Implementation of a 3D Virtual Drummer

Martijn Kragtwijk, Anton Nijholt, Job Zwiers

Department of Computer Science
University of Twente
PO Box 217, 7500 AE Enschede, the Netherlands
Phone: 00-31-53-4893686
Fax: 00-31-53-4893503
email: {kragtwij,anijholt,zwiers}@cs.utwente.nl

ABSTRACT

We describe a system for the automatic gen-
eration of a 3D animation of a drummer play-
ing along with a given piece of music. The in-
put, consisting of a sound wave, is analysed
to determine which drums are struck at what
moments. The Standard MIDI File format is
used to store the recognised notes. From this
higher-level description of the music, the an-
imation is generated. The system is imple-
mented in Java and uses the Java3D API for
visualisation.

1. INTRODUCTION

In this paper we describe preliminary results
of our research on virtual musicians. The
objective of this project is to generate ani-
mated virtual musicians, that play along with
a given piece of music. The input of this
system consists of a sound wave, originating
from e.g. a CD or a real-time recording.

There are many possible uses for an appli-
cation like this, ranging from the automatic
generation of music videos to interactive mu-
sic performance systems where musicians play
together in a virtual environment. In the last
case, the real musicians could be located on
different sites, and their virtual counterparts
could be viewed in a virtual theatre by a world-
wide audience. Additionally, our department
is currently working on instructional agents
that can teach music, for which the work we
describe in this paper will be a good founda-
tion.

For our first virtual musicians application,
we have restricted ourselves to an animated
drummer. However, the system is flexible
enough to allow an easy extension to other
instruments.

Audio
Signal Percussion
Recognizer
MIDI
Events
Animation
Generator
3D Animation

Figure 1: An overview of the system

As figure 2 shows, the total task can be
separated into two independent subtasks:

¢ An analysis of the sound signal and tran-
scription of the percussion part. The
system has to determine which drums
are hit, at what moments in time. Con-
centrating on percussion sounds has cer-
tain advantages and disadvantages; this
is further discussed in section 2.

e The creation of the the movements of
a 3D avatar playing on a drum kit. A
more detailed explanation on this part
is given in section 3 and 4.

2. THE PERCUSSION RECOGNISER

This part of the system is responsible for the
translation from a ‘low level’ description of
the music (the sound wave) to a abstract, ‘high
level’ description of all percussion sounds that
are present in the signal. These recognised
notes are stored as MIDI events.

Many attempts in the field of musical in-
strument recognition concentrate on pitched

sounds [1]. As explained in [9], this is a rather
different task than recognising percussive sounds,
which have a sharp attack, short duration,
and no clearly defined pitch. As shown in [9],
individual, monophonic samples of drums and
cymbals can be classified very well. In this
approach, a few frames of the spectrum, mea-
sured from the onset of the sounds, were matched
against a database of spectral templates.

In our highly polyphonic, ‘real-life’ situa-
tion, however, the input signal may contain
many percussive sounds played simultaneously,
and non-percussive instruments (such as gui-
tar and vocals) may be mixed through the
signal as well. Therefore, special techniques
are needed to separate the percussive sounds
from the other sounds. Other researchers
have already tried to solve the same problem
[13, 14]: Sillanp&da et. al. subtract harmonic
components from the input signal to filter
out non-percussive sounds. Furthermore, they
stress the importance of top-down process-
ing: using temporal predictions to recognise
soft sounds that are partially masked by louder
sounds [14]. Puckette’s Pure Data program
has an object called bonk that uses the dif-
ference between subsequent short-time spec-
tra, to determine whether a new ‘attack’ has
occurred.

We are still developing this part of the sys-
tem, therefore we cannot yet present a final
solution of this problem. We plan to solve
the problem of polyphony by adding exam-
ples that consist of multiple sounds played
together to the collection of spectral templates.
For example, a bass drum, snare drum and hi-
hat played together. For an off-line situation,
where the complete input signal is already
known, we plan to apply clustering methods
on all fragments of the signal that contain a
strong attack. This is based on our hypothe-
sis that specific drum sounds will sound very
similar throughout a piece of music. This
is especially plausible for commercial record-
ings, and/or in the case that the music con-
tains sampled drum sounds.

