ equal to 1. Then 
if the first of the two terms of the mixed sensitivity 
criterion dominates at low frequencies we have 
ISl--I;q/IVWd, or 

(jto)Z (#0)2 , (65) IS(jto)l -- 141 + jwV~ + 1 

at low frequencies. Figure 11 shows the Bode 
magnitude plot of the factor 1/V, which implies a very 
good low-frequency behavior of the sensitivity 
function. Owing to the presence of the double 
open-loop pole at the origin the feedback system is of 
type 2. 

Next contemplate the high-frequency behavior. For 
high frequencies V is constant and equal to 1. 
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Consider choosing W2 as 

W2(s) = c(1 + rs), (66) 

with c and r nonnegative constants such that c 4= 0. 
Then for high frequencies the magnitude of W2 
asymptotically behaves as c if r = 0, and as croo if 
r :~0. 

Hence, if r = 0, the high-frequency roll-off of the 
input sensitivity function U and the compensator 
transfer function C is 0 and that of the complementary 
sensitivity T is 2 decades/decade (40 dB/deeade).  

If r 4:0, U and C roll off at 1 decade/decade 
(20 dB/decade),  and T roils off at 3 decades/decade 
(60 dB/decade).  

We first study the case r = 0, which results in a 
proper but not strictly proper compensator transfer 
function C, and a high-frequency roll-off of T of 2 
decades/decade. Figure 12 shows the sensitivity 
function S and the complementary sensitivity function 
T for c = l / 1 0 0 ,  c = l / 1 0 ,  c = l ,  and c = 1 0 .  
Inspection shows that as c increases, I TI decreases and 
ISI increases, which conforms to expectation. The 

smaller c is, the closer the shape of ISI is to that of 
Fig. 11. 

We choose c =  1/10. This makes the sensitivity 
small with little peaking at the cut-off frequency. The 
corresponding optimal compensator has the transfer 
function 

s + 0.61967 
C(s) = 1.2586 1 + 0.15563s ' (67) 

and results in the closed-loop poles ½V~ ( - 1  + j)  and 
-5.0114. The two former poles dominate the latter 
pole, as planned. The minimal oo-norm is IIHII~---- 
1.2861. 

Robustness against high-frequency perturbations 
may be improved by making the complementary 
sensitivity function T decrease faster at high 
frequencies. This is accomplished by taking the 
constant r nonzero. Inspection of W2 as given by (66) 
shows that by choosing r = 1 the resulting extra 
roll-off of U, C, and T sets in at the frequency 1. For 
r = 1/10 the break point is shifted to the frequency 10. 
Figure 13 shows the resulting magnitude plots. For 
r = l / 1 0  the sensitivity function has little extra 
peaking while starting at the frequency 10 the 
complementary sensitivity function roils off at a rate 
of 3 decades/decade. The corresponding optimal 
compensator transfer function is 

s + 0.5987 
C(s) = 1.21071 + 0.20355s + 0.01267s 2' (68) 

which results in the closed-loop poles ½~/2 ( - 1  + j )  
and -7.3281 ±]1.8765. Again the former two poles 
dominate the latter. The minimal oo-norm is 
Ilnll®--- 1.3833. 

Inspection of the two compensators (67) and (68) 
shows that both basically are PD compensators with 
high-frequency roll-off. The optimal compensators 
were computed using a MATLAB package for the 
solution of ~-op t imiza t ion  problems (Kwakernaak, 
1990b) based on the polynomial method of Section 10. 
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We conclude this example with a brief analysis to 
check whether our expectations about robustness have 
come true. Given the compensator C = Y / X  the 
closed-loop characteristic polynomial of the perturbed 
plant is D(s)X(s) + N(s)r(s)  = (1 + sO)s2X(s) + 
gY(s). By straightforward root locus computat ion, t  
which involves fixing one of the two parameters g and 
0 and varying the other, the stability region of Fig. 14 
may be established for the compensator (67). That for 
the other compensator is similar. The diagram shows 
that for 0 = 0 the closed-loop system is stable for all 
g > 0, that is, for all - 1  < 1/g - 1 < oo. This stability 
interval is larger than predicted. For g = 1 the system 
is stable for 0-< 0 < 1.179, which also is a somewhat 
larger interval than expected. 

