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Abstract

Urban public transport operations in peak periods are characterized by highly uneven
demand distributions and scarcity of resources. In this work, we propose a rule-based
method for systematically generating and integrating alternative lining options, such
as short-turning and interlining lines, into the frequency and resource allocation prob-
lem by considering the dual objective of (a) reducing passenger waiting times at stops
and (b) reducing operational costs. The bus allocation problem for existing and short-
turning/interlining lines is modeled as a combinatorial, constrained and multi-objective
optimization problem that has an exponential computational complexity and a large set of
decision variables due to the additional set of short-turning/interlining options. This con-
strained optimization problem is approximated with an unconstrained one with the use of
exterior point penalties and is solved with a Genetic Algorithm (GA) meta-heuristic. The
modeling approach is applied to the bus network of The Hague with the use of General
Transit Feed Specification (GTFS) data and Automated Fare Collection (AFC) data from
24 weekdays. Sensitivity analysis results demonstrate a significant reduction potential in
passenger waiting time and operational costs with the addition of only a few short-turning
and interlining options.

Keywords: tactical planning; vehicle allocation; interlining; bus operations; route
design; short-turning

1. Introduction1

Ideally, public transport supply will perfectly correspond and scale to passenger de-2

mand. However, this is impossible in real-world operations due to the uneven distribution3

of demand over time and space. This results in inefficiencies for both passengers and oper-4

ators and creates the need to re-dimension the fleet and circulate vehicles between demand5

areas.6

Planning decisions regarding public transport services in general, and bus networks7

in particular, are typically made at the strategic, tactical and operational planning level8

(Ibarra-Rojas et al., 2015). At the strategic level, the network and route-design prob-9

lem is addressed where the alignment of the bus lines and the location of the bus stops10
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are determined (Mandl (1980), Ceder and Wilson (1986), Pattnaik et al. (1998), Szeto11

and Wu (2011), Borndörfer et al. (2007)). Subsequently, at the tactical planning level,12

the sub-problems of bus frequency settings (Gkiotsalitis and Cats, 2017), timetable de-13

sign (Ceder et al. (2001), Gkiotsalitis and Maslekar (2018a), Gkiotsalitis and Maslekar14

(2018b)), vehicle scheduling (Ming et al., 2013), driver scheduling (Wren and Rousseau,15

1995) and driver rostering (Moz et al., 2009) are typically addressed in a sequential order.16

Apart from the strategic and tactical planning, bus operators can take decisions over17

the course of the daily operations. In the operational planning phase, near real-time18

control measures such as stop-skipping (Sun and Hickman (2005), Yu et al. (2015), Chen19

et al. (2015)), dispatching time changes (Gkiotsalitis and Stathopoulos (2016)) or bus20

holdings at specific stops (Newell (1974), Hernández et al. (2015), Wu et al. (2017),21

Gavriilidou and Cats (2018)) can be deployed. Notwithstanding, bus holding tends to22

increase the inconvenience of on-board passengers who are held at stops (Fu and Yang,23

2002) and stop-skipping increases the inconvenience of passengers who cannot board the24

bus that skips their stop (Liu et al., 2013).25

Typically, the strategic, tactical and operational planning problems are addressed at26

different levels with the exception of a number of works that solve together the strategic-27

level problem of route design and the tactical-level problems of frequency settings and28

timetable design (Yan et al. (2006), Zhao and Zeng (2008)). Especially, the simultaneous29

solution of the route design and the frequency settings problem has the potential of im-30

proving the efficiency of the operations by modifying the bus routes and the corresponding31

frequencies to better cater for the passenger demand imbalances.32

The frequency settings problem has been studied by several works in literature (Yu33

et al., 2009; Shireman, 2011; Gkiotsalitis and Cats, 2018). Unlike frequencies, modifying34

bus routes on a regular basis for improving the demand matching (i.e. operating different35

routes on different times of the day) and reducing the operational costs is not practical36

because passengers rely heavily on the pre-defined routes of the bus network. Therefore,37

frequent route changes increase significantly the passenger inconvenience even if they are38

properly communicated (Kepaptsoglou and Karlaftis (2009), Daganzo (2010)). Given the39

above, bus operators tend to modify the frequencies of bus lines, but they are reluctant to40

modify the bus routes that cover specific segments of bus lines which exhibit significant41

demand imbalances (examples of which are illustrated in figure 1).42
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Figure 1: Average bus-load per bus stop for bus line 3 and bus line 5 in The Hague from 4 pm to 5 pm

In figure 1, one can observe that the average bus-load can be significantly higher at43

specific segments of a bus line. As a result, if the bus frequencies are set according to the44
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well-known maximum loading point rule (Ceder, 2016) which ensures that the frequency45

is such that the bus load at the most heavily-used point along the route does not exceed46

the bus capacity, then buses will be significantly underutilized for the remaining parts of47

their routes.48

Figure 1 presents the average bus occupancy levels of two bus lines (line 3 and line 549

in The Hague) from 4 pm until 5 pm and indicates the problem of vehicle underutilization50

when modifying frequencies is the only option. For instance, the buses of the outbound51

direction of line 3 serve more than 20 passengers between stops 7 and 11 but are sig-52

nificantly underutilized at stops 1-6 and 12-38 which account for ' 87% of the route.53

Instead, the generation of new routes for serving only this specific segment can resolve54

this problem in a more efficient way than a mere modification of bus frequencies.55

It should be noted here that the passenger utilization of route segments presented in56

figure 1 can be inferred from smartcard data (Munizaga and Palma, 2012). Moreover,57

the recurrence of travel patterns and related user profiles and user preferences can be58

inferred using clustering and choice modelling techniques (Ma et al. (2013), Gkiotsalitis59

and Stathopoulos (2015), Goulet-Langlois et al. (2016) and Yap et al. (2018)). This60

information can then be instrumental in identifying systematic patterns in relation to the61

correspondence between supply and demand.62

Given the practical and public acceptance issues associated with bus route variants,63

other flexible approaches which consider the deployment of short-turning and interlining64

can be considered. The works of Verbas and Mahmassani (2013) and Verbas et al. (2015)65

provide a first step in this direction since they do not allocate bus frequencies at a line66

level, but at a segment level considering a pre-defined set of short-turning options.67

This work leverages on the potential flexibility embodied in short-turning and interlin-68

ing lines in catering more efficiently to the prevailing passenger demand variations. First,69

observed passenger demand variations are used for generating a set of potential switch70

points along existing bus service lines where short-turning and interlining operations are71

allowed. The switch points are a subset of the bus stops of the network. Short-turning72

and interlining options are permitted at each switch point; thus, there is an additional set73

of (sub-)lines which can serve a set of targeted line segments. We denote the generated74

candidate short-turning and interlining lines as “virtual lines” for which vehicles can be75

allocated if deemed desirable. With this approach, we introduce an additional flexibility76

in allocating buses to lines because apart from the originally planned lines, buses can also77

be allocated to the set of virtual lines in order to match the passenger demand variation at78

different segments of bus lines without serving unnecessarily all the stops of the originally79

planned lines.80

The generation of virtual short-turning and interlining lines enables the allocation of81

vehicles at specific line segments with significant passenger demand, but at the same time82

increases dramatically the number of lines where buses may be allocated. Given the com-83

binatorial nature of the vehicle allocation problem and the vast number of potential bus84

allocation combinations to originally planned and virtual lines, the combinatorial solution85

space cannot be exhaustively explored for obtaining a globally optimal solution. To this86

end, this work contributes by (a) modeling the above-mentioned problem for the first time87

and introducing an automated, rule-based scheme for generating switch point stops for88

short-turning and interlining “virtual lines”, (b) introducing an exterior point penalization89

scheme for penalizing the violation of constraints and approximating the constrained op-90
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timization problem with an unconstrained one, (c) developing a problem-specific genetic91

algorithm that returns improved solutions without performing an exhaustive exploration92

of the combinatorial solution space and (d) investigating the potential gains in operational93

costs and passenger waiting times by applying the set of the above-described methods at94

the bus network of The Hague, the Netherlands.95

2. Related studies96

The frequency settings problem has been extensively studied by several works in the97

literature (Farahani et al., 2013; Ceder, 2007; Barra et al., 2007; Cipriani et al., 2012;98

Fan and Machemehl, 2008). Most works on setting the optimal bus frequencies address99

the problem as an exercise of balancing the passenger demand with the available sup-100

ply of buses (Furth and Wilson, 1981; Cipriani et al., 2012) or utilize the passenger101

load profile/maximum loading point rule-based techniques (Ceder, 1984, 2007; Hadas and102

Shnaiderman, 2012)).103

Examining in more detail the works on bus frequency settings, Yu et al. (2009) de-104

termined the optimal bus frequencies subject to the fleet size constraints using a bi-level105

model, which consisted of a genetic algorithm and a label-marking method. Hadas and106