3. BASIC ALGORITHMS

In this section, we describe how our system

generates animations automatically. The var-

ious algorithms discussed here are kept rather
simple on purpose, to maintain a clear view

on the system as a whole. In section 4, more

advanced techniques (that give better results)

will be explained.

MIDI
Drum Kit Animation
Model Events

R ‘ Key
Frames

Ll

Figure 2: An overview of the system

3.1. Overview of the system

A general overview of the animation gener-
ation is shown in figure 2. An abstract de-
scription of the animation (in this case, a list
of time-stamped MIDI events) is transformed
into a ‘concrete’ animation. This lower-level
description of the animation is defined in terms
of ‘key frames’ [4] that can directly be used by
the graphical subsystem to animate objects
in the scene.

Our implementation uses the Java3D en-
gine for visualisation purposes [7]; the geom-
etry of the 3D objects we have used is has
been created using Virtual Reality Modeling
Language (VRML, [15]).

3.2. ‘Pre-calculated’ versus ‘real-time’ anima-
tion

In our current off-line implementation, the
piece of music to be played is completely known
in advance as a list of MIDI events. Therefore,
the entire animation can be computed before

it is started. In a real-time situation, where
the system has to respond to incoming MIDI
events, this would not possible. In that case,

a short animation should be constructed and
started immediately for each note that occurs
in the input.

A great advantage of pre-calculating the
entire animation is that the transitions be-
tween strokes will be much smoother: for
each note we already know which drum will
be struck next, and the arm can already start
moving towards that drum.

3.3. Polyphony Issues

Monophonic instruments (such as the trum-
pet or the flute) are relatively easy to animate,
because each possible sound corresponds to
exactly one ‘pose’ of all fingers, valves, etcetera,
and only one pose can be active at each mo-
ment in time. Highly polyphonic instruments
(such as the piano) are much more difficult,
because there are many different ways (‘fin-
gerings’) to play the same piece of music, and
a search method is needed to find a good so-
lution [8]. The drum kit could be viewed in
between these two extreme examples: up to
four sounds can be started simultaneously.

3.4. Drum Kit Model

In this section we will describe the parame-
ters that are used to model different drum
kits.

3.4.1. Event Types

The General MIDI standard [11] defines 47
different percussive sounds. The standard in-
cludes different versions of the same sound,
for example “Crash cymbal 1” and “Crash cym-
bal 2”. Our application should treat both events
in the same way.

Additionally, there are six different tom-
tom sounds (“Low floor tom”, “High floor tom”,

“Low tom”, “Low-mid tom”, “Hi-mid tom”, “High

tom”), while a ‘real’ drum kit usually only has
2 or 3 tom-toms. It may be clear that we have
to define a smaller set of ‘drum event types’
in the drum kit model . The MIDI events from
the input file can then be mapped onto these
drum event types.

Our current implementation distinguishes
between the following drum event types: BASS,
SNARE, RIM, HIGHTOM, MIDTOM, FLOORTOM,
CRASH, RIDE, RIDEBELL, SPLASH, CHINA, HI-
HATOPEN, HIHATCLOSED, HIHATPEDAL, COW-
BELL.

The drum event types do not neccesarily
have to have a one-on-one correspondence
with the objects in the 3D scene, because 2
or more event types can belong to the same
drum/cymbal, with a different ‘hit point’. A
good example of this are the ‘RIDE’ and ‘RIDE-
BELL’ events: both are played on the ride cym-
bal, but we speak of a ride bell (or cup bell)
when the stick hits the small ‘cup’ at the cen-
ter of the cymbal (this gives a bell-like sound,
hence the name).

3.4.2. Other Parameters

Other parameters that are defined in the drum
kit model:

e For each event type, a preferred hand:
-1 (“left”) or 1 (“right”).

o For each event type, a parameter minTimeGap

that determines how fast that particu-
lar event type can be played with one
hand. This parameter will be explained
in more detail in section 3.6.