8. EXAMPLE 2: SHIP COURSE CONTROL 
In this section we discuss a more concrete design 

problem. It deals with the heading control of a ship 
moving at constant velocity, and is included in the 
1990 IFAC Benchmark Problems for Control System 
Design (,~str6m, 1990). Our presentation is related to 
the discussion in a recent doctoral dissertation by 

t At the suggestion of one of the reviewers. The author is 
indebted to this and the other reviewers for many positive 
and constructive comments. 

TABLE 1. P A R A M E T E R  V A L U E S  F O R  T H E  S H I P  T R A N S F E R  

F U N C T I O N  

Operating 
conditions bo b t ao at 

"Nominal" 0.98 1.72 2.13 -0.325 
1 1.07 0.75 1.96 -0.70 
2 1.05 0.74 1.66 -0.59 
3 0.93 0.85 1.86 -0.47 
4 0.71 1.29 2.02 -0.21 
5 0.89 1.83 2.35 0.05 

Lundh (1991). The ship transfer function from the 
rudder angle to the yaw angle is 

(bos + 1)b, 
P(s) s(s + ao)(s + a,) ' (69) 

where the values of the parameters b0, b, ,  ao, and at ,  
depend upon the operating conditions, including 
speed, trim, and loading. In Table 1 the parameter  
values are given for five operating conditions. The 
table also includes a set of values that were chosen to 
represent the "nominal" plant. The table shows that 
the sign of the pole at depends on the operating 
conditions, so that the number of unstable open-loop 
poles is not constant. Lundh (1991) formulates the 
following design specifications: 
(1) constant load disturbances at the plant input are 
rejected at the output; 
(2) the closed-loop system is stable at all operating 
conditions. 
We first discuss requirement 1, that constant input 
load disturbances be rejected. In the configuration of 
Fig. 1 the transfer function from a load disturbance 
that is additive to the plant input to the control system 
output z is 

P N X  
R = I  + PC D X  + N Y '  (70) 

where we write P = N/D,  C = Y]X. Inspection shows 
that for constant input load rejection the denominator 
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polynomial X of the compensator needs to contain a 
factor s, that is, the compensator should have 
integrating action. 

Another way of looking at this requirement is to 
recognize that the transfer function R is related to the 
sensitivity function S as R = PS. For low frequencies 
the ship transfer function P is proportional to 1/s. 
Hence, for R to behave as s, the sensitivity function S 
should behave as s 2 at low frequencies. In view of the 
asymptotic analysis of Section 6 this means that the 
product of weighting functions W, V should behave as 
1/s ~. In Section 6 we chose V = M / D ,  Wt = A , / B 1 .  
For the example at hand, D contains a factor s, so that 
V already has this factor in the denominator. To 
provide the additional factor s needed in the 
denominator of Wt V we modify the weighting function 
W~ to 

Wl(s) = w, + s l~l(s), (71) 
3" 

with ~ol the frequency up to which the effect of the 
integrating action extends. ~ provides further 
freedom in selecting Wt. This technique of choosing 
Wt to provide integrating action in the compensator 
also applies to other examples. 

Next we discuss the stability robustness specification 
2. Since we plan to use the mixed sensitivity design 
method, we consider which perturbations should be 
assigned to the plant numerator and which to the 
denominator. Obviously, the perturbation that causes 
poles to cross the imaginary axis, that is, the 
perturbations in the parameter a~, should be relegated 
to the denominator. The perturbations in the gain 
parameter b, strongly affect the low-frequency plant 
characteristics, and therefore are also included in the 
denominator perturbations. The variations in bo 
principally affect the high-frequency characteristics 
and therefore are included in the numerator 
perturbations. The variations in the far-away pole a0 
are mainly important for the high-frequency behavior, 
but because of the way the pole enters P it also affects 
the gain. We therefore write the transfer function P in 
the form 

bos + 1 bos + 1 
e ( s )  = 

where 

ao / s 1)(s + 
~ S[~oo + al) 

#ls(o~os + 1)(s + a~) 

(72) 