Shnaiderman (2012) used AVL and automatic passenger counting (APC) data to construct107

the statistical distributions of passenger demand and travel time by time of day and used108

them for determining the bus frequencies based on the minimization of empty-seats and109

the avoidance of passenger overload. Bellei and Gkoumas (2010) and Li et al. (2013) also110

considered stochastic demand and travel times when optimizing the bus frequencies.111

dellOlio et al. (2012) developed a bi-level optimization model for determining the bus112

sizes and the frequency settings. In their work, the upper-level model allowed buses113

of different sizes to be assigned to public transport lines and the lower-level optimized114

the frequency of each line according to the passenger demand using the Hooke-Jeeves115

algorithm. Huang et al. (2013) developed a bi-level programming model for optimizing bus116

frequencies while considering uncertainties in bus passenger demand. They used a genetic117

algorithm (GA) to solve the model for an example network in the city of Liupanshui,118

China resulting in a 6% reduction in the total cost of the transit system.119

Another line of works has jointly addressed the route design and the frequency settings120

problem. Arbex and da Cunha (2015) solved both the route design and the frequency121

setting problem with the use of a genetic algorithm aiming at minimizing the sum of122

passengers’ and operators’ costs. Similarly, Szeto et al. (2011) addressed the same problem123

by using a genetic algorithm for optimizing the route design problem and a neighborhood124

search heuristic for optimizing the frequency setting problem for a suburban bus network125

in Hong Kong. Both Arbex and da Cunha (2015) and Szeto et al. (2011) design the126

routes and bus frequencies at the strategic planning level and do not permit any route127

modification (such as the inclusion of short-turning or interlining lines) at the tactical128

planning stage.129

This lack of consideration of short-turning and interlining lines poses a substantial lim-130

itation since allocating the optimal amount of resources (i.e., buses) to originally planned131

service lines does not guarantee the optimal utilization of vehicles. This is supported132

by several studies such as Furth and Wilson (1981); Hadas and Shnaiderman (2012) that133

explore the issue of bus underutilization (empty-seats) when setting frequencies according134
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to load profile-based techniques or techniques that try to match the passenger demand135

with the available bus supply without allowing route alterations.136

The introduction of a flexible route design and vehicle allocation scheme in the tac-137

tical planning phase (where service frequencies are not set per line, but per line segment138

based on the automatically generated short-turning and interlining lines that serve those139

segments) is a key feature of the approach adopted in this study. The works of Delle Site140

and Filippi (1998); Cortés et al. (2011); Verbas and Mahmassani (2013); Verbas et al.141

(2015) focus on generating short-turning lines for serving the demand variation at spe-142

cific line segments and are therefore the most relevant studies to our work. Cortés et al.143

(2011) showed that short turning lines can yield large savings of operational costs even144

if they require more deadheading for performing the short-turning routes. In Verbas and145

Mahmassani (2013) and Verbas et al. (2015) the frequencies of buses were not allocated146

at the line level, but at the segment level using also short-turning lines. Previous studies147

considered only pre-defined short-turning lines that can cover the spatiotemporal demand148

variations at different segments of the service lines based on historical passenger demand149

data. In contrast, in this work sub-lines and inter-lines are generated automatically by in-150

troducing a framework that allows not only for short-turning lines but interlining options151

as well as detailed in the following section.152

3. Methodology153

3.1. Overall framework154

Before presenting the overall framework, we first clarify the use of the terms short-155

turning lines (also referred to as sub-lines) and interlining lines (also referred to as inter-156

lines). In the context of this work, a short-turning line is a line that serves all stops of a157

segment of an originally planned line (in both directions). The bus stops in that segment158

are served in the same order as they would have been served by the originally planned line159

service. In contrast, an interlining line serves one direction of a segment of an originally160

planned line and another segment from another originally planned line (see figure 2). The161

interlining line serves those two segments uni-directionally resulting in a loop form.162

Given the above conventions, we can have an initial indication of whether a short-163

turning or interlining line fits a particular scenario of passenger demand. First, a short-164

turning line must always serve all stops in both directions of a segment of an originally165

planned line. Hence, a short-turning line is more suitable for accommodating segments166

of an originally planned line which exhibit significantly higher ridership levels in both167

directions. In contrast, an interlining line is beneficial for line segments with significant168

bus loads at one direction only since they will serve only that direction and then serve a169

series of stops of another originally planned line segment.170

For the generation of potential short-turning and interlining lines from the existing bus171

lines, one needs to establish first a set of switch point stops. Theoretically, the number172

of switch points for an originally planned bus line can be equal to the number of its bus173

stops. Nevertheless, generating all possible sub-lines and inter-lines considering each bus174

stop as a potential switch point is a computationally complex task and may result in175

a service that is difficult to operate and communicate to passengers. For this reason,176

works such as Verbas and Mahmassani (2013); Verbas et al. (2015) propose to pre-define177

a limited set of switch stops at bus stops where a significant demand variation is observed178
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while others, such as Cortés et al. (2011) and Ghaemi et al. (2017), consider the selection179

of switch points as a decision variable of the short-turning problem.180

In this work, we follow the approach of Verbas and Mahmassani (2013); Verbas et al.181

(2015) in determining the switch stops based on the observed variations in passenger182

demand. Notwithstanding, since our work focuses on generating also inter-lines (and183

not only sub-lines) we examine transfer stops as well because such stops can be used for184

interlining without inducing additional deadheading times. An illustration of potentially185

generated sub-lines and inter-lines based on the switch points is presented in figure 2.186

Line 1

Line 2

Switch 

Stops

Bus Stops

Short-turn line

Interlining

line

Figure 2: Originally planned lines (black) and a potential generation of short-turning lines (blue dashed)
or interlining lines (red) at specific switch stops (orange)

Given the fact that some transfer stops might be very close to bus stops where a187

significant variation of passenger demand is observed, for each bus line l ∈ L with stops188

sequentially numbered as Sl = {1, 2, ..., s, ..., |Sl|} if s ∈ Sl is a switch stop and other189

bus stops in close vicinity of stop s are also potential switch stops, then the bus operator190

is inclined to merge them into one representative switch point stop for simplifying the191

practical implementation of short-turning and interlining lines. This ”close vicinity” can192

be defined on a case-by-case basis based on the specific settings and the preferences of193

the bus operator. For instance, if a bus operator is willing to exclude a1 preceding stops194

(s − a1, s − a1 + 1, ..., s − 1) and a2 following stops (s + 1, ..., s + a2 − 1, ..., s + a2) of a195

switch stop s from the set of switch stop candidates because they are too close to stop196

s, then a set As = (s − a1, ..., s − 1, s, s + 1, ..., s + a2) can be used for excluding such197

bus stops from further consideration. In the boundary case where the switch point stop198

is s = 1, then there is no stop preceding stop s = 1 and the set of excluded switch point199

stop candidates is As = (s, s + 1, s + 2, ..., s + a2). Note that stop s is excluded because200

it is already a switch point stop. The other boundary case where the switch point stop is201

the last stop at the end of the line is solved following a similar approach.202

To generalize, we include boundary conditions in set As by defining the following203

dummy variables:204

a′1 =

{
a1 if s− a1 ≥ 1

s− 1 otherwise
(1)205

and206
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a′2 =

{
a2 if s+ a2 ≤ |Sl|
|Sl| − s otherwise

(2)207

To incorporate the boundary conditions, set As becomes As = (s− a′
1, ..., s+ a

′
2).208

Line l

Switch stop s

Set of excluded switch stop 

candidates for 𝑎1=2 and 𝑎2=1

Line l
Switch stop s

Set of excluded switch stop 

candidates for 𝑎1=2 and 𝑎2=1

Figure 3: [Left] The set of excluded switch point stop candidates around switch point stop s when a′1 = 2
and a′2 = 1 is As = {s−2, s−1, s, s+1}; [Right] The set of excluded switch point stop candidates around
switch stop s when a′1 = s− 1 = 2− 1 = 1 and a′2 = 1 is As = {s− 1, s, s+ 1}.