3.5. MIDI Parsing

First, the list of MIDI events is transformed
into a list of DrumEvent objects according to
the mapping defined in the drum kit model
(see section 3.4). The class DrumEvent is an
extension of the AbstractEvent class (see
appendix ?7). Besides having a type code, a
DrumEvent has an associated velocity veleyent
in the range [0..1].

Secondly, the list of DrumEvent events is
parsed to remove double events ! and dis-
tribute the events over the different animated
objects. Objects in the scene respond to a
subset of drum event types.

Three new event lists are created (one for
the hands, one for the left leg and one for the
right leg) and the DrumEvents from the orig-
inal list are distributed between them. The
event list that is used for the hands will later
be subdivided for the left and right hand; this
is discussed in section 3.6.

3.6. Event Distribution

Drum events that can be played by both hands
(i.e. all events except BASS and HIHATPEDAL)
need to be distributed between the left and
right hand in a natural looking way.

3.6.1. Hand assignment

The first algorithm that we have tested, was
designed to be as simple as possible. It is
based on the following principles:

1. No more than two events, that are played
with the hands, can have the same time
stamp.

lsome MIDI files that we used contained ‘double
events’, that is: multiple events on the same chan-
nel, with the same time stamp, the same note number
and the same velocity. These extra events do not con-
tain new information, nor do they increase the velocity,
therefore we can discard them.

2. For each event type, there is a preferred
(default) hand that should be used if pos-
sible.

3. When playing fast rolls, both hands should

be used.

In our system, these principles were im-
plemented in the following way:

e When more than two events (that should
be played with the hands) are found to
have the same time stamp, all but two
are deleted.

o Aparameter defaultHandeventrype 8
specified for all event types. In our im-
plementation, the SNARE and RIM events
have the default hand set to ‘left’, while
‘right’ is the default hand for all other
events.

e A parameter minTimeGap is defined,
that determines how fast an event can
be played with one hand. This parame-
ter can have a different value for differ-
ent event types, Because the tendency
to alternate hands varies from one drum
type to another. For example, the hi-hat
is usually played with the right hand;
only in very demanding situations (fast
rolls) both hands will be used. On the
other hand, hand alternation on the high
tom is much more common.

These principles are implemented in algo-
rithm 3.1. It consists of two phases:

1. default hand assignment

2. hand alternation

Algorithm 3.1 A simple algorithm for event
distribution
iterate over all events e:
hand(e) := preferredHand(type(e))
iterate over all triplets of subse-
quent events (el,e2,e3):
if hand(el)=hand(e2)=hand(e3)
AND

Time(e2) -
Time(el) <= minTimeGap(type(el))
OR
Time(e3) -
Time(e2) <= minTimeGap(type(e3))
then
hand(e2) := otherHand(hand(e2))

3.7. Pose Creation

Figure 3: The graphical poser interface, ap-
plied to the left arm

A graphical user-interface (GUI) is provided
to create ‘poses’ manually. Figure 3 shows a
screenshot of the GUI applied to the left arm.
A pose consists of a set of angles or trans-
lation values: one for each degree of free-
dom. With the horizontal sliders, the user
can change these values.

Figure 4: ‘MID TOM
upP’ DOWN’

Figure 5: ‘MID TOM

For each limb, two posews should be spec-
ified for each drum event type that it sup-
ports: the ‘DOWN’ pose (the exact situation
on contact) and the ‘UP’ pose (the situation
just before and just after the hitting moment).
Examples of ‘UP’ and ‘DOWN'’ poses are shown
in figures 4 and 5.

Once a good position is achieved, it can be
stored in the pre-defined list of poses. The
entire list can be saved to disk, to preserve
the information for a next session.

3.7.1. Motivation

We have chosen for manually setting the poses
through a GUI interface, instead of using mo-
tion capture [16] or inverse kinematics for
the following reasons:

Costs: Motion capture equipment is expen-
sive, and requires a complete setup with

a real drum kit that matches the 3D kit.
If one would want to change something
in the 3D drum kit (for example, moving
a tom-tom) the whole capturing would
have to be done all over again.

