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Abstract— Active and passive microwave signatures respond
differently to the land surface and provide complementary
information on the characteristics of the observed scenes. The
objective of this paper is to explore the synergy of active radar
and passive radiometer observations at the same spatial scale to
constrain a discrete radiative transfer model, the Tor Vergata
(TVG) model, to gain insights into the microwave scattering
and emission mechanisms over grasslands. The TVG model
can simultaneously simulate the backscattering coefficient and
emissivity with a set of input parameters. To calibrate this model,
in situ soil moisture and temperature data collected from the
Maqu area in the northeastern region of the Tibetan Plateau,
interpolated leaf area index (LAI) data from the Moderate
Resolution Imaging Spectroradiometer LAI eight-day products,
and concurrent and coincident Soil Moisture Active Passive
(SMAP) radar and radiometer observations are used. Because
this model needs numerous input parameters to be driven,
the extended Fourier amplitude sensitivity test is first applied to
conduct global sensitivity analysis (GSA) to select the sensitive
and insensitive parameters. Only the most sensitive parameters
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are defined as free variables, to separately calibrate the active-
only model (TVG-A), the passive-only model (TVG-P), and the
active and passive combined model (TVG-AP). The accuracy of
the calibrated models is evaluated by comparing the SMAP obser-
vations and the model simulations. The results show that TVG-AP
can well reproduce the backscattering coefficient and brightness
temperature, with correlation coefficients of 0.87, 0.89, 0.78, and
0.43 and root-mean-square errors of 0.49 dB, 0.52 dB, 7.20 K, and
10.47 K for σ o

HH, σ o
VV, TBH, and TBV, respectively. In contrast,

TVG-A and TVG-P can only accurately model the backscattering
coefficient and brightness temperature, respectively. Without any
modifications of the calibrated parameters, the error metrics
computed from the validation data are slightly worse than
those of the calibration data. These results demonstrate the
feasibility of the synergistic use of SMAP active radar and
passive radiometer observations under the unified framework of a
physical model. In addition, the results demonstrate the necessity
and effectiveness of applying GSA in model optimization. It is
expected that these findings can contribute to the development
of model-based soil moisture retrieval methods using active and
passive microwave remote sensing data.

Index Terms— Active and passive microwave, calibration and
validation, global sensitivity analysis (GSA), Soil Moisture Active
Passive (SMAP), soil moisture, Tor Vergata (TVG) model.

I. INTRODUCTION

SURFACE soil moisture is an important state variable for
regulating regional and global water cycle, energy balance,

and climate change on the earth’s surface [1]–[3]. A good
knowledge of the spatial and temporal distributions of soil
moisture can help in understanding the role of hydrological
processes in the climate system [1], [2]. Despite the particular
usefulness of soil moisture, quantitative measurements of soil
moisture at different spatial scales (especially at large scales)
by using traditional hydrometeorological stations remain very
difficult, due to the considerable heterogeneity of the land sur-
face [4]. Microwave remote sensing, both active and passive,
provides an effective technique to characterize the distribution
of soil moisture at the regional and global scales [3], [4]. This
technique has been demonstrated to be the best way to infer
soil moisture spatially and temporally at large scales, owing
to its high sensitivity to soil permittivity and its capability
for 24-h all-weather coverage [2]–[6]. Active microwave sen-
sors, especially synthetic aperture radar, can provide soil
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moisture data at a fine spatial resolution [2], [7], [8]. How-
ever, radar backscatter is highly susceptible to scattering and
attenuation effects from vegetation and surface roughness [4].
In contrast, passive microwave sensors, e.g., radiometers, are
able to map soil moisture with higher temporal resolution and
with reduced sensitivity to vegetation and surface roughness
compared with that of active sensors [9]. The main draw-
back of passive radiometry is that its spatial resolution is
often very coarse (i.e., dozens of kilometers), which limits
its usage in some practical applications, such as agricultural
productivity estimation at a local scale [4]. Since radar and
radiometers can offer complementary information on soil
moisture, a joint use of both instruments provides an oppor-
tunity to improve the accuracy of soil moisture retrieval by
leveraging the complementary strengths of active and passive
measurements [10], [11].

The first satellite equipped with both active and passive
instruments was the Aquarius/SAC-D mission, a joint pro-
gram between the National Aeronautics and Space Admin-
istration (NASA) and Argentina’s Space Agency (Comisión
Nacional de Actividades Espaciales), launched in 2011 [12].
The satellite consists of a fully polarimetric L-band (1.26 GHz)
scatterometer and three dual-polarized L-band (1.413 GHz)
radiometers [12]. This mission was originally designed for
measuring sea surface salinity but has also been used for
monitoring soil moisture [13]. The dedicated soil moisture
observation system, which integrates radar and radiometry in
a single satellite, is NASA’s Soil Moisture Active Passive
(SMAP) mission, launched on January 31, 2015 [10]. The
device carries an L-band radar instrument (1.26 GHz) and
an L-band radiometer (1.41 GHz), which are colocated at a
constant incidence angle of 40°, and has shown good perfor-
mance in terms of soil moisture estimation [14], [15]. Though
the SMAP radar ceased working on July 7, 2015, the active–
passive synergistic algorithm can be used by implementing
alternative active measurements, e.g., the ongoing Sentinel-
1 C-band data [16], [17] and the upcoming Water Cycle Obser-
vation Mission data [18]. Fortunately, the science data from
SMAP released to the public now include over two months
of coincident spaceborne active radar and passive radiome-
ter measurements with an unprecedented spatial resolution,
which provides us with a unique opportunity and motivation
to fully explore the complementarity of active and passive
observations [19].

Several methodologies have been developed to take advan-
tage of the respective strengths of radar and radiometer mea-
surements for surface modeling and soil moisture retrieval. The
first scheme uses fine scale radar observations to downscale
coarse passive soil moisture products (see [20]). The second
scheme utilizes fine scale radar observations to enhance the
spatial resolution of radiometer data, which are then employed
to retrieve fine scale soil moisture. For example, the SMAP
active–passive baseline algorithm is used to disaggregate the
coarse radiometer brightness temperature using concurrent fine
scale radar acquisitions, and soil moisture is retrieved from
the downscaled brightness temperature [21], [22]. The third
scheme directly merges the two single-source soil moisture
products retrieved from the active and passive observations

to obtain a complete and consistent global soil moisture data
record. For example, the European Space Agency climate
change initiative soil moisture product is blended from sev-
eral active and passive soil moisture products to produce a
long-term and unified soil moisture data set [23], which intro-
duces the advantages of spatial coverage and temporal exten-
sion [24]. The fourth scheme uses machine-learning methods,
e.g., artificial neural networks [25]–[27] and the Bayesian
algorithm [28], to retrieve soil moisture from the combina-
tion of active and passive microwave data. The aforemen-
tioned schemes are generally data-driven-based approaches
that ignore a physical interpretation of land surface scattering
and emission mechanisms. The fifth scheme combines com-
plementary information from active and passive microwave
remote sensing by using physics-based radar and radiometer
forward models, which are capable of simultaneously simu-
lating the backscattering coefficient and emissivity. The radar
backscatter forward model and radiometer brightness temper-
ature forward model independently predict the backscatter and
emissivity, which are used to build a joint active and passive
cost function for soil moisture retrieval [11], [19]. The discrete
scattering model, which is a unified model, is also constrained
by the combined use of active and passive microwave obser-
vations and can be used for surface modeling [29] and soil
moisture retrieval [30].