This ad-hoc rule helps to reduce the number of switch points without affecting signifi-209

cantly the final outcome (i.e., short-turning lines that perform short-turns at neighboring210

stops are not expected to perform much differently).211

In addition to the above, we establish the following assumptions for (a) the determi-212

nation of the switch points and (b) the generation of potential sub/inter-lines:213

(1) All transfer stops are considered as potential switch points. Bus stops where a214

significant ridership change is observed (i.e., bus stops at which the on-board pas-215

senger change is greater than a pre-defined percentage of z%) are also considered as216

potential switch points;217

(2) Neighboring bus stops, As, of a switch stop s that belong to the same line cannot218

be considered as switch points;219

(3) Interlining connections are required to return to the origin station after completing220

their trip (as illustrated in figure 2);221

(4) Interlining lines can serve segments of at most two originally planned bus lines;222

(5) Any interlining line which serves segments of two originally planned lines cannot223

have a total trip travel time which exceeds a pre-defined limit of y minutes (which224

may be defined by the transit agency and prevents the generation of excessively long225

interlining lines);226

(6) Lengthy deadheading times may not be allowed by transit agencies; thus, an upper227

limit of k minutes for total deadheading times is applied for each of the virtual lines.228

Furthermore, this work is situated at the tactical planning stage where the round-trip229

travel times of bus trips which are used for allocating buses to originally planned and230

short-turning/interlining lines are based on historical values. Such values contain implicit231

information on congestion. In future work, our methodology can be expanded to online232
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resource reallocation (i.e., in short-term horizons), by integrating information from the233

road traffic.234

Before proceeding further into the analysis of the problem, the following notation is235

introduced:236

237

{L, S} is a bus network with L = {1, 2, ..., |L|} bus lines including original
and virtual lines. Virtual lines represent sub-lines and inter-lines of
the originally planned ones;

Lo = {1, 2, ..., |Lo|} is the set of the originally planned lines;
S = {1, 2, ..., |S|} is the set of stops of the bus network;
Sl = {1, 2, ..., |Sl|} a set denoting the bus stops of line l ∈ L in a sequential order starting

from the first stop;
S′ ⊂ S set of stops that cannot be used as switch points due to regulatory or

operational constraints;

T ∈ R|S|×|S|+ a |S|× |S| dimensional matrix where each ti,j ∈ T denotes the planned
travel time between the bus stop pair i, j including the dwell time
component (boarding and alighting times) at stop j;

U ∈ R|S|×|S|+ a |S|×|S| dimensional matrix where each ui,j ∈ U denotes the planned
travel time between the bus stop pair i, j excluding the dwell times for
boarding/alighting (utilized for estimating the deadheading times);

r ∈ R|L|+ vector where each rl ∈ r denotes the total round-trip time required for
completing the round-trip of line l ∈ L in hours;

n ∈ R|L|+ vector where each nl ∈ n denotes the number of buses required for
operating line l ∈ L for a given frequency fl;

f ∈ R|L|+ vector where each fl ∈ f denotes the frequency of bus line l ∈ L in
vehicles per hour (note: fl = nl

rl
, ∀l ∈ L);

h ∈ R|L|+ vector where each hl ∈ h denotes the dispatching headway of bus line
l ∈ L (note: hl = 60min/h

fl
, ∀l ∈ L);

B ∈ N|Lo|×|S|×|S| a matrix where each blo,i,j ∈ B denotes the passenger demand between
each pair of bus stops i, j for each originally planned line lo ∈ Lo;

D ∈ N|Lo|×|S| a matrix where each dlo,s ∈ D denotes the average on-board occupancy
for the segment starting at stop s for an originally planned line lo ∈ Lo;

δl,lo,i,j a dummy variable where δl,lo,i,j = 1 if line l ∈ L is able to serve the
passenger demand blo,i,j and δl,lo,i,j = 0 if not;

γ a constant denoting the total number of available buses (note:∑
l∈L nl ≤ γ for ensuring that the total number of buses utilized from

all lines l ∈ L is within the allowable number of buses);

O ∈ R|Lo|×|S|×|S|+ a matrix where each Olo,i,j ∈ O denotes the passenger-related waiting
cost for every Origin-Destination (OD) pair of the originally planned
line lo;

e an |L|-valued vector of dummy variables where el = 1 denotes that at
least one vehicle has been assigned to bus line l ∈ L and el = 0 denotes
that no vehicles are assigned to that line (in such case, nl = 0);

Table 1: Nomenclature (1/2)
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ψ a percentage denoting the lowest bound for the number of buses that
should be allocated to the originally planned lines;

η a constant denoting the total number of virtual lines that can be oper-
ational (i.e., operated by at least one bus);

k maximum allowed limit of deadheading times for each virtual line
(min);

y maximum total trip travel time for inter-lining lines (min);
Q discrete set of values from which one can select the number of buses

allocated to an originally planned line;
Q′ discrete set of values from which one can select the number of buses

allocated to a virtual line;
z a percentage beyond which a change in passenger ridership (i.e., on-

board occupancy) between two consecutive bus stops can justify the
generation of sub/inter-lines;

β1 unit time value associated with the passenger-related waiting time cost
(e/h);

β2 unit time value associated with the total vehicle travel time for serving
all lines (e/h);

β3 unit time value associated with the depreciation cost of using an extra
bus (e/bus);

S∗ the set of the generated switch points (note: S∗ ⊂ S ∧ S∗ ∩ S′ = ∅);
τ the planning period, a constant.

Table 2: Nomenclature (2/2)

3.2. Generating the set of switch stops238

Using the above notation and the rules described in assumptions (1)-(2), an exhaustive,239

rule-based graph search is devised for determining the switch points of the bus network.240

The rule-based graph search for determining the switch points is presented in algorithm241

1.242

The 5-th line in algorithm 1 states that if a stop s is a transfer stop, it does not belong243

already to the set of switch points and does not belong to the set of stops that cannot244

be used as switch points due to regulatory constraints; then, it can be added to the set245

of switch points. After this, it is checked whether there are any neighboring stops of the246

examined bus stop, s, that are already allotted to the switch points’ set and, if this is the247

case, bus stop s is excluded from the set of switch stops (lines 7-11 of algorithm 1).248

A bus stop s can also be a switch point even if it is not a transfer stop as described249

in lines 13-17 of algorithm 1. In more detail, if bus stop s is not yet a switch point and250

the ridership change between stop s and s + 1 is more than z%; then, this bus stop can251

be added to the switch points’ set. Before adding bus stop s to the switch points’ set, the252

algorithm checks whether (a) bus stop s is not already in the set S∗ and (b) bus stop s253

is not an excluded switch point candidate (these requirements are expressed in the 14th254

line of algorithm 1).255

One should note that the number of switch points that are generated through this256

process is not fixed a priori and it can vary based on the value of z% that determines the257

threshold value of ridership change upon which a bus stop can be considered as a candidate258

for the switch points’ set. This flexible formulation allows transit agencies to control the259

generation of sub-lines and inter-lines by reducing or increasing the number of potential260

10



Algorithm 1 Rule-based graph search for determining the switch points

1: function Rule-based graph search
2: Initialize an empty set of switch point stops S∗ ← ∅;
3: for each originally planned line l ∈ Lo do
4: for each bus stop s ∈ {2, ..., |Sl| − 1} do
5: if bus stop s is a transfer stop and s /∈ S∗ ∧ s /∈ S′ then
6: Set S∗ ← S∗ ∪ {s};
7: for each neighboring stop s′ ∈ As do
8: if s′ ∈ S∗ then
9: S∗ ← S∗ \ {s};

10: end if
11: end for
12: end if
13: if the on-board occupancy rl,s varies by more than z% from rl,s−1 then
14: if s is not an excluded switch point candidate and s /∈ S∗ then
15: Set S∗ ← S∗ ∪ {s}
16: end if
17: end if
18: end for
19: end for
20: end function

switch point stops according to their preferences. Once the value of z% is determined,261

the deterministic rule-based graph search of algorithm 1 will be executed. The proposed262

algorithm always returns a unique solution (the computed set of switch stops is unique263

and the rule-based search of algorithm 1 prioritizes always the same solution based on264

the above-mentioned rules even if multiple solutions with different switch stop sets are265

equally good).266

3.3. Generating candidate short-turning and interlining lines267

Given the switch points determined by algorithm 1, short-turning and interlining lines268

are generated using an exhaustive graph search. For generating short-turning lines, for269

each originally planned line, lo ∈ Lo, we define as set of Vlo the set that contains the first270

and last stop of line lo and all switch point stops that are served by line lo. Each short-271

turning line is generated by considering a pair of stops that belong to the set Vlo as the272

origin and destination of that short-turning line. In case that the origin and destination273

bus stops of a short-turning line are neither the first nor the last stop of the corresponding274

originally planned line, then a deadhead is needed after the completion of each trip to275

allow bus drivers to rest at one of the two terminals of the originally planned line before276

starting their next trip. The automated procedure for generating short-turning lines based277

on the switch point stops is detailed in the flow diagram of figure 4.278

From the flow diagram of fig.4, one can note that the process starts from the first279

stop of each originally planned line and new short-turning lines are generated by using as280

destination stop each switch point stop which belongs to that originally planned line. The281

procedure continues until all stops that belong to the set Vlo are used as destination stops282

for generating new short-turning lines. After that, a new stop from the set Vlo is used as283

a first stop from which we generate short-turning lines and the procedure continues until284
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Figure 4: Process of generating short-turning lines at specific switch points
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Figure 5: Process of generating inter-lining lines at specific switch points

exhausting the set of stops that belong to Vlo .285

The process of generating inter-lining lines involves further steps for finding routes286

that serve segments of two originally planned lines. If an inter-line serves segments of287

two originally-planned lines and the transfer occurs at a transfer stop between those lines,288

then the inter-line does not incur any deadheading costs. In any other case, an inter-line289

induces a deadheading cost for transferring from one originally planned line to another.290