Simplicity: there are only a small number of
poses, and they have to be set only once
for a new drum kit configuration.

Flexibility: besides the setting poses for the
arms and legs, the interface can also be
used for the hi-hat stand and pedal, the

cymbal stands, the parts of the bass pedal,

and giving the snare, bass drum and tom-
toms their position and orientation in
the 3D scene.

3.7.2. Implementation

In the object source files, we have to define
the parameters of the object, such as the de-
grees of freedom and the corresponding ro-
tation / translation axis. For example:

e arm:

- the shoulder can rotate around its
local X,Y and Z axis;

- the elbow can rotate around its lo-
cal X and Y axis, to make the lower
arm twist and the elbow bend, re-
spectively;

- the wrist can rotate around its lo-
cal X and Z axis

¢ hi-hat:

- the pedal can rotate around its lo-
cal Z axis

- the upper part (the stick to which
the upper cymbal is attached) can
be translated along the Y axis.

3.8. Key Frame Generation

In this section, the transformation from ‘ab-
stract events’ (DrumEvents) to ‘concrete events’
(key frames) is discussed. Because a different
approach is used for the limbs and the cym-
bals, they are discussed separately:

3.8.1. Avatar Animation

The poses that were created with the GUI in-
terface (see section 3.7) are used to create
key frames for the animation of the limbs.
For each arm and leg, its abstract time line

(that contains only drum events that should
be played by that arm/leg) is parsed in the
correct temporal order. For each abstract an-
imation event e, a Stroke is added to the an-
imation time line. A Stroke consists of three
‘concrete animation events’ (i.e. key frames):
(epefores €contacts Cafter)-

The parameter delta is a constant that
determines the time between the key frames
within a stroke (100ms is a useful value). See
figure 6 for a graphical representation of a
Stroke that will be used throughout this chap-
ter.

L UP Soorore Cater
T
S ype(e)
(=9
5]
£
= e = key frame
fim)
>
O
=Y DOWN oot N
type(©) econlact time

Time(e)—Delta Time(e)+Delta
Time(e)

Figure 6: A basic Stroke, consisting of key
frames ‘before’, ‘contact’ and ‘after’

If the time gap between subsequent ani-
mation events el and e2 is less then delta,
their key frames will overlap, and special care
has to be taken. We distinguish between two
cases:

e If el and e2 are of the same event type
(e.g. both are ‘SNARE’ events), the last
key frame of el and the first key frame
of e2 are replaced by an interpolated
key frame eNew: the less time between
el and e2, the closer the new key frame
will be to the ‘DOWN’ key frame, as can
be seen from figure 7.

/
/
/
/
N
A

dded key frames

UP -
type(el)

key frame space

1)
type(el) % & 8’

time

Figure 7: New key frames in the case of over-
lapping events of the same event type

e If el and e2 are of different event types
(e.g. a ‘SNAREFE’ and a ‘HIGHTOM’ event),
more time is needed to bring the arm

from the ‘after’ key frame of el to the
‘before’ key frame of e2. To accomplish
this, the time difference between el ontact
and el,rier, and between e2p, oy and
e2,rter 18 shortened. A parameter a (0 <
a < 1) determines the fraction of the
time between the events that is used for
moving the arm from el rrer 10 €2pe fore-

“z a

" e s s

S| up

o upP N type(e2)

g type(el)

&=

&

£ DOWN
DOWN type(e2)

type(el)

time

Figure 8: New key frames in the case of over-
lapping events of different event types

3.8.2. Drum Kit Animation

The event list, containing all DrumEvents from
every limb is used to animate the 3D drum
kit.

3.8.2.1. Pedals

The bass pedal and the hi-hat are animated
through the same kind of Stroke objects as
we use for the arms and legs. Because the
pedals and the feet have their ‘UP’ and ‘DOWN’
key frames at exactly at the same moments
in time, the illusion is created that the feet
really ‘move’ the pedals.