1 a o  
Ot'o = - -  , ~ 1  ~ ' -  • (73) 

ao bl 

Including the variation of O:o in the numerator 
perturbations we thus rewrite the plant transfer 
function as 

bos + 1 
- -  (&oS + 1 )  

p, , N(s)  OCoS + 1 
is) = O(s)  =fll(s + al)(&oS + 1) '  

(74) 

where the overbar denotes the nominal value. 
It is easy to find that the relative perturbations of 
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FIG. 15. Magnitudes of relative denominator perturbations 
for the ship transfer function. 

the denominator may be expressed as 

D(s) - Do(s) (fl, -/~,)s + (alfl, - a,fll) (75) 
Do(s) = [3,(s + a,) ' 

with the overbars again denoting nominal values. 
Figure 15 displays magnitude plots of the relative 
perturbations for the various parameter combinations 
of Table 1. We establish a bound for the perturbations 
in a suitable form. As a preamble to this, we note 
from Fig. 15 that above the frequency 1 the relative 
denominator perturbations are less than 1. For this 
reason, we aim at a closed-loop bandwidth of about 1. 

From (37) we see that at low frequencies the 
relative denominator perturbations need to be 
bounded by 

D - D o  
Do -< I VW, I. (76) 

Choosing W~ as in (71), with ff',(s) = 1, we consider 

M(s)  w, + s 
= - - ,  (77) V(s)W,(s) B,s(s + ~,)(a0s + 1) s 

with M a polynomial of degree 3 to be chosen, and cot 
a constant to be selected. M and wl should be 
determined such that, first, the bound (76) holds. 
Second, while doing this we need to remember that 
the roots of M reappear as closed-loop poles. Third, 
the constant Wl delimits the frequency interval over 
which the integrating action extends. We choose 
t o , = l ,  in line with our decision to choose the 
closed-loop bandwidth equal to 1. Furthermore, we 
choose one of the roots of M as - a 0 = - 2 . 1 3 .  This 
means that the open-loop faraway nominal pole at 
-2.13 is left in place. Next, we place the two 
remaining poles of M in a second-order Butterworth 
configuration with radius 1, that is, we choose this 
pole pair as ½V2 ( - 1  +j) .  The choice of the radius is 
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sensitivity for the ship controller design. 

again governed by the selection of a closed-loop 
bandwidth 1. Finally, for normalization we provide M 
with a leading coefficient such that V(oo)W~(oo) = 1. 

Thus, we let 

M(s)  = [31(s 2 + ~ s + 1)(s - rio). (78) 

Figure 15 includes a plot of the magnitude of VW1. If 
this magnitude is a bound for the relative denominator 
perturbations the closed-loop system is robustly 
stabilized if the minimal value of the mixed sensitivity 
criterion is less than 1. If the minimal value ~. is 
greater than 1, the bound needs to be rescaled to 
VWJ,L For the plant at hand, which has no right-half 
plane zeros, and given the normalization 
V(oo)W~(ao) = 1, from experience it may be expected 
that the minimal value ~. is somewhat larger than 1, 
say, between 1 and 2. Figure 15 shows that a margin 
of this order of magnitude is available. 

The next logical step is to analyse the numerator 
perturbations. A cursory exploration that is not 
reproduced here indicates that the numerator 
perturbations present no great danger to stability 
robustness. 

The final step in the preparation of the mixed 
sensitivity procedure is to choose the weighting 
function WE. Choosing W2 constant is expected to 
make the compensator transfer function proper but 
not strictly proper. In view of the normalization 
V(oO)Wl(OO) = 1, we tentatively let W2(s) = 0.01. 

Solution of the mixed sensitivity problem results in 
a minimal m-norm of ~.=1.0607. The optimal 
compensator transfer function is given by 

0.5468(s + 2.1277)((s + 0.4331) 2 + 0.40982) 
C(s )  = 

s(s + 47.9401)(s + 1.0204) 
(79) 

C has a pole at 0, as expected, and the transfer 
function is proper but not strictly proper, as predicted. 
The nominal closed-loop poles are -45.2010, 
-2.1277, -0.7071 + j0.7071, - 1.0173, and - 1.0030. 
They include the pre-assigned poles -2.1277 and 
-0.7071+j0.7071. It may be checked by direct 
computation of the closed-loop poles that the 
feedback system remains stable, with good stability 
margins, at all operating points. Figure 16 shows plots 
of the magnitudes of the sensitivity function S and the 
input sensitivity function U for the various operating 
points. 

