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A B S T R A C T

This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of
different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling,
LSM), to detect geothermal anomalies and extract the geothermal component of LST, the LSTgt. We hypothesize
that in geothermal areas the LSM time series will underestimate the LST as compared to the remote sensing data,
since the former does not account for the geothermal component in its model.

In order to extract LSTgt, two approaches of different nature (physical based and data mining) were developed
and tested in an area of about 560 × 560 km2 centered at the Kenyan Rift. Pre-dawn data in the study area
during the first 45 days of 2012 were analyzed.

The results show consistent spatial and temporal LSTgt patterns between the two approaches, and systematic
differences of about 2 K. A geothermal area map from surface studies was used to assess LSTgt inside and outside
the geothermal boundaries. Spatial means were found to be higher inside the geothermal limits, as well as the
relative frequency of occurrence of high LSTgt. Results further show that areas with strong topography can result
in anomalously high LSTgt values (false positives), which suggests the need for a slope and aspect correction in
the inputs to achieve realistic results in those areas. The uncertainty analysis indicates that large uncertainties of
the input parameters may limit detection of LSTgt anomalies. To validate the approaches, higher spatial re-
solution images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data over
the Olkaria geothermal field were used. An established method to estimate radiant geothermal flux was applied
providing values between 9 and 24 W/m2 in the geothermal area, which coincides with the LSTgt flux rates
obtained with the proposed approaches.

The proposed approaches are a first step in estimating LSTgt at large spatial coverage from remote sensing and
LSM data series, and provide an innovative framework for future improvements.

1. Introduction

Thermal infrared remote sensing (RS) and the derived land surface
temperature (LST) can be used for geothermal applications to map
thermal anomalies and calculate the geothermal heat flux
(Haselwimmer and Prakash, 2013; Ramsey and Harris, 2013; van der
Meer et al., 2014). Although most of the published literature has fo-
cused on the use of airborne thermal imagery with high spatial re-
solution (i.e. < 5 m) during the last decade several authors have
worked on the use of medium resolution thermal imagery from Ad-
vanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER), Landsat and Moderate Resolution Imaging Spectroradiometer
(MODIS) (90 m, 120 m, and 1 km spatial resolution respectively).

Coolbaugh et al. (2007) used ASTER thermal imagery to map geo-
thermal anomalies at Bradys Hot Springs (US). The method aimed to
minimize temperature variations caused by the diurnal heating effects
of the sun in order to highlight subsurface contributions of geothermal
heat. A pseudo-temperature image was created after the correction of
albedo, terrain slope, and thermal inertia effects.

Eneva and Coolbaugh (2009) used ASTER imagery and elaborated
on the importance of incorporating nighttime temperature inversions,
along with the effects of elevation when using thermal remote sensing
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for geothermal activity detection. Gutierrez et al. (2012) implemented
this improvement by including altitude in thermal anomaly detection in
the geothermal complexes of the Andes (Central Chile).

Watson et al. (2008) used a simplified surface energy balance
equation and Landsat data to calculate a ‘residual terrestrial emittance
anomaly’ throughout Yellowstone National Park that clearly dis-
criminated geothermal from non-geothermal areas. The resulting values
provided a lower bound on geothermal heat flux for that system, with
values between 0 and 94 W/m2.

Vaughan et al. (2012) analyzed ASTER and MODIS thermal data at
the Yellowstone National Park acquired in the 2000–2010 period. The
method identified normal background changes, so that significant or
abnormal changes due to geothermal activity could be recognized. The
radiant geothermal heat for the whole area resulted in an estimate of
about 2 GW of thermal energy.

Other examples and applications to other areas can be found in
some recent literature like Qin et al. (2011) and Eskandari et al. (2015)
amongst others.

Most of the aforementioned works used data acquired on specific
dates and times, based on their availability. Regarding time series, the
use of Landsat and ASTER limited the studies to a temporal frequency of
16 days or more (due to clouds or lack of acquisitions), which might not
be sufficient to monitor changing surface conditions. In this context,
Vaughan et al. (2012) increased the temporal frequency by using
MODIS 1 km radiances. These are typically taken four times daily
(twice at day and twice at night).

Night time acquisitions were preferred in all these studies to analyze
geothermal anomalies so that sun heating effects were minimized. In
particular, at the coldest time of the day (pre-dawn), the relative con-
tribution of the geothermal component to LST is higher. However, with
the aforementioned datasets, it was not always possible to choose a
specific analysis time and date because of the limitation in acquisition
time over a specific area.

Bearing these drawbacks in mind, it seems reasonable to explore the
use of geostationary satellites, which provide thermal data at higher
temporal frequencies, namely 15, 30 or 60 min. This type of data im-
proves the ability to monitor geothermal areas in a more continuous
and consistent manner, as well as facilitates the geothermal research
during night acquisition times.

In particular, the present paper aims to explore the use of Meteosat
Second Generation (MSG) time series to map geothermal anomalies and
calculate the geothermal component of LST (LSTgt). The MSG system
provides LST products at a temporal resolution of 15 min and a spatial
resolution of 3 km at nadir. The satellite is centered at 0° longitude over
the equator with a field of view that covers Europe, Africa and the east
side of South America. The formulation for LST retrieval is based on a
split-window algorithm (Wan and Dozier, 1996) where brightness
temperatures and surface spectral emissivity are the inputs.

The spatial resolution of this data is a limitation when aiming to
capture geothermal anomalies that are scattered in space and not al-
ways detectable with remote sensors. Vaughan et al. (2012) reported
that no clear LST anomalies could be observed at the Yellowstone park
when using 1 km resolution MODIS LST products, by comparing the
central geothermal pixel with the neighboring ones. Bearing this in
mind, an alternative strategy was adopted in this research, where in-
stead of using neighboring pixels to analyze the possible thermal
anomalies, an additional LST dataset was included and the assessment
was carried out comparing both datasets per pixel.

Simulations obtained with the land surface model (LSM) Noah (Niu
et al., 2011) implemented in the Weather Research & Forecast (WRF)
model were the second dataset. The equivalent to remote sensing LST is
skin temperature in the LSM, which is calculated using a single line-
arized surface energy balance equation. This LSM does not include a
source of subsurface geothermal heat in the formulation, and therefore
the surface temperature simulated values will be underestimated in
geothermal areas. However, remote sensing techniques based on

radiation detection are potentially able to detect the whole radiative
surface thermal signal. Therefore, the hypothesis here is that the dif-
ference between the two datasets is partially related to the geothermal
activity.

Different approaches have undertaken a comparative analysis of
LST from remote sensing data and modeling approaches with different
objectives (Sohrabinia et al., 2012). Some works attempt to improve
LST retrievals via modeling complex land cover and terrain features to
improve surface emissivity estimation. Others have attempted to use
remote sensing thermal and land cover data to improve atmospheric
models for simulation of land surface parameters. Others have used
remote sensing LST to study the near-surface air temperature or surface
soil moisture. Finally, validation of MODIS LST products was carried
out using modeling and in situ measurements.

Therefore, bearing in mind that in general the simulated LST could
deviate from remote sensing based LST due to differences in inputs
(vegetation, elevation, moisture availability, albedo), and model reali-
zations, the objective here was to achieve a major isolation of the
geothermal component, in particular for estimating the geothermal
contribution to LST (LSTgt).

Two approaches of different nature and complexity were developed,
adapted and tested to obtain LSTgt. In comparison with the aforemen-
tioned literature, they take advantage of the high resolution time series
and use two LST datasets (a remote sensing based and land surface
model outputs). In the first proposed approach, the methodology given
by Romaguera et al. (2012, 2014) was adapted for geothermal appli-
cations. The aforementioned research was initially conceived as a tool
to assess irrigation by comparing remote sensing and model simulations
of evapotranspiration. As a human action, irrigation was not included in
the simulations whereas its effects were actually observed via remote
sensing. A similar concept was adapted in the present paper. The geo-
thermal source of heat was not included in the simulations whereas
remote sensing observations were able to capture the radiative part of
it. The adapted approach (a bias method, BIASM in the following) was
based on the definition of a reference bias, i.e. the difference between
the two LST datasets in non-geothermal areas. Clustering of the area
was carried out based on hydro-meteorological and surface properties
and a spatial mean LST bias was assigned per cluster. LSTgt was then
calculated in the whole area as the LST difference between remote
sensing and simulations corrected by the reference bias.

The second approach (a data mining method, DMM in the fol-
lowing) developed in this paper was based on data mining and used
machine learning techniques to train and build a model that predicted
remote sensing LST in reference areas (non-geothermal). The inputs for
this model were hydro-meteorological and surface properties obtained
from the LSM simulations. The hypothesis here was that when applying
the model to geothermal areas, remote sensing predicted LST would be
underestimated with respect to measured remote sensing LST since
model inputs proceed from simulations, which do not account for the
geothermal influence. The LST difference between remote sensing
measured and predicted LST provided LSTgt.

BIASM and DMM were tested in Kenya, in an area of about
560 × 560 km2 centered at the Kenyan Rift, where numerous geo-
thermal fields are present. This is an area of great geothermal energy
potential, where reconnaissance studies have been carried out since 50s
and exploitation exists since 80s in specific areas. In particular, the
most important power plant is located in the Olkaria field, next to Lake
Naivasha. The analysis was carried out in a time span of 45 days in
January and February 2012, by using the night time data obtained at
03:00 UTC (pre-dawn in the study area).