3.8.2.2. Cymbals

For the animation of the cymbals we use Vi-
bration objects, that contain a number of key
frames starting at the ‘contact’ time stamp of
a cymbal event. These key frames are com-
puted by rotating the cymbal object around
its local X and / or Z axis. The angles are
sampled from an exponentionaly decaying si-
nusoid:

apha,

-

Figure 9: angle(t)

angle
o

time ——=

angle(t) = n' Gmax sin(Bt)
In the above equation,
* Omax represents the maximum angle

e 1 is the damping factor of the vibration
(0 < n < 1): low values for n result in a
fast decay.

e 3 determines the speed of the vibration:
a higher value for B corresponds to a
shorter swing period.

Overlapping Vibrations are much easier
to deal with than overlapping Strokes. When
the first time stamp of a new Vibration falls
within the time range of an previous Vibra-
tion, the remaining events (key frames) are
deleted?.

A AT
VARVARVIRY

Figure 10: overlapping vibrations for events
[el,e2,e3]

apha_

_ange

4. IMPROVEMENTS

In this section, some advanced techniques will
be discussed that extend the system as de-
scribed in section 3. These techniques are
designed to make the motion of the virtual
drummer appear to be more ‘natural’ and ‘re-
alistic’. One should keep in mind, however,

ZNote that this will sometimes cause a sudden dis-
continuity in the angle, when a new vibration overrides
an existing one at a moment that the angle was not 0.
In practice, however, this effect is hardly noticed; prob-
ably because the viewer’s eye already expects a sharp
change in the motion of the cymbal, once it gets hit by
the stick.

that although some general rules can be fol-
lowed, there is no ‘perfect’ solution: different
drummers will have their own playing style.
Differences may lie in

e the parts of the drum kit: how many
and what type of cymbals, toms etc. are
used?

Is there one bass drum with a single pedal,
one bass drum with a double pedal, or
two bass drums with two seperate ped-
als?

¢ the setup of the drum kit: ‘normal’ (with
the hi-hat on the left side and the lowest
tom on the right side, this setup is used
by right-handed players) or ‘mirrored’
(for left-handed drummers)? Where are
the cymbals placed?

e The hand patterns used on a certain ‘roll’:
LLRR, LRLR, LRRL, etc.

e ‘grip’, the way of holding the drum sticks:
either ‘matched’ 3 or ‘traditional’ 4?

e the way of striking the drums: are the
palms of the hands kept vertical or more
horizontal?

4.1. Event Distribution

In our basic algorithm (see section 3.6), there
was a maximum of two simultaneous events
that were played by the hands. In this sec-
tion, we will show how this constraint can be
releaved by using the hi-hat pedal in specific
situations. First, however, another constraint
on the contents of the event list will be dis-
cussed.

4.2. Simultaneous hi-hat events

Our input list of MIDI events is not bound by
any ‘real-world’ constraints, and may there-
fore contain any number of simultaneous events,
even when this would be impossible to play
on a real drum kit. Consider the set of possi-
ble hi-hat events {HIHATCLOSED, HIHATOPEN,

3in matched grip, both hands hold their stick be-
tween thumb and index finger

4the traditional grip is often used by jazz drummers.
The right hand grip (for right-handed players) is the
same as with matched grip, while the left hand holds
the stick between thumb and index finger and also be-
tween ring and middle finger

HIHATPEDAL} ° :
played at a time.

We must therefore ensure that the event
list that is used to create the animation con-
tains no more than one hi-hat event at each
moment in time. This is taken care of in the
MIDI parsing stage: whenever two or three hi-
hat events have the same time stamp, one will
be kept and the others are discarded. Which
event is kept and which ones are removed is
a rather arbitrary choice.

only one of them can be

4.2.1. The hi-hat pedal as a substitute

Human drummers often use the hi-hat pedal
to play the hi-hat sounds when they have to
play two other sounds on the same time as
well. This is implemented in our system in
the following way: If three or more DrumEvents
have the same time stamp (not counting BASS
events), and one of them is a HIHATOPEN or
HIHATCLOSED event ¢ | this event is replaced
by a HIHATPEDAL event with the same time
stamp and velocity.

