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Abstract. Human Activity Recognition has been primarily investigated
as a machine learning classification task forcing it to handle with two
main limitations. First, it must assume that the testing data has an equal
distribution with the training sample. However, the inherent structure
of an activity recognition systems is fertile in distribution changes over
time, for instance, a specific person can perform physical activities differ-
ently from others, and even sensors are prone to misfunction. Secondly,
to model the pattern of activities carried out by each user, a significant
amount of data is needed. This is impractical especially in the actual era
of Big Data with effortless access to public repositories. In order to deal
with these problems, this paper investigates the use of Transfer Learn-
ing, specifically Unsupervised Domain Adaptation, within human activ-
ity recognition systems. The yielded experiment results reveal a useful
transfer of knowledge and more importantly the convenience of transfer
learning within human activity recognition. Apart from the delineated
experiments, our work also contributes to the field of transfer learning
in general through an exhaustive survey on transfer learning for human
activity recognition based on wearables.

Keywords: Human Activity Recognition · Transfer Learning · Unsu-
pervised Domain Adaptation.

1 Introduction

Human Activity Recognition (HAR) is a machine learning task that induces
human activity models able to classify human activities. Though, HAR has rel-
evant applications, including in health care, it still has several challenges that
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need to be overcome, including the subject sensitivity and model adaptabil-
ity. The predictive performance of a classification model in human activities is
largely affected by the physiological features of each person. For instance, young
people perform ambulation activities different from elder or disabled people [1].
Although a specialised model could be developed for each individual, the cost
would be much higher than to induce more generic models, with high predictive
performance for different user profiles.

When HAR systems are used for classification of human activities, they usu-
ally assume the data distribution is stationary. However this is not necessarily
true. Users tend to perform activities differently over time, as they get older
or face temporary movement restrictions. Besides, sensors may need frequent
calibration and are prone to misfunction.

In this work, we provide a literature revision in Transfer Learning (TL) to
leverage the performance of HAR systems. TL is a Machine Learning (ML)
sub-area that focuses on the re-utilisation of knowledge between ML tasks, by
allowing the dataset distributions and even their training and testing sets be
different.

The primary goal we expect to achieve by applying TL in HAR is through
different, but related, datasets, boost the system’s performance of the target
domain. As a side effect of achieving this goal, we expect to reduce the effort of
capturing labelled data increasing the efficiency of a HAR system.

2 Transfer Learning in HAR

HAR relies on the deployment of pervasive but non-intrusive sensors in the en-
vironment surrounding humans. HAR techniques are able to help understanding
the context in which a person is involved, especially when help is needed, as in
health care systems. Most typical ML models assume that both training and test
datasets have the same distribution and feature space. This assumption is indeed
a significant limitation since it’s proven [2] that real problems suffer distribution
mismatch over time and the test error is in proportion to the given difference.

2.1 Transfer Learning

The learning paradigm of TL uses past-knowledge, whether through datasets
or model parameters, to leverage the performance of a different, but related,
problem. In fact, this paradigm is inspired on our biological learning process,
that the more experience we have better prepared are we when confronting novel
conditions [3].

Essentially, a TL problem is composed of two categories of datasets, source
and target. The primary goal is to, using a source dataset, leverage the per-
formance in a target datasets. These two datasets have to be different whether
regarding the source and target domains or both tasks. The knowledge of the
particular cause of the difference is crucial, since it dictates which TL approach
can be applied. A dataset domain consists of two elements, a feature space and
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a marginal probability distribution, while its task is composed of two elements,
a label space and an objective predictive function. A distribution mismatch be-
tween datasets is considered a dataset-shift problem.

2.2 Dataset shift in HAR

According to a survey of the related literature, the most likely shift-cause agents
within HAR are the sensor and the user.

Sensor misplacement is likely to happen since it can sometimes be intrusive
to the user causing him to change the position voluntarily. Furthermore, if even
the sensor is placed in a comfortable position, it can be misplaced involuntarily
during the activities, especially the ambulant ones. For this specific problem, we
emphasize the works by Calatroni et al. [4], Khan et al. [5], Rokni [6], Krishnan
[7], Kurz et al. [8], Roggen et al. [9], and Zhao et al. [10].