The results were tested by comparing the estimates of geothermal
area with existing maps of potential geothermal, built based on surface
studies. Moreover, the method given by Vaughan et al. (2012) was
applied to the Olkaria area and the radiant geothermal flux was com-
pared with the results of this paper.

The general objective of this work is to fill a knowledge gap in the
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geothermal field, by using datasets that were not used before and
combine them in a manner that was not done before, in order to
overcome specific limitations of existing methodologies. Specifically,
the objective of this paper is to compare and model the differences
between the two LST datasets daily and at a regional scale, by assuming
that the discrepancies are partly due to the fact that the geothermal
component is only represented in the remote sensed data. This allows
determining geothermal areas and comparing the results with the
geothermal area map given by Omenda (2010). Moreover, LSTgt mag-
nitude might be contrasted with the results obtained using the method
of Vaughan et al. (2012). The paper proposes an innovative strategy for
geothermal analysis in terms of the developed methods and the datasets
used.

The next section of this paper describes the main characteristics of
the study area, followed by the datasets. Thereafter the two proposed
approaches are explained. The Results section includes the application
to the study area and the comparison with existing literature and
methods. Section 6 elaborates on the input uncertainties and finally
discussion and conclusions of this work are included.

2. Study area

The Kenyan Rift was selected to carry out the present research since
geothermal fields are numerous in the area. Rift zones occur when li-
thospheric plates are thinned by tectonic extension and convection at
zones of upwelling hot material. The continued supply of magma to this
separation zone increases heat flow and thermal energy at shallow
depths compared to other tectonic settings.

The geothermal fields in the East African Rift are characterized by
high temperatures (~300 °C) and shallow heat sources (~6 km) and
are indicated by geothermal surface manifestations such as fumaroles,
steam jets, steaming grounds and solfatara (King and Metcalfe, 2013).
Estimated geothermal energy resource potential in the East African Rift
is> 15,000 MWe (Teklemariam-Zemedkun, 2011), however only
Kenya and Ethiopia have installed a capacity of about 594 and 7 MWe
respectively according to the report given by Bertani (2015). Geo-
thermal funding was announced in late 2015 and will motivate further
development in these areas.

Reconnaissance studies of geothermal prospects in Kenya started in
the 1950s. The most important prospects were mapped by Omenda
(2010) and their location is illustrated in Fig. 1. The figure indicates
also the extent of the spatial domains used in the present paper. Domain
2 (in green) defines the study area and covers an area of about
560 × 560 km2 centered at the Kenyan Rift. Domain 1 (in red) was
used to initiate the LSM simulations at a coarse scale.

The most explored and developed field in Kenya is the Olkaria
geothermal field, where geothermal plants have been producing elec-
tricity since the year 1981. There are currently six geothermal power
plants operating at Olkaria, some of them having come on line just
recently (Olkaria 1 through 4 and Oserian binary and flash). The
Oserian plants are smaller, just a few megawatts. Geothermal features
at Olkaria were mapped by Clarke et al. (1990) by means of surface
studies. The extent of thermal ground in Olkaria was quantified by
Hochstein and Kagiri (1997). They provided a value of about 13 km2 of
area with a temperature higher than 30 °C (at 1 m depth). In recent
years, remote sensing studies have used high spatial resolution data
from airborne thermography and Landsat thermal data for geothermal
mapping in this area and others along the Rift (Mutua et al., 2013;
Pastor, 2010).

3. Data

The main inputs used in this work are the LST values obtained from
the Meteosat Second Generation (MSG) remote sensing data and the
LST model simulations. The remote sensing dataset provides a diag-
nostic value of LST, which means that based on specific states of the

surface (emitted radiance and emissivity in this case) an LST value is
calculated. However, the data obtained from simulation are prognostic;
they use surface and atmosphere states in previous time steps to predict
specific parameters to calculate LST. In this paper, the Weather
Research & Forecast (WRF) model was used to run the simulations. The
implementation of this model is relatively straightforward due to the
common use and it incorporates several land surface models which are
coupled to atmosphere dynamics.

Hydro-meteorological and surface parameters were also employed
by the approaches proposed in this work and were obtained from the
simulations.

Additional imagery from ASTER was also used in the region of the
Olkaria geothermal field in order to apply the method given by
Vaughan et al. (2012) and validate the results at local scale. Table 1
summarizes the specifications of the data sets used in this research.

From a technical point of view, the combination of data with dif-
ferent spatial resolution, extent, and geographical projection was
tackled by creating a layer stack where data were resampled (via the
nearest neighbor technique) and re-projected to a common output
projection. The present work was carried out at the spatial resolution of
3.5 km.

3.1. Period of analysis and time

The study was carried out during the 45-days period between
January 1st and February 14th, 2012. The Global Land Data
Assimilation System (GLDAS) (Rodell et al., 2004) rain and snow pro-
ducts were used to identify 25 consecutive dry days (16 to 41) in the
center of Olkaria geothermal field. These products have a spatial re-
solution of 0.25° (about 30 km at the equator) and are provided every
3 h. The variables are delivered using different land surface models,
from which Noah model was selected.

The analysis time was selected so that the sun heating effects were
minimized. During the period of analysis, the sun rose on the east side
of the study area between 03:20 and 03:42 UTC (time zone GMT + 3),
and about 20 min later on the west side. The pre-dawn timing at 03:00
UTC was selected as a reasonable timing when surface temperatures
were close to the minimum in the whole area.

The first 24 h of the analysis were the spin-up time required by the
model simulations to reach a balanced state with the boundary condi-
tions. The data from the first day were not used in succeeding calcu-
lations.

3.2. Remote sensing data: LST and surface emissivity

The LST products from the Meteosat Second Generation (MSG) sa-
tellites (LSTMSG in the following) are provided by the Land Surface
Analysis Satellite Applications Facility (LSA-SAF, 2010) at a resolution
of 3 km at nadir point which increases with the observation angle, and a
temporal frequency of 15 min. These data cover the continents of
Europe and Africa and partly South-America and are available since
February 2009.

The methodology to retrieve LST is based on clear-sky measure-
ments from MSG system in the thermal infrared window following the
formulation of a generalized split-window algorithm given by Wan and
Dozier (1996). Inputs for this algorithm are brightness temperatures
measured in the channels centered at 10.8 and 12.0 μm, and spectral
emissivities in these two channels. In particular, average emissivity
(εmean) and the difference between these two channels (Δε) are used.

LST accuracy values, obtained from theoretical and validation ex-
ercises, are also provided with the dataset, with values lower than 2 K
in the majority of the study area during the period of analysis.

These data sets used the cloud mask from the Nowcasting service
(NWC-SAF, 2010) to filter cloudy pixels, which are shown as missing
values in the products.

MSG surface spectral emissivity products were generated by LSA-
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SAF (2010) as a function of the (satellite-derived) fraction of vegetation
cover (FVC) and land cover classification (Caselles and Sobrino, 1989;
Peres and DaCamara, 2005). This product was also generated by the
LSA-SAF with the same spatial resolution and coverage as LST, at a
temporal frequency of one day.

3.3. Model simulations: LST, hydro-meteorological and surface parameters

The simulated data were generated using the Weather Research and
Forecasting (WRF) model with Advanced Research WRF (ARW) version
3.3 (Skamarock et al., 2008; WRF, 2012), hosted at the National Center
for Atmospheric Research (NCAR). WRF is a next-generation mesoscale
numerical weather prediction system designed to serve both atmo-
spheric research and operational forecasting needs. Fig. 2 illustrates the

Fig. 1. East African map where working spatial domains are indicated together with the location of geothermal areas given by Omenda (2010). The Olkaria geothermal field is
highlighted for its relevance in the present work. Relevant landmarks are labelled as follows: 1) Mount Elgon, 2) Mount Moroto, 3) Mount Kenya, 4) Kerio Valley National Park, 5)
Namunyak Wildlife Conservation Trust and 6) Marsabit National Reserve. (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article.)

Table 1
Specifications of the datasets used in this paper.

Data Source Spatial coverage Spatial resolution at the
study area

Temporal resolution Details

LSTa MSG product MSG diskb 3–4 km 15′ LSA-SAF (2010)

εmean, Δε MSG product MSG disk 3–4 km Daily LSA-SAF (2010)
Channels 10.8, 12.0 μm

LST, H, λE, G0, Tair, Sdown, Ldown,
Lup_TOA,

WRF simulations East Africa 4 km 1 h Skamarock et al. (2008)
WRF (2012)

Rainc, Rainnc Aggregated from 1 h to daily
(previous 24 h)

εs, αs, h Static

LST, ε, Level 1B radiances
At-surface radiances

ASTER product Olkaria geothermal
area

90 m On-demand Gillespie et al. (1998)

a List of acronyms: LST (Land Surface Temperature), MSG (Meteosat Second Generation), LSA-SAF (Land Surface Analysis Satellite Application Facilities), εmean (mean surface
emissivity), H, λE and G0 (sensible, latent and ground heat flux), Tair (air temperature at 2 m), εs and Δε (mean surface emissivity and spectral difference), αs (surface albedo), Sdown and
Ldown (shortwave and longwave incoming radiation), Rainc (accumulated total cumulus precipitation), Rainnc (accumulated total grid scale precipitation), Lup_TOA (top of atmosphere
outgoing long wave), h (terrain height), WRF (Weather Research and Forecasting Model) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer).

b Meteosat disk covers Europe, Africa and part of South America.

