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2.1  INTRODUCTION

Ecophysiological functioning of vegetation is an essential basis for plant production, food security, 
and carbon exchange between land surface and the atmosphere. Plant productivity varies to a large 
extent based on the ecophysiological functioning under changing environment and management. 
Carbon and water balances in ecosystems are strongly controlled by ecophysiological functioning 
such as photosynthesis and transpiration (Nobel, 2005).

Accordingly, systematic monitoring, assessment, and prediction of the ecophysiological 
functioning in various scales are critical for food security and environmental policy making. 
Geospatial information on crop growth and ecophysiological functioning is useful for site-specific 
management and smart agriculture that seek to achieve higher crop yield and quality with less labor 
and agrochemical inputs. Regional or global scale information on plant growth, carbon exchange, and 
water balance would support policy making for better management of ecosystems and environment 
(de Leeuw et al., 2010; Vadrevu et al., 2018).

Assessment of photosynthetic functioning is one of the most important bases for the diagnosis and 
prediction of plant growth, as well as carbon exchange between ecosystems and the atmosphere. A 
great deal of research effort has been directed toward the assessment of ecophysiological variables 
and plant productivity using remote sensing in optical, thermal, and microwave wavelength domains 
together with modeling approaches (e.g., reviews by Moran et al., 1997; Inoue, 2003; Olioso et al., 
2005). Remotely sensed optical signatures have proven useful for estimating ecological variables 
such as leaf area index (LAI) and the absorptivity of photosynthetically active radiation (fAPAR) 
that affect photosynthetic capacity (Daughtry et al., 1983; Asrar et al., 1989; Huete, 1988). Thermal 
remote sensing (e.g., brightness temperature) provides critical information on transpiration and/or 
water stress via energy balance of vegetation (Jackson et al., 1981; Inoue et al., 1990; Moran et al., 
1994). Microwave signatures (e.g., backscattering coefficient) can provide structural information of 
plant canopies such as leaf area index and biomass depending on their frequency and incidence angle 
(Le Toan et al., 1997; Inoue et al., 2002; Inoue et al., 2014).

Nevertheless, the hyperspectral spectral reflectance in the optical domain is the richest 
information source for ecophysiological functioning owing to the close relationships of biophysical 
and biochemical properties of vegetation with the solar radiation (300–3300 nm). The typical 
seasonal change of hyperspectral reflectance in rice paddy (Figure 2.1) clearly depicts the spectral 
response to vegetation, water, and soil associated with plant growth. Such relationships are 
inherent because the biological properties, structures, and functions of vegetation would have 
been optimized in response to the high-resolution (∼1 nm) spectral change of solar radiation 
for the survival strategies. Accordingly, hyperspectral reflectance data would provide various 
ecophysiological and biochemical information although the data richness is not always favorable 
for predictive purposes.

In this chapter, methodologies for and insights about the use of hyperspectral reflectance data 
for assessment of ecophysiological functioning are discussed based on a range of case studies with 
ground-based and airborne hyperspectral measurements.

2.2 � LINKAGE OF ECOPHYSIOLOGICAL FUNCTIONING AND 
BIOPHYSICAL PROPERTIES WITH HYPERSPECTRAL REFLECTANCE

One of the most important functions of vegetation is photosynthesis. The net photosynthetic rate 
per leaf area (Pn) or net primary production (NPP) is the basis for plant production and crop yield. 
Photosynthesis is composed of several steps that work together in harmonized manner with high 
overall efficiency (Nobel, 2005). Pn is determined by (1) the photosynthetically active radiation 
absorbed by leaf chlorophyll (Chl-a and Chl-b); (2) water and carbon dioxide supplies; and (3) 
the photochemical and biochemical efficiency for producing carbohydrates. Accordingly, the 
amount of Chl-a and b provides essential information on the photons available for photosynthesis. 
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The de-epoxidation state of the xanthophyll cycle also provides physiological information on the 
photochemical activity related to heat dissipation (Demmig-Adams and Adams, 1996).

The absorptivity of pure Chl-a and b has unique spectrum in 400–700 nm wavelength regions; 
Chl-a and Chl-b have relatively narrow peaks in blue (430 nm and 455 nm) and red (662 nm and 
644 nm), respectively (Nobel, 2005). In plant leaves, these peaks shift toward longer wavelengths 
by 10–30 nm due to the interactions between chlorophyll molecules and the surrounding molecules 
such as proteins and lipids in the chloroplast membranes as well as the adjacent water molecules. 
Accordingly, the actual absorption peak of plant leaves is usually 670–680 nm (Figure 2.2).

On the other hand, the photochemical functionality may be related to the spectral change around 
531 nm because a small spectral shift is associated with the de-epoxidation state of the xanthophyll 
cycle (Gamon et al., 1992; Peñuelas et al., 1995). This is the biological basis for photochemical 
reflectance index (PRI), where the shift of absorption spectra between zeaxanthin and violaxanthin 
is assumed to be detected by the difference of reflectance at around 531 nm (Figure 2.3).