Following assumption (4) which states that an inter-lining line should serve segments of291

two originally planned lines, assumption (5) which states that the total trip travel time292

of an inter-line should not exceed a maximum time limit of y minutes and assumption (6)293

which states that the incurred deadheading time of a generated virtual line should not294

be greater than k minutes, the potential inter-lines of a bus network are generated via a295

rule-based enumeration as presented in the flow diagram of figure 5.296

3.4. Vehicle allocation and frequency determination297

The vehicle allocation problem to originally planned and virtual lines is formulated298

considering the inherently contradictory objectives of reducing the waiting cost of passen-299

gers at bus stops and reducing the operational costs. The operational costs are expressed300

in the form of (a) vehicle running times and (b) depreciation costs for each extra vehicle301

allocated to the bus network. In this work, we formulate a single, compensatory objective302

function by introducing the weight factors, β1, β2, β3 that convert the passengers’ waiting303

costs and the operational costs into monetary values.304
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Given that the dummy variable δl,lo,i,j denotes whether a bus line l ∈ L serves the305

passenger demand blo,i,j or not, the joint headway of all lines serving the i, j demand pair306

of the originally planned line lo ∈ Lo is:307 [∑
l∈L

δl,lo,i,j
nρ
rρ

]−1
(3)308

In addition, if each Olo,i,j ∈ O denotes the passenger-related waiting cost for each309

OD pair of the originally planned line lo and passenger arrivals at stops are random (an310

assumption that is commonly used for high-frequency services Osuna and Newell (1972));311

then,312

Olo,i,j =
blo,i,j

2

[∑
l∈L

δl,lo,i,j
nρ
rρ

]−1
(4)313

The decision variables of the optimization problem are the number of buses n =314

(n1, n2, ..., nL) that can be allocated to each line l ∈ L. In addition, bus operators have315

to conform to a set of constraints. First, the total number of allocated buses to all lines,316 ∑
l∈L nl, should not exceed the number of available buses γ:317 ∑

l∈L

nl ≤ γ (5)318

Furthermore, a minimum percentage ψ% of the total number of available buses should319

be allocated to the originally planned lines to ensure a minimum level of service for the320

originally planned lines. This constraint is introduced because in many cases the bus321

operators have a contractual commitment for operating at least a number of buses at the322

original lines:323 ∑
l∈Lo

nl ≥ ψγ (6)324

In addition, in this study the average waiting of passengers is constrained by an upper325

threshold value Θ to ensure that the bus operator does not reduce the operational costs326

to such an extent that the quality of service for passengers is significantly compromised:327

∑
lo∈Lo

∑
i∈S

∑
j∈S

blo,i,j
2

(∑
l∈L

δl,lo,i,j
nρ
rρ

)−1

/
∑
lo∈Lo

∑
i∈S

∑
j∈S

(blo,i,j) ≤ Θ (7)328

Finally, it is possible to set the lowest and highest bounds for the number of buses329

that can be allocated to the original and virtual lines. The number of buses nl that are330

allocated to each original line Lo can take values from an admissible set Q and the buses331

that are allocated to virtual lines L − Lo can take values from another set Q′ since the332

original and virtual lines can have different distinct core requirements. For instance, all333

originally planned lines should be operational and a minimum number of buses should be334

allocated to them. In contrast, virtual lines that do not improve the service might not be335

used; thus, the set Q′ permit refraining from assigning any vehicles to a virtual line.336

The sets Q and Q′ can be defined by the bus operator according to the lowest and337

highest frequency that is permitted for each virtual and original line. For instance, some338

virtual lines might be set to have a frequency value equal to zero (inactive virtual lines)339
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whereas all originally planned lines might need to have a frequency of at least three340

vehicles per hour to satisfy service requirements.341

The resulting optimization program considering the passengers’ waiting times and the342

operational costs is:343

argmin
n

f(n) := β1

(∑
lo∈Lo

∑
i∈S

∑
j∈S

blo,i,j
2

(∑
l∈L

δl,lo,i,j
nρ
rρ

)−1
)

+ β2

(∑
l∈L

nlrl

⌊
τ

rl

⌋)

+ β3

(∑
l∈L

nl

)
(8)

subject to: c1(n) :=

(
L∑
l=1

nl

)
− γ ≤ 0 (9)

c2(n) := ψγ −
∑
l∈Lo

nl ≤ 0 (10)

c3(n) :=

∑
lo∈Lo

∑
i∈S

∑
j∈S

blo,i,j
2

(∑
l∈L δl,lo,i,j

nρ
rρ

)−1

∑
lo∈Lo

∑
i∈S

∑
j∈S

(blo,i,j)
−Θ ≤ 0 (11)

nl ∈ Q,∀l ∈ Lo (12)

nl ∈ Q′,∀l ∈ L− Lo (13)

η ≥
∑

l∈L−Lo

el (14)

The first term of the objective function computes the waiting times of passengers at344

all stops for a given allocation of n vehicles to originally planned and virtual lines. The345

second term computes the total vehicle running times for serving all bus lines within346

a planning period τ where the round-trip travel time rl of any line l ∈ L contains the347

required layover times (i.e., deadheading and resting times of drivers). Finally, the third348

term corresponds to the depreciation costs when using
∑

l∈L nl vehicles.349

The inequality constraint of eq.9 ensures that the total number of allocated vehicles to350

originally planned and virtual lines,
∑

l∈L nl, should not exceed the number of available351

buses, γ. The inequality constraint of eq.10 denotes that at least a percentage ψ% of the352

total number of available vehicles, γ, should be allocated to the originally planned lines353

l ∈ Lo.354

The inequality constraint of eq.11 introduces an upper limit, Θ, to the average waiting355

time per passenger ensuring that solutions which yield significantly longer passengers’356

waiting times are not considered even if they reduce the operational costs. Eq.12 and357

13 ensure that the number of buses allocated to each line is selected from a discrete set358

of values determined by the transit agency. Finally, the inequality constraint of eq.14359

ensures that the number of operational virtual lines,
∑

l∈L−Lo el, does not surpass the360

maximum allowed number of operational virtual lines, η.361

The above constrained optimization problem of allocating buses to originally planned362

and virtual lines has a fractional, nonlinear objective function and one fractional constraint363

together with other linear constraints. In addition, the problem of allocating buses to lines364
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is an integer programming problem since the number of buses that can be allocated at365

each originally planned or virtual line is a discrete variable.366

Lemma 3.1. The exploration of the entire solution space for finding a globally optimal367

solution for the vehicle allocation to originally planned and short-turning/interlining lines368

has an exponential computational complexity.369

Proof. To each bus line l ∈ L we can allocate any number of vehicles that belongs to370

the set Q if l is an originally planned line or Q′ if it is a virtual one. If we have two371

bus lines (i.e., two originally planned lines) the number of potential combinations for the372

allocation of buses is |Q|2. Let |Q∗| be the minimum of |Q| and |Q′|. Then, evaluating373

the performance of all potential combinations of allocated buses to L lines requires at374

least |Q∗|L computations. Therefore, the solution space increases exponentially with the375

number of lines (regardless whether they are originally planned or virtual lines) prohibiting376

an exhaustive search of a globally optimal solution even for small-scale scenarios.377

Given that we cannot explore the solution space exhaustively, other exact optimization378

methods can be considered. Because of the fractional, nonlinear objective function, our379

problem cannot be solved with linear or quadratic programming methods. An alternative380

is the use of sequential quadratic programming which starts from an initial solution guess381

and can find a local optimum of the mathematical program by solving its continuous382

relaxation. Then, the results from the sequential quadratic programming can be combined383

with a branch-and-bound method for converging to a discrete solution based on the lower384

and upper bounds derived from the sequential quadratic programming method. This385

approach though has two disadvantages. First, the enumeration tree of the branch-and-386

bound method can grow in an unsustainable manner if the decision variables are too387

many (which is the case when we allow the allocation of buses to a vast number of388

virtual lines) resulting in a computationally intractable problem. Second, there is no389

guarantee that the local optimum computed at each iteration by the sequential quadratic390

programming method is a globally optimal solution because this depends on the convexity391

of the objective function. We therefore develop an approximation of the combinatorial,392

constrained optimization problem as detailed in the following section.393

4. Solution Method394

Given the computational intractability of the proposed bus allocation optimization395

problem, a solution method is introduced based on the approximation of the constrained396

bus allocation optimization problem by an unconstrained one which can be solved with397

the use of evolutionary optimization for obtaining an improved solution.398

4.1. Approximating the constrained vehicle allocation problem using exterior point penal-399

ties400

The constrained bus allocation optimization problem of eq.8-14 can be simplified by401

using a penalty method which yields an unconstrained formulation. This approximation402

is structured such that its minimization favors the satisfaction of the constraints through403

prescribing a high cost for any constraint violation Bertsekas (1990). Given the highly404

constrained environment within which service providers operate, we introduce exterior405

penalties so that the satisfaction of constraints is prioritized.406
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By introducing a penalty function, ℘(n), which approximates the constrained opti-407