M. Romaguera et al. Remote Sensing of Environment 204 (2018) 534–552

537



direct interactions of parameterizations in WRF. The selection of at-
mospheric schemes was based on the properties of the area, which are
WSM 6-class graupel scheme for microphysics option, CAM scheme for
longwave and shortwave radiation option and Kain-Fritsch scheme for
cumulus option. The reader is referred to the user's guide (WRF, 2012)
for detailed information about these schemes. Regarding the land sur-
face physics, WRF includes four coupled land surface models (LSM):
five layer thermal diffusion, Noah, RUC, and Pleim-Xiut, which use
different formulations for surface energy and moisture balances (Zeng
et al., 2015). In particular, Noah model (Niu et al., 2011) in WRF uses
remote sensing based land cover categories obtained with MODIS. This
aspect resulted very convenient in the current research due to the
nature of the study, and therefore Noah model was chosen as the land-
surface scheme.

Noah uses four soil vertical layers (of soil temperature, water + ice,
water content), at 0–0.1, 0.1–0.4, 0.4–1.0, and 1.0–2.0 m, one vegeta-
tion type in each grid cell without dynamic vegetation and carbon
budget, and predicts soil moisture and temperature in four layers. A
diffusion equation for soil temperature is used to obtain the ground heat
budget and the skin temperature is determined using a single linearized
surface energy balance equation. Since skin temperature is the simu-
lated parameter equivalent to LSTMSG, it will be referred to as LSTWRF.
This model does not incorporate any source of geothermal heat in the
formulation.

Meteorological lateral boundaries and initial conditions for this
calculation were taken from the ERA-Interim reanalysis (Dee et al.,
2011) and surface properties from land cover maps and remote sensing
data like the MODIS land cover map.

The simulation generated values of sensible, latent and ground heat
fluxes (H, λE and G0 respectively), air temperature (Tair), shortwave
and longwave incoming radiation (Sdown and Ldown), accumulated total
cumulus precipitation (Rainc), accumulated total grid scale precipita-
tion (Rainnc), and top of atmosphere outgoing long wave radiation
(Lup_TOA) amongst others. Section 4.1.3 elaborates on the criteria to
select these parameters.

WRF model was run at a coarse resolution of 20 km, and then by
means of a dynamic nesting, results were obtained at a resolution of
4 km. Results were generated in the period between January 1st and
February 14th, being the initial 24 h the spin-up time for the model to
reach hydrological balance. In the time domain, results were stored
every hour. The first spatial domain covered Tanzania, Uganda,
Rwanda, Burundi and partly Kenya, Democratic Republic of Congo,
Zambia, Malawi and Mozambique as indicated in Fig. 1. The nested
domain covered the Kenyan Rift and the surrounding regions.

3.4. Datasets to test the approaches

3.4.1. Geothermal area map
The map given by Omenda (2010), indicates the locations of geo-

thermal areas in the Kenyan Rift (see Fig. 1). Surface studies were
carried out to characterize the geothermal prospects in the region.
These included geological mapping, seismic, gravity and resistivity
measurements, gas thermometry and chemistry, thermal surface man-
ifestations sampling (fumaroles and hot springs) and environmental
baseline surveys.

In the present work, this map was digitalised in order to compare
the extent of the geothermal areas, bearing in mind that the proposed
method is able to capture them only if they are manifested at the sur-
face as an LST increase.

3.4.2. Radiant geothermal flux. ASTER data
ASTER data products were used to apply the method of Vaughan

et al. (2012) to calculate the radiant geothermal flux in the Olkaria
geothermal area and compare the results with the outputs of the pro-
posed approaches. ASTER data included radiometrically calibrated,
geometrically corrected at-sensor radiance (ASTL1B), surface kinetic
temperature (AST08), surface emissivity (AST05) and at-surface ra-
diance (AST09T). The ASTER data acquired on 7th January 2012 at
20:09 UTC (23:09 local time) were selected for this analysis.

4. Methods

4.1. Introduction and common steps

The present work is based on the hypothesis that thermal infrared
remote sensing is able to capture the radiative part of the geothermal
flux in geothermal areas, whereas WRF model simulations lack this
component in their formulation, and therefore they underestimate LST.

Fig. 3 exemplifies the differences between the two LST datasets
obtained in a geothermal (Olkaria area) and non-geothermal pixel
(eastern flat areas), during the period of study. One value per night at
03:00 UTC (06:00 local time) from LSTMSG and LSTWRF was plotted.
LSTMSG was systematically higher in the geothermal area during the
period of analysis, with typical temperature differences of 5 K.

According to the hypothesis, these differences could be partially due
to geothermal influence. The non-geothermal area presented also dis-
crepancies between data sets. These showed lower amplitude and a
more fluctuating pattern. A preliminary analysis (not shown here) in-
dicated that these differences were varying from pixel to pixel, thus
there was spatial and temporal change.

Reasons for the discrepancies between the two LST datasets (in both
geothermal and non-geothermal areas) are generally related to differ-
ences in the input parameterizations (vegetation, elevation, soil

Fig. 2. Direct interactions of parameterizations in
WRF.

M. Romaguera et al. Remote Sensing of Environment 204 (2018) 534–552

538



moisture availability, albedo) and model realization. An overview of
LST comparative studies can be found in Sohrabinia et al. (2012).
Bearing this in mind, the objective here was to achieve a major isolation
of the geothermal part, i.e. the geothermal contribution to LST (LSTgt).

Two approaches for LSTgt estimation of different nature and com-
plexity were developed, applied and compared. The first one (a bias
method, BIASM in the following) assessed LSTgt by subtracting LSTMSG

and LSTWRF and correcting the results with a LST bias value obtained in
reference non-geothermal areas. The second one based on data mining
(DMM in the following), built a model to predict LSTMSG from hydro-
meteorological and surface properties (from simulations) in non-geo-
thermal reference areas. The difference between measured and pre-
dicted LSTMSG values when applied to geothermal areas resulted in the
LSTgt. Fig. 4 shows the steps and type of intermediate outputs in both
approaches. A dashed gray line surrounds common steps in both ap-
proaches (selection of analysis time, definition of reference areas, and
selection of hydro-meteorological and surface parameters), which are
elaborated in the following. Sections 4.2 and 4.3 detail specific steps of
every approach and Section 4.4 includes details of data processing
carried out to validate the results with an established method.

4.1.1. Selection of analysis time
Pre-dawn acquisitions were used in order to minimize the sun

heating influence. These are the moments where the minimum value of
LST is achieved and the relative contribution of LSTgt to LST is higher.

During the period of analysis, the sun rose on the east side of the
study area between 03:20 and 03:42 UTC (time zone GMT + 3), and
about 20 min later on the west side. The pre-dawn timing at 03:00 UTC
was selected as a reasonable timing when surface temperatures were
close to the minimum in the whole area.

4.1.2. Definition of reference areas
LST datasets from MSG and WRF were used to define reference areas

in the study area. No apriori knowledge of the geothermal areas was
needed by using this strategy. This is specifically useful in areas where
geothermal surveys and exploration are limited and/or not updated in
time.

The temporal mean (μ) and standard deviation (σ) of the LST dif-
ference MSG-WRF (in the following ΔLST) obtained in the whole period
at 03:00 UTC were used as indicators to define geothermal detectability
and reference areas.

Two criteria were defined to determine areas with geothermal de-
tectability. The rest of the areas were described as reference areas. The
first criteria takes into account the ΔLST temporal mean (μ). Areas with
geothermal detectability potential are defined in this paper as areas
with sufficient difference between remote sensing and model simula-
tion LST's, so that geothermal anomalies can be detected based on the
presented approaches. MSG LST accuracy values from theoretical and
validation exercises are provided with the LST dataset and are lower
than 2 K in the majority of the study area during the period of analysis.
Therefore, a minimum temporal ΔLST mean (μ) of 2 K was selected as a

threshold for geothermal detectability.
The second criteria takes into account the ΔLST temporal standard

deviation (σ). Differences between data sets might contain transitory
fluctuations due for example to differences in reaction time to pre-
cipitation events, which might produce false anomalies detection. A
maximum temporal ΔLST standard deviation of 1.5 K was selected for
filtering these situations. This value was obtained by spatial averaging
of σ.

Therefore, areas with potential geothermal detectability satisfy both
criteria, the minimum μ and maximum σ, whereas reference areas are
the ones that do not meet them.

4.1.3. Selection of hydro-meteorological and surface parameters
Apart from the two LST main datasets, a set of hydro-meteorological

and surface parameters was collected. These were needed as inputs of a
clustering in the study area (in BIASM) and to build a predictive model
in DMM.

Inputs were selected based on three criteria. First, their value must
not be influenced by geothermal activity, so that an independent da-
taset is created. Secondly, the selection of parameters must capture the
land-atmosphere interactions and states, and surface properties that
might influence the bias between the two temperature datasets in non-
geothermal areas. Finally, the parameters must be part of the LSTMSG

and LSTWRF formulations to ensure consistency in the model.
A multilayer file was built per day which contained the following

data. From the LSTMSG formulation, εmean and Δε were selected. These
are based on vegetation cover values and a land cover classification that
does not incorporate any geothermal feature. MSG brightness tem-
peratures and LSTMSG itself were not included since by hypothesis they
incorporate implicitly the geothermal component. From the LSTWRF

retrieval a total of 13 parameters were selected: Sdown, Ldown and
Lup_TOA to account for radiation drivers in the Noah model; αs, εs,
LSTWRF and Tair to account for surface and near-surface properties; H,
λE and G0 to account for land-atmosphere energy exchanges; Rainc and
Rainnc to account for the water balance and h to account for topo-
graphy. Since precipitation changes in short time scales compared to
the rest of parameters, an aggregated daily value was calculated using
the values during the previous 24 h.