4.2.2. Hand assignment

The hand assignment algorithm described in
section 3.6 is easy to model and gives satis-
factory results in most situations. However,
a number of problems arise:

e when two simultaneous events have the
same default hand (for example, MID-
TOM and LOWTOM), the original algo-
rithm would remove one of the events
from the list, even when the other hand
could have played that event.

¢ in some cases, the arms are crossed when
this is not necessary: consider for ex-
ample a fast sequence HIHATOPEN-RIDE-
HIHATOPEN. Both RIDE and HIHATOPEN
have ‘right’ as default hand, and the hand
alternation algorithm will assign the RIDE
event to the left hand. Most drummers,
however, would in this case prefer to
play the HIHATOPEN with the left hand
and the RIDE with the right hand.

5This is a strongly simplified view of reality, as hu-
man drummers are able to play much more different hi-
hat sounds than these three. For example, playing with
the hi-hat cymbals almost closed sounds entirely dif-
ferent than both HIHATOPEN and HIHATCLOSED. How-
ever, the three event types that we consider in our
model are the only three that are included in the Gen-
eral MIDI specification, and are used in most situations.

6Note that there can only be one such event, because
of the filtering as explained in section 4.2.

Our second algorithm, that solves these
shortcomings, uses default hand assignments
for all possible pairs of events. For exam-
ple, we can define that whenever RIDE and
HIHATOPEN are played together, the RIDE is
played with the right hand and the HIHAT
with the left. We should keep some flexibility,
as these constraints do not have to be equally

strong for all pairs: for example, SNARE+CRASH

can be played as left-right just as easy as right-
left.

The drum kit model is extended with a
function pair (eventType,eventT ype), that
returns a floating-point value in the range [-
1..1]. The semantics of this value are as fol-
lows:

—1 = strictly left-right
0 = don’t care
1 = strictly right-left

The improved hand assignment algorithm
uses just the pair(a, b) function for simulta-
neous events. For events [el, e2] with a time
gap At greater that zero, the default hand
values are taken into account as well.

For each event with index I in the event
list, a hand assignment value is calculated
twice: in the pair [event(I-1),event(I)] and in
the pair [event(I),event(I+1)]. Afterwards, these
two values are averaged to yield the final hand
assignment value for event(l).

For a pair [el,e2] the hand assignment val-
ues (hand(el), hand(e2)) are calculated in
the following way:

At =Time(e2) — Time(el)
hand(el) =p®tpair(el,e2) + (1 — pt)
X defaultHand(el)
hand(e2) =p>t(—pair(el,e2)) + (1 — p2t)
X defaultHand(e2)

The decreasing exponential function p2f
(0 < p < 1) ensures that the default hand val-
ues are taken more into account when there
is more time between el and e2, at the same
time lowering the influence of the pair-wise
hand preference.

4.2.3. Shortest path methods

A third possible solution to the hand assign-
ment problem might be found in shortest-
path methods, as used in [8, 10]. These meth-
ods consist of the following steps:

1. generate all possible solutions

2. assign a distance value to each solution
(e.g. based on distances between drums,
penalties for using a certain hand for a
certain event type, etcetera)

3. take the solution with the lowest dis-
tance value.

Problems with this approach lie in the design
of a good distance function, and in the large
number of possible solutions’. We have not
(vet) implemented a shortest-path algorithm
in our system.

4.3. Key Frame Generation
4.3.1. Drum Elasticity

In a real drum Kit, one can observe that some
drums or cymbals are more ‘elastic’ than oth-
ers, i.e. the drum stick ‘bounces’ more on one
object than on another. Besides the object it-
self, the elasticity is also dependent on the
way of playing: the stick will bounce back
more on the hi-hat when it is played ‘closed’
then when it is played ‘open’.