Water is another essential basis for ecophysiological functioning of vegetation, and has significant 
influences on the photosynthetic efficiency through stomatal conductance and photochemical 
processes (Nobel, 2005). Since water has broad light absorption bands around 1450 and 1950 nm, 
reflectance spectra of leaves is strongly affected by leaf water content (Figure 2.4, Inoue et al., 1993; 
Ceccato et al., 2002). Accordingly, the water conditions can be detected by broad-band multispectral 
data by such as NDWI (normalized difference water index) using shortwave infrared bands (Hunt 
and Rock, 1989). Additionally, several hyperspectral signatures such as R970 nm, first derivative 
at 1121 nm, and the spectral shift at approximately 2010 nm were also closely related to leaf water 
status (Inoue et al., 1993). Peñuelas and Inoue (1999) showed that the ratio of reflectance at 970 nm 

FIGURE 2.1  Typical seasonal change of hyperspectral reflectance in a rice paddy. Date (MM/DD) indicates 
month and date. Note: Spectral lines indicate the average spectrum of 10–30 measurements over individual 
canopy surfaces. Number of repetitions depends on the heterogeneity of each surface. This applies to all 
spectral lines for plant canopies throughout this chapter.
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(R970) to R900 was closely correlated with leaf water condition. These findings would be useful for 
assessment of water stress of vegetation (Ceccato et al., 2002; Roberto et al., 2012).

Some additional spectral features related to specific pigments and biochemical functioning such 
as carotenoids, anthocyanin, and fluorescence would also be the basis for hyperspectral remote 
sensing of ecophysiological functioning (Blackburn, 1998; Gitelson et al., 2001; Grace et al., 2007). 
A number of researchers suggested that these signatures would be promising, although many more 
studies would be needed for accurate and robust monitoring of functioning of vegetation (Sims and 
Gamon, 2002; Ustin et al., 2009).

These unique spectral responses are the promising key for remote sensing of ecophysiological 
functioning of vegetation based on their inherent relations with the functioning. Hyperspectral 
measurement is necessary for detection and quantification of these spectral signatures since these 
narrow peaks can easily be masked or obscured in broad-band data. Especially in canopy or larger 
scales, subtle spectral changes associated with ecophysiological changes would also be obscured by 

(a)

(b)

FIGURE 2.2  Typical reflectance spectra (a) and derivative spectra (b) for rice canopies with different canopy 
chlorophyll content (CCC). Data in two wavelength regions around 1400 and 1900 nm are eliminated because 
of the low incoming solar energy due to atmospheric water vapor. (After Inoue, Y. et al., 2016. Plant, Cell and 
Environment, 39, 2609–2623.)
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FIGURE 2.3  Schematic representation of spectral change associated with the xanthophyll cycle in response 
to environmental conditions.

FIGURE 2.4  Typical change of reflectance spectra in response to relative water content (RWC) of a plant leaf. 
RWC is the ratio of actual water content to full-turgor water content. Each line indicates the single spectrum 
taken for a leaf with the corresponding RWC during consecutive desiccation.
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various confounding factors such as canopy structure and background soils (Ceccato et al., 2002; 
Dash and Curran, 2004: Garbulsky et al., 2010).

2.3 � METHODOLOGIES TO GENERATE PREDICTIVE 
MODELS FROM HYPERSPECTRAL DATA

It is essential to extract ecophysiological information from remotely sensed data for diagnostics 
and prediction of vegetation dynamics. A great deal of efforts have been spent to derive useful 
information from remotely sensed signatures. It is true that multispectral or broadband data can 
provide useful information on vegetation to some extent. Many vegetation indices have been 
developed for assessment of individual biophysical variables using multispectral data (Castro-Esau 
et al., 2006; Cammarano et al., 2014; Karnieli et al., 2013). However, hyperspectral datasets would 
provide much more opportunities for detection and modeling of ecophysiological, biochemical, and 
photochemical status due to the inherent linkages of narrow band signatures with ecophysiological 
functioning (see Section 2.2).

Additionally, hyperspectral data allow a range of advanced analytical methods such as derivative 
analysis, multivariable analysis, simulation for virtual sensor specification, and inversion of 
physically based models. Here, major methodologies enabled by hyperspectral measurement are 
discussed. Although they are semiempirical, data-driven, or physically based approaches, all types 
of methodologies are based on statistical or empirical modeling or parameterizations to a certain 
extent. Therefore, appropriate methodologies would have to be chosen for individual scientific or 
operational purposes.

2.3.1  Generalized Spectral Index Approach

In earlier stage of remote sensing studies, a great deal of effort was spent to devise various 
spectral indices for applications of satellite and airborne multispectral sensors to classification or 
quantification of vegetation and other land surfaces. Accordingly, a number of spectral indices 
have been proposed with specific names such as NDVI, EVI, SAVI, OSAVI, TSAVI, MCARI, and 
so forth (see Section 2.5). Generally, these indices are calculated using a few waveband data since 
the normalization of reflectance values by using multiple wavebands is effective in reducing the 
influence of errors or uncertainty due to atmospheric and background differences, as well as in 
enhancing and/or linearizing the spectral response to target vegetation (e.g., Huete, 1988; Gitelson 
et al., 2005; Qi et al., 2012).

