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� We developed an automatic algorithm for detecting fasciculations in muscle ultrasound videos.
� With algorithm guidance, observers found more fasciculations compared to visual analysis alone.
� Our findings affirm the potential clinical usefulness of automated analysis of muscle ultrasound.

a b s t r a c t

Objective: To develop an automated algorithm for detecting fasciculations and othermovements inmuscle
ultrasound videos. Fasciculation detection in muscle ultrasound is routinely performed online by observ-
ing the live videos. However, human observation limits the objective information gained. Automated
detection of movement is expected to improved sensitivity and specificity and increase reliability.
Methods: We used 42 ultrasound videos from 11 neuromuscular patients for an iterative learning process
between human observers and automated computer analysis, to identify muscle ultrasound movements.
Two different datasetswere selected from this, one to develop the algorithm and one to validate it. The out-
comewas compared tomanual movement identification by clinicians. The algorithm also quantifies speci-
fic parameters of different movement types, to enable automated differentiation of events.
Results: The algorithm reliably detected fasciculations. With algorithm guidance, observers found more
fasciculations compared to visual analysis alone, and prescreening the videos with the algorithm saved
clinicians significant time compared to reviewing full video sequences. All videos also contained other
movements, especially contraction pseudotremor, which confused human interpretation in some.
Conclusions: Automated movement detection is a feasible and attractive method to screen for fascicula-
tions in muscle ultrasound videos.
Significance: Our findings affirm the potential clinical usefulness of automatedmovement analysis inmus-
cle ultrasound.

� 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
1. Introduction

Muscle ultrasound imaging is an increasingly important addi-
tion to the diagnostic arsenal for diagnosing neuromuscular dis-
ease, providing an anatomical assessment of muscle structure to
complement standard neurological examination and electrophysi-
ologic function testing (Simon, 2015). In addition to its well-known
advantages of being patient-friendly, non-invasive and a point of
care imaging technique, the dynamic nature of ultrasound images
as a result of the high temporal resolution enables visualization of
spontaneous or voluntary muscle movements, including
fasciculations.
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Fasciculations are spontaneous contractions of a group of mus-
cle fibers innervated by a single motor axon (i.e., one motor unit).
They can be physiologic in certain muscles under specific circum-
stances (such as calf fasciculations after sports activities), but in
the context of clinical symptoms they are often a sign of motor
neuron or peripheral nerve pathology. Since the Awaji modification
of the El Escorial criteria for amyotrophic lateral sclerosis (ALS),
fasciculations are an important clue to confirm the involvement
of the peripheral nervous system in patients with suspected ALS
(Geevasinga et al., 2016). In ALS, ultrasound has a consistently
higher detection rate of fasciculations compared to clinical exami-
nation (e.g., visual inspection) or electromyography (EMG) (Grimm
et al., 2015, Misawa et al., 2011, Regensburger et al., 2017).

However, visual detection of such brief muscle contractions
within ultrasound image sequences by a human observer is time
consuming and subjective, resulting in under-detection and rele-
vant intra- and inter observer variation (Pillen et al., 2009,
Reimers et al., 1996). To overcome these limitations, computer-
aided techniques have been introduced for automated image
interpretation. Only one previous study has reported on the appli-
cation of computer-aided techniques in the detection of fascicula-
tions (Harding et al., 2016). The authors proposed an optical flow
technique to quantify muscle motion and calculate mutual infor-
mation, to measure the interdependence of the motion and dis-
criminate between muscle twitches (e.g., fasciculations) and
muscle tissue at rest. They found good agreement between man-
ual and computational detection of muscle twitches in two differ-
ent muscles (biceps brachii and medial gastrocnemius). However,
not all twitches in muscle tissue observed during ultrasound are
fasciculations. Other tissue movements caused by voluntary con-
tractions of small parts of a muscle (including contraction pseu-
dotremor, which is the isolated contraction of enlarged,
neurogenic motor units during slight antigravity movement), mus-
cle fibrillation after denervation, vascular pulsations, and imaging
artefacts such as probe motion or scatter artefacts close to bony
surfaces, can appear on the ultrasound recordings. For the purpose
of helping the clinician to detect and quantify fasciculations, auto-
mated ultrasound analysis should not only detect, but also dis-
criminate fasciculations from these other types of muscle
ultrasound movements. To do this, physiologic information on
the specific characteristics of these different types of motion is
required to distinguish between the different observed move-
ments in the ultrasound data.