Fig. 5 shows an example of the aforementioned set of 15 parameters
obtained on January 7th, 2012 at 03:00 UTC. Cloudy pixels and lakes
are masked in white color. Particular surface features can be observed
from the dataset, like high mountains (reflected in the height (h) and
inversely proportional in Tair images). Mount Kenya on the right of the
Kenyan Rift and Mount Elgon at the left border of the image can be
identified. Rift faults are also recognized, where elevation changes ra-
pidly and the terrain is more complex. Precipitation (Rainc and Rainnc)
occurred in the previous 24 h in the southern parts of the Rift, with
local values up to 4 mm/day. Most of the area presents negative sen-
sible heat values (H), which indicates that the heat flows from the
surface upwards to the atmosphere at this time. Differences between εs
and εmean were found in patterns as well as in absolute values.

Fig. 3. LSTMSG and LSTWRF in a) a geothermal pixel at
Olkaria field and b) non-geothermal pixel (eastern flat
areas in Kenya) during the period of study in the year
2012. (Note: One value per night (03:00 UTC) is
plotted in the graphs).
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Broadband emissivity is used in WRF (εs), whereas the spectral average
in bands centered at 10.8 μm and 12.0 μm is used in the remote sensing
data. This might explain the differences partially. Moreover, the WRF
emissivity values are static, whereas MSG emissivity products are cal-
culated daily from observed fraction of vegetation cover. Δε patterns
are similar to the ones obtained in εmean. Finally, Ldown, Tair, h, Lup_TOA
and LSTWRF show a similar pattern, as expected due to the physical
relationships between them.

4.2. Bias model (BIASM)

The first approach was inspired by the method given by Romaguera
et al. (2012, 2014), adapted here to geothermal activity. The afore-
mentioned research was initially conceived as a tool to assess irrigation
by comparing remote sensing and model simulations of evapo-
transpiration. As a human action, irrigation was not included in the
simulations whereas its effects were actually observed via remote sen-
sing. A similar concept was adapted in the present paper. The

geothermal source of heat was not included in the simulations whereas
remote sensing observations were able to capture the radiative part of
it. The proposed approach obtains LSTgt per pixel as the difference
between LSTMSG and LSTWRF and a LST bias correction according to:

= −ΔLST LST biasgt LST (1)

where ΔLST is the difference between LSTMSG and LSTWRF calculated at
the optimal night time and biasLST is the spatial mean value of ΔLST
calculated in reference areas (non-geothermal) of similar conditions.
Section 4.1.1 elaborates on the selection of the optimal time, which for
this paper is 03:00 UTC.

Due to the size of the study area and the spatial variability of surface
and hydro-meteorological parameters, this paper recommended an in-
itial segmentation of the study area followed by a clustering (per day) of
every segment. This allowed the separation of areas with different
surface and hydro-meteorological properties, for which biasLST were
obtained separately. These steps are elaborated in the following sec-
tions.

Fig. 4. Schemes of the two approaches proposed in
this paper to calculate LSTgt. The dashed gray line
surrounds common steps in both approaches.
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4.2.1. Segmentation of study area
An initial segmentation of the study area is proposed in the present

paper so that biases are obtained independently for smaller regions. The
number and size of these depend on the extent and spatial variability in
the area. In this paper the study area was divided into square segments
of 60 × 60 km2, computing a total of 8 × 8 segments. This segment
area covered a window of about 3 × 3 times the size of an average
geothermal area in the region and captured the variability in elevation
present in the area, especially in the Rift.

4.2.2. Clustering
Unsupervised clustering based on the k-means statistical technique

(Tou and Gonzalez, 1974) was carried out in every segment per day
using the multilayer file described in Section 4.1.3 so that pixels with
similar properties were grouped. This method calculates initial mass
means evenly distributed in the data space and then iteratively clusters
the pixels into the nearest cluster using a minimum distance technique.
In each iteration, clusters' means are recalculated and pixels are

reclustered with respect to the new means. All pixels are clustered to
the nearest cluster unless a standard deviation or distance threshold is
specified, in which case some pixels may be unclustered if they do not
meet the selected criteria. This process continues until the number of
pixels in each cluster changes by less than the selected pixel change
threshold or the maximum number of iterations is reached.

The 15-layer input file contained the parameters indicated in
Section 4.1.3, a maximum of 100 iterations was fixed to ensure com-
pletion of the k-means algorithm and the default values of 5% and 5
were conserved for the pixel change threshold and number of clusters
(Exelis, 2013). Neither standard deviation nor distance thresholds were
fixed.

The k-means approach showed to be sufficient to capture the
variability of the bias between two models in the specific application
showed by Romaguera et al. (2014), where different clustering methods
were investigated.

Fig. 5. Set of input parameters (hydro-meteorological and surface properties) for clustering the study area (BIASM) and to build a model to predict LSTMSG (DMM) obtained on January
7th, 2012 at 03:00 UTC. Lakes and cloudy pixels are masked in white color.
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4.2.3. biasLST and LSTgt
For every segment, ΔLST was calculated in pixels of reference areas

and their values were spatially averaged per cluster, obtaining biasLST.
LSTgt of a specific pixel in a segment was obtained using Eq. (1) with
the biasLST of the corresponding pixel cluster.

In this approach, LSTgt was obtained once a day. LSTgt time series
were obtained by iteration of the described process every day during
the study period.

4.3. Data mining model (DMM)

The second approach to estimate LSTgt used reference areas to train
and build a data-driven model that predicted remote sensing LSTMSG

from simulated hydro-meteorological and surface properties. The in-
puts are described in Section 4.1.3 and they are independent of the
geothermal activity because they proceed from WRF model simulations.
Therefore, when applied in geothermal regions, predicted LSTMSG was
expected to be lower than the measured LSTMSG. The difference of
these, corrected by the model error provides LSTgt per pixel as:

= − −LST LST (measured) LST (predicted) errorgt MSG MSG (2)

where error is the model error.
Various predictive techniques were tested and the best performer

was used to predict LSTMSG in the whole of the study area.

4.3.1. Techniques
Machine learning techniques were used to build a predictive model

valid for the whole period of study. Four algorithms of different basis
and complexity were tested: a regularized linear regression (RLR), a
decision tree (DTM), a neural network (NN) and a support vector re-
gression (SVR).

The algorithm RLR (Bishop, 2007) performs regularized linear re-
gressions to prevent the overfitting of the inputs to predict LSTMSG. The
DTM (Quinlan, 1993) is a simple and non-parametric technique that
consists of a sequence of branching operations based on decision rules
of input values, resulting in the LSTMSG predicted values. The NN (Duda
et al., 1998; Haykin, 1999) consists of a set of interconnected neurons
organized in layers. The signal is propagated from input to output nodes
by means of certain weights. Specifically, the Multilayer Perceptron
(MLP) was used in this work. Finally, SVR is a statistical learning al-
gorithm based on kernel methods. SVR (Vapnik, 1998) finds a function
with a maximum deviation covering the maximum number of targets
from all the training data. More detailed information about different
types of machine learning techniques can be found in Hastie et al.
(2009).

4.3.2. Building predictive model
The predictive model was built using data from the whole study

period at the selected study time (03:00 UTC) in reference areas. This
allows the model to be trained with a high variety of conditions, which
makes it valid for a broader range of values. The input parameters are
described in Section 4.1.3.

The input dataset in reference areas was split in two in order to train
and test the models. The percentage for training was 20% for the RLR,
DTM and NN, and only 1% for the SVR due to computing limitations.
The other 80% and 99% was used to test the models respectively. These
inputs included all cloud free data from the reference areas at 03:00
UTC during 44 days. Note that the first-day data was discarded since it
is the spin-up time required by WRF to reach balance. The number of
instances used for training was 95,139 in the three first models and
4,756 in SVR.

For RLR, NN and SVR models, all the parameters were optimized by
5-fold cross validation. The regularized parameter, in RLR, was tuned
between (0, 1) in steps of 0.02. The best architecture for the NN model
was selected between (2,30) hidden neurons. The SVR was trained with
a Gaussian kernel. The bandwidth of the kernel was tuned taking into

account the trained data and C (SVR error parameter) were tuned be-
tween (1,1000). All the models were generated by SimpleR Matlab
toolbox (Camps-Valls et al., 2006). The error of the models was eval-
uated based on their performance in the test dataset. The selected in-
dicators were the mean error (ME), root mean squared error (RMSE),
and the correlation coefficient r.

4.3.3. LSTgt
After generating the predictive model using the different algorithms

and evaluating the errors, the best performer was applied to all pixels
and the LSTgt value was obtained per pixel following Eq. (2).

4.4. Comparison with established method

The method given by Vaughan et al. (2012) to estimate radiant
geothermal flux was applied to the region of Olkaria. Since the present
work provides results in terms of temperature (LSTgt), the associated
radiant geothermal flux was calculated for consistency in the compar-
ison.