However, the wavelengths and bandwidths for those indices are often specific to sensors used 
in individual studies, and their naming is also arbitrary. This implies that predictive models are 
also sensor specific and new calibration datasets are always required for each sensor, which would 
hamper standardization and require extra labor and cost. In addition, such target-oriented naming is 
insufficient to represent the multiple capability of hyperspectral indices. Alternatively, the generalized 
spectral index approach using hyperspectral data would allow more precise and flexible application 
of knowledge on the relationships between hyperspectral data and ecophysiological variables (see 
Section 2.2). The most typical formulations and expressions of generalized spectral indices are the 
normalized difference spectral index (NDSI) and ratio spectral index (RSI). Their definitions of the 
are given by the following equations:

	 NDSI(x, y) = (y − x)/(x + y)	 (2.1)

where x and y are reflectance (Ri and Rj) or first derivative (Di and Dj) values at i and j nm over the 
whole hyperspectral range. For example, the most frequently used vegetation index, Landsat-NDVI, 
is equivalent to NDSI(R660, R830). Note that R or D should be denoted using the value of the central 
wavelength in units of nanometers. The derivative processing is effective for enhancing weak spectral 
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features and extracting critical wavelengths by reducing the influence of trends or low-frequency 
noise (Demetriades-Shah et al., 1990). Similarly, another transformation, RSI, is defined as

	 RSI(x, y) = x/y	 (2.2)

where both R and D values were also used for x and y.
The contour maps of predictive ability (r2, RMSE, etc.) for all NDSI or RSI indices using 

the thorough combinations of two wavebands can provide overview information on the optimal 
wavebands and bandwidths. The NDSI and RSI formulations are linked to each other but the their 
response (such as linearity) to a target variable is different. Similar formulations have been employed 
in many studies to explore useful indices (e.g., Liu et al., 2003; Gitelson and Merzlyak, 1997; Mutanga 
and Skidmore, 2004; Inoue et al., 2008a,b, 2012b, 2016), but their expressions were not necessarily 
suitable for standardization, comprehensive comparisons, or wider operational applications.

Additionally, similar approaches can be extended to the various formulations using additional 
parameters and/or multiple wavebands such as OSAVI (Rondeaux et al. 1996) and TCARI (Daughtry 
et al. 2000).
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The use of nonlinear models (e.g., logarithmic, polynomial) would allow better fitting, and so 
might result in improvement of predictive ability. Nevertheless, such nonlinear fitting or use of 
increased number of wavebands usually implies the inclusion of a larger number of model parameters 
and/or less sensitivity in marginal range of the target variable. Accuracy, robustness, and simplicity 
have to be balanced depending on sensor systems and applications.

2.3.2  Multivariable Regression Approach

The major advantage of hyperspectra is the large number of wavebands at fine spectral resolution, 
which are suitable for multivariable statistical analysis as in the laboratory chemometric method 
(Spiegelman et al., 1998). However, despite the data richness of hyperspectral data, multicollinearity 
due to the high correlation between wavebands is the inherent problem of multivariable statistical 
analysis. Multiple linear regression (MLR) is a simple and widely used method in early study stages, 
but is not suitable for predictive purposes because it is prone to be unstable due to multicollinearity 
and strongly affected by the number of sample data as well as the number of independent variables 
(Grossman et al., 1996; Inoue et al., 2008a).

Both principal component regression (PCR) and partial least-squares regression (PLSR) are able 
to reduce the effects of multicollinearity. The PCR and PLSR methods have similar structures and 
would be suitable for the analysis of redundant data such as hyperspectra that include a large number 
of independent variables correlating with each other. Nevertheless, PLSR may be more suitable 
than PCR for predictive purposes because the principal components in PCR are determined based 
on the variance of independent variables only, whereas latent variables in PLSR are determined by 
taking the covariance between the independent and target variables into consideration (Norgaard 
et al., 2000). PLSR have been used to estimate biochemical variables such as nitrogen content (e.g., 
Martin et al. 2008). However, according to theoretical and experimental considerations (Spiegelman 
et al., 1998; Inoue et al., 2008a, 2012b, 2016), the PLSR method may not always provide the best 
solutions because some of the wavebands are not informative of the target variable or may even 



32 Biophysical and Biochemical Characterization and Plant Species Studies

disturb useful signatures. Thus, the interval PLSR (iPLSR) may be the most feasible methods for 
predictive modeling using hyperspectra (Norgaard et al., 2000; Leardi and Norgaard, 2004). In 
iPLSR, inclusion or exclusion of an individual waveband is determined by its statistical contribution 
to the root mean squares error (RMSE) in cross validation; that is, an optimal subset of wavebands 
is explored through the iterative PLSR trials using the thorough subsets of all wavebands so that the 
RMSE is minimized.

2.3.3  Machine Learning Approach

Machine learning methods such as artificial neural network (ANN) and support vector machine 
(SVM) would be applied for estimating ecophysiological functioning from hyperspectral data. In 
general, the ANN consists of interconnected multiple layers for transformation from input data 
to output data based on optimization of nonlinear models. The SVM is one of the supervised 
classification algorithms, which constructs a set of kernel feature space of higher dimensionality 
(hyperplane) for classification of input data by maximizing the distance (margin) between samples. 
By the introduction of the kernel function, SVM can also be applied to nonlinear problems (Camps-
Valls et al., 2006).