Using a human observer as the gold standard for detection of
a specific type of movement in an ultrasound video is poten-
tially prone to error, especially when many simultaneous move-
ments are present in the real-time image flow, as human
observation and interpretation will select some features for its
attention but will ignore others. To overcome this, observers
would need to selectively look at every image region (or pixel,
ideally) in a frame-by-frame approach, which is expected to
be more accurate, but is also very time consuming and unsuit-
able for routine clinical evaluation of an ultrasound study. How-
ever, initially such a frame-by-frame evaluation is necessary in a
certain image set, to develop/train an automated detection
algorithm.

In this study we introduce a computationally cheap frame-
work for the automatic detection of motion within ultrasound
images sequences. We take the first steps of an iterative process
that starts with human observation, then compare the results to
automated detection of any image motion using an ultrasound
background subtraction-based method, feed this information back
to the human observer who next selectively evaluates every
movement detected in a frame-by-frame visual analysis. With this
approach, we provide physiologic information of the detected
motions that might be used to classify the different detected
events. In this paper, we show that this approach can detect fasci-
culations (i.e., has sensitivity), and is potentially able to differenti-
ate fasciculations from other movements (i.e., has specificity),
paving the way towards automatic classification using machine
learning.
2. Methods

2.A. Clinical and ultrasound data collection

This retrospective study retrieved a set of 42 ultrasound image
sequences (i.e., videos) from 11 patients seen at the neuromuscular
outpatient clinic of the Radboud university medical center (Fig. 1,
step A). All procedures followed were in accordance with the eth-
ical standards of the responsible committee on human experimen-
tation and with the Helsinki Declaration of 1975. As per a general
rule of the Dutch ethics committee, the studied needed no further
ethical approval procedure, because the study protocol only
involved the post-hoc review of anonymized data that had been
captured during routine clinical care. Patients had been referred
for the workup of different neuromuscular disorders, such as sus-
pected myopathy, unexplained myalgia and fatigue, unexplained
extremity or axial weakness, suspected motor neuron disease,
and hereditary polyneuropathy. The ultrasound videos were
retrieved from different muscles. Patient characteristics and mus-
cles studied can be found in Table 1. All ultrasound examinations
were performed on an Esaote MyLab Twice system (Esaote, Genoa
- Italy), equipped with a 3–13 MHz broadband linear transducer
(LA533), using a standard pre-set and image parameters described
earlier (Scholten et al., 2003). Image depth was set at 4 cm for all
muscles except the rectus femoris, for which the depth was set
at 6 cm. For every acquisition, 30 seconds of ultrasound video were
recorded from the relaxed muscle, using a framerate of 20 Hz. All
ultrasound data were initially scored by experienced clinicians
(JW, NvA, SL); see below Fig. 1, step B. To develop the algorithm
(section D), a training set of 5 videos was selected from the avail-
able videos by the main researcher (KG; Fig. 1, step C.1; also see
Table 2) to include a variation of image sequences that contained
few, some or many movement events. Subsequently, another sub-
set consisting of 5 videos was selected to test the developed algo-
rithm i.e., test-set (Fig. 1, step E.2; also see Table 3). More details of
the selection of the data-sets are provided in their corresponding
section; see below section C and section E.
2.B. Observer study

For the initial scoring of the videos (see Fig. 1, step B), the ultra-
sound image sequences were visually assessed by three experi-
enced neuromuscular clinicians: 2 clinical neurophysiologists
(NvA, JW) and one neuromuscular fellow (SL). The clinicians were
asked to state whether fasciculations were present or not in the
image sequences, and to count the total number of fasciculations
(NF) during the 30 s video. Any other present movement, such as
vascular pulsation, probe motion artefacts or voluntary muscle
contraction, were scored by the observers as well. Muscle
echogenicity was assessed from the ultrasound videos, and scored
semi-quantitatively by using the Heckmatt grading scale
(Heckmatt et al., 1982). This scale represents a visual grading of
muscle echogenicity which corresponds to changes in muscle tis-
sue architecture such as fibrosis and fatty degeneration, with the
rating scale as follows: 1-normal, 2-mildy increased muscle echoes
with normal bone reflection, 3- moderately increased muscle
echoes with reduced bone reflection, 4-severely increased muscle
echoes with absent bone reflection.