For improved robustness against high-frequency 
unstructured uncertainty it is necessary to make the 
compensator strictly proper to provide roll-off of the 
complementary sensitivity T and the input sensitivity 
U. To accomplish this we modify the weighting 
function V¢2 to 

W2(s) = 0 .01(1+ ~0 ) . (80) 

The minimum oo-norm now is 1.1203, while the 
compensator transfer function takes the form 

0.5177(s + 2.1277)((s + 0.4262) z + 0.40652) 
C(s)  = 

s((s + 28.4134) 2 + (24.57362)(s + 1.0204) 
(81) 

C is strictly proper. The closed-loop pole at -45.2010 
is replaced with a pole pair at -27.0438 +j22.9860, 
while the remaining closed-loop poles alter not at all 
or very little. Figure 17 shows plots of the magnitudes 
of the system functions. Compared with Fig. 16 there 
is little change in S but U has the desired roll-off. 

The results show that the control system specifica- 
tions may be met with comfortable margins. They may 
be tightened by including extra specifications, such as 
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FIG. 17. Magnitudes of the sensitivity and input sensitivity for the second ship controller design. 

minimal bandwidth. Lundh (1991) considers addi- 
tional specifications on the peak values of S and U, on 
the response to input load disturbances, and on 
measurement noise sensitivity. 

The optimal compensators in this section were again 
computed using the package based on the polynomial 
method (Kwakernaak, 1990b), with a small modifica- 
tion needed for the pole at 0 of the weighting function 
w~.  

9. THE STANDARD ~-OPTIMAL REGULATOR 
PROBLEM 

The mixed sensitivity problem is a special case of 
the so-called standard ~g~-optimai regulator problem. 
We introduce the standard problem by considering the 
mixed sensitivity function in the configuration of Fig. 
18. The diagram shows V as a shaping filter for the 
disturbance, and V¢~ and W2 as frequency dependent 
weighting functions for the control system output and 
the plant input, respectively. The signal w is an 
external input that drives the disturbance shaping 
filter V. 

FIG. 18. The mixed sensitivity problem. 

Z 1 

It is easy to check that the Laplace transforms of 
the weighted control system output z~ and the 
weighted plant input z2 are given by 

~.1 = V¢~ S V ~ ,  
(82) 

e2 = - w : u v , ,  

so that 2 = col (21, ~:) = H~,, with 

[ w, sv  | (83) 
H = L - W 2 U V J "  

Hence, the mixed sensitivity problem amounts to the 
minimization of the ~o-norm of the transfer matrix 
from the external input w to the composite output z. 
The freedom available in the minimization problem 
consists of the choice of the compensator C. 

By isolating the compensator the block diagram of 
Fig. 18 may be represented as in Fig. 19, which is the 
configuration of the "standard" ~(~-optimal regulator 
problem. The signal w is an external input, 
representing driving signals for shaping filters for 
disturbances, measurement noise, and reference 
inputs. The signal z represents a control error. 
Ideally, z is identical to zero. The signal y represents 
the measured outputs that are available for feedback. 
The signal u, finally, represent the inputs that may be 
controlled. 

The dynamics of the block G depends on the 
particular problem at hand. Inspection of Fig. 18 
shows that for the mixed sensitivity problem 

~ = V¢~ Vff + W~ Pt~, 

22 = W2a, (84) 

y = - v ~  - P a .  
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We rewrite this as 

[w,v 
° 

G 

which defines the transfer matrix G as 

I .',.1 
O= J=L-°v I _w J. 

(85) 

(86) 

There are many other control problems that can be 
cast as special cases of the standard problem, 
including problems involving measurement noise and 
two-degree-of-freedom configurations. Of all these 
potential ~® applications so far only the mixed 
sensitivity problem has been investigated in any 
depth. 

The standard problem was first discussed by Francis 
and Doyle (1987) and is treated at length by Francis 
(1987). 