In this paper, we focus on the use of a unified approach,
which is a physically based active and passive forward model,
to account for the scattering and emission processes simul-
taneously, for which there have been limited studies con-
ducted. Dente et al. [29] combined Advanced Scatterometer
(ASCAT) data and AMSR-E data to constrain a discrete
scattering model for simulating both backscatter and emission.
Wang et al. [30] adopted concurrent active and passive Aquar-
ius observations to estimate soil moisture using the same
discrete electromagnetic model. These two studies demon-
strated the feasibility of using unified scattering and emission
models for the synergy of active and passive microwave
observations. However, the ASCAT and AMSR-E data used
in [29] were acquired at different local times and incidence
angles, which inevitably introduces in representative errors.
Moreover, the spatial resolution of the Aquarius observations
used in [30] is very coarse (∼100 km), which results in higher
land surface heterogeneity within the satellite’s observation
footprint, and thus introduces more uncertainties [31], [32].
In addition, it is well known that discrete scattering models
often need numerous input parameters, which are very difficult
to estimate. For this reason, it is necessary to select the most
sensitive parameters for model optimization. Dente et al. [29]
and Wang et al. [30] have adopted local sensitivity analysis
(LSA) to distinguish the sensitive and insensitive parameters.
It is well known that many parameters (e.g., soil moisture
and vegetation) usually vary simultaneously in the natural
world. However, LSA can only explain the sensitivity of each
parameter when fixing all of the remaining parameters at their
nominal values and cannot quantify the effects of interactions
among the parameters [33]. In addition, the credibility of LSA
in nonlinear models is questionable [34]. Discrete scattering
models are often nonlinear and nonmonotonic, which limits



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BAI et al.: PARAMETER OPTIMIZATION OF A DISCRETE SCATTERING MODEL 3

the application of LSA. Compared with LSA, global sensitivity
analysis (GSA) can analyze parameters’ sensitivities over the
entire parameter space [35]. Moreover, GSA can consider the
comprehensive effects of the parameters on the model outputs.
Due to these advantages, GSA can be applied to identify
the sensitive and insensitive parameters of discrete scattering
models more efficiently and reliably than LSA can.

In this context, we investigate and evaluate, for the first
time, the effectiveness and necessity of applying GSA to
optimize a discrete scattering model, the Tor Vergata (TVG)
model [36], [37] using active and passive SMAP observations.
TVG is a discrete radiative transfer model that is capable of
simultaneously simulating the backscattering coefficient and
emissivity. This model has widely been applied to surface
modeling [29], soil moisture retrieval [30], vegetation mois-
ture monitoring [38], and freeze-thaw process detection [39].
TVG is driven by a set of input parameters including
sensor configuration and soil and vegetation parameters.
A GSA method, i.e., the extended Fourier amplitude sensi-
tivity test (EFAST) algorithm [40], is adopted to rank the
sensitivity of the input parameters for this model. Only the
most sensitive parameters are defined as free variables to be
calibrated. Model calibration and validation are implemented
by comparing the model simulations and SMAP observations
in the Tibetan Plateau. In situ measurements collected from the
Maqu network, SMAP observations, and Moderate Resolution
Imaging Spectroradiometer (MODIS) products are together
used for model calibration and validation. Nearly 60% of
the data from SMAP’s full sensor suite are used for model
calibration, and the remaining data are used for validation.

This paper is organized as follows. Section II introduces the
study area, in situ measurements, SMAP data, and MODIS
data. Section III describes the TVG model, the GSA method,
and the method used for model calibration and validation.
The results are presented in Sections IV from three per-
spectives: GSA, model calibration, and model validation.
Discussions are presented in Section V in terms of four
considerations: selection of sensitive parameters, contribution
of leaf area index (LAI), uncertainties in model calibration,
and considerations in the use of GSA. Conclusions of this
paper are summarized in Section VI.

II. MATERIALS

A. Study Area

In this paper, in situ soil moisture and temperature measure-
ments are collected from the Maqu soil temperature and mois-
ture network (33° 30′−34° 15′ N, 101° 38′−102° 45′ E) [1],
which is located at the northeastern edge of the Tibetan
Plateau, shown in Fig. 1. This network was established in
July 2008, and to date, there are 20 monitoring stations
distributed throughout the southern part of Maqu County, with
an average elevation of approximately 3470 m. The location
of the Maqu soil temperature and moisture network and dis-
tribution of the corresponding stations are displayed in Fig. 1.
The soil moisture and temperature are continuously measured
at different soil depths (5, 10, 20, 40, and 80 cm) in 15-min
intervals by means of 5TM ECH2O probes (Decagon Devices,
Inc., Pullman, WA, USA). The dominant land cover is

Fig. 1. Geographical locations of (a) Maqu network, (b) monitoring stations
on the Tibetan Plateau, and (c) study area used in this paper, with the
background indicating the digital elevation model from the shuttle radar
topography mission with a spatial resolution of 1 km.

Fig. 2. Time series of (a) daily precipitation, (b) in situ soil moisture, and
(c) surface temperature in the study area from April 2015 to July 2015.

seasonal grassland. The soil is characterized by silt loam soils,
and its texture parameters were determined from undisturbed
soil samples collected during station installation. More details
about the Maqu soil temperature and moisture network can be
found in [1] and [41].

To match the spatial resolution of SMAP observations,
a specific region with 9 km × 9 km is selected as the study
area [Fig. 1(c)], with the yellow circle indicating the geo-
graphical center. There are three stations, named NST_01,
NST_21, and NST_22, in the selected SMAP grid cell, and
the average in situ soil moisture and temperature at a depth
of 5 cm at these three stations are considered as the soil
conditions of this grid [4], [14]. The in situ soil moisture
and temperature, averaged using data from 06:00 AM and
06:15 AM. Beijing standard time at the selected stations,
are shown in Fig. 2; the selected times correspond to the
acquisition times (descending pass) of SMAP. The reason
for selecting this time period is to minimize the difference
between vegetation and soil temperature, since in the morning
(e.g., 6:00 AM), the air, vegetation, and near-surface soil are
in thermal equilibrium [14], [15], [42]. Daily precipitation
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Fig. 3. Temporal evolution of (a) SMAP backscattering coefficient and
(b) brightness temperature in the study area from May 2015 to July 2015.

data from April 2015 to July 2015, which can be down-
loaded from the China Meteorological Data Sharing Ser-
vice System of the China Meteorological Administration
(http://data.cma.gov.cn/), are used. From Fig. 2, it can be seen
that the pattern of soil moisture is consistent with the trend
of precipitation and that the soil temperature continues to rise
during the selected period.