Fig. 1. Flow-chart of described methods. The process starts with human observation of a large ultrasound database (A-B), next a selection and frame-by-frame annotation of a
training set (step C) to develop a computer algorithm for automated detection of movements (step D) and the evaluation of the algorithm with the training and test-set (step
E.1 and E.2). Finally, physiologic parameters for the different muscles were extracted from the training set (step F).
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2.C. Training set for algorithm development

To develop the algorithm, a subset of 5 ultrasound image
sequences (30 s epochs of 600 frames each) was randomly selected
to obtain a training-set (Fig. 1, step C.1 and Table 2). The training-
set comprised three different muscles (dorsal interossei, gastrocne-
mius, rectus femoris) that had a Heckmatt-score of either 1 or 2.
One clinical observer (NvA) marked the time frames in which fas-
ciculations occurred in this training set by using a frame-by-frame
visual analysis (Fig. 1, step C.2). This resulted in labeled example
data, which we used to develop and optimize our detection algo-
rithm for the detection of fasciculations (see section D and Fig. 1,
step D). These initially found fasciculations were later compared
to the number of fasciculations found with the help of the devel-
oped algorithm to evaluate its performance.

2.D. The algorithm for automatic detection of movement

Our motion detection method (implemented in Matlab, Math-
Works Inc., Natick, MA, USA) comprised a modified background



Table 1
All patient data.

Participant Sex Age at exam Diagnosis Examined muscles

#1 Male 62 Amyotrophic lateral sclerosis biceps brachii LT4

Rectus femoris R
Masseter R
Flexor carpi radialis R
First dorsal interosseous L

#2 Male 74 Amyotrophic lateral sclerosis Rectus femoris R,L
#3 Male 64 Amyotrophic lateral sclerosis Medial gastrocnemius L

Tibialis anterior RT1

First dorsal interosseous L
#4 Female 12 Focal inflammatory neuropathy Flexor carpi radialis R

Medial gastrocnemius R,L
#5 Female 53 Lumbosacral radiculopathy Masseter R

Rectus femoris L

Medial gastrocnemius LTR4

#6 Male 54 Rigid spine myopahty Medial gastrocnemius LTR3

#7 Female 9 Hereditary motor and sensory neuropathy type 4c Medial gastrocnemius LT3

Tibialis anterior L
#8 Male 64 Progressive spinal muscular atrophy Flexor carpi radialis R

First dorsal interosseous LTR2

Medial gastrocnemius R,L

Rectus femoris RT5

#9 Male 58 Cramp fasciculation syndrome with S1 radiculopathy First dorsal interosseous R,LTR1

#10 Male 41 Myalgia and exercise intolerance, no underlying neuromuscular disorder found Medial gastrocnemius R
Tibialis anterior L
Flexor carpi radialis L

#11 Male 47 Reinnervated muscle, no underlying neuromuscular disorder found Geniohyoid
Masseter R

Flexor carpi radialis RT2

Rectus femoris R,LTR5

Tibialis anterior L
Sternocleidomastoid R
medial gastrocnemius R,L

TR = training-set, T = Test-set.

Table 2
Training-set patient data.

Participant Muscle Heckmatt-score Initial
number of
fasciculations

Training #1 First dorsal interosseous L 1 6
Training #2 First dorsal interosseous L 1 3
Training #3 Medial gastrocnemius L 2 13
Training #4 Medial gastrocnemius L 1 3
Training #5 rectus femoris L 1 3

Table 3
Test-set patient data.