These methods require no assumptions on the statistical data distribution and linearity of the 
relationship between variables (Hansen and Schjoerring 2003; Ali et al. 2015). These approaches 
have been applied to classification problems using hyperspectral data, but would be applicable to 
assessment of remote sensing of ecophysiological variables (Del Frate et al. 2003; Durbha et al., 
2007; Notarnicola et al., 2008; Ali et al., 2015). They would be useful especially for analysis and/or 
prediction of biophysical or ecophysiological variables that are influenced by various factors where 
influences are not formulated explicitly.

However, accuracy and applicability of these predictive models by such data-driven methods are 
highly dependent on the size and quality of the training datasets (Doktor et al. 2014; Ali et al. 2015). 
Especially in ecophysiological applications for agricultural and ecosystem problems, acquisition of 
in situ measurements often requires time-consuming, careful, or expensive field work. This would 
affect the quality and quantity of good training dataset for the application of machine learning 
methods. In addition, predictive models based on data-driven methods are basically site and sensor 
specific. Accordingly, we have to be careful about the applicability of such empirical models as well 
as the accuracy and computational speed (Meroni et al., 2004).

Recent trends in science and technology suggest that these data-driven methods (so-called 
artificial intelligence, AI) would be powerful tools to solve various problems provided that a large 
datasets (so-called “big data”) are available (Ali et al. 2015). Since the ecophysiological functioning 
of vegetation is related to many biochemical and photochemical processes, and their relationships 
are often nonlinear, machine learning methods might provide better predictive ability than statistical 
and physically based models. It might allow nonexperts to derive moderate predictive models 
without expertise in a specific field of science. Nevertheless, the necessity of scientific knowledge 
and expertise should be emphasized in three aspects: (1) optimization of the quantity and quality of 
training data; (2) appropriate selection of input variables; and (3) evaluation of the soundness and 
importance of causal relationships or parameterization.

2.3.4 U se of Physically Based Reflectance Models

If a target ecophysiological variable is incorporated explicitly in canopy reflectance models, inversion 
of such models using hyperspectral measurements may be useful. For example, a physically based 
reflectance model PROSAIL can simulate the hyperspectral reflectance (1 nm resolution) of a canopy 
as a function of several ecophysiological variables such as leaf chlorophyll a + b concentration, 
equivalent water thickness, leaf structural parameter, LAI, and mean leaf inclination angle (LAD: 
leaf angle distribution) in addition to sun zenith angle and soil reflectance (Jacquemoud et al., 2009; 
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Bacour et al., 2002). Several approaches such as numerical optimization methods (e.g., Meroni et al., 
2004), lookup table approaches (e.g., Combal et al., 2003), and artificial neural networks (e.g., Schlerf 
and Atzberger, 2006) have been applied for inversion of the model.

The inversion method is attractive because the models describe the underlying mechanisms of 
canopy reflectance and are basically free from requirements of calibration. However, some inherent 
or technical constraints such as uncertainty in finding an optimum solution (ill-posed problem), 
strong need for accurate reflectance, and availability of data for model training or parameterization 
(e.g., Combal et al., 2003; Darvishzadeh et al., 2008b) may need attention. Nevertheless, physically 
based models are quite useful for investigating the possible effects of changes in ecophysiological 
and biophysical status as well as in the measurement configurations to the hyperspectral reflectance 
of a canopy (Féret et al., 2011). At present, important ecophysiological variables incorporated in 
physically based models are still limited. It would be useful to incorporate some additional variables 
such as leaf nitrogen content, light use efficiency and grain protein content as explicit state variables.

2.4 � SPECTRAL ASSESSMENT OF PHOTOSYNTHETIC 
CAPACITY AND EFFICIENCY IN CROPS

The potential photosynthetic capacity in terms of energy is limited by the photosynthetically active 
radiation (PAR) absorbed by chlorophyll. The close relationship between dry matter production (as 
NPP) and seasonally integrated APAR was first reported by Shibles and Weber (1966). Accordingly, 
the use of fAPAR in a simple ecological model (e.g., Monteith, 1977) has been employed in a range 
of applications for rough assessment of net primary productivity (NPP). In such growth models, 
leaf area index (LAI) has been used to estimate fAPAR to estimate daily APAR since a close 
exponential relationship was found in ecological studies (Monsi and Sakei, 1953). Subsequently, 
due to the inherent close relationship between spectral reflectance (e.g., NDVI) and fAPAR, the 
APAR in the growth models has been estimated by fAPAR × PAR directly by using remote sensing 
data (e.g., Potter et al., 1993; Ruimy et al., 1994; Goetz et al., 1999; Turner et al., 2002). However, 
the actual productivity is affected by the efficiency in use of APAR in ecophysiological processes 
(light use efficiency: LUE). LUE is controlled by environmental conditions such as temperature 
and water and nutrient availability via physiological and photochemical processes (e.g., Peñuelas 
and Filella, 1998).

	 NPP = LUE × fAPAR × PAR	 (2.5)

This simple model has been used in remote sensing of plant productivity based on semiempirical 
relationships of spectral indices with fAPAR (capacity) and LUE (efficiency). Accordingly, accurate 
and robust assessment of these variables is the basis for better understanding and modeling of 
photosynthetic productivity. Nevertheless, the structure and determinants of both fAPAR and LUE 
would have to be investigated in more detail in the aspects of ecophysiological and photochemical 
processes.