B. SMAP Data

In this paper, the SMAP Level-3 radar/radiometer
global daily EASE-Grid2 soil moisture product (version 3,
SPL3SMAP) with a grid resolution of 9 km is used. The
temporal coverage of this product ranges from April 13, 2015
to July 7, 2015. The SPL3SMAP product includes bright-
ness temperature, backscattering coefficients, soil moisture,
and other auxiliary data. The SMAP data were down-
loaded from the National Snow and Ice Data Center
(https://nsidc.org/data/SMAP/SMAP-data.html). All available
backscattering coefficient and brightness temperature data in
the study area are shown in Fig. 3.

The SMAP active–passive soil moisture product is retrieved
from L-band radar and radiometer observations using a down-
scaling approach [22]. The key to this approach is to disaggre-
gate the radiometer brightness temperature from 36 to 9 km
by using concurrent radar backscatter at a fine resolution
of 3 km. To effectively constrain the model variables, active
σ o

HH and σ o
VV data combined with passive TBH and TBV data

are used in this paper.
The reason for selecting the SMAP active–passive disaggre-

gated brightness temperature instead of the SMAP enhanced
brightness temperature in our study is mainly due to the hetero-
geneity of our study area. It is well known that the geograph-
ical environment and climate conditions of Tibetan Plateau
are quite different compared with those of other places in the
world. In previous studies, it has been found that the perfor-
mance of current passive remotely sensed soil moisture prod-
ucts is still not satisfactory in the Tibetan Plateau [24], which
may be due to the heterogeneity (e.g., surface roughness) of
the area. As stated above, the SMAP disaggregated brightness
temperature is downscaled by using concurrent high-resolution
radar data. In particular, HV-polarized backscatter is used
to account for the heterogeneity of the 9 km grid within

Fig. 4. Time evolution of (a) MODIS LAI and interpolated LAI data and
(b) SMAP VWC in the study area from May 2015 to July 2015.

the 36 km grid. That is, the disaggregated 9 km brightness
temperature data are considered to reflect the heterogeneity
of the observed surface. In contrast, the enhanced brightness
temperature is interpolated from the original 36 km brightness
temperature data, which may cause a loss of heterogeneity in
the observed surface. Therefore, the active–passive disaggre-
gated brightness temperature is used instead of the enhanced
brightness temperature in this paper.

C. MODIS Data

LAI data are used as model input parameters to char-
acterize the vegetation conditions. The Terra MODIS LAI
8-day products with a spatial resolution of 1 km, which
are released by NASA Goddard Space Flight Center
Level 1 and Atmosphere Archive and Distribution System
(http://ladsweb.nascom.nasa.gov/data/search.html), are used.
The preprocessing for the MODIS LAI products includes
reprojection, resampling, smoothing, and interpolation. The
spatial resolution of the original SIN Grid data is resampled
from 1 to 9 km to be consistent with the observation scales
of SMAP. The third Savitzky–Golay filter is used to smooth
the MODIS LAI data to suppress the effect of cloud cover [43].
To compute the LAI values on the acquisition dates of
SMAP observations, the smoothed LAI data are interpolated
with the cubic spline interpolation technique. Fig. 4 presents
the original MODIS LAI data, interpolated LAI data, and
vegetation water content (VWC) extracted from the SMAP
Level-3 radar/radiometer soil moisture product. The cali-
bration and validation data are distinguished by a dashed
line.

III. METHODOLOGY

In this paper, the active and passive versions of the
TVG model are applied to simulate the backscattering coeffi-
cient and emissivity by integrating the in situ measurements,
SMAP observations, and interpolated LAI data from MODIS
LAI products in the Maqu region. The GSA method is applied
to rank the input parameters and select the most sensitive
parameters for model calibration. The implementation of
the GSA, model calibration, and model validation can be
found in Fig. 5, and detailed descriptions are introduced in
Sections III-B and III-C.
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Fig. 5. Implementation of the GSA, model calibration, and model validation.

A. TVG Model

To simulate the backscattering coefficient and emissivity
over the grasslands, a discrete radiative transfer model devel-
oped at the University of Rome TVG is used [36], [37],
which will be simply referred to as “the model.” Like other
discrete scattering models, this model simultaneously con-
siders the contributions from soil and vegetation. In both
active and passive versions of this model, the vegetation is
modeled as an ensemble of discrete lossy scatterers, whose
electromagnetic behaviors are simulated by simple geometrical
shapes, e.g., cylinders and discs. The basic components that
constitute vegetation include stems, leaves, and needles, and
their scattering and absorption properties are dependent on
the ratio between the element size and the wavelength. The
stems and needles are all modeled as dielectric cylinders using
the Rayleigh–Gans approximation [44] in the L-band or the
infinite length approximation [45], depending on frequency
and size. The geometric parameters needed to simulate the
scattering and absorption of the cylindrical shapes include the
radius, length (or height), and gravimetric moisture (fraction)
of the cylinders, and the number of cylinders per unit of under-
lying area. The leaves are represented as circular discs, whose
scatter matrices and extinction vector are computed using the
Rayleigh–Gans approximation [44], [46] and physical optics
approximation [47], depending on frequency. The geometric
parameters required for the discs include the disc radius,
disc thickness, plant moisture content (fraction), and disc
angular distribution. The disc angular distribution is generally
assumed to be random. The soil surface is described as a
homogeneous half-space with a rough interface, whose elec-
tromagnetic behavior is approximated by the integral equation
model (IEM) [48]. The surface soil parameters needed to
implement the IEM are the volumetric soil moisture, soil
temperature, soil texture, root-mean-square (rms) height, cor-
relation length, and autocorrelation function.

When the individual scattering and attenuation properties
of vegetation components and soil are determined, the matrix
doubling method is used to compute the scattering matrix
of the whole soil-vegetation system [49]. The backscattering
coefficient and the emissivity are finally computed at selected
frequencies and incidence angles, respectively. To compute the
vegetation permittivity and soil permittivity, the Mätzler [50]
vegetation mixing model and Dobson [51] dielectric mixing

model are used, respectively. Details about the active and
passive versions of the model can be found in [36] and [37].
This model has achieved a good performance for agricultural
fields within the L-band and at higher frequencies [52]–[54].
Recently, this model has been adopted to simulate the
backscattering coefficient and emissivity over a grassland
region by considering the component of grassland litter, which
consisted of dry grass leaves from the previous year [29].
Dente et al. [29] and Wang et al. [30] found that the con-
tribution of litter is very important for simulating C-band
and L-band satellite observations in the Maqu region. The
contribution of litter is modeled as a mixture of air and
dielectric material overlaying the soil [55]. The scattering
matrices for the litter are modeled by the litter thickness, litter
biomass, and litter gravimetric moisture content. The soil and
litter are assumed to have an equivalent permittivity, which is
included in the IEM model.

The backscattering coefficient is computed from the bistatic
scattering coefficient in the opposite direction of incidence
only, while the computation of emissivity is based on the
energy conservation law by integrating all bistatic scattering
coefficients across the hemisphere that yields the reflectiv-
ity [36], [37]. The brightness temperature is computed by
multiplying the modeled emissivity (one minus reflectivity)
by the effective temperature, which is approximated by the
in situ topsoil temperature (i.e., 5 cm). It should be noted
that the direct use of topsoil temperature as the effective
temperature is not always valid [56], [57]. However, at the
Maqu site, Lv et al. [58] showed that the 5 cm soil tem-
perature can be approximately representative of the effective
temperature.