Participant Muscle Heckmatt-score Initial number of
fasciculations

Test #1 Tibialis anterior R 3 4
Test #2 Flexor carpi radialis R 1 0
Test #3 Medial gastrocnemius L 3 1
Test #4 Biceps brachii L 2 0
Test #5 Rectus femoris R 1 1
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subtraction (or frame-difference) method, which is a frequently
used step in many optical motion capturing systems (Ramya and
Rajeswari, 2016). By subtracting static background from an image
sequence, static areas will cancel out to zero revealing the non-
zero areas where motion has occurred. In ultrasound applications
this method has for example been applied to remove vascular wall
tissue movements from image sequences, which enhances the
remaining signal of blood in the ultrasound images for blood flow
estimation (Jin and Wang, 2007).
To detect movement, we subtracted the background image from
the contiguous image sequence. The background image at every
time point t was computed by averaging a series of images (double
sided window size = 31 frames). Subsequently, the difference
image was divided by the standard deviation of the image within
the same time series. This results in a measure that yields the
extent of pixel intensity variability (PIZ-score, see Eq. (1)) which
is the equivalent of the z-score of pixel intensity and represents tis-
sue motion (see also Figs. 2 and 3).

PIZðm;n; tÞ ¼ jf m;n; tð Þ � f
�

m;n; tð Þj
sðm;n; tÞ ð1Þ

where m and n are the pixels indices, and t the time frame.
To cluster pixels into event regions, e.g., regions of the ultra-

sound image with suspected motion, the PIZ values were 2D Gaus-
sian smoothed (r = 10 pixels) and connected in space and time
using 3D flood filling with an empirical derived PIZ score of 1.5.

Pixels without noteworthy signal (i.e., f
�

m;n; tð Þ < 30) or that have
a low variation ((i.e., s m;n; tð Þ < 5) were ignored. The maximum of
the PIZ for every time point converts the 2D+t image information
into a 1-D signal. The magnitude of that signal represents the like-
lihood of an ultrasound frame containing motion. Based on the first
analysis of the training-set an arbitrary threshold PIZ of 1.5 was
chosen to include all fasciculations identified by the clinical obser-
vers (see Fig. 1, step D and Fig. 4) and to establish future detection
of clinical evident fasciculations by the algorithm.

2.E. Computer-aided detection of fasciculations

The algorithm developed in step D was next tested on the
training-set, to assess whether the clinician had missed any fasci-
culations in the manual annotation (see Fig. 1E.1), and on five addi-



Fig. 2. Calculation of the standardized pixel intensity variation (PIZ-score). For each pixel over time (m,n,t), the background (moving average within time window, f
�
) was

subtracted from the intensity (f) value and divided by the standard deviations.
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tional ultrasound sequences (the test-set) to evaluate the perfor-
mance of the algorithm on unfamiliar data i.e., data not used to
‘train’ the algorithm (see also Fig. 1E.2). The test-set comprised five
muscles (biceps brachii, flexor carpi radialis, rectus femoris, tibialis
anterior, gastrocnemius) with Heckmatt-scores between 1 and 3
(see Table 3). The test-set contained manually selected ultrasound
sequences with low fasciculations severity scores, and also
included videos without the presence of fasciculations, which
allowed us to test if our algorithm did not miss any ‘critical’ cases
i.e., the absence of fasciculations that would alter a diagnosis.

The outcome of the algorithm consisted primarily of a number
of movement events for each ultrasound video. Every image was
next divided into 25 areas, numbered as seen in Fig. 5 to further
guide the clinical observers. For every movement event, the corre-
sponding time frame and location within the ultrasound image
were recorded, and presented to the clinical observer, who then
specifically evaluated these frames in the video to classify the
events into the following categories: fasciculations, voluntary con-
tractions, contraction pseudotremor (i.e., slight antigravity contrac-
tion of one or a few enlarged motor units), vascular pulsations,
image artefacts, or any other movement type. The results of the
algorithm-guided clinical annotation were compared to the initial
visual annotation by the clinicians (see Fig. 1, step E) to detect any
differences.

2.F. Physiologic parameters

Besides fasciculations, the ultrasound videos also contained
other movement types, as expected. To enable automatic classifica-
tion of these movements and separate them from the fasciculation,
the following five parameters were calculated for every detected
movement event in the training-set:

1. Duration (# frames): The number of ultrasound frames that cor-
respond to a detected event.

2. Area (# pixels, mm2): The number of pixels that are involved in a
detected event and the area they cover.
3. Occurrence: The average of instances the pixels within the event
are involved in the total number of detected events.

4. Periodicity (I2): For every pixel within the event we compute the
power spectrum of the PIZ signal. The average of the maxima of
the power spectra represents the periodicity. We searched for
the maximum within the expected normal range of frequencies
for the heart rate (50–120 bpm).