mization problem of eq.8-14, the following unconstrained one is obtained:408

argmin
n

℘(n) := f(n) + w1(min[−c1(n), 0])2 + w2(min[−c2(n), 0])2 + w3(min[−c3(n), 0])2

subject to: nl ∈ Q,∀l ∈ Lo
nl ∈ Q′,∀l ∈ L− Lo
η ≥

∑
l∈L−Lo

el

(15)409

where w1, w2 and w3 are used to penalize the violation of constraints and are positive410

real numbers with sufficiently high values to ensure that priority is given to the satis-411

faction of constraints. The penalty function ℘(n) is equal to the score of the objective412

function f(n) if at some point we reach a solution n for which w1(min[−c1(n), 0])2 +413

w2(min[−c2(n), 0])2 +w3(min[−c3(n), 0])2 = 0, indicating that all constraints are satisfied414

for such solution. The penalty terms are added to the objective function of the con-415

strained optimization problem and dictate that if a constraint ci(n) has a negative score,416

then min[−ci(n), 0] = −ci(n) and the constraint is violated for the current set of variables417

n. In that case, the objective function f(n) is penalized by the term wi(−ci(n))2 where418

the weight factor wi expresses the violation importance of this constraint in relation to419

all others.420

Formulating the penalty function ℘(n) ensures that violating constraints ci(n) < 0421

penalize progressively the penalty function by adding their squared value ci(n)2 to its422

score. Therefore, the penalty function is over-penalized if some violating constraints423

ci(n) < 0 are significantly greater than zero.424

In addition, adding different weights, w1, w2, w3, to the constraints is useful in the case425

of problem infeasibility because in such case all constraints cannot be satisfied simulta-426

neously; therefore, with the use of different weight factor values, the bus operator can427

prioritize the most important constraints at the expense of others.428

4.2. Solving the unconstrained problem with a problem-specific Genetic Algorithm429

To solve the unconstrained optimization problem of eq.15 one needs to explore a vast,430

discrete solution space resulting in a significant computational burden. For instance,431

as discussed in section 3, applying a classical exact optimization method for discrete432

optimization problems such as the brute-force algorithm requires an exponential number433

of problem evaluations in order to find a globally optimal solution.434

As an alternative to classical exact optimization methods, metaheuristics from the435

area of evolutionary optimization can be employed. In contrast to the classical exact436

optimization methods, evolutionary algorithms perform fewer calculations for finding a437

generally good (but inexact) solution to a combinatorial optimization problem (Simon,438

2013).439

For combinatorial optimization problems several evolutionary optimization algorithms440

can be applied such as simulated annealing (Kirkpatrick et al., 1983) or tabu search441

(Glover, 1986). In this work, we employ a problem-specific genetic algorithm (GA) which442

considers a pool of solutions rather than a single solution at each iteration although other443

heuristic optimization methods may also be used for solving this problem.444
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One of the first works on GAs was the book of Holland (1975) that detailed the445

principal stages of a GA as: (1) encoding the initial population; (2) evaluating the fitness446

of each population member; (3) parent selection for offspring generation; (4) crossover;447

and (5) mutation. In the following sub-sections we detail the stages of the problem-specific448

GA that yields an (inexact) solution of the optimization problem of eq.15.449

4.2.1. Encoding450

A typical GA contains a number of strings which form the population at each of the451

iterations. Each string is a population member (individual) and represents a potential452

solution to the optimization problem. The first decision that needs to be made at the453

initialization stage of the GA is the population size. This parameter can be determined454

based on the trade-off between solution space exploration and computational cost since a455

GA with a larger population size is expected to conduct a more comprehensive exploration456

of the solution space but requires also more time for evaluating all possible solutions and457

performing the corresponding crossover/mutation operations.458

For solving the unconstrained optimization problem of eq.15, an initial population P459

with {1, 2, ..., |P |} members is introduced. Each population member, m ∈ P , is a vector460

m = (m1, ...,ml, ...,m|L|) with |L| elements (known as genes) where each element ml ∈m461

represents the number of buses allocated to the corresponding line l ∈ L in case this462

solution is adopted. Each gene ml ∈ m of an individual m is allowed to take an integer463

value from the set Q (when line l is an originally planned line) or set Q′ (when line l is a464

sub-line or inter-line).465

Therefore, a random initial population P can be generated as follows:466

For m = 1 to |P |467

Introduce the mth population member m = (m1, ...,ml, ...,m|L|)468

For l = 1 to |L|469

If l ∈ Lo: ml ← random.choice(Q)470

If l ∈ L− Lo: ml ← random.choice(Q′)471

Next l472

Next i473

where ml ← random.choice(Q) denotes that ml can take any value from the discrete474

set Q and ml ← random.choice(Q′) denotes that ml can take any value from the set Q′.475

4.2.2. Evaluating the fitness of individuals and selecting individuals for reproduction476

A GA requires only the existence of a fitness function which can be evaluated and does477

not consider the properties of the function such as convexity, smoothness or existence478

of derivatives (Bakirtzis et al., 2002). GAs are typically designed to maximize fitness.479

Notwithstanding, given the fact that our problem of eq.15 is casted as a minimization480

problem, in our study a population member m is considered more fit when its fitness481

function value, ℘(m), is lower.482

In the parent selection stage the fittest population members (individuals) are selected483

for reproduction and they pass their genes to the next generation. At each parent selection,484

two individuals from the population are selected where individuals with better fitness485

values have a higher probability of being selected for producing an offspring. This can486

be achieved by using the well-known roulette-wheel selection method (Goldberg and Deb,487

1991). In the roulette-wheel selection method, each individual m has a probability of488
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being selected which is proportional to its fitness value divided by the fitness values of all489

other population members.490

After selecting one parent using the roulette-wheel selection method, another parent491

is selected with the same method and the two parents cross over to produce two off-492

springs. The same process is repeated until the number of parents which are selected for493

reproduction is the same as the population size |P |.494

4.2.3. Crossover and mutation495

At the crossover stage, two parents exchange their genes at a randomly selected496

crossover point selected from the set {1, 2, ..., |L|} for generating two offsprings. For497

instance, if the crossover point of two parents m = (m1, ...,ml,ml+1, ...,m|L|) and m′ =498

(m′1, ...,m
′
l,m

′
l+1, ...,m

′
|L|) which are selected for reproduction is l ∈ L; then, the two gener-499

ated offsprings will have the set of genes (m1, ...,ml,m
′
l+1, ...,m

′
|L|) and (m′1, ...,m

′
l,ml+1, ...,m|L|).500

After the crossover stage follows the mutation stage. The mutation can be potentially501

applied to any generated offspring after the crossover stage to facilitate the exploration502

of new information that is not contained in the pair of parents that were used at the503

crossover stage. In our case, we specify a small probability, pc, for replacing each gene of504

the generated offspring with a random value from the set Q if that gene corresponds to505

an originally planned line and set Q′ if it corresponds to a virtual one.506

The procedure described above continues iteratively until a pre-determined number of507

population generations, µmax, is reached. The population member with the best perfor-508

mance is then selected as the final solution and its genes represent the number of buses509

that should be allocated to each original or virtual line, where, for many virtual lines,510

this number can be equal to zero (resulting in inactive virtual lines). This procedure is511

summarized in algorithm 2.512

In algorithm 2, lines 10-11 denote the parent selection step according to the roulette-513

wheel approach, line 12 is the crossover step that produces two new offsprings and lines514

13-22 express the mutation step for each newly generated offspring. In lines 13-22 one515

can note that a mutation occurs if a randomly selected number from the continuous set516

[0, 1] is lower than the mutation probability pc.517

The number of population members |P |, the mutation rate, pc, and the maximum518

number of population generations, µmax, are parameters of the GA which should be519

externally defined and can affect the performance of the computed solution. For this520

reason, several scenarios with different parameter options can be conducted for increasing521

the probability of finding a solution which is more close to a globally optimal one.522
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Algorithm 2

1: function Genetic Algorithm search
2: Initialize a random population P = {1, 2, ..., |P |} where each population member m ∈ P

has |L| genes;
3: for each population member m ∈ P do
4: Calculate its fitness: −℘(m);
5: end for
6: Initialize the counter of generation evolutions as generation← 1;
7: while generation≤ µmax do
8: Initialize the population of the next generation P ′ = ∅
9: while |P ′| < |P | do

10: Select one parent m ∈ P using the roulette-wheel method;
11: Select another parent m′ ∈ P where m′ ∈ P \{m} using the roulette-wheel method;
12: Exchange the genes of parent m and m′ at a randomly selected crossover

point l ∈ L and generate two offsprings (m1, ...,ml,m
′
l+1, ...,m

′
|L|) and

(m′1, ...,m
′
l,ml+1, ...,m|L|);

13: for each one of the two offsprings do
14: for each l ∈ L do
15: if l ∈ Lo and random.choice([0, 1]) < pc then
16: Replace the value of the lth gene of the offspring with random.choice(Q);
17: end if
18: if l ∈ L− Lo and random.choice([0, 1]) < pc then
19: Replace the value of the lth gene of the offspring with random.choice(Q′);
20: end if
21: end for
22: end for
23: Expand set P ′ by adding the two generated offsprings to it;
24: end while
25: Replace the previous generation with the new one: P ← P ′;
26: Update the number of generation evolutions: generation← generation+1;
27: end while
28: return the fittest population member;
29: end function
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5. Numerical Experiments523