2.4.1 P hotosynthetic Capacity

The fAPAR has been estimated from spectral indices such as NDVI (e.g., Kumar and Monteith, 1982; 
Asrar et al., 1989; Baret and Guyot, 1991) and applied to production models (e.g., Ruimy et al., 1994; 
Nouvellon et al., 2000). The relationship is little affected by pixel heterogeneity, LAI, or variation in 
leaf orientation and optical properties (e.g., Pinter et al., 1985). In fact, the NDVI-fAPAR relationship 
is rather robust for different crops during the vegetative growth stages (Figure 2.5). However, the 
relationship is affected by background and bidirectional effects (Myneni and Williams, 1994) and 
by phenological stages and senescence. The NDVI–fAPAR relationship is largely different between 
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before and after heading (anthesis) in most crops (e.g., Daughtry et al., 1983; Asrar et al., 1989; Inoue 
and Iwasaki, 1991; Inoue et al., 1998; Choudhury, 2000).

An analysis by Inoue et al. (2008b) clearly showed the limitation of NDVI based on generalized 
spectral index approach using hyperspectral data and in situ fAPAR measurements during the entire 
growth season (Figure 2.6). According to the NDSI-map, that is, a contour map of predictive ability, 
the NDVI with Landsat bands was not the best predictor of fAPAR due to the distinct difference 
before and after the heading stage. Alternatively, the NDSI(R720, R420) had the high and consistent 
predictive ability throughout entire growth stages. This analysis was based on a dataset for rice, but 
the results would be common to the other crops in Figure 2.5.

Note that the total photosynthetically active radiation absorbed by a plant canopy (APARt) is 
the maximum energy source for photosynthesis used in the simple growth models (e.g., Monteith, 
1977). However, the APARt is not always used fully for photosynthesis because of the absorption 
by nonphotosynthetic or senescent plant elements. Accordingly, the assessment of fAPARc, that 
is, the part of APARt absorbed by chlorophyll and used for photosynthesis (APARc) should be 
another important target of remote sensing. In other words, the traditional LUE represents an 
overall efficiency that integrates the biophysical efficiency in photon absorption by a canopy and 
the photochemical efficiency (LUEc) in use of absorbed photons. Separate estimation of fAPARc 
and LUEc would be more suitable to assess the dynamic change of photosynthetic activity of a 
canopy.

Another variable related to the photosynthetic capacity is Pmax which represents the maximum 
photosynthetic rate at the saturating APAR. Pmax was found to be moderately correlated with RVI 
using red and near-infrared bands, GRI (green ratio index) using green and red ands, and MSAVI 
(modified soil adjusted vegetation index; Qi et al., 1994), and four new indices, NDSI(R518, R676), 
NDSI(R620, R623), NDSI(R620, R637), and NDSI(R750, R761) (r2 = 0.65–0.66). In principle, Pmax may not 
be highly correlated with actual Pn since Pmax is the potential photosynthesis at the highest incident 
radiation without any stresses. Nevertheless, it is interesting that these wavelengths are all within the 
wavelength region of chlorophyll a and b absorption. These results suggest that conventional indices 
using red and near-infrared wavelength regions (e.g., RVI, GRI, and MSAVI) could be useful for a 
rough assessment of Pmax.

FIGURE 2.5  Comparison of fAPAR (fraction of absorbed photosynthetically active radiation) values 
estimated by spectral index NDVI and in situ measurements during vegetative growth stages in three crops 
(rice, soybean and corn). (After Inoue, Y. and Olioso, A. 2006. Journal of Geophysical Research, 111(D24), 
D24S91, doi:10.1029/2006JD007469.)
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2.4.2 P hotosynthetic Efficiency

The light use efficiency LUE may be assumed to be constant under nonstressed conditions, but it is 
affected by phenological stages and by abiotic or biotic stresses via ecophysiological processes (e.g., 
Kiniry et al., 1989; Sinclair, 1994; Peñuelas and Filella, 1998; Choudhury, 2000). Hence, it would 
be inappropriate to assume constant LUE, especially for assessment of canopy carbon exchange at 
short temporal resolution (e.g., daily or shorter).

The photochemical reflectance index PRI has been found to be closely related to photosynthetic 
radiation use efficiency of plant leaves (Gamon et al., 1992; Peñuelas et al., 1995).