In this paper, three components, including the soil surface,
leaves, and litter, are considered to model the scattering
processes of grasslands in Maqu. Although the contribution
of vegetation is small within the L-band at this site, we use
the complete model, including soil and vegetation contri-
butions. The simulation of backscattering and emissivity is
conducted under the SMAP configuration. The frequencies for
the active and passive versions of the model are set as 1.26 and
1.41 GHz, respectively, and the incidence angle is set as 40°
for both. The distribution and ranges of soil moisture and LAI
are defined according to the in situ soil moisture and interpo-
lated LAI data. The exponential correlation function is found
to be capable of characterizing natural land cover within the
L-band [59], [60], and thus is adopted in our study. The default
values for other input parameters are obtained from [29],
which was performed in the same study area. The parameter
ranges are proportionally amplified from a ±50% perturbation
based on the default values. Previous studies [33], [61] have
found that the distribution of parameters had a very small
impact on the GSA results, and a uniform distribution is
commonly assumed regarding the input factors. Since there
is no prior knowledge for the input parameters, most of them
are assumed to be uniformly distributed. The plant moisture
content stands for the ratio between the difference in fresh and
dry biomass and the fresh biomass. The specific distribution
and ranges for the input parameters required by the model and
adopted in the sensitivity analysis are given in Table I.
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TABLE I

DISTRIBUTIONS AND RANGES FOR THE INPUT PARAMETERS
OF THE MODEL ADOPTED IN GSA

B. GSA Method

It is known that the backscatter and emissivity are both
influenced by a number of variables. It is very difficult, if not
impossible, to calibrate all the input parameters of the model.
Thus, the relative contributions of each input parameter to the
backscatter and emissivity have to be quantified, which helps
discriminate between the sensitive and insensitive parameters
for calibrating the model. The most sensitive parameters are
selected as free variables constrained within the parameter
ranges, and the insensitive parameters are set as default values
based on previous experience.

In this paper, a GSA method, i.e., the EFAST algorithm [40],
is adopted to rank the input parameters and select the
most sensitive parameters for the active and passive models.
EFAST is a variance-based global and quantitative sensitivity
analysis method, which combines the advantages of a high
efficiency of sampling, from the Fourier amplitude sensitivity
test, and of considering the individual and interaction effects,
from the Sobol’s method. Compared with LSA methods,
EFAST is capable of analyzing complex nonlinear and non-
monotonic models and is currently recognized as one of the
most elegant methods for sensitivity analysis.

Implementing the EFAST algorithm primarily includes two
steps. The first procedure is called resampling, which is
performed via a transformation function.

For a given model simplified as

y = f (x), x = (x1, x2, . . . , xn) (1)

where x1 to xn represent the n input parameters, the mul-
tidimensional input parameter space is first converted into

a 1-D space through the Fourier transformation functions
called searching curves

xi (s) = 1

2
+ 1

π
arcsin[sin(wi s + ϕi )] (2)

where i = 1, 2, . . . ., n, φi is the random phase shift within
[0,2π), wi is the Fourier frequency, and s stands for the sample
order from 1 to the total number of samples. The key for this
procedure is to select the critical parameters. Saltelli et al. [40]
have given an explicit computation formula

C = nNs = nNr (2Mwmax + 1) (3)

where C is the expected random number, n stands for the
number of parameters (n = 10), Ns is the sample size,
Nr is the number of curves explored, M is the interference
factor (M = 4), and ωmax is the largest sampling frequency.
To reasonably obtain this number, some constraints are nec-
essary

wmax ≥ 8; wmax

Nr
∈ [16, 64]. (4)

From (3) and (4), it can be seen that the number of
random samples depends on the values of ωmax and Nr , which
highly affect the convergence of the sensitivity indices (SIs).
To compromise between computation and convergence,
ωmax and Nr are set as 128 and 4, respectively. Once these
two parameters are determined, Ns is 4100 and the number
of numerical experiments C is 41 000. The distributions and
ranges for the input parameters in Table I are used to conduct
the GSA of the TVG model. The second procedure is to
compute the SIs for each input parameter. The SIs mainly
include the main SI (MSI) and total SI (TSI), which are
computed via the following procedures.

With the random input parameters, including the
model f (x), the model outputs can be transformed in the
model’s Fourier series expansion

y = f (s) =
+∞∑

j=−∞
{cos( j s) + B j sin( j s)} (5)

where A j and B j represent two Fourier coefficients, expressed
as

A j = 1

2π

∫ π

−π
f (s) cos( j s)ds (6a)

B j = 1

2π

∫ π

−π
f (s) sin( j s)ds. (6b)

The total variance D of the model outputs is obtained as

D = 1

2π

∫ π

−π
f 2(s)ds −

[
1

2π

∫ π

−π
f (s)ds

]2

≈ 2
+∞∑
j=1

(
A2

j + B2
j

)
. (7)

The estimated conditional variance Di of the individual
parameters is calculated as

Di = 2
+∞∑
j=1

(
A2

jwi
+ B2

jwi

)
. (8)
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Finally, MSI and TSI are defined as

MSI = Di

D
(9)

TSI = 1 − D−i

D
(10)

where D(−i) represents the estimated conditional variance
except for the i th factor. For both MSI and TSI, higher values
indicate greater sensitivity to the model outputs. The effective
ranges for MSI and TSI are from 0 to 1. The difference
between TSI and MSI (TSI–MSI) indicates the interactions
between the parameters. A detailed description for computing
MSI and TSI is provided in [40].

C. Model Calibration and Validation

Model calibration is an important procedure that helps
to parameterize the unavailable input parameters. It should
be mentioned that both the active and passive simulations
have to be simultaneously applied to the satellite data. Thus,
the following cost function S is constructed to make the model
simulation approach the SMAP observations:

S = MAE
(
σ o

HH

)
�σ o

HH
+ MAE

(
σ o

VV

)
�σ o

VV
+ MAE(TBH)

�TBH
+ MAE(TBV)

�TBV

(11)

where MAE(•) stands for the mean absolute error between the
model simulations and satellite observations and � indicates
the standard deviation in satellite observations. The most
challenging issue for selecting the cost function is how to
balance the contributions of the active and passive parts.
In [19], a regularization term is used to capture both the
radar and radiometer contributions. In [30], four values are
selected to obtain comparable weights for the backscatter and
brightness temperature. The cost function used in our study,
which is obtained from [29], is numerically normalized. The
four parts in (11) are dimensionless. Therefore, it can be
concluded that the active and passive parts contribute equally
to obtaining the optimum parameters. A lookup table (LUT)
method is applied to find a set of input parameters that can
minimize the cost function. The LUT is established based on
the free variables, which are selected based on the sensitivity
analysis results. The number of combinations is computed as:
40 (rms height) ×18 (correlation length) ×5 (N) × 3 (litter
biomass) ×3 (litter thickness) = 32 400. During the calibration
process, the values for the cost function (11) are computed by
executing the iteration of all the possible combinations. That is
to say, we will find the minimum value of the cost function in
all possible solutions (32 400). It means we search the optimal
value among all possible combinations and we do not set any
thresholds to determine the “optimized” cost function value.