To simulate this phenomenon, we extend
the drum kit model with an elasticity param-
eter eleyentType in the range [0..1] for each
drum event type. The value of eleyentType
determines how far the drum stick should
bounce back to its initial position after con-
tact. In this definition, O means “no elastic-
ity” while 1 corresponds to “maximum elas-
ticity”. The elasticity values are now used in
the following way: for each stroke, the TR fer
key frame is interpolated between the ‘UP’
and the ‘DOWN’ pose:

TRhefore =TRyp
TRcontact :TRDOWN

TRafter =TRpown + eleventType
X (TRyp — TRpown)

From this, one can easily deduce that

eleventType =0~ TRafter = TReontact
eleventType =1- TRafter = TRUP

"This is of exponential complexity, as n events can
be distributed over the 2 hands in 2" ways

4.3.2. Note Velocities

In the basic algorithm (see section 3.5), we

poses are defined for the neck joint, and for
each ‘beat’ note a Stroke is created. We have
used the SNARE event on the left hand as an

did not take the velocities velsyent Of the DrumEveréEﬁ:)roximisation of beat notes.

into account. It would of course be more con-
vincing to use different animations for differ-
ent velocities. use different animations for
different velocities will result in a more ‘nat-
ural’ behavior: the ‘UP’ position should be
closer to the drum surface for softer notes,
and further away in the case of loud notes.
The key frames [TRbefore; TRcontacts TRafter]
that make up a Stroke can therefore be de-
fined as follows (see also figure 11):

TRpefore =TRpown + Veleyent X diff
TRcontact :TRDOWN
TRafter =TRpown + veleyent X eleventType
x diff
diff =TRyp — TRpown

TR : : \/ .
DOWN vel=1.0

ve=05 ve=05

vel=1.0
el=05 el=0.25 e=1.0 el=0.5

Figure 11: The effect of different velocity and
elasticity values.

4.3.3. Extra avatar animation

In this section, a number of extensions are
discussed that animate parts of the avatar
that were not animated at al in the basic sys-
tem. This helps a great deal to make the
avatar look ‘alive’.

4.3.3.1. The head

The head of the avatar is animated, to cre-
ate the effect that the avatar ‘follows’ his hands
with his eyes. First, we create poses for the
head: one for each event type that is sup-
ported by the hands. These poses rotate the
head so that the eyes are pointed at the as-
sociated drum / cymbal. If we then use all
events that are played by e.g. the right hand
to create a key frame time line, the head ap-
pears to ‘follow’ this hand.

4.3.3.2. The neck
The neck joint is used to make the avatar
nod with his head on the beat: ‘UP’ and ‘DOWN’

Finding the ‘real’ beat in a MIDI file is far
from trivial, and many other researchers have
addressed this problem [3, 2, 5, 6]. Our sys-
tem could very well be integrated with an in-
telligent beat detector to create even better
looking behaviour.

4.3.4. Key Frame Interpolation

After the basic key frames are set, the motion
is fine-tuned by inserting extra key frames ac-
cordiapplying a different interpolation script
between certain key frame types (‘before’ /‘con-
tact’ /‘after’). These scripts can also be differ-
ent for each joints.

The example scripts shown in figure 12
create rather convincing results, because the
stick moves slightly ‘behind’ the hand, giving
in a whip-like motion. These interpolation
scripts are derived by observing the motion
of a human drummer.

from *after” from “before’ from *contact’

next to ‘before” to “contact” to ‘after’
key frame b g =
elbow
rrrrr wrist
— dtick
current
key frame s = .5 o
53 §3 58 §8 88 53
Figure 12: example interpolation scripts for

the elbow and the wrist and stick joints

4.4. Implementation Notes

The Java3D API is used for the implementa-
tion, because it is platform-independent and
supports a wide range of geometry file for-
mats. Moreover, the our virtual theatre [12] is
currently being ported from VRML to Java3D.

The SMF format (Standard MIDI File) is used
as intermediate file format between the per-
cussion recogniser and the animation gener-
ator. A great advantage of using the SMF is,
that it allows us to use MIDI files (which are
widely available on the WWW) to test the an-
imation generator independent from the per-
cussion recognizer.