5.1. Case Study Description524

The proposed methodology for the allocation of buses to originally planned and virtual525

lines is tested for the bus network of The Hague. The Hague is a mid-sized European city526

and its bus network consists of |Lo| = 8 originally planned urban bus lines, complementing527

and interfacing with the tram network. The originally planned bus lines cover a compact528

geographical area that enables the generation of several interlining lines without requiring529

long deadheading times. As presented in figure 6, seven of the bus lines1 are bi-directional530

and one is circular (bus line 8). The circular line serves two of the main train stations in531

the city and all bus lines operate under high frequencies since they serve the central city532

area.533

Line 1 

Line 2 

Line 3 

Line 4 

Line 5 

Line 6 

Line 7 

Line 8 

Figure 6: Illustration of the bus network in The Hague

In our case study, we analyze a 6-hour period of the day that was empirically found534

to exhibit a relatively stable ridership pattern (from 07:00 to 13:00). The total number535

of available buses for operating the service trips from 07:00 to 13:00 is γ=220. For the536

optimal allocation of buses to the eight originally planned bus lines, we use the parameter537

values summarized in table 3.538

Table 3: Parameter Values for the allocation of the available buses to the eight originally planned lines
of the bus network in The Hague

γ (total number of available buses) 220
z (minimum percentage of passenger ridership change to justify the generation of a switch stop) 20%
β1 (unit time value associated with the passenger-related waiting time cost) 4 (e/h)
β2 (unit time value associated with the total vehicle travel time for serving all lines) 60 (e/h)
β3 (unit time value associated with the depreciation cost of using an extra bus) 20 (e/bus)
Q (number of buses that can be allocated to an original line from 07:00 to 13:00) {6, 7, 8, ..., 41}

1for ease of reference, the eight bus lines in the Hague are named 1,2,...,8. The actual identifica-
tion numbers of the eight bus lines can be found at https://www.htm.nl/media/498240/17066htm_

a4haltekrttrambus_va01juli17_web.pdf
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For such parameter values, the optimal allocation of buses to originally planned lines539

is the one that minimizes the value of the penalty function ℘(n) in Eq.15. Because the540

mathematical program in Eq.15 considers also virtual lines and we want to allocate buses541

to originally planned lines only, we exclude all virtual lines by enforcing the total number542

of virtual lines that can be operational, η, to be equal to zero. In such case, a solution to543

the mathematical program of Eq.15 represents an optimal allocation of buses to originally544

planned lines only.545

After applying the GA presented in algorithm 2 for finding an optimal bus allocation546

to the 8 originally planned lines, the solution with the lowest total cost is presented in547

table 4. This bus allocation: (a) requires a total bus travel time of 21,616 minutes (360.26548

hours); (b) results in an average waiting time of ' 1.78 minutes per passenger; and (c)549

requires the use of 111+88=199 buses out of the 220 available ones.550

Table 4: Round-trip times and initial bus allocation to the originally planned lines from 07:00 to 13:00

rl: Round-trip Allocated rl: Round-trip Allocated
time in minutes Buses time in minutes Buses

Line 1 108 29 Line 5 110 31
Line 2 107 22 Line 6 50 22
Line 3 112 21 Line 7 79 25
Line 4 172 39 Line 8 138 10

Total: 111 88

It is important to indicate that because of the parameter values of table 3 the optimal551

allocation of buses to originally planned lines uses only 111+88=199 out of the 220 avail-552

able buses. The reasons behind this are the high vehicle running time and depreciation553

costs that favor the use of less resources.554

5.2. Allocating buses to short-turning and interlining lines555

In this study, we used detailed smartcard data logs from 24 weekdays in order to556

analyze the spatio-temporal passenger demand variation from 07:00 until 13:00. The557

smartcard logs contain information about the origin and destination station of each pas-558

senger that used one of the eight originally planned lines in The Hague during the analysis559

period (2nd of March 2015 - 2nd of April 2015). The smartcard logs are used for con-560

structing passenger OD matrices per bus line and were instrumental in (a) understanding561

the temporal variation of demand within the day for each bus line by splitting the day562

into 6-hour periods; (b) investigating the spatial demand variations at the line level; and563

(c) identifying potential switch stops for generating short-turning and interlining lines564

based on variations in the cumulative ridership at each stop.565

For instance, from the average hourly passenger load of bus line 3 from 07:00 to 13:00566

which is presented in figure 7, one can observe that bus stops 6 and 12 are potential switch567

stops because of a passenger load change of more than z = 20% occurring at these stops.568

In addition, the bus stops 11,13,14,23,24,25,27,28 and 29 of bus line 3 which are marked569

with yellow are transfer stops; thus, they are also switch stop candidates. Following the570

steps detailed in the deterministic algorithm 1 for a1 = 2 and a2 = 2, only 5 out of the 11571

switch stop candidates are selected as switch stops for bus line 3 (namely, the bus stops572

6, 11, 14, 23 and 27). Bus stop 11 is selected instead of bus stop 12 where a significant573

passenger load change is observed - bus stop 11 is a transfer stop and has a higher priority574

than other neighboring switch stop candidates.575
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Figure 7: Enumeration of all possible switch stops for bus line 3

The deployment of algorithm 1 for generating the switch stops for all bus lines and the576

algorithms presented in figures 4, 5 for generating the short-turning and interlining lines577

yielded 29 short-turning lines and 323 interlining lines out of 4344 possible combinations.578

By allocating buses to originally planned and short-turning/interlining lines, this study579

investigates the potential of improving the weighted sum of equation 8 which consists of580

the (a) passenger waiting times, (b) total vehicle running times and (c) depreciation costs581

from the use of additional vehicles. The allocation of buses to short-turning and interlining582

lines is performed by using the GA presented in algorithm 2.583

When performing an optimal vehicle allocation to originally planned and virtual lines,584

the bus operator can determine several parameter values. In particular, the minimum585

percentage of buses that should be allocated to originally planned lines, ψ, and the total586

trip travel time limit for interlining lines, y, among others. This provides an extra flexi-587

bility to the bus operator that can tailor the use of the interlining and short-turning lines588

to its operational needs by adjusting the problem parameters accordingly.589

Initially, we allocate buses to originally planned and short-turning lines following the590

scenario of table 5 which depicts the values of the problem parameters.591

Table 5: Parameter Values

γ (total number of available buses) 220
ψ (minimum percentage of buses that should be allocated to the originally planned lines) 60%
η (total number of virtual lines that can be operational) 20
k (maximum allowed limit of deadheading times for each virtual line) 20 min
y (maximum total trip travel time for inter-lining lines) 1 h 30 min
z (percentage of passenger ridership change that justifies the generation of a switch stop) 20%
Θ (upper limit of the average waiting time of passengers) 3 min
β1 (unit time value associated with the passenger-related waiting time cost) 4 (e/h)
β2 (unit time value associated with the total vehicle travel time for serving all lines) 60 (e/h)
β3 (unit time value associated with the depreciation cost of using an extra bus) 20 (e/bus)
Q (number of buses that can be allocated to an original line from 07:00 to 13:00) {6, 7, 8, ..., 41}
Q′ (number of buses that can be allocated to a virtual line from 07:00 to 13:00) {0, 3, 4, ..., 15}

Using the existing service provision as the starting point, we allow the re-allocation592

of buses to the 8 original, Lo, and (29+323)=352 virtual lines, L − Lo. Given the large593

number of decision variables and the combinatorial nature of the bus allocation problem,594

we employ the GA proposed in this study. For the implementation of the GA, we use595

the Distributed Evolutionary Algorithms in Python (Deap) package (Fortin et al., 2012).596
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From this package, we use the eaSimple() algorithm with the hyperparameter values of597

|P | = 200 population members; pc = 0.2 mutation probability; and µmax = 40 maximum598

population generations. For the evaluation of the fitness of each population member, the599

penalty function of Eq.15 is programmed in Python 2.7 and the tests are implemented in600

a general-purpose computer with 2.40 GHz CPU and 16 GB RAM.601

The GA algorithm is applied for the re-allocation of buses to originally planned and602

virtual lines and the convergence results are presented in figure 8. The goal of the con-603

vergence is the minimization of the penalty function score of Eq.15 which is the weighted604

sum of the objective function and the constraint violation penalties.605
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Figure 8: Improvement of the exterior point penalty function score after a number of µmax population
generations. The horizontal line represents the area below which all constraints are satisfied (feasible
solution space).