10. FREQUENCY DOMAIN SOLUTION OF THE 
STANDARD PROBLEM 

The bulk of the research on ~ -op t imiza t ion  in the 
1980s was devoted to the theoretical and mathematical 
aspects of the solution of the standard and other 
problems. Although the theory by no means has 
reached full maturity, algorithms and software are 
now becoming available for the solution of the 
standard problem. The software has not achieved a 
degree of user-friendliness, however, that affords the 
user to be totally unfamiliar with the details of the 
algorithms. For this reason we include in this paper a 
brief survey of two types of algorithms that are 
available. The present section is devoted to a 
frequency domain algorithm. The next section deals 
with state space algorithms. 

Because ~(®-optimization problems are basically 
frequency domain oriented, it makes sense to consider 
frequency domain solutions. The simplest of these 
solutions relies on what is called J-spectral factoriza- 
tion, a notion that actually is basic for all solution 
methods. We outline this solution. It is based on 
Kwakernaak (1990a), which in turn is closely related 
to work by Green (1989). 

It is not difficult to find that the closed-loop transfer 
matrix H of the configuration of Fig. 19, that is, the 

1,O Z 

FIG. 19. The standard ~ problem. 

transfer matrix from w to z, may be expressed as 

H = Gll + G,2(I - KGzz)-'KG2,. (87) 

It is characteristic for all approaches to the solution of 
~K~-optimization problems that the problem of 
minimizing Ilnll® is not tackled directly, but that first 
the question is studied how to determine suboptimal 
compensators. Suboptimal compensators are compen- 
sators that stabilize the closed-loop system and 
achieve 

Ilnll~-< Z, (88) 

with Z a given nonnegative number. Optimal 
compensators follow by finding the smallest value of 3. 
for which such compensators exist. 

The inequality IIHII~-<Z is readily seen to be 
equivalent to 

H r ( - # o ) H ( j t o )  <-- ~,2I, for all to e ~ ,  (89) 

where the inequality is taken in the sense of 
definiteness of matrices. We write (89) more 
compactly as 

H - H  <- ~,21, on the imaginary axis, (90) 

where if H is a matrix of rational functions H -  is 
defined by H-(s )  = H r ( - s ) .  

For reasons of exposition, consider the special case 
where H = P -  K, with P the transfer matrix of a 
given unstable plant, and K a stable transfer matrix to 
be determined. It is easily recognized that this is a 
standard problem with G .  = P, G,2 = - I ,  G21 = I, and 
G22 = 0. This problem, which is of more mathematical 
than practical interest, is known as the Nehari 
problem (Francis, 1987). Substituting H = P - K into 
(90), we obtain P - P  - P - K  - K - P  + K - K  <- ;t2I on 
the imaginary axis. This in turn we may rewrite as 

[ , ~ 2 1  - -  P - P  P -  I 

on the imaginary axis, which defines the rational 
matrix II~. We now represent the compensator 
transfer matrix K in the form 

K = Y X -  t, (92) 

where Y and X are matrices of stable rational 
functions. By multiplying (91) on the right by X and 
on the left by X -  it follows that the inequality 
IIHII~ ~ ;t is equivalent to the inequality 

[X-  Y-]l-I~[y X] - 0 ,  on the imaginary axis. (93) 

This simple derivation applies to the Nehari problem. 
It may be proved that also for the general case the 
inequality IIHII®-<A is equivalent to (93), with the 
matrix Ha defined as 

[ 0 I ][3.21-GnG~(i - G n G ~ ]  l 
Fla= -G~'2 -G22 L -Gz ,  G-(I -Gz,G21J 

×[0i  -G,21 (94) 
-G22J" 

The matrix I-Ia is para-Hermitian, that is, FI~ = IIa. If 
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det Hx has no poles and zeros on the imaginary axis, 
IIx may be J-spectrally factored as 

1-Ix = Z~JZx. (95) 

Zx is a square rational matrix such that both Zx and 
Z~ -1 have all their poles in the open left-half plane. J is 
a constant matrix of the form 

J = [ ~  O1], (96) 

with the two I blocks unit matrices of suitable 
dimensions. J is called the signature matrix of I-Ix. 

Given the factorization (95), the condition (93) may 
be rewritten as 

FI [ X -  Y-]Z~JZx  y >-0, on the imaginary axis. 