	 PRI = (R531 − R570)/(R531 + R570)	 (2.6)

(a)

(b) (c)

FIGURE 2.6  NDSI map of predictive ability for fAPAR in rice canopies (a) and relationships of spectral 
indices with the in situ measurements of fAPAR with (b) NDVI and (c) NDSI(R720, R420). The white arrows 
indicate the most significant spots. (After Inoue, Y. et  al., 2008b. Remote Sensing of Environment, 112, 
156–172.)
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The relationship can be explained based on the photochemical reactions (see Section 2.2), and 
has been investigated in a wide range of vegetation, sensors, and scales (Garbulsky et al., 2010). 
Investigated vegetations ranged from uniform crops to heterogenous forest, and sensors also 
ranged from ground-based or airborne hyperspectral sensors (e.g., ASD, CASI, AVIRIS) to coarse 
satellite sensors (e.g., MODIS). The LUE or related ecophysiological variables were measured 
by photosynthetic instruments (IRGA, PAM) for leaves, estimated directly by eddy covariance 
methods (flux tower) for ecosystems, or estimated indirectly from the other measurements for larger 
scales. The available evidence indicates that the PRI may be a useful indicator of ecophysiological 
variables closely related to the photosynthetic efficiency at the leaf and canopy levels over a wide 
range of species (Garbulsky et al., 2010). However, a consistent and robust PRI–LUE relationship 
is not established for several reasons, such as uncertainty of in situ measurements of LUE and/
or various confounding factors (Garbulsky et al., 2010). Apparent close relationships obtained for 
broadband and coarse spatial resolution sensors might be indirect and attributable to the linkage of 
LUE with other biophysical variables. Accordingly, the generalized application of PRI, especially 
to satellite sensors, may be questionable. At least, hyperspectral or narrow-band reflectance data as 
well as the reliable in situ measurement of LUE would be needed for precise analysis of PRI–LUE 
relationships.

Generally, actual LUE values have been estimated by photosynthetic instruments for leaves or 
by EC (eddy covariance) method for ecosystems. Nevertheless, the spatial representativeness of 
LUE for the vegetated area is a difficult issue especially in heterogeneous ecosystems. Moreover, 
the matching of image pixels and footprint of EC is critical for precise analysis, especially in the 
analysis of satellite images. Thus, precise datasets of hyperspectral data and concurrent LUE data 
for a uniform crop vegetation with fewer confounding factors would be useful to create definitive 
evidence for remote sensing of photosynthetic efficiency. Here, the applicability of PRI and other 
potential spectral indicators for remote sensing of LUE are discussed based on the studies on crops.

2.4.2.1  Leaf Scale Assessment Based on Hyperspectral and Photosynthetic Measurements
Light use efficiency or photosynthetic parameters may be accurately determined by the light (PPFD: 
photosynthetically active photon flux density) vs. net photosynthesis (Pn µmolCO2 m−2 s−1) curve, 
which is expressed by the following equation:

	 Pn = Ps(1−exp[−ϕ·PPFD])−R	 (2.7)

where Pn is the net photosynthetic rate; Ps is the saturated photosynthetic rate; ϕ is the quantum use 
efficiency; and R is the dark respiration. LUE (µmolCO2 µmolPhotons−1) is calculated as the ratio of 
Pn to PPFD. Figure 2.7 shows some examples of PPFD–Pn curves for soybean leaves (Glycine max 
L. Merr.) and concurrent reflectance spectra of leaves under a wide range of PPFD, leaf chlorophyll 
index (CI), and soil water content (θ) (Inoue and Peñuelas, 2006). This dataset allowed analysis of 
the relationships of photosynthetic parameters (Pn, Ps, ϕ, and LUE) with spectral indices (e.g., NDVI, 
WI, GRI, SIPI, NPQI, SWWI, and WI/NDVI), where the water index was WI = R900/R970, green 
ratio index GRI = R830/R550, structural independent pigment index SIPI = (R800 − R445)/(R800 + R680), 
normalized phaeophytinization index NPQI = (R415 − R435)/(R415 + R435), shortwave infrared water 
index SWWI = R800/R1650, and WI/NDVI (Inoue et al., 1993; Peñuelas and Filella, 1998; Peñuelas 
and Inoue, 1999). These spectral indices were assumed to have close or moderate correlations with 
photosynthetic parameters, but detailed correlation analysis among all variables revealed that PRI–
LUE was the only highly significant relationship for inferring the photochemical status directly 
from the reflectance spectra (Figure 2.8). The PRI–LUE relationship was significantly close under 
each level of soil water contents, although its slope was strongly affected by soil moisture (water 
stress). In this case, a consistent PRI–LUE relationship under changing soil water conditions was 
derived successfully by normalizing the influence of soil water content on the PRI–LUE relationship. 
Contrarily, chlorophyll concentration had no significant effect on LUE as well as the PRI–LUE 
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relationship, while the range of CI was large. This may be because both LUE and PRI indicate 
the photosynthetic functioning of chloroplasts, although the CI simply indicates the density of 
chloroplast per unit leaf area. These results suggest that PRI would be able to detect relatively rapid 
photochemical changes caused by PPFD changes, whereas the effects of slower changes such as 
those in soil water content and chlorophyll content would have to be incorporated differently in 
predictive modeling (Inoue and Peñuelas, 2006).