5. Concurrent global deviation (I): The average of sðm;n; tÞ for all
pixels of the entire image frame corresponding to the detected
event. This measure represents the amount of surrounding
motion.

3. Results

In this section, we first present the outcomes of the manually
and guided annotation of fasciculations in the training-set (Fig. 1,
step E.1) and subsequently test-set of ultrasound image sequences
(Fig. 1, step E.2). Secondly, we present the physiologic features we
calculated for every motion event (Fig. 1, step F).
3.1. Manual versus computer algorithm-guided fasciculation detection

Table 4 summarizes the outcomes of the manually and
algorithm-guided detection of fasciculations. The initial manually
annotated number of fasciculations (NF) in the training-set ranged
between NF = 1 and NF = 6 within an ultrasound image sequence,
with a total of NF = 19 for all videos. When the observer subse-
quently reviewed the ultrasound sequences again with guidance
of the movement events listed by our algorithm, more fascicula-
tions were found, with a total NF of 49. The total difference
between manually and algorithm-guided annotation within the
training-set was 30, and ranged between 0 and 14 per video of
the training-set. Fig. 6 shows that all manual annotated fascicula-
tions were found, except for one fasciculation event that was anno-
tated as a contraction pseudotremor in the algorithm-guided
evaluation.



Fig. 3. Calculation of standardized pixel intensity variation (PIZ-score) to detect motion in ultrasound videos. (A) Shows the pixel intensity, or gray scale representation of the
ultrasound data. (B) Shows the result after (static) background subtraction and (C) the result after dividing by the standard deviation. The PIZ-scores are filtered and clustered
resulting in (D). Please note that the pixel (m, n) was selected inside a region where vascular pulsation was visible resulting in the periodic PIZ-score signal.

Fig. 4. Example of manually annotation of fasciculations for an ultrasound
sequence from the training-set and the derivation of the pixel intensity variation
(PIZ-score). The black line represents the maximum PIZ-score of the entire image
over time, a threshold of 1.5 was chosen to include all 4 manually annotated
fasciculations (gray vertical lines). When the PIZ-score value exceeds the threshold,
the motion was classified as a movement event.
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Of note, the number of manual (frame-by-frame) annotated fas-
ciculations in training video #3 had a very wide range between the
observers from the initial visual screening: from 13 to 1. These
movements were classified as contraction pseudotremor in the
frame-by-frame annotation. With the aid of the computer algo-
rithm the number of detected fasciculations again increased, to
15. This indicates that there is a considerable effect of observer-
variability possibly related to the presence of contraction
pseudotremor.

From the original 600 frames per video in the training-set, only
a fraction of the data (145 movement events from 3000 frames, or
�5%) needed to be reviewed to classify the automatically detected
motion events, depending on the number of detected events,
which were 29 on average and ranged between 20 and 39 per
video for the fasciculations combined with all other movements.
Especially contractions, both voluntary but also contraction pseu-
dotremor, were observed in almost every recording, and resulted
in additional detected events besides fasciculations.

For the ultrasound image sequences from the test-set, we
observed a global decrease in annotated fasciculations with the
help of the computer algorithm (see also Table 4). Initially the
observers annotated a total of NF = 6 in all videos of this test-set,
whereas with the computer guidance fewer fasciculations were
annotated NF = 4. The difference between manually (initial scor-
ing) and computer guided annotation within this test-set was
within the range of: �3 and 1. We observed that the decrease of
total number of fasciculations found was the result of a single
video (test #1), in which some of the fasciculations occurred in
the same region as a contraction pseudotremor and were not
detected as a result of large pixel variation over time in that area
(i.e., a high standard deviation in the image sequence results in
low PIZ-score). The number of fasciculations in the other videos
were correctly found or increased similar to the results of the
training-set. The total number of automatically detected move-
ment events was 44 (out of 3000 frames, or 1.5%) and showed that
there were less movements in the videos within the test-set com-
pared to the training-set. On average the videos in the test-set con-
tained 9 movements, with the number of movement events



Fig. 5. Presentation of the outcome of the developed motion detection method. The movement events were listed with their corresponding time frame, location and area.
Additionally, an ultrasound frame was presented with the events annotated with circles and a time frame stamp, where the radius of the circles represented the involved area
of the event.