Under the assumption that remote sensing LSTMSG contains a geo-
thermal (LSTgt) and a non-geothermal (LSTnogt) contributions, the ra-
diant geothermal emittance M (LSTgt) (or flux in W/m2) was calculated
by using the Stephan-Boltzmann equation according to the following
formulations:

= +

= +

= −

= − −

LST LST LST
M(LST ) M(LST ) M(LST )

M(LST ) M(LST ) M(LST )

σ ε (LST ) σ ε (LST LST )

MSG nogt gt

MSG nogt gt

gt MSG nogt

MSG
4

MSG gt
4 (3)

where M(LSTi) are emittances (W/m2) associated to every LST, σ is the
Stephan-Boltzmann constant (σ= 5.67036713 × 10−8 W m−2 K−4)
and ε is the broadband surface emissivity (taken from the WRF inputs).

5. Results

5.1. Definition of reference areas

Fig. 6 shows the spatial distribution of the indicators selected to
define areas with geothermal detectability (and reference areas),
namely temporal mean and standard deviation of ΔLST. As a reference,
the contours of the geothermal areas reported by Omenda (2010) in
Fig. 1 are also included.

ΔLST mean values were distributed mainly in the range −5 K to
5 K. Values higher than 10 K (LSTMSG significantly higher than LSTWRF)
were observed in specific areas corresponding to Lake Victoria (south-
west). Lower values were observed in Mount Elgon National Park
(middle west) and the city of Nairobi (southeast).

Most of the study area presented a standard deviation lower than
2 K, specifically below 1.5 K in most of the Kenyan Rift. Peaks in
standard deviation were observed in the region of Mount Moroto
(northwest, see Fig. 1 for reference), Mount Elgon (mid-west), in ve-
getated areas next to Olenguruone and Kerio Valley National Park (mid-
west), Mount Kenya (mid-east), Namunyak Wildlife Conservation Trust,
Marsabit National Reserve and bare regions at the northeast of the
study area.

In this paper areas with geothermal detectability potential were
defined when the temporal mean of ΔLST was higher than 2 K and the
standard deviation was below a threshold of 1.5 K. The remaining re-
gions where the aforementioned criteria for geothermal detectability
were not met, were defined as reference areas. The resulting binary map
is also shown in Fig. 6, where detectable geothermal and reference
areas are indicated in white and black respectively.
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5.2. BIASM: clustering and reference biasLST

A clustering was obtained per segment and per day. For every
segment, the biasLST was obtained in reference areas per pixel as the
difference between LSTMSG and LSTWRF, averaged per cluster number.

Fig. 7a includes the clustering results per day at 03:00 UTC in the
segment of Olkaria. The image shows in black color Lake Naivasha and
pixels with no data (e.g. due to clouds). The classification patterns
coincided almost 100% in clear sky days and were highly influenced by
Ldown, Tair, h, Lup_TOA and LSTWRF, whereas the influence of other
parameters appeared to be less significant. In days with patchy clouds
like days 3, 6, 10, 17, 39 or 42, the cluster patterns changed slightly.
Finally, classification in days 11 and 18 was very limited due to the
number of available pixels.

Fig. 7b shows the variability in time of the biasLST in that segment,
with values between −2 and 4 K for the majority of the days of ana-
lysis. Moreover, for every day the clustering allows discriminating areas
with different biasLST values, i.e. its spatial variability, which ranges
between 1 and 4 K. Examples of high biasLST scatter were found in days
35 and 41, which presented significant differences between clusters,
being negative in day 35 and positive on day 41. Both days had the
same cluster pattern, however, the LST inputs influenced the biasLST.
Examples of lower biasLST scatter are days 7, 11 and 18, from where the
last two were highly influenced by clouds and the biases were calcu-
lated using fewer reference area pixels. Therefore, the inaccuracies on
these dates are expected to be higher.

LSTgt was obtained per day and per pixel following Eq. (1) using the
spatial averaged biasLST values per cluster and per segment. To evaluate

the performance of the approach in the whole study area, a single value
was obtained from the time series. The confidence intervals of 5% and
95% were calculated based on the corresponding values of the 2.5%
and 97.5 quantiles. This ensured that 95% of the data set per pixel was
contained inside this interval. This is a common approach for identi-
fying outliers. A mean value was recalculated using only the values that
fell into this confidence interval and was mapped in Fig. 8. The contour
of the geothermal areas reported by Omenda (2010) is also included as
a reference. Note that the method produced some negative LSTgt values
in the series, which were not used in the averaging process described
above. These cases occurred when remote sensing LST's were lower
than modelled LST's, after correcting for the bias (see Eq. (1)). Since
remote sensing was not able to detect geothermal signal in these cases,
based on the main hypothesis of this work, they were labelled as ‘non
detectable geothermal’ (or ‘non geothermal’) and their value was not
used for the series LSTgt average. Section 5.6 of this paper includes an
assessment of the negative LSTgt values found in the results, the
amount, distribution and implications on the results.

The figure showed LSTgt values lower than 2 K in most of the study
area, and local LSTgt maxima higher than 5 K in specific regions. The
approach detected also non-geothermal pixels. These are the cases
where LSTgt is lower than zero. This means that the value of remote
sensing LSTMSG (after the biasLST correction) was not sufficiently higher
than the simulations, or it was lower. In that case, geothermal activity is
not detected with the proposed approach.

Low LSTgt values (0 to 2 K) were located in known non-geothermal
regions of the country. These might be related to the uncertainties of
the LST inputs used in this paper. Section 6 of this paper elaborates on

Fig. 6. ΔLST temporal mean and standard deviation during the period of study, and binary map of detectable geothermal and reference areas.

Fig. 7. (a) Clustering results per day during the study period in the segment of Olkaria. (b) biasLST value obtained daily per cluster in reference areas in the segment of Olkaria at 03:00
UTC. Clusters correspond to the areas indicated in (a).
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this aspect.
The analysis of the peaks was carried out in two manners. First, the

map from Omenda (2010) was used to evaluate the performance of the
proposed approach in detecting reported geothermal areas in a quali-
tative manner.

The results showed local maxima in 70% of the 13 areas mapped by
Omenda (2010). In the areas of Barrier, Emuruangogolak, Lake Bar-
ingo, Olkaria and Longonot, LSTgt reached values up to 5 K and more.
In lower magnitude, local maxima were found in Lake Bogoria, Arus,
Eburru and Suswa up to 2 to 3 K of LSTgt. The area covered by the local
maxima in Sisali, Paka, Korsi and Menengai was smaller and less dis-
cernable. This could be due to modeling issues but also to the inability
to detect surface thermal manifestations that may be too small in extent
and/or not enough powerful to be detected at the resolution of this
study. Moreover, the proposed approach was developed to capture
exclusively the geothermal areas with thermal effect on the land sur-
face. Therefore, the map from Omenda (2010) has to be seen as an
outer boundary where thermally active but also blind geothermal areas
might exist.

Other peaks were false positives and are not associated with the
geothermal activity. These were found in Fig. 8 in complex terrain areas
with high slope values, where elevation changes rapidly within few
pixels, namely from five hundred to thousand meters (see also Fig. 5,
for height information). The maxima coincided with the location of the
Rift faults (see Fig. 1), Mount Kenya (5100 m elevation) and Mount
Elgon (4300 m elevation).

The quantitative analysis of the LSTgt values obtained with BIASM
and DMM is included in Section 5.4 of this paper.

5.3. DMM: Prediction of LSTMSG

The error of the predictive models was evaluated based on their
performance in the test dataset. The statistical outputs of the model's
test are summarized in Table 2, which informs about the goodness of fit
of the models generated. The selected indicators are the mean error
(ME), root mean squared error (RMSE), and the correlation coefficient
r. The values obtained in training specify the best possible fit of the
models. The values in test indicate the error of the models.

Based on their performance, DTM model was selected for further
calculations of LSTgt. This model has a mean error value closer to zero,
a lower RMSE value and higher correlation coefficient. Additionally, it
is methodologically less complex than NN or SVR and is simple to un-
derstand and interpret.

LSTgt was calculated by applying the predictive DTM to the whole
dataset. Similarly to Section 5.2, Fig. 9 illustrates the temporal mean
LSTgt value. The contour of the geothermal areas reported by Omenda
(2010) is also included as a reference.

In general, the patterns and relative maxima captured by the two

approaches were consistent with each other, being BIASM the one that
captures a more extensive area with LSTgt values about 2 K higher than
DMM. Low LSTgt (0 to 2 K) in non-geothermal areas were associated to
inaccuracies of the inputs, and negative LSTgt values to non-geothermal
pixels. BIASM and DMM disagree locally in mount Marsabit (1700 m
elevation) at the east side of the Rift, where DMM captured a false
geothermal anomaly. Other common false positives were found in fault
areas as well as in high mountains, as indicated in Section 5.2. The
effectivity to map non-geothermal pixels was higher in DMM since the
approach produced negative LSTgt values in a wider area.

Regarding the comparison of individual geothermal areas, results
were similar to the ones obtained in BIASM, being the more evident and
powerful anomalies in Emuruangogolak, Lake Baringo, Olkaria,
Longonot, Suswa with LSTgt values in the range from 3 to 5 K.

5.4. LSTgt values inside and outside geothermal boundaries

For BIASM (Fig. 8), the LSTgt average value within the geothermal
boundaries reported by Omenda (2010) (Fig. 1) was 1.7 K, compared
with the average obtained in the outer region which had a value of
1.2 K. For DMM (Fig. 9), the mean value was 0.8 K, and 0.7 K when
calculating it outside the geothermal borders. These values are a first
indicator of the goodness of the results, since the average magnitude
obtained in the geothermal regions is higher than the obtained in the
rest of the area.