The radiation use efficiency (RUE gDM MJ−1) is usually defined as the ratio of dry matter 
increment to the integrated APAR for a day or longer term (Shibles and Weber, 1966). Accordingly, 
RUE is more robust and representative of plant productivity at a canopy scale than is LUE (µmolCO2 
µmolPhotons−1) which is a dynamic measure of photosynthetic functioning at leaf scale. It would be 

FIGURE 2.7  Light–photosynthesis curves of soybean leaves with different chlorophyll content (CI), soil 
water content (θ), and photosynthetically active radiation (PPFD) (upper), and spectral reflectance of the leaves 
(lower). The arrows labeled with wavelength are main spectral wavebands selected based on previous studies 
on spectral characteristics of plant leaves. Each curve indicates the average of 10 repeated measurements (After 
Inoue, Y. and Peñuelas, J. 2006. International Journal of Remote Sensing, 27, 5249–5254.)
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reasonable to utilize the LUE as an indicator for leaf-scale diagnosis of photosynthetic functioning, 
whereas RUE would be suitable for assessment of integrated efficiency at a day or longer temporal 
resolutions. Scaling from leaf to canopy is an important but difficult issue especially for this type of 
narrow-band indices due to various confounding factors (Barton and North, 2001). Therefore, both 
temporal and spatial resolutions have to be carefully considered for spectral assessment of LUE and 
RUE.

2.4.2.2 � Canopy Scale Assessment Based on Hyperspectral 
and Eddy Covariance Measurements

During the past decade, LUE values estimated from the CO2 flux and environmental data at flux 
towers have been used for the analysis of the PRI–LUE relationship (Garbulsky et al., 2010). 
However, most flux towers were installed in natural or seminatural ecosystems such as grassland, 
rangeland, and forest, where the spatial and species heterogeneity is large. In addition, it is difficult 
to acquire precise in situ hyperspectral reflectance data in such ecosystems. Therefore, seasonal 
datasets of the precise measurements of hyperspectral reflectance data and flux data acquired in 
uniform crop ecosystems such as rice fields would be useful for detailed ecophysiological and 
remote sensing analysis. The experimental study by Inoue et al. (2008b) may be the first such 
analysis.

In their analysis, the CO2 flux data at intervals of 30 min and micrometeorological data 
as well as the hyperspectral reflectance data for the entire growth stages were used (Figures 
2.9 and 2.10). The net ecosystem exchange of CO2 (NEECO2) was low for several weeks after 
transplantation, but CO2 uptake at midday became obvious even at the low LAI. The midday peak 
value of NEECO2 increased with increasing LAI and decreased rapidly during the late ripening 
period. The photosynthetic rate was much lower during the ripening stage than during the early 
vegetative stage, with similar or larger values of green LAI. Generally, the combination of a 
footprint model (Kljun et al., 2004) with micrometeorological data and remotely sensed images 
is useful to confirm the spatial representativeness of the flux data for the ecosystem (Inoue and 
Olioso, 2006).

FIGURE 2.8  Relationship between light use efficiency (LUE) and photochemical reflectance index (PRI) as 
affected by soil water content θ. Regression lines were determined for data points grouped by soil water content; 
7%–9%, 9%–12%, 12%–20%, 20%–30%, 32%–42%. (After Inoue, Y. and Peñuelas, J. 2006. International 
Journal of Remote Sensing, 27, 5249–5254.)
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Photosynthetic efficiency parameters can be determined from these datasets by using the 
asymptotic exponential equation as follows:

	 GPP = Pmax (1 − exp[−ϕ·APAR/Pmax])	 (2.8)

where GPP is the gross primary productivity, ϕ is the initial slope of the curve (quantum efficiency), 
and Pmax is the maximum photosynthetic rate at the saturating APAR (Figure 2.9b). Two indicators 
of canopy light use efficiency at the time of remote sensing measurements were estimated from half-
hourly data of CO2 and photon flux data.

	 LUEN = NEECO2/APAR	 (2.9)

	 LUEG = GPP/APAR	 (2.10)

The generalized spectral index approach was applied to explore new spectral indices and to 
evaluate the predictive ability of previous indices. Figure 2.11 shows the NDSI map of predictive 
ability of thorough combination of two wavebands for assessment of LUEG. The map can provide an 
overview of the statistical significance of all NDSIs for selecting the optimal central wavelength and 
bandwidth. There are several narrow peaks (reddish) and deep troughs (bluish). Some steep walls 

(a) (b)

FIGURE 2.9  Seasonal change of net ecosystem CO2 exchange (NEECO2) in a rice field measured by eddy 
covariance method (a), and APAR–GPP relationship (b) during early (upper), middle (middle), and late (lower) 
growth stages. (After Inoue, Y. et al., 2008b. Remote Sensing of Environment, 112, 156–172.)
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are also found (e.g., around the 530 vs. 560 nm region). Therefore, selection of effective wavelengths 
should be made carefully so as not to span such steep-wall regions, since even a small bias could 
largely reduce the potential significance.

The LUEG was best correlated with NDSI(R710, R410), NDSI(R710, R520), and NDSI(R530, R550) 
derived from nadir measurements, while most conventional indices were less well correlated. R550, 
R710, and R1122 were selected for multiple indices presumably because they have some specific role 
in ecophysiological processes that directly or indirectly affect photosynthetic efficiency at a canopy 
scale. R710 is positioned around the red-edge wavelengths, which represent the amount of chlorophyll. 
Therefore, R710 may have a role in normalizing the amount of vegetation when it is used with other 
visible wavelengths such as 410 or 530 nm. The performance of PRI was surprisingly poor in this 
analysis, but R530 may have significant role in detection of photosynthetic rate because NDSI(R530, 
R550) was highly correlated with LUEG. The use of R550 nm instead of R570 nm in PRI as a reference 
wavelength may significantly improve the estimation of photosynthetic efficiency. R1122 may be related 
to the amount of canopy nitrogen because 1120 nm is the wavelength of lignin absorption (Curran, 
1989), and lignin/cellulose content is inversely related to nitrogen content during the growing season.