Regarding the user, the age and the physiology are the main causes for dif-
ferent activity executions and must be thought of when training a HAR classi-
fication model, to prevent training a model with users different from the target
user. For user-related shift problems, various works have been proposed, such as
the works of Deng et al. [11], Zhao et al. [12], Chen et al. [13], Hachiya et al.
[14], Diethe et al. [15], and Fallahzadeh [16].

There are other shift causes, such as the environment itself, which are typical
in smart homes HAR, where models are trained with laboratory data that do
not accurately represent a real-world scenario. As research works have shown,
laboratory environments generally restrict and influence subject activity patterns
[17].

3 Unsupervised Domain Adaptation

Unsupervised Domain Adaptation is one specific scenario of TL recurrent in
HAR contexts because it assumes the availability of labelled data only from the
source domain and unlabelled data from the target domain, the same feature
space and label space, and a distribution mismatch (e.g. different users, sensor’s
positions, surrounding environments). We firstly notice four different approaches
to tackle this field: instance-weighting; self-labelling, feature representation; and
cluster-based [19]. An instance weighting approach assigns weights to the source
samples depending on their similarity with the target samples. A self-labelling
approach focuses on adapting classifiers trained from the source samples to the
new target domain. An approach of feature representation constructs an abstract
representation of the data, while a cluster-based one assumes that from high-
density regions we can perceive the similarity between the two domains.

3.1 Feature-Representation Employed Techniques

Transfer Component Analysis (TCA) [20] recurs to a dimensionality reduction
method, Maximum Mean Discrepancy Embedding (MMDE)[21], that learns a
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low-dimensional latent space common to both domains. This way, it embeds both
source and target domains into a shared low-dimensional latent space using a
non-linear mapping function to learn then a corresponding kernel matrix.The
kernel matrix is defined on all data by minimising the distance, measured with
the Maximum Mean Discrepancy metric, between the projected two domains
while maximising the embedded data variance. Having found a transformation
matrix, a classifier can finally be trained with it to predict the target domain
accurately.

Subspace Alignment (SA) [22] first generates the subspaces by representing
the source and target domains into subspaces spanned by eigenvectors. Then,
it focuses on the alignment of the two subspaces to decrease the discrepancy
between both the source and target domains.

3.2 Instance-Weighting Employed Techniques

Nearest Neighbour Weighting (NNeW) [23] applies a Voronoi tessellation of the
space to help to determine the weights for each source sample. Hence, the weight
on each sample is dependent on the number of target neighbour samples. As the
final step, it is then applied Laplace smoothing for regularising the weights to
avoid some getting exaggeratedly biased towards the test set.

Kernel Mean Matching (KMM) [24] directly estimates source weights without
performing density estimation, as most algorithms in this scenario. Maximum
Mean Discrepancy is the technique used to define the weights in a way that the
divergence between the source and target domain is minimised.

4 Experiments

Employing two HAR datasets, PAMAP2 [25] and ANSAMO [26], we evaluated
the four TL techniques (TCA, SA, KMM, NNeW) in various HAR scenarios hav-
ing different mismatches of distribution between the source and target datasets.
In total, we delineated five different experiment scenarios (AA-AGE, AA-POS,
AP-ENV, PA-ENV, PP-POS), where we explore the user’s age, sensor misplace-
ment, and environment as shift-causes.

As for the employed techniques, we adopted three different learning ap-
proaches, TL, supervised and semi-supervised for comparison purposes. The two
latter approaches are necessary since both serve as baseline methods helping to
identify negative transfer in each TL approach.

Each TL technique had to be linked with a classifier, since the TL techniques’
responsibility was only adjoining the source and target distributions, leaving
classification task to the classifier. Therefore we incorporated each TL tech-
nique with four different classifiers (Logistic Regression, Bernoulli Naive Bayes,
Decision Tree, Linear Support Vector Machine) to find the highest performance
combination. Having found the best combinations, we posteriorly implemented a
majority voting ENSemble (ENS) composed of KMM with Decision Tree, NNeW
with Logistic Regression, and SA with Logistic Regression.



Unsupervised Domain Adaptation for Human Activity Recognition 5

Table 1. Average accuracy obtained in each experiment scenario per technique.

AA-AGE AA-POS AP-ENV PA-ENV PP-POS

SUP 0,52 0,25 0,65 0,71 0,57
SEMI 0,30 0,24 0,49 0,46 0,33
KMM 0,58 0,35 0,72 0,77 0,50
NNeW 0,57 0,34 0,68 0,78 0,55

SA 0,54 0,24 0,68 0,76 0,57
TCA 0,35 0,27 0,27 0,25 0,19
ENS 0,60 0,36 0,65 0,83 0,54

Regarding the semi-supervised approaches, we used two different iterative
techniques, Label Propagation [27] and Label Spreading [28], where a model is
trained with both the labelled source and unlabelled target samples.