Table 4
Manual and computer guided annotations of fasciculations for the individual recordings in the training and test-set and in bold the total number of annotations.

Data Initial manual
count

Frame by frame
count
of Fasciculations

Computer guided
count of
Fasciculations

Total automatically
detected
events/movement

Other motion observed

Training #1 6 4 8 29 Vascular pulsation, contractions, contractions pseudotremor
Training #2 3 2 5 39 Contractions, contractions pseudotremor, probe motion
Training #3 13 1 15 25 Probe motion, contractions, pseudotremor
Training #4 3 6 15 32 Probe motion, vascular pulsation, contractions pseudotremor
Training #5 3 6 6 20 probe motion, vascular pulsation
Training-set (total) 28 19 49 145
Test #1 4 – 1 9 Contractions pseudotremor, vascular pulsation
Test #2 0 – 0 11 Probe motion, vascular pulsation
Test #3 1 – 1 8 Contractions
Test #4 0 – 0 5 Contractions, probe motion
Test #5 1 – 2 11 Vascular pulsations, probe motion
Test-set (total) 6 – 4 44

Please note that the values presented in the second column are the same as presented in Tables 2 and 3.
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ranging between 5 and 11. Consequently, clinicians had to review
fewer frames in these videos compared to the videos in the
training-set.
3.2. Physiologic parameters of detected movements

Fig. 7 illustrates the average values of the parameters of dura-
tion, area, occurrence, periodicity and surrounding motion for
every classified movement event from the training-set (see also
Fig. 1, step F). Duration and area were not found to distinguish
between fasciculations and other movement events. Occurrence
reflects the repetitive behavior of events and was highest for con-
tractions pseudotremor with an average value of 11.4 ± 3.7 times.
In other words, pixels within the region of a pseudotremor contrac-
tion were involved in 11.4 additional detected movement events in
the video (most likely another pseudotremor contraction). Vascu-
lar pulsations were clearly recognizable with the use of the period-
icity parameter, which had the highest average value of 5.9 ± 5.2
(power, I2). Motions that were classified as artefacts, were fre-
quently caused by probe motion, and these events showed the lar-
gest pixel intensity variation for the entire image 6.9 ± 6.3 (I).
4. Discussion

In this work we developed the first steps of an algorithm for the
automatic detection and specification of motion in muscle ultra-



Fig. 6. PIZ-score (standardized pixel intensity variation) for five ultrasound sequences within the training-set. Motion events were detected when this score exceeded the
threshold of 1.5 (horizontal dashed line). The gray solid lines represent the manually annotated fasciculations (start and end frame), and the dashed vertical lines represent
the computer guided annotated fasciculations. The manual frame-by-frame annotation identified 19 fasciculations, whereas with the guidance of the computer algorithm 49
fasciculations were found.

Fig. 7. Physiologic parameters per categorized motion event; the average duration, area, occurrence, periodicity and concurrent global deviation are depicted for all classified
events in the training-set.
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sound image sequences acquired during clinical practice. We found
that algorithm found all manual detected fasciculations in the test-
set, except for three fasciculations in one challenging video, indi-
cating a high level of accuracy; 4/5 videos in the-test were cor-
rectly annotated with the help of the algorithm. This makes an
automated approach an attractive method to objectively screen
for the presence of fasciculations in muscle ultrasound videos,
and confirms the findings of a previous study by Harding et al.
(Harding et al., 2016).

Using the algorithm, clinicians were able to detect more fascic-
ulations than using offline visual analysis alone, and the use of the
algorithm to prescreen the videos could save clinicians time that
would have been needed to review the full ultrasound video. There
were in total 189 movement events found by the algorithm in the
training and test-set combined (6000 frames total), depending on
the number of frames required to investigate a movement event,
this will save considerable time. For instance, when 10 frames
are required to investigate a movement event this will lead to a
time reduction of approximately 70% (189 events * 10 frames/6000
frames). This shows that computer-guidance may also be an attrac-
tive approach for fasciculation detection that will help improve
sensitivity and saves a considerable amount of time for the human
observer.