For the synchronisation of the animation
and the sound, a seperate thread is used, which
looks up the current audio position and ad-
justs the start time of the animation accord-

ingly.

5. CONCLUSION

We have chosen for a GUI-based pose editor
and script-based key frame interpolation. A
screenshot is shown in figure 3. This proves
to be a very flexible solution, since there are
only a small number of poses, and they have
to be set only once for a new drum kit config-
uration. The system could be extended with
motion capturing, dynamics and inverse kine-
matics to create even more realistic behaviour,
but at the cost of losing simplicity and flexi-
bility. The interpolation scripts create natu-
ral motion, while the hand assignment algo-
rithm ensures the arms will not cross. Mo-
tion capture would require the setup of the
virtual drum kit to exactly match the setup
of the ‘real’ kit, so changes cannot easily be
made.

The animation results can be viewed at
our web site: http://wwwhome.cs.utwente.nl
/ kragtwij/science/

6. REFERENCES

[1] A. T. Cemgil and F. Gurgen. Classi-
fication of musical instrument sounds
using neural networks. Technical re-
port, Department of Computer Engi-

neering, Bogazii University, Istanbul
Turkey, 1997.
[2] P. Desain and H. Honing. Quantiza-

tion of musical time: A connection-
ist approach. Computer Music Journal,
13(3):56-66, 1989.

[3] P. Desain and H. Honing. Can music cog-
nition benefit from computer music re-
search? from foot tapper systems to
beat induction models. In Proceedings
of the ICMPC, pages 397-398, Liege: ES-
COM, 1994.

[4] J. D. Foley, A. van Dam, S. K. Feiner, and
J. F. Hughes. Computer Graphics: Princi-
ples and Practice. Addison-Wesley Pub-
lishing Company, second. edition, 1990.

[5] M. Goto and Y. Muraoka. Music un-
derstanding at the beat level: Real-time
beat tracking for audio signals. In Work-
ing Notes of the IJCAI-95 Workshop on
Computational Auditory Scene Analysis,
pages 68-75, Montreal, Aug. 1995.

[6] M. Goto and Y. Muraoka. A real-time
beat tracking system for audio signals.

In Proceedings of the International Com-
puter Music Conference, pages 171-174,
Sept. 1995.

[7] The Java3D APIL http://java.sun.com/-
products/java-media/3D/.

[8] J. Kim. Computer animation of pianist’s
hand. In Eurographics '99 Short Papers
and Demos, pages 117-120, Milan, 1999.

[9] M. Kragtwijk. Recognition of percus-
sive sounds using evolving fuzzy neural
networks. Technical report, University
of Otago, Dunedin, New Zealand, July
2000. Report of a practical assignment.

[10] T. Lokki, J. Hiipakka, R. Hanninen, T. Il-
monen, L. Savioja, and T. Takala. Real-
time audiovisual rendering and con-
temporary audiovisual art. Organised
Sound, 3(3):219-233, 1998.

[11] The general midi specification.
http://www.midi.org/about-midi-
/gm/gm1lsound.htm.

[12] A. Nijholt and J. Hulstijn. Multimodal in-
teractions with agents in virtual worlds.
In N. Kasabov, editor, Future Directions
for Intelligent Systems and Information
Science, Studies in Fuzziness and Soft
Computing, chapter 8, pages 148-173.
Physica-Verlag, 2000.

[13] M. Puckette. Pure data: Recent progress.
In Proceedings of the Third Intercol-
lege Computer Music Festival, pages 1-4,
Tokyo, 1997.

[14] J. Sillanpaa et al. Recognition of acoustic
noise mixtures by combined bottom-up
and top-down processing. In Proceed-
ings of the European Signal Processing
Conference EUSIPCO, 2000.

[15] Web3d
http://www.vrml.org/.

consortium.

[16] V. B. Zordan and J. K. Hodgins. Track-
ing and modifying upper-body human
motion data with dynamic simulation.
In Computer Animation and Simulation
’99. Springer-Verlag Wien, 1999.