(97) 

Defining the square stable rational matrix .4 and the 
stable rational matrix B by 

it follows that (93) is equivalent to 

A - A  >-B-B  on the imaginary axis. (99) 

By inverting Zx we find from (98) that 

This expression, together with (99), provides an 
explicit formula for all compensators K = Y X  -1 that 
make llHIIx --- Z. 

There are many matrices of stable rational functions 
A and B that satisfy (99). An obvious choice is A = I, 
B = 0. This is known as the central solutiont.  

The question that remains is whether the compen- 
sators (100) actually stabilize the closed-loop system. 
It may be found that a necessary condition for a 
compensator given by (99)-(100) to stabilize the 
closed-loop system is that the numerator of det A have 
all its roots in the open left-half plane. It may 
furthermore be proved that if any stabilizing 
compensator exists that achieves IIHII~<A, all 
compensators such that Ilnll~-< X follow from 
(99)-(100) with A such that de tA  has all its roots in 
the open left-half plane. 

These results suggest the following search 
procedure: 

(1) Choose a value of Z. 
(2) Determine the J-spectral factor Zx and compute 

a corresponding compensator from (99)-(100) 
such that det A has all its zeros in the left-half 
plane. An obvious possibility is to compute the 
central solution. 

(3) Check if the compensator stabilizes the 
closed-loop system. If it does, decrease ~.. If it 
does not, increase ~.. 

t Note that the central solution as defined here is not 
unique, because the spectral factorization (95) is not unique. 

(4) If the optimal solution has been approached 
sufficiently closely, stop. Else, return to (2). 

The rational J-spectral factorization (95) may be 
reduced to two J-spectral factorizations of polynomial 
matrices: one for the denominator,  one for the 
numerator. Algorithms for this factorization are now 
becoming available (Kwakernaak, 1990b; Sebek, 
1990; Sebek and Kwakernaak, 1991, 1992). 

The search process may terminate in two ways 
(Kwakernaak, 1990a; Glover et al., 1991). The less 
common situation is that ~. may be decreased steadily 
until it reaches a lower bound below which the desired 
J-spectral factorization is no longer possible. All 
suboptimal compensators for this least possible value 
of ~. then are optimal. 

The more usual situation is that 2 may be decreased 
until it reaches a value where the factorization exists 
but no suboptimal solution stabilizes the closed-loop 
system. The search procedure may then be used to 
delimit the optimum. It turns out that as the optimum 
is approached, the J-spectral factorization becomes 
singular in the sense that the coefficients of the 
rational functions occurring in the spectral factor Zx 
grow without bound. At  the same time, one of the 
closed-loop poles of the central solution approaches 
the boundary of the left-half plane, and actually 
crosses over from the left-half to the right-half plane, 
or vice-versa, at the optimal value ,~,,pt. Since the 
closed-loop transfer matrix H cannot have this 
closed-loop pole as a pole (because otherwise it would 
make IIHII~ infinite), this closed-loop pole cancels in 
H. It turns out that it actually cancels within the 
compensator transfer matrix C, and hence may be 
removed. 

The singularity phenomenon in the J-spectral 
factorization may be avoided by only performing a 
partial factorization, which then may be exploited to 
compute exactly optimal solutions. The details are 
described elsewhere (Kwakernaak, 1990a), where also 
a characterization is given of all optimal solutions, 
similar to the characterization (100) of all suboptimal 
solutions. An experimental MATLAB macro package 
is available for the numerical computation of the 
optimal solutions (Kwakernaak, 1990b). 

There are a large number of details that are not 
discussed here for lack of space. They concern 
assumptions on the dimensions of the signals w, u, z, 
and y, and on the transfer matrix G. Many of these 
assumptions may be removed or circumvented. 

The singularity and cancelation phenomenon does 
not always occur. If it does not, optimal solutions are 
obtained corresponding to the largest value of A such 
that det I-Ix has a pole or zero on the imaginary axis. 

The suboptimal and optimal solutions normally are 
by no means unique. An exception is the SISO mixed 
sensitivity problem (Kwakernaak, 1990a). 