Additionally, Fig. 10 plots the histogram of LSTgt frequencies nor-
malized with respect to the sample size. The number of valid pixels
within the geothermal boundaries is 389 and the number in the outer
area is 17,227 in BIASM, and 18,040 in DMM. This normalization al-
lows to analyze the results in terms of relative frequency.

Fig. 8. LSTgt averaged in time for the period of analysis, obtained
with BIASM. The value was obtained using positive values that fell
into the confidence interval between 5 and 95%. Black lines indicate
the contours of geothermal areas reported by Omenda (2010). (For
interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)

Table 2
Statistical data of predictive models where N is number of samples and ME is the mean
error.

RLR DTM NN SVR

N

Training 95,139 4,757

Test 380,558 470,940

ME [K]

Training 0.0000 0.0000 0.0053 -0.0243

Test -0.0074 0.0004 -0.0019 -0.0185

RMSE [K]

Training 2.5267 1.9583 2.2139 2.3933

Test 2.5270 2.1627 2.2172 2.4536

r

Training 0.9073 0.9454 0.9297 0.9178

Test 0.9067 0.9327 0.9290 0.9126

M. Romaguera et al. Remote Sensing of Environment 204 (2018) 534–552

544



The normalized histogram indicates that in general, the relative
frequency of occurrence is higher inside the geothermal boundaries
when LSTgt values are higher than 1 K in BIASM and 1.5 K in DMM.
This is especially relevant when LSTgt values achieve values of 3, 4, 5 K
and higher, since it indicates a higher proportion of geothermally de-
tected pixels within the geothermal area.

For lower LSTgt values, the histogram of pixels outside the contours
presents higher values in both models. This is consistent with the fact
that lower LSTgt values are associated in this paper to non-geothermal
areas. However, a relative high presence of low LSTgt values is observed
inside the geothermal boundaries, fact that could be associated to in-
accuracies of the reference map, but also to data and methodological
limitations.

5.5. LSTgt time series

LSTgt results were obtained on a daily basis per pixel using both
approaches. Fig. 11 illustrates the results in the central pixel of the
Olkaria geothermal field. Precipitation, as a sum of Rainc and Rainnc in
the previous 24 h is also plotted as a reference. The figure shows that
BIASM provides systematically higher LSTgt than DMM, in most of the
cases with differences below 3 K. Higher differences are achieved in
days 2, 12, 26, 31, 35, 38. The values in days 2, 31, and 35 obtained
with BIASM are highly influenced by the low negative biasLST values
obtained in those days (see Fig. 7). Moreover, the approaches also
provide some negative LSTgt which are labelled in this work as ‘non
detectable geothermal’ or ‘non geothermal’. On day 12, the negative
value corresponds to a locally high value of precipitation (accumulated

in the previous 24 h), which indicates the possible influence of this
parameter in the sensitivity of the models. Finally, the second part of
the study period provides slightly higher values in both approaches,
also in coincidence with a dry period. Note that LSTgt could not be
evaluated in some days due to missing input data.

5.6. Assessment of LSTgt negative values

Fig. 12 shows the number of days with non-processed data (filtered
by clouds, lakes or because of missing input variables), as well as the
number of days with negative and positive LSTgt. Moreover, the ratio
(in %) between the absolute value of the negative temporal mean and
the positive temporal mean is included. These four indicators were
obtained from BIASM.

Fig. 12a shows the number of days with non-processed LSTgt, from
where the location of water bodies can be easily identified (100% of
days with no processed data). In most of the study area, the number of
days discarded for this reason was lower than 15 (out of 44), quantity
that increased up to 30 in southern areas at East, West and center and
other local areas in the North. Pixels with values above 30 were in-
fluenced by nearby water bodies during the calculations and the scaling
process.

Regarding the number of days with negative LSTgt, Fig. 12b shows
the existence of areas where the whole time series presented positive
LSTgt valid data, and therefore no data were discarded in the temporal
mean calculations. Peaks in LSTgt identified in Figs. 8 and 9 coincide
with these areas. The total number of negative data in the rest of the
study area varies per pixel, with values from few days to the whole time

Fig. 9. LSTgt averaged in time for the period of analysis, obtained
with DMM. The value was obtained using positive values that fell
into the confidence interval between 5 and 95%. Black lines indicate
the contours of geothermal areas reported by Omenda (2010). (For
interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)

Fig. 10. Histogram of LSTgt frequencies normalized with respect to the sample size, where the first sample contains the pixels within the geothermal boundaries of Omenda (2010) and
the second sample the rest.
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series. In this paper, negative values were related by hypothesis to non-
geothermal or (non geothermal detectable) pixels. These cases occurred
when remote sensing LST's were not sufficiently higher than model si-
mulations. Therefore, the negative values were not used in the temporal
mean of Fig. 8, but considered as non-geothermal.

Fig. 12c shows the number of positive LSTgt used in the temporal
mean calculations in Fig. 8. This map is in general complementary to
Fig. 12b and both could be used as indicators of the reliability of the
results, and could suggest the need of a more extensive time series
analysis. Moreover, Fig. 12d shows the ratio between the negative and
positive temporal means of LSTgt. An inverse relationship between this
ratio and the number of valid days in Fig. 12c was observed. Most of the

Kenyan Rift presented values below 25%, however an extensive area
showed values up to 100% and above. In the latter case, the magnitude
of this ratio is linked to the non-geothermal character of the pixels.

The results obtained from DMM (not shown here) presented a
substantial increase in the number of days with negative LSTgt in the
study area, a decrease of positive days, and a ratio pattern similar to
Fig. 9, where non-geothermal areas (in white) were pixels with low
ratio.

5.7. Assessment of vegetation definition implications

The effect of land cover and vegetation in the approaches presented

Fig. 11. LSTgt obtained per day at 03:00 UTC with the two ap-
proaches proposed in this paper during the period of analysis in
Olkaria geothermal field pixel. Precipitation as the sum of Rainc and
Rainnc accumulated in the previous 24 h is plotted on the additional
Y axis. (central coordinates of the pixel 0°52′49.98″S,
36°17′29.21″E).

Fig. 12. a) Number of days with non-processed data, b) number of days with negative LSTgt, c) number of days with positive LSTgt and d) absolute value of the negative temporal mean
divided by the positive temporal mean LSTgts, obtained using BIASM (in %). Note that the total number of used days is 44.
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was taken into account by selecting relevant parameters in the input
dataset as elaborated in Section 4.1.3, namely εmean and Δε from MSG,
and εs from the WRF-Noah model. MSG surface spectral emissivity
products were generated by LSA-SAF (2010) as a function of the (sa-
tellite-derived) fraction of vegetation cover (FVC) and land cover
classification, at a daily frequency. Surface emissivity from WRF is a
static terrestrial field which is function of the land-use type. Moreover,
the effect of the leaf area index (LAI) and vegetation fraction (VEG-
FRAC) was implicitly taken into account when selecting λE, since these
parameters are used to estimate the latent heat flux.

In order to identify specific relationships between the LSTgt results
and the land cover definition, Fig. 13 plots the Pearson's correlation
coefficient (r) obtained per pairs between the temporal mean LSTgt

(Figs. 8 and 9) and the four aforementioned parameters. Pearson's r was
calculated using pixels with LSTgt values above specific thresholds,
defined every 0.1 K. VEGFRAC, LAI and εs were time-invariant fields
during the period of study, whereas εmean from MSG was obtained daily.
The variations of this parameter during the study period were not sig-
nificant (standard deviation lower than 1%), therefore the temporal
mean value was used to calculate r.

In BIASM, the correlations of the four parameters present similar
trends for threshold values below 7 K with a maximum between 5 and
7 K, being r with VEGFRAC the highest. Pearson's coefficient has a
maximum value around 0.4 for VEGFRAC, compared to the value of
0.25 for LAI and εmean and 0.17 for εs.

Fig. 13 (BIASM) shows also another correlation peak after 7.5 K for
LAI and εs, which means that higher LSTgt values might be influenced
by land cover definition (in this case, the WRF inputs). DMM presents a
similar feature around 6.5 K, followed by inverse correlations (negative
r) for higher LSTgt values. This may be related to the low number of
values used in the correlation, namely 39, 25 and 6 for thresholds of

6.5, 7 and 7.5 K respectively, compared to a number of 157, 130 and
102 in BIASM.

For low threshold values (up to 2 K), LSTgt is mostly correlated with
εmean in both models, although r is relatively low compared with the
peak values in the graph. The correlation with εmean remains more or
less stable in both models with values below 0.2.

5.8. Comparison with established method

5.8.1. Vaughan et al. (2012) method
The method described in Vaughan et al. (2012) and tested in the

Yellowstone geothermal area was applied to the region of Olkaria
geothermal field. This approach uses ASTER thermal infrared imagery
at 90-m pixel resolution to calculate the radiant geothermal heat in
thermal features after correcting for a background emittance. The
ASTER data acquired on January 7th, 2012 at 20:09 UTC were used for
this analysis.

As a first step, the location of geothermal features in the region was
identified digitalizing information from a survey carried out by the
Kenyan government and published in Clarke et al. (1990).