The fittest population member (solution) in the initial population has a penalty func-606

tion value of 86, 396e and an objective function value of 76, 531e. The initial 9, 865e607

gap between the objective and the penalty function values indicates that the solution of608

the fittest population member of the initial population violates some of the constraints of609

the bus allocation problem.610

After six iterations, we reach a point where all constraints are satisfied (at this point,611

the penalty function value is equal to the objective function value). At this stage, the first612

feasible solution is obtained. Then, the iterations continue until we reach the pre-defined613

maximum number, µmax = 40, of allowed population generations. The fittest solution at614

the 40th population generation has a penalty function value of 64, 066e and satisfies all615

constraints.616

As discussed in the solution method section, the use of a GA for solving the problem617

of allocating buses to both originally planned and short-turning/interlining lines is one618

option. Other heuristic solution methods for discrete problems (which are appropriate619

for solving a problem more quickly when classic methods are too slow) can be employed.620

For our specific scenario, we provide results regarding the performance of other heuristic621

solution methods, such as simulated annealing and hill-climbing, in table 6. In table 6 we622

report the results of the best performing vehicle allocation solutions computed by different623

heuristic algorithms.624
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Table 6: Genetic Algorithm, Stochastic Annealing and Hill Climbing: solution approximation results

Best-performing total cost Computational time
of the computed solution

Genetic Algorithm 64,066 e 21.17 min
Hill-climbing 74,531 e 3.52 min
Simulated Annealing 64,438 e 24.42 min

Notably, the hill-climbing method terminates its search significantly faster than the625

other methods. However, this fast convergence occurs because the algorithm is trapped626

in a local optimum without being able to move to another “hill” for continuing its explo-627

ration.628

Using the vehicle allocation of the GA, table 7 summarizes the potential benefits of629

the bus allocation optimization when buses are allocated not only to originally planned630

lines, but also to short-turning/interlining lines. The optimal bus allocation to both631

originally planned and virtual (short-turn and interlining) lines to the bus network of The632

Hague demonstrated a potential reduction of 13.85% in operational costs and 4.85% in633

the average waiting time per passenger.634

Table 7: Performance improvement when using short-turning and interlining lines for β1=4 e/h, β2 =60
e/h and β3=20 e/bus

Originally planned Considering short-turning Improvement
lines only and interlining lines

Average Waiting Time per passenger 1.785 min 1.703 min 4.58%
Total running time of buses 360.26 h 310.35 h 13.85%
Number of buses 199 200 -0.50%

Total Costs f(n) 69,032 e 64,066 e 7.19%
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Figure 9: Bus allocation to originally planned and active virtual lines

The resulting bus allocation to originally planned and virtual lines using the GA is635

presented in figure 9. As expected, the lion share of the 352 virtual lines remain inactive636

in the solution attained as GA solution filtered out 346 out of the 352 virtual lines. This637

solution involves 3 interlining and 3 short-turning operations. The interlining involves a638

relatively small number of buses and is used to circulate buses between busy lines that639

have an asymmetric passenger demand. Short-turning is deployed for lines that have to640

be partitioned due to a noticeably uneven demand pattern.641

To provide more details on the performance improvement after the introduction of642

short-turning and interlining lines, figure 10 presents the overall waiting time costs, the643

vehicle running costs and depreciation costs when (a) only originally planned lines are644

considered; and (b) when short-turning/interlining lines are also considered. In the latter645

case, the overall waiting time costs are reduced from 43, 436e to 41, 445e and the vehicle646

running costs from 21, 616e to 18, 621e. Because only the depreciation costs increase647

slightly from 3, 980e to 4, 080e the reduction of the total costs is 7.19% (from 69,032e648

to 64,066e).649
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Figure 10: Costs when using (a) originally planned lines only and (b) originally planned lines along with
interlining and short-turning lines

For performing a sensitivity analysis of the total costs to the changes in passenger650

demand, we compare the performance of the optimal bus allocation at the scenario with651

the nominal passenger demand against the performance of the optimal bus allocation at652

scenarios with 10% and 25% passenger demand increase. The results are summarized653

in table 8 demonstrating an increase in the vehicle running costs and the depreciation654

costs due to the use of more vehicles. Note that because of the 25% increase in passenger655

demand, the respective bus allocation uses all 220 available buses for limiting the increase656

of the passenger waiting time costs.657

Table 8: Performance sensitivity to a 10% and 25% passenger demand increase

Nominal Passenger 10% Passenger 25% Passenger
Demand Demand Increase Demand Increase

Average Waiting Time per passenger 1.703 min 1.698 1.694 min
Total running time of buses 310.35 h 324 339.10 h
Number of used buses 200 209 220

Waiting Time Costs 41,445 e 45,846 e 50,820 e
Vehicle Running Costs 18,621 e 19,440 e 20,340 e
Depreciation Costs 3,980 e 4,180 e 4,400 e

Total Costs f(n) 64,066 e 69,466 e 75,560 e

5.3. Sensitivity Analysis of cost parameters658

As previously discussed, some stakeholders might place more emphasis on reducing659

the waiting times of passengers while others might focus on reducing the operational660

costs. For this reason, we investigate the trade-off between the passenger-related and the661

operational-related costs by modifying the values of the weight factors β1, β2, β3.662

First, we increase the weight factor value of β1 which is multiplied by the passenger-663

related waiting time costs from 4 (e/h) to 12 (e/h) and 20 (e/h) while the weight factor664

values of β2 and β3 remain the same (β2 remains always 60 (e/h) and β3=20 (e/bus)).665

Then, for each of the three generated scenarios we allocate buses to the originally planned666
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and short-turning/interlining lines in order to investigate the impact of changes in the667

passenger-related costs and the operational-related costs when the bus operator places668

more emphasis on reducing the overall waiting time of passengers.669

The results of this analysis are summarized in figure 11 which presents the changes670

in the average waiting time per passenger, the number of running buses and the total671

running times of the buses.672
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Figure 11: Sensitivity to changes of weight factor β1 which is related to the passenger waiting time costs

The main observations from figure 11 are:673

� to obtain a slight reduction of 0.41% on the average waiting time per passenger674

(from 1.703 min to 1.696 min), 4 additional buses are needed and the total running675

times of buses increase significantly (by 6.98%);676

� reducing further the average waiting time per passenger from 1.696 min to 1.694677

min increases the total running times of buses by 2.11% and requires 16 extra buses.678

The above analysis can facilitate the decision-making process of the bus operators by679

providing them information regarding the required sacrifices in terms of vehicle running680

costs for a slight reduction of the passenger waiting times.681

Second, we analyze the performance of the operations when more importance is at-682

tached to reducing bus running times. For this reason, we generate three scenarios where683

the weight factor β2, which is the unit time value associated with the total vehicle travel684

times, increases from β2 = 60 (e/h) to β2 = 90 (e/h) and β2 = 120 (e/h) respectively.685

In all three scenarios the weight factors β1 and β3 remain the same (β1 is always 4 (e/h)686

and β3 = 20 (e/bus)). The sensitivity of the passenger waiting times, the number of687

deployed buses and bus running times to the changes in the weight factor β2 is presented688

in figure 12.689
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Figure 12: Sensitivity to changes of weight factor β2 which is related to the vehicle running time costs

The main observations from figure 12 are:690

� the improvement of the vehicle running costs after doubling the value of β2 is 6.17691

hours in total (or 1.99%) whereas the average waiting time per passenger increases692

by 0.365 min or ' 20%;693

� the total number of allocated buses is reduced by 8% (16 buses);694

� higher weight to the total running costs, β2, reduces the number of used buses, but695

the average waiting time per passenger increases faster.696

The findings from figure 12 dictate that bus operators should act with caution when697

trying to obtain solutions that reduce significantly the vehicle running costs because this698

can lead to increased headways and disproportionally longer passenger waiting times.699

Finally, we examine the effect of the weight factor that determines the relative im-700

portance of the bus depreciation costs. In this case, we generate three scenarios with β3701

values of 20, 110 and 200 (e/bus) for which the weight factors β1 and β2 remain the same702

(β1 is always 4 (e/h) and β2 is 60 (e/h)). After allocating the buses to the originally and703

short-turn/interlining lines for each one of the three scenarios using the GA of algorithm704

2, the results are presented in figure 13.705
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Figure 13: Sensitivity to changes of weight factor β3 which is related to the cost of operating each extra
bus

From figure 13 one can observe that:706

� interestingly, the total running time of buses increases from 310.35 hours to 315.6707

hours even if the number of deployed buses is reduced from 200 to 187;708
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� a 2% reduction of the number of used buses (from 200 to 196 buses) increases the709

average waiting time per passenger by 5.7 seconds.710

The above sensitivity analysis underlines the importance of selecting adequate weight711

factors which do not substantially compromise the passenger-related costs for a slight712

reduction of the operational costs or vice-versa.713

5.4. Pareto Frontiers714

In the previous sub-section we evaluated the sensitivity of the average waiting time715

per passenger, the number of used buses and the total running times to the changes of the716

weight factor value β1, β2, β3. Following the work of (Chow and Pavlides, 2018), we relax717

such specification and we construct a Pareto Frontier of two objective functions which718

can be represented by a curve where each point of the curve indicates an efficient solution719

when those objective functions are being optimized simultaneously. First, the objective720

function f(n) is reformulated as:721

argmin
n

f ′(n) = ω1β1
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)722

where723

3∑
i=1

ωi = 1 (16)724

In this way, we calculate the corresponding solutions with different combinations of725