11. STATE SPACE SOLUTION OF THE STANDARD 
PROBLEM 

The mainstream work on algorithms for the solution 
of the standard problem focuses on state space 
algorithms (Doyle et al., 1989; Glover and Doyle, 
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1989). We limit our exposition (which follows that of 
Weiland, 1990) to a special situation, whose solution 
admits a neat and compact presentation. The starting 
point is the description of the system 

in state form as 

[;] o[:] , 01, 

i = A x  + Bu + Ewl ,  

y = C x  + w2, 

with A, B, C, D, and E constant matrices. This state 
space representation is not completely general. Note 
the special structure of the control error z and the fact 
that the external signal w splits into two separate 
components w =col(wD w2). For a more general 
formulation see Glover and Doyle (1989). Note that 
even in these more general representations the 
transfer matrix G is limited to be proper, a restriction 
that is not necessary in the frequency domain solution. 

First consider suboptimal ~ regulation using state 
feedback, that is, when y = x. It turns out that in this 
case Ilnll®< A, if at all possible, may be achieved by 
static linear state feedback of the form 

u = - F x ,  (103) 

with F a constant matrix. The gain matrix F is given 
by 

F = B r X ,  (104) 

where the symmetric matrix X is a nonnegative- 
definite solution of the algebraic matrix Riccati 
equation 

A r X  + X A  + D r D - X ( B B r - ~ E E r ) X = O ,  (105) 

such that the matrix A - ( B B  r - ( 1 / i t 2 )EEr )X  has all 
its eigenvalues in the open left-half plane. If no such 
solution X exists, there is no stabilizing state feedback 
such that IIHII® < it. 

One way of proving this result is to note that with u 
given by (103) the closed-loop transfer matrix from w 
to z is 

H(s)  = [ D ( s l  - A + B F ) - ' E  ] 
1 - F ( s l  - A + BF) -~EJ"  (106) 

Manipulation of the Riccati equation (105) in a way 
similar to the proof of the well-known Kalman- 
Yacubovitch equality (Kalman, 1964) results in the 
expression 

= i t21-  H r ( - s ) H ( s ) ,  (107) 

where A = A  - BF. If A - (BB  r - ( l / i t 2 ) E E r ) X  has 
all its eigenvalues in the open left-half plane, the 
left-hand side of (107) is positive-definite on the 
imaginary axis, which proves that IIHII® < it. 

Thus, in the case of full state information one 
algebraic Riccati equation needs to be solved, and 
static state feedback solves the problem. The output 
feedback problem, with measurement 

y = Cx + w2, (108) 

is more difficult to solve, although its solution is quite 
elegant and has a separation structure reminiscent of 
the LQG problem. It turns out that for output 
feedback the suboptimal solution needs to be modified 
to the feedback law 

u = -F£ ,  (109) 

with F =  B r X  as before. The quantity £ may be 
viewed as the estimated state, and is the output of an 
observer-type system given by 

~ = ( A  - ~  E E r ) £  + Bu + Z y C r ( y  - C£). (110) 

The symmetric matrix Y, if any exists, is a 
nonnegative-definite solution of the algebraic Riccati 
equation 

A Y  + y A r  + E r E -  Y ( C r C - ~ D r D ) = O ,  (111) 

such that the matrix A - Y ( C r C  - (1/ i t2)DrD) has all 
its eigenvalues in the open left-half plane. The 
constant matrix Z in (110) is given by 

The compensator defined by (109)-(110) is subop- 
timal and stabilizes the feedback system if and only if 
IIXYII® < it. 

The order of the (suboptimal) compensator equals 
that of the "plant" G. Representations of "all" 
suboptimal solutions are also available (Glover and 
Doyle, 1989). The Riccati equations (105) and (111) 
are the equivalents of the two polynomial J-spectral 
factorizations in the frequency domain solution. The 
Riccati equations are normally solved by spectral 
decomposition of the corresponding Hamiltonian 
matrix. Numerically reliable routines are available in 
MATLAB. 

An implementation of a search procedure to delimit 
the optimal solution analogous to that for the 
frequency domain approach is available commercially 
as part of the M A T L A B  Robust Control Toolbox 
(Chiang and Safonov, 1988), and the more recent 
MATLAB /~-Analysis and Synthesis Toolbox. As 
for the polynomial package, considerable expertise is 
needed for the use of these toolboxes. As the 
optimum is approached singularities occur that are 
similar to those for the frequency domain solution. 
Glover et al. (1991) have analysed these phenomena. 