In this paper, we select the first 60% of the data for
model calibration, and the remaining data are used for model
validation. Once the optimal sets of parameters are deter-
mined, they are used directly as input parameters for the
model without any change. The simulated backscattering
coefficient and brightness temperature are compared with the
SMAP observations.

Fig. 6. Sensitivities of backscatter and emissivity to the input parameters
in the TVG model. (a) σ o

HH. (b) σ o
VV. (c) TBH. and (d) TBV. TSI and MSI

stand for the total sensitivity index and main sensitivity index, respectively.

Five error metrics, including the correlation coefficient (R),
mean bias (Bias), MAE, root-mean-square error (RMSE), and
unbiased RMSE, are adopted to evaluate the calibration and
validation accuracy

R =
∑

(doi − d̄oi)(dsi − d̄si)√
(doi − d̄oi)2

√
(dsi − d̄si)2

(12)

Bias = 1

n

(∑
doi −

∑
dsi

)
(13)

MAE = 1

n

∑
|doi − dsi| (14)

RMSE =
√

1

n

∑
(doi − dsi)2 (15)

ubRMSE =
√

RMSE2 − Bias2 (16)

where doi and dsi indicate the observed and simulated
backscattering coefficients or brightness temperature, respec-
tively, at a given time i , and d̄oi and d̄si are their average
values, respectively.

IV. RESULTS

A. Global Sensitivity Analysis

Since most of the input parameters for the model are
unavailable, the EFAST method is applied to select the
sensitive and insensitive parameters. In comparisons with
SMAP observations, the sensitive parameters are used as free
variables. The less sensitive parameters are set as constant
values according to previous studies [29]. The input parame-
ters and their ranges are listed in Table I, and the results of
GSA are displayed in Fig. 6.

It is seen that for the active observations at VV and
HH polarizations, the most sensitive parameter is the rms
height. The second and third most influential parameters are
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the correlation length and soil moisture, respectively. The
remaining vegetation and litter parameters have little effect on
the backscattering coefficient. For TBV, in contrast, the soil
moisture is the most sensitive parameter, and its TSI and
MSI values are 0.63 and 0.59, respectively. The three litter
parameters also have a high impact on emissivity, whereas
the roughness and vegetation parameters play a secondary
role in TBV. Nevertheless, for TBH, the three most sensitive
parameters are rms height, soil moisture, and correlation
length, which is similar to the results of σ o

HH and σ o
VV. This

is in line with Zeng et al. [62], who found that TBV had a
much lower sensitivity to surface roughness than that of TBH,
especially at larger incidence angles. Compared with TBV,
TBH is more sensitive to rms height and correlation length and
less sensitive to the three litter parameters. According to the
sensitivity analysis results, the parameterizations of the inputs
used to calibrate the model are defined as follows.

1) For Available Parameters: The soil moisture and surface
temperature are initialized by the in situ measurements.
The interpolated LAI is used as input to characterize the
growth of vegetation.

2) For Unavailable But Sensitive Parameters:For the active
case, the rms height and correlation length have been
found to have higher SI. For the passive case, the litter
moisture content, litter biomass, and litter thickness
have been found to have higher SI. For simultaneous
simulation of the active and passive observations, these
five parameters are defined as free variables, and their
ranges are listed in Table I. The litter moisture content
is defined as N times of the soil moisture, according
to [29]. This is because in previous work, the litter
moisture content has been assumed to have a linear
relationship with the soil moisture [59]. In this paper,
the values of N are set as 0.25, 0.5, 1, 1.5, and 2,
respectively.

3) For Unavailable and Insensitive Parameters: The disc
radius, disc thickness, and plant moisture content have
been found to be insensitive to the backscatter and
emissivity. In this paper, the values of these parameters
are derived from [29] (see Table I).

B. Model Calibration

The model calibration is conducted by minimizing the cost
function in (11) to determine the optimal set of input parame-
ters. To highlight the advantage of the synergistic use of both
active and passive microwave data, the active only, the passive
only, and both the active and passive data are separately
used to calibrate the model; these approaches are shortened
as TVG-A, TVG-P, and TVG-AP, respectively. The optimal
values of the five most sensitive parameters selected during
the model calibration are listed in Table II, and the values
of other input parameters are given in Table I. Figs. 7–9
display the temporal evolution of SMAP observations and sim-
ulated backscattering coefficients and brightness temperature
obtained from TVG-A, TVG-P, and TVG-AP. The error met-
rics between the SMAP observations and model simulations
are presented in Table III.

TABLE II

OPTIMAL VALUES OF THE FIVE MOST SENSITIVE PARAMETERS
FOR THE TVG MODEL CALIBRATION

Fig. 7. Temporal evolution of SMAP observations and TVG-A model
simulations with calibrated input parameters for (a) σo

HH, (b) σ o
VV, (c) TBH,

and (d) TBV.

Fig. 8. Temporal evolution of SMAP observations and TVG-P simulations
with calibrated input parameters for (a) σ o

HH, (b) σ o
VV, (c) TBH, and (d) TBV.

First, only radar data are applied to calibrate the model,
by minimizing the sum of the first two terms of (11), which
is considered the TVG-A case. The selected optimal val-
ues (see Table II) combined with other previously defined
input parameters (see Table I) are used to implement the
TVG model in the active and passive configuration simulta-
neously. Fig. 7 shows the comparisons of SMAP observations
and the simulated backscattering coefficients and brightness
temperatures obtained from the calibrated TVG-A. It is found
that TVG-A is able to simulate the backscattering coefficient
well, with R values of 0.91 and 0.90 and RMSE values
of 0.48 dB and 0.51 dB for σ o

HH and σ o
VV, respectively.

The positive bias indicates that the simulated backscattering
coefficient is slightly underestimated.
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Fig. 9. Temporal evolution of SMAP observations and TVG-AP simulations
with calibrated input parameters for (a) σ o

HH, (b) σ o
VV, (c) TBH, and (d) TBV.

TABLE III

ERROR METRICS BETWEEN SMAP OBSERVATIONS AND TVG MODEL

SIMULATIONS FOR DIFFERENT POLARIZATIONS

DURING MODEL CALIBRATION

Second, only radiometer data are utilized to calibrate the
model, by minimizing the last two terms of (11), which is
called the TVG-P case. Fig. 8 shows the temporal evolution
of the SMAP observations with the simulated backscattering
coefficients and brightness temperatures obtained from the
calibrated TVG-P. It is observed that the simulation results
for brightness temperature are much better than the results
obtained from the TVG-A case, as expected. In particular,
the values of bias, MAE, and RMSE have conspicuous
improvements compared with those of TVG-A. However, TBH
is slightly underestimated and TBV is heavily overestimated.
The R values between SMAP observations and the TVG-P
simulation are 0.80 and 0.58 for TBH and TBV, respectively.
In addition, their RMSE values are 6.83 and 10.96 K, respec-
tively, which are slightly high.