Furthermore, with help of the algorithm combined with revi-
sion by the clinician, the ultrasound videos consistently were
found to contain additional movements, especially repetitive con-



Fig. 8. Possible presentation of physiologic parameters to further guide observers in the classification of motion events. Upper row depicts the periodicity (power of
spectrum) for five ultrasound image sequences and reveal the locations of vascular pulsation. The lower row depicts the occurrence-map of events and indicates occurrence
i.e., how often a pixel/region is involved in motion events.
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tractions of single motor units (either voluntary or anti-gravity
contraction). These movements can potentially confound the visual
analysis of muscle ultrasound videos, especially when it is per-
formed online. The movements were found to have specific charac-
teristics that would tell them apart from each other. Using the
computer algorithm enhanced with a standard detection method
for these features is expected to give good detection accuracy
and prevent confounding of the different movements, thus improv-
ing specificity of the muscle ultrasound video analysis.

The analysis of the test-set indicate that the algorithm is capable
of coping with a large variability of ultrasound data that exist in
clinical examinations. It included acquisitions from different mus-
cles of patients with varying diseases and disease stages. Although
there was a good agreement between the number of fasciculations
found, it is unclear if the automatically detected events included the
originally annotated fasciculations, since we only have the number
of fasciculations and not the starting frames within the test-set. The
algorithm failed to present all fasciculations to the observer in one
of the test-set recordings (test#1). A thorough inspection of this
data revealed that the missed fasciculations occurred at the loca-
tion of a pseudotremor, which confounds the automated detection
by presenting a high level of background movement in a certain
image area. Further research is required to optimize the algorithm
for this sort of challenging data. Further, certain confoundingmove-
ments, such as contraction pseudotremor or anti-gravity contrac-
tions can be prevented by making sure the patient is completely
relaxed during the examination.

Agreement between observers has been shown to be influenced
by the number of fasciculations present in the data being analyzed;
fewer fasciculations corresponds to lower agreement (Harding
et al., 2016). Consequently, a comprehensive evaluation of the
algorithm on the test-test is difficult since the initial annotations
were scored by different observers. Additional studies on the reli-
ability of the algorithm should include a more comprehensive col-
lection of ground-truth data, such as the collection of EMG data
and data on intra/inter-observer variability.

The additional physiologic data extracted from the ultrasound
movement events in this study indicate these parameters can be
used to discriminate fasciculations from other types of motion.
Vascular pulsation events showed highest periodicity values and
can be excluded using this information. Additionally, probe motion
artefacts might be discarded using the average pixel variation of
the entire image. To improve the computer-aided detection, the
physiologic data can be displayed as an overlay over the ultrasound
images to help the observer in the classification (see Fig. 8). Ideally,
these parameters are incorporated in a machine learning algo-
rithm, such as a random-forest classifier or neural network, for
fully automatic detection and classification. The feasibility of using
machine learning for this application will be studied in future
work. This requires further investigation of the variability of the
derived parameters/features. For example, the magnitude of the
periodicity will be affected negatively by probe motion. Therefore,
it might be important to have more strict requirements of ultra-
sound recordings and acquisition protocols to prevent unnecessary
difficulties in the image processing. Furthermore, the method
could be optimized for each specific muscle, since it might be the
case that other parameters are optimal for different muscles.

The method proposed for automated fasciculation detection is a
computationally cheap (i.e., fast) alternative for other motion
detection techniques such as optical flow (Harding et al., 2016).
However, the proposed method is not capable of quantifying
motion. Additional information, such as the characterization of
the motion pattern may help distinguish between fasciculations
and other involuntary contractions. For example, myokymia
appears as ‘‘brief but sustained, tractive movements” of the muscle,
which contrasts with the brief rotary muscle movements that are
typical for fasciculations (Simon, 2015). Our method may be used
as a pre-processing step to detect ultrasound frames that contain
motion, and subsequently, extract quantitative information of the
tissue motion using optical flow or speckle tracking (Gijsbertse
et al., 2017a, 2017b). Further exploration of the use of the proposed
algorithm will include its potential for detecting other biomarkers
in neuromuscular diseases, such as myokymia or fibrillations.

In conclusion, the findings above confirm the potential clinical
usefulness of an automated approach to movement analysis in
muscle ultrasound videos. The derived additional physiologic fea-
tures together with quantitative techniques have the potential to
improve diagnosis and may lead to fully automatic classification
of motions in neuromuscular diseases.
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