The area occupied by these features was divided into geographical
subregions (namely north, northwest, central, south, and southeast) and
a background area proximal to them with similar elevation and land
cover properties was associated to each of them. Fig. 14a shows the
ASTER LST product in Olkaria geothermal field where Lake Naivasha
can be observed at the northeast part of the image. The location of
geothermal features is indicated in yellow, orange, and red colors, and
the backgrounds in blue. Different colors indicate that geothermal
features were warmer than the associated mean background tempera-
tures in 1, 2 or 3 standard deviations (σ) respectively. Fig. 14b shows a
histogram of the ASTER surface temperature values in the northern

Fig. 13. Pearson's correlation coefficient (r) between temporal mean LSTgt and vegetation parameters, where r is calculated using pixels with LSTgt above the indicated threshold. Note
that εmean and εs have been named in the figure ‘emis MSG’ and ‘emis WRF’ respectively.

Fig. 14. (a) ASTER LST product in Olkaria region and location of reported geothermal features where colors indicate temperatures higher than the mean background (blue) plus 1σ
(yellow), 2σ (orange) or 3σ (red), (b) histogram of values in the northern area (acquisition on January 7th, 2012 at 20:09 UTC). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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geothermal area.
For each area, surface temperatures from the AST08 data product

were converted to radiant emittance (in W/m2) using the Stephan-
Boltzmann law and emissivity values from the AST05 data product.
Mean background emittance was subtracted per subregion providing
the radiant geothermal fluxes given in Table 3.

We examined 4 temperature threshold values for the thermal areas,
corresponding to 1, 2, 3, and 4 standard deviations above the mean
background (BG) temperature as indicated in Fig. 14a.

In general, higher values of radiant geothermal flux were found in
the North subregion of Olkaria. The flux values ranged between 9 and
24 W/m2 in the cases of the coldest (LST > BGmean) and hottest
(LST > BGmean + 4σ) geothermal pixels respectively.

5.8.2. Application of BIASM and DMM
Fig. 15 shows the results of radiant geothermal flux obtained at

03:00 UTC in the Olkaria segment during the period 1st to 15th Jan-
uary, centered at the ASTER acquisition date, January 7th, 2012.
Missing input data were found in Olkaria field between 16th and 23rd
January 2012, as well as systematically higher LSTgt values during the
second part of the study period, according to Fig. 7 and 11. Therefore,
and in order to avoid the possible seasonal variability, a reasonable
period of the first fifteen days was chosen to carry out the present va-
lidation. Although the results from Vaughan et al. (2012) were calcu-
lated at 20:09 UTC, in this paper priority was given to the use of the
optimal analysis time, which is 03:00 UTC. Lake Naivasha and pixels

with no data (due to clouds or no processed data) are masked in black.
White color indicates negative LSTgt results which are labelled as non-
geothermal pixels by the proposed approaches. The location of the
geothermal features as analyzed in Section 5.8.1 are also plotted as a
reference.

Fig. 15 shows that BIASM and DMM capture a local maximum in the
location of the ground geothermal features. This pattern is consistent in
time with radiant geothermal fluxes higher than 10 W/m2 using BIASM,
and lower in magnitude using DMM. BIASM produces relative maxima
also in some northern areas. In these areas, according to the WRF da-
tasets, land cover properties change, specifically, emissivity has a local
maximum and albedo a local minimum. Other local geothermal flux
maxima found in the southeast of the image coincide with the extent of
local precipitation events occurred in the 24 h previous to the acqui-
sition time.

In general, the series of radiant geothermal flux obtained in the
pixels that contained ground geothermal features in BIASM was con-
sistent with the ranges calculated in Section 5.8.1 using an established
method. On January 7th, BIASM provided values between 10 and
15 W/m2 and the method of Vaughan et al. (2012) computed a range
between 9 and 24 W/m2.

Since the spatial resolution of both analyses is substantially different
(90 m for ASTER and 4 km for proposed approaches), the calculation of
the total heat, after multiplying by the pixel area, will produce di-
vergences in the results. The total heat obtained with ASTER by ag-
gregating heat from sub regions was 188 MW, when using pixels whose

Table 3
Radiant geothermal flux obtained using Vaughan et al. (2012) in Olkaria subregions aggregating the results in 5 ranges, i.e. when the pixel LST value was higher than the mean
background (BG) value plus 0, 1, 2, 3 and 4 standard deviations (σ).

Subregion Radiant geothermal flux (W/m2)

LST > BGmean LST > BGmean + 1σ LST > BGmean + 2σ LST > BGmean + 3σ LST > BGmean + 4σ

North 18.6 19.6 19.3 21.5 23.9
Northwest 9.3 14.4 14.3 18.7 22.9
Central 9.8 12.1 11.8 14.1 17.8
South 10.9 15.4 13.0 15.9 20.0
Southeast 9.3 15.9 12.2 15.3 19.5

Fig. 15. (a) Radiant geothermal flux obtained with BIASM and DMM during the period 1st to 15th January 2012 (03:00 UTC) and close up on January 7th, 2012.
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LST was larger than the background mean plus one standard deviation.
This was the highest value obtained from all cases in Table 3. The value
obtained from BIASM on January 7th 2012, by aggregating the heat
from the pixels with ground geothermal features, was 6 times higher
than the one obtained with ASTER. Reasons for these differences may
be related to the spatial resolution of the analysis, since the proposed
methods obtain the heat value for the whole 4 × 4 km2 pixel whereas
ASTER calculations are focused on locations with a priori knowledge of
geothermal features. In this context, further research is needed to fully
understand the subpixel thermal variability of the coarse pixels and the
relationship with higher spatial resolution data. Other reasons may be
related to methodological aspects such as the strategy to define back-
ground areas with ASTER, which is not standardized in the method.
Finally, the uncertainties of the input parameters of the proposed
models may play an important role in the final LSTgt estimations. This
aspect is tackled in Section 6 of this paper.

6. Input uncertainties

This section describes the uncertainties of the main inputs used in
the proposed approaches to estimate LSTgt, which are LSTMSG and
LSTWRF.

The remote sensing LSTMSG products are distributed with an un-
certainty estimated on a pixel-by-pixel basis, which accounts for the
uncertainties of the algorithm and propagation of input errors. Freitas
et al. (2010) indicated that dry atmospheres present LSTMSG un-
certainties between 0.2 and 3.4 K, with a maximum in the uncertainty
histogram in the range of 1 to 1.5 K. The total error depends in that case
on emissivity uncertainties and to a lesser extent on the view zenith
angle. For higher water vapor values, the distributions of uncertainties
tend to be shifted to the right, maintaining the maximum between 1 and
1.5 K and reaching values up to 4.2 K.

Fig. 16 shows the mean error value during the period of analysis,
using acquisitions at 03:00 UTC. The locations of the geothermal areas
given by Omenda (2010) are included as a reference. The figure shows
that MSG values are provided with an error lower than 2 K in most of
the study area. Higher error values were found in specific areas at the
east, west and south of Turkana lake (north) which correspond to areas
with low emissivity values (εmean < 0.97), according to the MSG da-
taset. Moreover, the presence of (quartz) sand along the coast of Lake
Turkana can produce mixed pixels along the shore with changing
fractions of land and lake, causing emissivity uncertainties. In the areas
indicated as geothermal by Omenda (2010), errors were lower than
1.7 K in the majority of them. The two northern areas fell in the region
of the aforementioned lower emissivity values, and presented LST error
values up to 2.2 K.

The uncertainty in LSTWRF estimations was assessed by comparing
the model outputs with products available from the Global Land Data
Assimilation System (GLDAS) (Rodell et al., 2004). These are obtained
using also the Noah model at a resolution of 0.25° (about 25 km at the
equator) but with different forcing and land cover datasets and assim-
ilation techniques. Spatial aggregation of the 4 km WRF simulation
outputs was undertaken to compute the differences at a coarse resolu-
tion. Fig. 17 shows the temporal mean and standard deviation of the
difference LSTWRF minus LSTGLDAS. Lakes Turkana and west Victoria are
masked in white color. Note that due to the scaling process a more
extent area is masked next to the lakes and in the east and southern
boundaries of the study area.

Regarding the mean value, most of the study area values range
between −3 and 3 K (colors yellow and green). These areas present in
general terms standard deviation values below 1.5 K which is an in-
dicator of the consistency of the retrievals in time. Higher discrepancies
are found in southern areas and in the East (colors orange and red),
where higher variability in σ is also obtained. In the mid part and East
of the study area LSTWRF are up to 9 K lower than LSTGLDAS. These areas
partially coincide with anomalous high LSTgt values found in this paper
(see Figs. 8 and 9). In particular, in the geothermal areas indicated by
Omenda (2010), the mean difference value ranged between 4 and−4 K
approximately, with standard deviation values up to 1.5 K in some
areas. These results indicate that in some cases, the LSTgt method might
be in the limit of detection when the input errors have the same or
higher magnitude than the obtained LSTgt. An improvement in the
input accuracies is therefore of crucial importance in the proposed re-
search. Bearing in mind that both GLDAS and the generated WRF data
have errors and limitations, further research is needed to fully under-
stand the inconsistencies between these datasets.

7. Discussion

This section describes aspects to be taken into account when in-
terpreting the results obtained in this paper regarding the inputs, ap-
proaches, assumptions, test and generalization.

Regarding the inputs, as indicated in Section 6 they have an im-
portant impact on the accuracy of the LSTgt. Particularly, the magnitude
of the LSTWRF errors suggests the need of a comprehensive evaluation of
different land surface model and LST outputs differences in the chosen
study areas. Some works in that direction have been carried out by
different authors (Jimenez et al., 2011; Kato et al., 2007; Robock et al.,
2003). Although in some cases the determination of LSTgt might be
hampered by these inaccuracies, the methods proposed in this paper
remain valid and provide a framework where input improvements can
be incorporated. Moreover, specific input parameters in the WRF model
were assumed to be constant. Incorporating surface albedo and emis-
sivity values that are dynamic in time would improve the definition of
the land cover and representation of the surface states.