In the case of TVG-A, the selected calibrated parameters are
prone to good performance for simulating the radar backscat-
ter, and the simulated brightness temperature data deviate
significantly from SMAP observations. The same is observed
for TVG-P: it can simulate brightness temperature very well
but severely underestimates the backscattering coefficient.
It is necessary to use both active and passive observations

to simultaneously simulate the backscattering coefficient and
brightness temperature.

Finally, both radar and radiometer data are used to calibrate
the model by minimizing the cost function in (11), which is
termed the TVG-AP case. Fig. 9 shows the temporal behavior
of the SMAP observations and TVG-AP simulations. In this
case, the same input parameters are employed to separately
run the model in the active and passive configuration. From
the results, it is found that the simulated backscattering coef-
ficients approximate the values obtained from TVG-A and
the simulated brightness temperature is close to the results
from TVG-P, which demonstrates the effectiveness of the
synergistic use of active and passive observations. From the
results, it is concluded that the significance of TVG-AP is to
find effective values for the model inputs that guarantee the
TVG model can simultaneously simulate the backscattering
coefficient and brightness temperature very well.

However, it must be noted that the absolute accuracy
of brightness temperature (especially TBV) simulated from
TVG-P and TVG-AP is relatively lower than that of backscat-
ter simulated from TVG-A and TVG-AP. This phenomenon
may be explained by the following two observations. On one
hand, the horizontal and vertical mismatch between in situ soil
moisture and satellite observations will inevitably bring some
uncertainties. Many studies have found that compared with
radar backscatter, radiometer brightness temperature is more
sensitive to soil moisture [4], [63]. Therefore, uncertainties
in soil moisture will introduce more deviations in brightness
temperature simulations than backscatter simulations. On the
other hand, the higher difficulty of modeling emissivity than
backscatter may be another explanation for the relatively
lower accuracy of brightness temperature simulations. Wave
scattering and emission from random rough surfaces are
characterized by the bistatic scattering cross section per unit
area or surface scattering coefficient. Backscattering is a
special case for bistatic scattering in which the transmitter
and receiver are colocated [64]. In contrast, the emissivity in a
chosen observation direction is equal to one minus reflectivity,
expressed as the integral value of the bistatic scattering cross
section over the upper half of the space [31], [63]. Numerical
accuracy is important to ensure correct results for emissivity in
passive remote sensing, as emissivity is related to energy con-
servation and the accuracy of bistatic scattering coefficients.
It is less of a challenge for active monostatic remote sensing
as only the backscattering coefficients are calculated on the
decibel scale [65]. For instance, Zeng et al. [62] conducted a
detailed examination of the capability of the AIEM model to
predict scattering coefficient and emissivity. They also found
that the AIEM model can better simulate backscatter than
emissivity (see Tables II and III in their study). This can be
a possible explanation for the better accuracy of simulated
backscatter relative to that of simulated brightness temperature
in our study.

C. Model Validation

Without any further modification, the selected optimal input
parameters are used as inputs to the TVG model to simulate the
backscattering coefficient and brightness temperature for the
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Fig. 10. Temporal evolution of SMAP observations and TVG-A simulations
obtained for the validation data for (a) σ o

HH, (b) σ o
VV, (c) TBH, and (d) TBV.

Fig. 11. Temporal evolution of SMAP observations and TVG-P simulations
obtained for the validation data for (a) σ o

HH, (b) σ o
VV, (c) TBH, and (d) TBV.

Fig. 12. Temporal evolution of SMAP observations and TVG-AP simulations
obtained for the validation data for (a) σ o

HH, (b) σ o
VV, (c) TBH, and (d) TBV.

remaining validation data set. Similar to the procedures used
for model calibration, model validation is separately conducted
for TVG-A, TVG-P, and TVG-AP. The simulated brightness
temperature is obtained by multiplying the simulated emissiv-
ity by the in situ topsoil temperature. Figs. 10–12 display the
temporal evolution of SMAP observations and the simulations
from the calibrated TVG model, and their error metrics are
given in Table IV.

In general, the model simulations are in good agree-
ment with the SMAP observations, except the brightness

TABLE IV

ERROR METRICS BETWEEN THE SMAP OBSERVATIONS AND TVG MODEL
SIMULATIONS FOR DIFFERENT POLARIZATIONS

DURING MODEL VALIDATION

temperature simulated from TVG-A and the backscatter-
ing coefficient simulated from TVG-P, as expected. In the
TVG-AP case, the R between SMAP observations and
model simulations are 0.80, 0.55, 0.81, and 0.75, and the
RMSE values are 0.96, 1.58 dB, 11.90 K, and 13.53 K for
σ o

HH, σ o
VV, TBH, and TBV, respectively. It is found that the

simulated σ o
HH, σ o

VV, and TBV values are overestimated and
TBH is underestimated.

For TVG-A, the simulated σ o
VV is better than the results

of TVG-AP, while the simulated σ o
HH is worse than that

of TVG-AP. For TVG-P, the simulated TBH and TBV values
are both worse than those of TVG-AP. TVG-AP achieves
better results for simulating σ o

VV, TBH, and TBV compared with
TVG-A and TVG-P. Nevertheless, the validation results
achieved are in slightly worse agreement with SMAP obser-
vations compared with the calibration results. The reason may
be that the validation period is warmer and has more rain
than the calibration period, and the calibration of some input
parameters may suffer from these differences.

From the model calibration and validation results, we found
two interesting phenomena, which can fully demonstrate the
effectiveness of GSA. First, the backscatter simulated from
TVG-P is much worse than that from TVG-AP, which confirms
the large contribution of rms height and correlation length to
simulating the backscattering coefficient; second, the bright-
ness temperature simulated from TVG-A is much worse than
that from TVG-AP, which verifies the great importance of litter
moisture content for simulating the brightness temperature.
These results essentially agree with the results concluded
from the calibrated parameters (see Table III). In addition,
the results indicate that the sensitive and insensitive parameters
for the backscatter coefficient and brightness temperature must
be selected carefully through GSA for model calibration.

V. DISCUSSION

A. Selection of Sensitive Parameters

In this paper, two parameters (rms height and correlation
length) that backscatter is sensitive to and three parameters
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Fig. 13. Temporal evolution of SMAP observations and TVG-AP simulations,
with different combinations of sensitive parameters used as free variables for
(a) σ o

HH, (b) σ o
VV, (c) TBH, and (d) TBV.

(litter moisture content, litter biomass, and litter thickness)
that emissivity is sensitive to are combined as free variables
to calibrate the TVG model. The selection of sensitive para-
meters for use as free variables is very important for model
calibration. In the following, comparative experiments are
carried out to analyze the influence of several free variables
on the calibration accuracy. Taking the TVG-AP model as an
example, different combinations of sensitive parameters are
used as free variables.