As for the supervised approaches, we adopted the same four classifiers of TL,
where a model is taught only with the original source dataset and tested with
the target sample. These two approaches are necessary to help identify negative
transfer in the TL results.

4.1 Age, Position, and Environment as Shift-Causes

The AA-AGE scenario focuses on exploring the users’ age as the leading cause
for distribution mismatch between datasets. Using only the ANSAMO dataset,
the younger users compose this scenario’s source dataset to help classify the
activities of the older people unlabelled target dataset. In total we implemented
3 experiments, each trying to classify from different positions (ankle, chest, and
wrist) 6 activities (bending, hopping, sitting, ascending stairs, and walking).

Regarding the AA-POS and PP-POS scenarios, the goal was to explore the
misplacement of sensors as the leading cause for distribution mismatch between
datasets. Each experiment consists of using a source dataset with data of a par-
ticular position (e.g. wrist) to help identify the activities of a target dataset
captured from a different position (e.g. ankle). Two scenarios were devised, one
using the ANSAMO, named AA-POS, and the other the PAMAP2 dataset,
named PP-POS. Since the ANSAMO dataset had data captured from four dif-
ferent positions (ankle, chest, waist, wrist), and the PAMAP from three (ankle,
chest, wrist), we devised 18 unique experiments. As for the activities, the AA-
POS scenario had 7 (bending, hopping, running, sitting, ascending stairs, de-
scending stairs, and walking) and PP-POS had 8 (lying, rope jumping, running,
sitting, ascending stairs, descending stairs, standing, and walking).

As for the AP-ENV and PA-ENV scenarios, the goal was to explore the
environment as the primary cause for distribution mismatch between datasets.
Two scenarios were delineated, AP-ENV and PA-ENV, in which the former uses
the ANSAMO dataset and PAMAP2 as source and target datasets, respectively.
The latter employs the PAMAP2 dataset to leverage the activity recognition
in the ANSAMO dataset. Every implemented experiment classifies 5 activities
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(running, sitting, ascending stairs, descending stairs, and walking) in 3 different
positions (ankle, chest, wrist).

4.2 Results & Discussion

Altogether, we tested 22 different approaches in 5 experiment scenarios. As de-
picted in Table 1, in 3 of the 5 scenarios, the TL approaches had a significant
transfer of knowledge particularly in the age and environment shift-cause sce-
narios. The ensemble approach, as expected, obtained the highest score gaining
8% in AA-AGE, 11% in AA-POS, and 12% in PA-ENV comparing with the
supervised approach.

Furthermore, by comparing all the yielded results between the ensemble and
baseline methods through Friedman Sum Rank test we are able to observe a
significant difference between the three methods for the significance level of 1%
(p-value = 6.707e-07, p-value < 0.01). Additionally, with a Nemenyi post-hoc
test [29] we are also able to observe that there is a highly significant difference
between the ensemble and the semi-supervised approach and between the en-
semble and the supervised approach for a significance level of 5% (p = 3.3e-07
and p = 0.022, respectively).

Moreover, Figure 1 has the comparative performance between ensemble and
supervised models, and between ensemble and semi-supervised models. In over-
all, the results show the usefulness of applying TL in scenarios where there is a
considerable distribution mismatch. While the ensemble has a median positive
variance relative to the semi-supervised of 23%, it has a minor variation relative
to the supervised approach with 9%.

Fig. 1. Accuracy’s variation between the ensemble technique and the supervised ap-
proach, and between the ensemble technique and the semi-supervised approach.
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5 Conclusions

Overall, we accomplished the delineated objectives. Our work not only con-
tributes to the unsupervised domain adaptation field but to TL as well through
the extensive performed survey. The yielded results indicate a highly significant
difference between the TL ensemble approach with the semi-supervised approach
and a less but significant difference with the supervised approach.

As for future work, we envision the study of this same domain but with
an online learning approach. Having obtained in experiments negative transfer
by some TL techniques, especially with TCA, it would be better employing
multiple source datasets, which would likely have higher success since it increases
the chance of discovering useful transferable knowledge between the source and
target datasets.
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