The state space solution of the ~ problem requires 
more assumptions (for instance that the transfer 
matrix G be proper) than the frequency domain 
solution. On the other hand, the numerical algorithms 
for solving Riccati equations are better developed 
than the J-spectral factorization algorithms needed in 
the frequency domain approach. 
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12. CONCLUSIONS 
~®-optimal regulation is a rewarding research 

subject both for theoreticians and engineers. Theoret- 
icians and also mathematicians find an unequaled 
opportunity to penetrate deeper into the rich and 
intricately structured world of linear systems. 
Engineers recognize many of the issues and design 
targets of "classical" control theory, which now can be 
handled algorithmically. 

Although the subject has received much attention it 
has not reached maturity. There are several important 
topics that we have not been able to touch upon in 
this tutorial exposition, and are subjects of intensive 
research. 

On the theoretical side, the discrete-time ~ -  
optimal regulation problem is more or less under- 
stood. Francis (1990) is doing interesting work on the 
application of ~®-theory to sampled-data systems. 
Theoretical work on distributed-parameter system is 
in progress (Curtain, 1991), and attempts are being 
made to deal with nonlinear problems (Van der 
Schaft, 1990). 

Further theoretical work on finite-dimensional 
linear systems is directed towards exploring the 
connections between various solution methods such as 
those based on the state space approach, J-spectral 
factorization, operator theoretic methods, interpola- 
tion theory, and differential game theory. It cannot be 
claimed that all aspects of optimal solutions (as 
opposed to suboptimal solutions) are fully under- 
stood, and no doubt considerable attention remains to 
be spent on this topic. 

A problem of considerable interest, where relatively 
little progress has been made, is how to use the 
freedom still present in ~°®-optimal solutions resulting 
from the lack of uniqueness. The reason for this lack 
of uniqueness is that the oo-norm involves the peak 
value of the largest singular value of the closed-loop 
frequency response matrix only. This leaves con- 
siderable freedom in the behavior of the smaller 
singular values. The control theoretical interpretation 
of this freedom is not clear. One way of eliminating 
the nonuniqueness is to look for solutions among all 
~ - o p t i m a l  solutions that successively minimize the 
peak values of all lesser singular values. This leads to 
the notion of superoptimality (see e.g. Kwakernaak, 
1986; Jaimoukha and Limebeer, 1991). 

Another way of eliminating nonuniqueness is to 
choose so-called "minimum-entropy" solutions (Mus- 
tafa and Glover ,  1990). Other researchers use the 
remaining freedom for further optimization purposes. 

Another line of research is directed towards making 
the theory applicable. As we have shown, the SISO 
mixed sensitivity problem has considerable design 
potential. The multivariable mixed sensitivity problem 
shares this, but not all the conclusions for the SISO 
case generalize straightforwardly. Other special cases 
of the standard problem, such as criteria involving all 
three of the sensitivity function, the complementary 
sensitivity function, and the input sensitivity function, 
are being looked into. A monograph has been 
devoted to a special version of the mixed sensitivity 
problem deriving from what is known as normalized 

coprime factor plant descriptions (McFarlane and 
Giover, 1990). 

A further question that by no means has been 
settled is how to translate practical information about 
plant uncertainty and modeling inaccuracy into 
quantitative terms that allow the application of 2~ 
techniques. Doyle's "structured singular value" 
(Doyle, 1982) no doubt is an important step in the 
fight direction. 

The fact that algorithms and software become 
slowly available strongly stimulates work on "real 
world" applications. More and more interesting 
design studies are reported, with encouraging results. 
Several papers presented at a recent meeting in 
Cambridge attest to this (see for instance Kellett, 
1991; Marshfield, 1991; Walker and Postlethwaite, 
1991). Other applications are reviewed by Postle- 
thwaite (1991). 

The wealth of results on ~-op t imiza t ion  is finding 
its way into books. Besides the monographs by 
Mustafa and Glover (1990) and McFarlane and 
Giover (1990) a book by Morari and Zafiriou (1989) is 
attracting considerable attention. A recent text by 
Doyle et al. (1991) introduces some of the ~ material 
at the level of a second course on control. 
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