From a technical point of view, the rescaling and resampling of the
input data to achieve a common spatial resolution may have an impact
in the analysis. The nearest neighbor resampling technique was used in
this research. In general, impacts on the results are expected due to the
heterogeneity of the surface. The question of how representative is the
low resolution data disaggregated to a higher scale needs further re-
search.

In this paper, we prioritized the high temporal frequency of the data
over the spatial resolution. The study was carried out at a spatial re-
solution of 4–5 km, which might limit the detection of small or less
powerful geothermal features. However, the use of high temporal re-
solution data allowed monitoring the study area daily and obtain sta-
tistics during the study period (45 days). Moreover, high frequency data
allows overcoming the problem of temporary cloudy pixels, since al-
ternative clear sky acquisitions close to the optimal time can be used for
the analysis.

Regarding the optimal analysis time, selection of night time data
Fig. 16. Mean LSTMSG error during the period of analysis, using acquisitions at 03:00
UTC.
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close and prior to sunrise were proposed in this paper. Bearing in mind
that this represents the use of a single value of LST's and ancillary
parameters per day, an alternative choice could be the use of averaged
values prior to sun rise in order to avoid fluctuations.

The results showed the existence of anomalous high LSTgt values in
complex terrain areas, which are false positives. In zones of complex
topography, variability in elevation, surface slope, and aspect create
strong spatial heterogeneity in solar distribution, which determines air
temperature, soil temperature, evapotranspiration, snow melt and
land–air exchanges. Therefore, LSTMSG satellite retrievals may need a
slope and aspect correction to radiation inputs in these areas of sig-
nificant relief, in order to provide more realistic results. Moreover, the
uncertainty analysis revealed high LSTWRF errors in areas coincident
with anomalous high LSTgt. Other LSTgt outliers were found in the time
series during precipitation events or short after rainy days due to in-
herent patchy clouds. These aspects are consistent with the results of
Sohrabinia et al. (2012). Similarly, an elevation correction (Eneva and
Coolbaugh, 2009) might allow understanding the relative maxima
present in the whole study area.

LSTgt values lower than zero were also obtained with the proposed
models. These were related by hypothesis to non-geothermal pixels,
when remote sensing LST's were not sufficiently higher than model si-
mulations. The number of positive and negative values in the time
series could be used as indicators of the reliability of the results, and
could suggest the need of a more extensive time series analysis. The
ratio between temporal positive mean and temporal negative mean
indicated also the significance of these negative values, which was
higher than 100% in non-geothermal areas.

The analysis of vegetation definition showed that LSTgt was corre-
lated (r= 0.4) to the fraction of vegetation cover with maxima around
6 and 4 K in BIASM and DMM. For higher LSTgt threshold values the
results indicated a correlation with LAI and emissivity from WRF. These
results suggest that LSTgt peak values could be partially influenced by
vegetation definition, and be shown as false geothermal positives.

Regarding the proposed approaches, from an operative point of
view BIASM is recommended, since it is simple and has a straightfor-
ward application. It allows to produce long-term results at high tem-
poral frequencies and no apriori information about geothermal
anomalies is needed. The synergy of this method with Vaughan et al.'s
(2012) method would benefit from the spatial resolution of the latter.

The assumptions and choices made in this work might influence the
uncertainty of the results. The biasLST values in BIASM might fluctuate
if other thresholds for mapping reference areas would have been
chosen, or if the segmentation would have been different. Regarding
the parameters chosen for the clustering and prediction, the choices
were justified in the corresponding section of this paper, however, a
sensitivity analysis could have been used to select the optimal set to
describe the study area. The number of clusters was set to the default
value of 5, however, a different approach where the optimal number of
clusters is calculated could have been adopted as detailed in Rezaee

et al. (1998) and implemented in Romaguera et al. (2014). Moreover,
the results are influenced by the land surface model selected. An in-
tercomparison of different LST model outputs would contribute to the
assessment of this influence.

The strategy followed in this paper to validate the approaches was
based on the comparison of the radiant geothermal flux (equivalent to
LSTgt) with the one obtained with an established method in the Olkaria
geothermal area. The results indicated that in general, the values ob-
tained with the two analysis were consistent, providing radiant geo-
thermal fluxes between 9 and 24 W/m2. Fluctuations in the difference
values might be due to methodological and technical aspects. First,
Vaughan et al. (2012) begins the analysis with an apriori knowledge of
the location of the geothermal features and areas, for which the radiant
geothermal flux is calculated. In the presented approaches, the radiant
geothermal flux is obtained for all the areas, which may include addi-
tional not cataloged thermal anomalies, and therefore obtain higher
geothermal heat values. Regarding specific properties of the study
areas, complex topography or high atmospheric water vapor content
might influence both estimates. Complex topography influences the LST
detection signal, and steam is a key atmospheric component that highly
influences the atmospheric correction for LST retrieval. The accuracy of
the inputs plays also an important role in the interpretation of the re-
sults. Finally, the comparison was carried out using data at two dif-
ferent times, namely 03:00 and 20:09 UTC in the proposed and estab-
lished methods respectively. In this paper, priority was given to
calculations at the optimal night time (03:00 UTC) to minimize sun
heating effects. Contrarily, these have a higher influence on ASTER
acquisitions at 20:09 UTC due to the thermal inertia of the surface,
which might cause deviations from the optimal heat outcomes.

The proposed approach has the advantage of the high temporal
frequency of the inputs and does not need any apriori information
about the location of geothermal areas, whereas the method of Vaughan
et al. (2012) has the advantage of higher spatial resolution data and the
ability to detect more subtle geothermal features. Bearing in mind these
issues, a synergy between both would provide tools to monitor geo-
thermal activity at a relevant time and spatial scales.

The generalization of the proposed approaches to other areas, per-
iods of time and datasets is feasible as long as the main hypothesis is
accomplished. Remote sensing LST formulation must include the geo-
thermal component, contrary to model simulations. Remotely derived
LST datasets at large scale can be obtained from sources such as the
MOD11 LST MODIS dataset, the European Copernicus Global Land
Service (Freitas et al., 2013) or the LST products from the GlobTem-
perature project (http://data.globtemperature.info/). LST model simu-
lations are globally available using different schemes from the Global
Land Data Assimilation System (GLDAS) (Rodell et al., 2004), at coarse
resolutions. In this context, limitations are related to the lack of avail-
able operative high spatial resolution model simulations. For specific
study cases, a preliminary analysis is needed to evaluate the physics of
the processes at the desired resolution, and the proper approach for LST

Fig. 17. Temporal mean and standard deviation of the dif-
ference LSTWRF minus LSTGLDAS during the period of analysis.
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modeling.
Finally, this paper focused on analyzing the land surface tempera-

ture as an indicator of geothermal activity. However, geochemical and
geophysical information, such as mineralogy alteration, gravity, and
magnetics analysis, might be also included in the research, with the
objective of constraining the outputs. A review about how geologic
remote sensing has been used for geothermal exploration was recently
published by van der Meer et al. (2014).

Despite the fact that more detailed analysis is required to draw more
robust conclusions about the operationality of the presented ap-
proaches, this paper provided new tools and an initial framework to
assess and monitor geothermal activity at appropriate temporal scales
and large coverage.

8. Conclusions

In this paper, we propose two innovative approaches to obtain the
geothermal component of LST (LSTgt) through the use of two LST time
series; one is derived from geostationary Meteosat satellite (including
the geothermal component) and one resulting from WRF land model
simulations (neglecting the geothermal component). The originality of
the two approaches lies in the high temporal frequency of the results,
and that they do not require any apriori geothermal information for the
area under investigation.

The first approach (BIASM) is based on calculating the LST differ-
ences between the remote sensing and WRF data sources and applying a
biasLST correction. The approach is simple and has a straightforward
application. The second approach (DMM) examines four machine
learning techniques to predict remote sensing LST from simulated data.
Of the four techniques, the decision tree resulted in the smallest errors
and highest correlation coefficients.

The two approaches show consistent LSTgt patterns, with BIASM
typically showing 2 K higher LSTgt values than DMM. A geothermal
area map from surface studies is used to assess LSTgt inside and outside
the geothermal boundaries. Spatial means are found to be higher inside
the geothermal limits, as well as the relative frequency of occurrence of
high LSTgt. Areas with strong topography can result in anomalous high
LSTgt values, which suggests the need for a slope and aspect correction
to achieve realistic results in those areas.

Our uncertainty analysis indicates the necessity for more consistent
model LSTWRF retrievals. In some cases LSTgt detection might be limited
by high inaccuracies of the input parameters (up to 4 K) in specific
geothermal areas of the study region. Moreover, some anomalously
high LSTgt values coincided with high LSTWRF error estimates in the
same area.

The validation exercise provides similar radiant geothermal flux
when comparing the proposed approaches (during 15 days) with an
established method that uses ASTER data at higher spatial resolution
(single acquisition), with values between 9 and 24 W/m2. However,
further research is needed to understand the subpixel thermal varia-
bility and the relationship with the outputs of this paper. Our results
also indicate the potential of combining the high spatial resolution of
the existing methods with the high temporal resolution of the ones
proposed in this work.

The proposed methods are a first step in estimating LSTgt at large
spatial coverage from remote sensing and land model simulation data,
and provides an innovative framework for future improvements.
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