ωi in Eq.16 and derive the Pareto frontier accordingly. Following this approach, the726

Pareto frontiers illustrate the competition between pairs of objective functions during the727

optimization process. Table 9 shows the set of values of cost coefficients when considering728

the two objective functions of passenger waiting costs and depreciation costs.729

Table 9: Cost coefficients for deriving the Pareto frontier of passenger waiting times against depreciation
costs

Scenario ω1 ω3

1 0.09 0.91
2 0.15 0.85
3 0.50 0.50
4 0.75 0.25
5 0.83 0.17

Based upon the setting in table 9, figure 14 shows the corresponding Pareto frontiers for730

the ‘passenger waiting times’ (Objective 1) against the ‘number of used buses’ (Objective731

3). Each point in figure 14 represents the corresponding cost values of ‘average waiting732

time per passenger’ and ‘number of used buses’ for each combination of ωi in table 9.733
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Figure 14: Pareto frontiers: waiting time costs against depreciation costs of using extra buses

Figure 14 reveals the conflicting nature between the two objectives: the value of the734

‘passenger waiting time’ cost decreases as that of the ‘depreciation cost’ increases. The735

results reveal the non-linearity between such trade-off relationship and we can notice a736

stabilization in ‘passenger waiting time’ when the depreciation cost reaches ' e4k. This737

indicates that additional buses result in a very small benefit in terms of passenger waiting738

times.739

Considering now the Parento frontiers for the passenger waiting times against the740

running costs, we use the set of values in table 10 to generate the Pareto frontiers in741

figure 15.742

Table 10: Cost coefficients for deriving the Pareto frontier of passenger waiting times against running
costs

Scenario ω1 ω2

1 0.33 0.66
2 0.40 0.60
3 0.50 0.50
4 0.75 0.25
5 0.80 0.20
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Figure 15: Pareto frontiers: waiting time costs against vehicle running costs
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Again, the trade-off between the passenger waiting times and the vehicle running costs743

has a non-linear nature and the passenger waiting times stabilize for a vehicle running744

cost of around e18.6k. After that point, more vehicle-kilometers-traveled will not reduce745

the passenger waiting times significantly.746

5.5. Sensitivity Analysis of the parameters related to the generation of virtual lines747

Apart from the weight factors β1, β2, β3 that control the relative importance of the748

waiting time, running time and depreciation costs, the parameters that control the gener-749

ation of short-turning and interlining lines can affect the performance of the bus allocation750

solution.751

For this reason, we investigate the performance changes for different values of the pa-752

rameters which control the generation of short-turning and interlining lines. For example,753

the parameter ψ determines the minimum percentage of buses that should be allocated754

to the originally planned lines and its value was initially set to 60% (in the scenario of755

table 5). Some bus operators might, however, be more conservative wish to ensure that756

at least 80 or 90% of the deployed buses are allocated to originally planned lines.757

Similar to the above, some bus operators might not be willing to generate switch stop758

candidates at bus stops with slight ridership changes. Instead, they might consider a759

bus stop as switch stop candidate only when a significant ridership change is observed760

(i.e., z > 50%). In principle, more conservative bus allocations that allocate a smaller761

portion of the fleet to short-turning and interlining lines are expected to have an inferior762

performance compared to bus allocations that adopt more flexible bus allocation schemes.763

The results from this analysis are presented in figure 16 where the performances of the764

optimal bus allocation solutions for different values of ψ and z are presented. It should765

be noted here that apart from the values of ψ and z, all other parameters maintain their766

values from table 5.767
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Figure 16: Total cost of the optimal bus allocation for different values of the parameter ψ which controls
the minimum percentage of buses that should be allocated to originally planned lines and z which affects
the set of switch stop candidates

In figure 16 the total cost of the operations for ψ = 60% and z = 20% is 64,066 e (as768

reported in table 7). The total cost of the operations is the lowest (64,019 e) for the most769
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flexible scenario where the minimum number of buses that must be allocated to originally770

planned lines is ψ = 40% of the total number of deployed buses and z = 10%.771

From figure 16 one can observe that there is a broad range of values, i.e. ψ = 60−80%772

and z = 10−30%, for which the total cost of the optimal bus allocations is relatively stable773

and hovers around 64,100 e. This is an important finding because a more conservative774

(and practical) bus allocation where at least 80% of the deployed buses are allocated to775

the originally planned lines can be adopted without significantly increasing the total cost776

of operations.777

Another important finding is that the solution is more sensitive to changes in ψ than in778

z. For instance, when ψ = 90% and z = 20% the total cost of the bus allocation is 67,923779

e which is very close to the total cost of the optimal bus allocation when considering780

only originally planned lines (this cost was 69,032 e). Notwithstanding, a comparable781

performance was observed when at least 60%, 70% or 80% of the buses are allocated782

to originally planned lines. This provides a strong advantage to the bus operator that783

can have a maximum benefit by allocating the vast majority of its buses to originally784

planned lines and still benefit from a significant improvement of passenger/operational-785

related costs. Hence, by allocating the minority of the buses (20-40%) to short-turning786

and interlining lines can have the same effect of potentially impractical bus allocations787

that require the allocation of many buses to virtual lines.788

5.6. Exploitation of the local optima789

When allocating buses to both originally planned and short-turning/interlining lines790

there can be more than one solutions that result in quite similar total costs. For example,791

when allocating buses to originally planned and short-turning/interlining lines using the792

parameters of table 5, we might have different bus allocations than the one presented in793

figure 9 that exhibit quite similar performances. All these are different locally optimal794

solutions that exhibit an almost equally good performance.795

Each local optimum can be computed by solving the bus allocation problem using796

the GA proposed in this study and employing a different set of initial solution guesses797

each time the problem is solved. Figure 17 illustrates it by visualizing some of the local798

optima (eight different solutions with almost equal performance) where each one of them799

represents a different bus allocation with total costs in the range of 64,066e - 64,071e.800
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Figure 17: Bus allocations to originally planned and active virtual lines for each one of the eight local
optima and their corresponding total costs

In figure 17, we present the detailed allocation of buses to originally planned (eight first801

lines) and active virtual lines (lines 9-49) for each of the eight bus allocations that exhibit802
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a similar performance. Figure 17 presents also the performance of each bus allocation in803

terms of total costs.804

6. Concluding Remarks805

This work develops a framework for allocating buses to originally planned and short-806

turning/interlining bus lines in order to reduce the passenger-related and the operational-807

related costs while satisfying a set of operational constraints. Following the problem808

formulation, a meta-heuristic solution approach is developed and applied to a case study809

network. It became apparent after the formulation of the problem that its combinatorial810

nature and its exponential complexity does not allow for the computation of optimal bus811

allocations to a large set of virtual lines. For this reason, this work approximated the812

nonlinear constrained optimization problem with the use of exterior point penalties and813

introduced a GA for allocating buses to originally planned and virtual lines.814

Model application demonstrates that the partial replacement of current services with815

virtual lines can significantly reduce (i.e. 13.85% for the real-world case study network)816

the vehicle running times while reducing also the average waiting time per passenger817

by ' 5%. In the proposed approach, the operational short-turning and interlining lines818

are endogenously generated (in contrast to the works of Delle Site and Filippi (1998);819

Verbas and Mahmassani (2013); Verbas et al. (2015)), by considering a pool of virtual820

lines as part of the optimization process. The results indicate that the plurality of bus821

allocation options when considering a broader set of virtual lines can return a range of822

bus allocation combinations that offer almost equally large benefits. This provides a823

strong decision-support tool to bus service planners and operators who might have latent824

preferences or requirements (e.g. familiarity of bus drivers with certain lines, preference825

towards serving originally planned lines).826

The sensitivity analysis of the model application demonstrated that re-allocating even827

a small share of vehicles to virtual lines can have a significant impact on the total costs828

of the operations (i.e., significant improvements are observed even if 80% of the deployed829

buses are allocated to originally planned lines). This finding demonstrates that bus oper-830

ators do not need to change significantly the deployment of their buses for reducing the831

passenger/operational-related costs.832

Concerning the limitations of our approach:833

� our work allocates buses to originally planned and short-turning/interlining lines834

at the tactical planning stage using historical distributions of the round-trip travel835

times. For near real-time re-allocation of buses to lines, our approach should be836

modified for incorporating short-term traffic predictions;837

� buses need to be equipped with electronic destination signs (e.g., LED-type desti-838

nation signs) which can modify the displayed location of the final destination if they839

operate a short-turning or interlining service;840

� either observed or forecasted passenger demand between each pair of stops of each841

originally planned line needs to be available as input.842

Future research direction may consider the demand elasticity to changes in service843

frequency. Moreover, the development of tactical planning tools that incorporate transit844

34



assignment models will potentially allow capturing the impacts of such interactions on845

passenger flow re-distribution.846
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