The comparative experiments include the following:
1) no parameters used as free variables, labeled “cal0”;
2) only one parameter (rms height) sensitive to backscatter-

ing coefficient used as a free variable, labeled “cal1A”;
3) only one parameter (litter moisture content) sensitive to

emissivity used as a free variable, labeled “cal1P’;
4) rms height and litter moisture content combined as free

variables, labeled “cal2”;
5) rms height, correlation length, and litter moisture content

used as free variables, labeled “cal3A”;
6) rms height, N , and litter thickness used as free variables,

labeled “cal3P”;
7) four parameters (rms height, correlation length, litter

moisture content, and litter thickness) used as free
variables, labeled “cal4”;

8) five parameters (rms height, correlation length, litter
moisture content, litter biomass, and litter thickness)
used as free variables, labeled “cal5.”

Fig. 13 presents the temporal evolution of SMAP observations
and model simulations with different combinations of sensitive
parameters defined as free variables. The calibrated or default
values for the five free variables are given in Table V. In all
cases, the default values are shown in gray, and the calibrated
parameters are shown in bold.

It is clearly observed that the TVG-AP model simulations
approach the SMAP observations with an increase of in the
number of free variables. The simulated σ o

HH and TBH are
generally underestimated, and the bias continuously decreases
with the involvement of increased free variables. The simu-
lated σ o

VV fluctuates around the SMAP observations, and the
deviation between observed and simulated data is continuously
reduced as more free variables are included in the model.

TABLE V

CALIBRATED OR DEFAULT VALUES FOR THE TVG-AP MODEL WITH
DIFFERENT COMBINATIONS OF SENSITIVE PARAMETERS

USED AS FREE VARIABLES

The deviations of σ o
HH and TBH are larger than those of

σ o
VV and TBV. The TVG-AP simulations achieve the best

performance when the five free parameters are used. The
dynamics and fluctuations in the TVG-AP model simulations
are compromised results between σ o

HH and σ o
VV and TBH

and TBV by tuning the values of sensitive parameters. In [30],
four parameters, including rms height, litter moisture content,
litter biomass, and plant moisture content, are set as free
variables using an LSA method to constrain the TVG model.
In our study, the plant moisture content is found to be
insensitive to backscatter and emissivity, which are defined
as empirical values.

Furthermore, it is necessary to assess the contribution of
selected sensitive parameters. For the active case, both rms
height and correlation length contribute the most to the model
simulations. When only the rms height is used, the simulated
and observed σ o

HH values have obvious discrepancies. With the
addition of correlation length, the accuracy of the simulated
σ o

HH is significantly improved. In previous studies, it has often
been assumed that the effect of correlation length can be com-
pensated for by rms height [30]. Nevertheless, in our study,
we found that the contribution of correlation length cannot be
ignored. Comparing the results of “cal1A” and “cal2,” it can be
observed that the difference between simulated σ o

HH and σ o
VV

for these two cases is significant. This demonstrates the weak
contribution of litter soil moisture to the radar backscatter.
It also indicates that the accuracy of model simulations cannot
be significantly improved when insensitive parameters are
included. For the passive case, it is also found that the results
from three calibrated sensitive parameters are better than
the results obtained with one or two calibrated parameters.
Comparing the results from “cal3P” and “cal5,” it is seen
that the simulated brightness temperatures are almost equal.
This demonstrates the limited contribution of rms height and
correlation length to the brightness temperature, which is
consistent with previous studies that have shown that passive
observations are less sensitive to surface roughness parameters
than are active backscatter observations [4], [10], [11].
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Fig. 14. Temporal evolution of SMAP observations and TVG-AP simulations,
with LAI parameterized by their average values for (a) σo

HH, (b) σ o
VV, (c) TBH,

and (d) TBV.

From these results, the principle for the selection of sensitive
parameters as free variables can be concluded from two
considerations. On one hand, a certain number of sensitive
parameters are needed to balance the calibration accuracy
and computation. On the other hand, the parameters that are
sensitive to the backscattering coefficient and those that are
sensitive to the brightness temperature must be combined for
TVG-AP model calibration.

B. Contribution of LAI

In previous studies, it has been found that vegetation
(mainly represented by VWC or vegetation optical depth)
has a substantial influence on backscattering coefficient and
brightness temperature [7], [8], [42], [66]. LAI is often
assumed to be a good proxy to characterize the attenuation
and scattering of vegetation. In this paper, the LAI required
by the TVG model is parameterized by the interpolated LAI
from MODIS LAI products. However, LAI is selected as a
parameter insensitive to the backscatter and emissivity from
the results of GSA (see Fig. 6). Thus, in this section, the con-
tribution of LAI in simulating the backscattering coefficient
and brightness temperature is analyzed by assuming it to have
the average value (0.61 m2/m2), which aims to test whether
LAI truly affects the final calibration results. Taking the
TVG-AP model as an example, the calibration procedures
described in Section IV-B. are conducted again with LAI,
which is assumed to have a constant value.

When the LAI data required by the TVG-AP model were
parameterized by their average values, the optimal values of
the five most sensitive parameters for TVG-AP are the same
as the values listed in Table II. The rms height, correlation
length, N , litter thickness, and litter biomass are 2.5 cm,
32 cm, 0.5, 0.9 cm, and 0.035 g/cm2, respectively. In this case,
the error metrics between the SMAP observations and model
simulations shown in Table VI are almost the same as the
results displayed in Table III. Fig. 14 shows the temporal evo-
lution of SMAP observations and model simulations with LAI
parameterized by their average value. It is observed that the
parameterization of LAI has little impact on the simulation of
backscattering and emissivity. Accordingly, the LAIs required

TABLE VI

ERROR METRICS BETWEEN SMAP OBSERVATIONS AND TVG-AP
MODEL SIMULATIONS WITH LAI PARAMETERIZED

BY THEIR AVERAGE VALUES

by the TVG model can be initialized by their average values.
From the results of GSA, LAI is insensitive to backscatter
and emissivity, and thus can be set as constant. These results
further demonstrate the necessity and effectiveness of the
application of GSA to model calibration.

C. Uncertainties in Model Calibration

The main purpose of this paper is to explore the feasibility
and effectiveness of the synergy of active and passive obser-
vations through the unified TVG model, which is achieved by
selecting a set of input parameters to parameterize the model
for simultaneously simulating the backscattering coefficient
and brightness temperature. From previous results and discus-
sion, it is learned that the correctness of model calibration
plays an important role in simulating SMAP observations.
Therefore, it is necessary to indicate sources of uncertainty that
may reduce the accuracy of model calibration. In this paper,
uncertainties may come from three aspects: uncertainty from
satellite observations, uncertainty from in situ measurements,
and uncertainty from the limited number of samples.

In this paper, active and passive data at 9 km from the
SMAP Level-3 radar/radiometer soil moisture product are used
as real satellite observations. The 9 km brightness temperature
data in this product are disaggregated from original 36-km
radiometer data by using concurrent high resolution radar
data. This means the disaggregated brightness temperature is
inherently a function of radar backscatter. These data sets may
contain artifacts, which will affect the calibration results.

Furthermore, in situ measurements were used as soil
moisture input in the TVG model to simulate the SMAP
backscattering coefficient and brightness temperature. The
most challenging issue in such a case is the representativeness
of in situ measurements in a SMAP pixel. Many studies
have shown that using the spatial average of dense in situ
measurements can reduce the uncertainty resulting from scale-
related issues [1], [14], [24], [67], [68]. Therefore, to relieve
the spatial resolution inconformity between the SMAP grid
and in situ location, ground soil moisture measurements from
three stations are used and averaged to represent the soil
moisture within the SMAP grid. It should be noted that
though ground measurements from dense stations are used
to minimize the effect of scale-related issues, the differences
in spatial resolution will still introduce some deviation [24].
Moreover, the vertical mismatch between the in situ soil
moisture measuring depth and the microwave penetration
depth (commonly, the effective soil moisture sampling depth
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at L-band is 0–3 cm and depends on soil moisture) may also
contribute to the deviations of the SMAP simulations.

We also calculated the correlation coefficient (R) between
in situ averaged soil moisture and SMAP radar and radiometer
observations. It is found that the in situ soil moisture correlates
very well with both SMAP active and passive observations.
A positive relationship (averaged value of 0.86 for two
polarizations) for radar and a negative relationship (averaged
value of −0.77) for radiometer are found, as expected. The
slightly higher correlation of soil moisture with radar than
with radiometer in Maqu network region is consistent with
Zeng et al. [24], in which they found that the active
ASCAT soil moisture product has the highest R value than
other passive soil moisture products (e.g., SMOS, AMSR2,
and AMSR-E) in the Maqu network region.

We also added additive white Gaussian noise in the in situ
soil moisture, and perform the same numerical simulation
to investigate the effects of input soil moisture uncertainty
on the calibrated parameters. We found that the in situ soil
moisture with small to moderate perturbation (i.e., 2% and 5%
perturbation in our simulation) has very small influence on the
calibrated parameters. Therefore, we believe our results will
not be changed even if there are some (not large) uncertainties
in the in situ averaged soil moisture.

Moreover, in order to include both calibration and validation
procedure, approximately 60% of the data are used to calibrate
the model, and the remaining data are used to validate the
calibrated parameters. Meanwhile, the leave-one-out cross
calibration approach was also performed, and the results are
consistent with our current 60/40 split strategy. This supports
the reasonableness of our calibration/validation data allocation.
Therefore, though some uncertainties may be introduced in
the calibrated parameters due to the limited SMAP data,
the uncertainties is believed to be small and can be ignored
reasonably.

D. Considerations for GSA

Though GSA is capable of distinguishing sensitive and
insensitive parameters, which is very helpful for model cal-
ibration, some attention is required when applying the EFAST
method. On one hand, the ranges of the model parameters
play an important role in the SI and the ranking of sensitive
parameters. Ma et al. [33] analyzed the results of sensitivity
analysis associated with various parameter ranges and found
that the TSI and MSI depend on the selected ranges of input
parameters. Wang et al. [61] determined that the range of
parameter variation was one of the main factors influencing
sensitivity results. For sensor configuration, different frequen-
cies and incidence angles will lead to different scattering
and emission mechanisms between the microwave signal and
land surface. Therefore, the GSA results conducted in this
paper are constrained in the SMAP configuration with defined
distributions and variation ranges in the input parameters.

On the other hand, the sample size plays an important role
in the convergence of the SI. Previous studies have determined
that the SI quickly converges for insensitive parameters and a
relatively large sample size is needed to obtain convergence for

sensitive parameters [61]. However, a large sample size will
increase the amount of computation required and thus decrease
the computation efficiency. Therefore, a reasonable sample
size must be found to balance convergence and computation.
In this paper, we find that the SI converge when the sample
size is set to 20 500. To guarantee the stability and reliability
of the SI, we set the sample size C as 41 000 during the GSA.

VI. CONCLUSION

Understanding the scattering and emission mechanisms over
the land surface is important for microwave remote sens-
ing modeling and surface parameter retrieval. In this paper,
the TVG model is explored to simulate the backscattering
coefficient and brightness temperature of SMAP by integrating
GSA for the determination of the sensitive and insensitive
parameters. This model is driven by a set of input parameters.
It is very difficult and time consuming to calibrate the model
when all the input parameters are defined as free variables.
Thus, the EFAST algorithm, which is recognized as one of
the most elegant methods for GSA, is conducted to select the
sensitive and insensitive parameters. Only the most sensitive
parameters are set as free variables, and they are used to
calibrate the model, while the insensitive parameters are set as
empirical values. To highlight the advantages of the simultane-
ous use of active and passive data, available limited-duration
and concurrent SMAP radar and radiometer observations are
adopted to calibrate and validate the model with three models,
including TVG-A, TVG-P, and TVG-AP.

Model calibration is performed using in situ and satel-
lite data from May 2015 to early June 2015 by vary-
ing the free variables in the defined ranges until the
best match between SMAP observations and model sim-
ulations is reached. The results show that TVG-AP can
find realistic values for the input parameters. This model
achieves good agreement between the SMAP observations
and model simulations, with R values of 0.87, 0.89, 0.78,
and 0.43 and RMSE values of 0.49 dB, 0.52 dB, 7.20 K, and
10.47 K for σ o

HH, σ o
VV, TBH, and TBV, respectively.

TVG-A only has good performance in simulating the backscat-
tering coefficient, and TVG-P only achieves reliable results
in modeling the brightness temperature. The reasons for these
discrepancies are that the calibrated parameters in TVG-A and
TVG-P are not optimal when only active or passive data are
used. Without any modifications of the calibrated parameters,
the backscattering coefficient and brightness temperature simu-
lated by TVG-AP are in slightly worse agreement with SMAP
observations for later June 2015 and early July 2015.

In our study, we found that the TVG model can simulta-
neously simulate the backscattering coefficient and brightness
temperature accurately when both SMAP active and passive
data are adopted. It can be clearly seen that the TVG model
can only predict either backscatter or brightness temperature
well when active-only or passive-only observations are used.
The results of these simulations, therefore, demonstrate the
feasibility and effectiveness of the synergistic use of active–
passive observations for model calibration. With a well-
calibrated model, we can then analyze the relationship between
the backscatter and emissivity and retrieve soil moisture data
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from active and passive observations, as well as gain insights
into the microwave scattering and emission mechanisms over
the land surface. For example, Akbar and Moghaddam [11]
and Akbar et al. [19], [69] conducted excellent work to
develop combined active–passive methodologies based on
active–passive forward models to retrieve soil moisture and
highlighted the importance and advantage of the synergistic
use of active and passive observations to retrieve soil moisture.
Zeng et al. [70] also adopted a data-driven approach to
investigate the covariability of SMAP active–passive observa-
tions and its dependence on vegetation and surface roughness.
We can further explore this active–passive complementarity,
as well as develop an active–passive combined soil moisture
algorithm, with a unified and well-calibrated model.

The findings in this paper demonstrate the advantages of
the synergistic use of SMAP radar and radiometer data in
improving the accuracy of model simulations. In addition,
GSA is necessary for selecting the most sensitive parameters
for model calibration and simplification. The transferability of
the proposed methodology will be tested and validated in more
climatically variable and vegetated areas in the future.
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