The quantum efficiency ϕ was best correlated with NDSI(R450, R1330). It is interesting that 
NDSI(R403, R830) and NDSI(R420, R970) using very far wavelengths were also highly correlated with 
ϕ, whereas some other NDSIs use nearby wavelengths such as NDSI(R933, R940), NDSI(R933, R948), and 
NDSI(R1053, R1058). The bandwidth is relatively broad for the former NDSIs (5–80 nm) and narrow 
for the latter NDSIs (3 nm). The WI using R970, a weak absorption peak of water, proved useful 
for detecting leaf water status (Peñuelas and Inoue, 1999). This may explain the high correlations 
of WI with ϕ and LUEG, since the leaf water status strongly affects photosynthetic efficiency. 
Although no previous literature suggested the role of the 930–950 nm region, it may have potential 
for estimating ϕ.

The results described were obtained using nadir spectral data, but off-nadir measurements would 
have additional potential since the photosynthetic efficiency is related the photochemical processes or 
photosynthetic rate per unit leaf area and oblique reflectance measurement would allow acquisition 

FIGURE 2.10  Seasonal change of reflectance spectra in a rice canopy associated with the growth shown 
in Figure 2.8. Date numbers indicate month/day. Wavelengths indicated with arrows were used to derive 
conventional spectral indices. (After Inoue, Y. et al., 2008b. Remote Sensing of Environment, 112, 156–172.)
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of spectral data of leaves only. Recent advances in drone (unmanned aerial vehicle: UAV) platforms 
enable flexible measuring configurations including off-nadir observation (Verhoeven, 2011; Roosjen 
et al., 2017). The analysis using off-nadir measurements suggested promising capability of new 
spectral indices for assessment of LUEG or LUEN (Figure 2.12). Overall, off-nadir measurements 
were more closely related to the efficiency parameters than nadir measurements. Figure 2.12 
suggested the region consisting of 400–440 nm vs. 400–500 nm had rather high predictive ability, 
while there is a deep trough around the 410–530 nm vs. 500–580 nm region. It is interesting that 
the 400–420 nm regions showed a high correlation ridge along R422. Figure 2.13 shows a close-up 
view of two significant parts in the contour map of r2 between ϕ and NDSIs derived from off-nadir 
measurements. A ridge of high r2 was found along 413 nm, while the other regions showed poor 
correlations. It is noteworthy that R435 included in the NQPI proved to be significant in assessment 
of LUE. In contrast, relatively large regions had high r2 values around the 1000–1120 nm vs. 1100–
1130 nm and the 1130–1150 nm vs. 1160–1200 nm regions (Figure 2.13b).

(a)

(b) (c)

FIGURE 2.11  NDSI map of predictive ability for LUEG in rice canopies (a) and relationships of promising 
spectral indices with the LUEG (b,c). The arrows in the NDSI map indicate most significant positions. (After 
Inoue, Y. et al., 2008b. Remote Sensing of Environment, 112, 156–172.)
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These experimental results would provide useful insights for the assessment of radiation 
use efficiency and photosynthetic capacity in other ecosystems. Nevertheless, the underlying 
ecophysiological mechanisms for the predictive ability of spectral indices are not well identified at 
the moment, except for the well-known absorption features of major pigments and materials such as 
chlorophyll, xanthophyll, carotenoids, and water (Gamon et al., 1992; Inoue et al., 1993; Peñuelas 
and Filella, 1998, Daughtry et al., 2000). Further studies are needed to examine their applicability to 
wider range of ecosystems and to investigate the ecophysiological and photochemical mechanisms 
to systematically account for the effects of biotic and abiotic stresses.

(a)

(b)

FIGURE 2.12  NDSI map of predictive ability for LUEN in rice canopies (a) and relationships of promising 
spectral indices with the LUEN (b). The arrows in the NDSI map indicate most significant positions. This result 
was derived from off-nadir observations. (After Inoue, Y. et al., 2008b. Remote Sensing of Environment, 112, 
156–172.)
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2.5 � SPECTRAL ASSESSMENT OF DIAGNOSTIC 
INFORMATION FOR CROP MANAGEMENT

2.5.1 C hlorophyll Content for Growth Monitoring

The canopy-scale photosynthetic capacity is determined to a large extent by the absorptivity of 
PAR by chlorophyll (fAPARc). The fAPARc is determined by the density and spatial distribution of 
chlorophyll pigments within the canopy. The 3D distribution of chlorophyll within a canopy is often 
expressed by using the area of green leaves (LAI), leaf chlorophyll content (LCC) and leaf angle 
distribution (LAD). In a wide range of canopy photosynthetic models, the potential photosynthetic 
rate per leaf area (Pn) is used with LAI and LAD to express the 3D distribution of photosynthesis 
(De Pury and Farquhar, 1997; Roy et al., 2001). In simple models, the LAI has been used to represent 
the photosynthetic capacity of a canopy with a constant value of LUE by assuming that the effects of 
variability in LCC, LAD, and clumping are negligible (Monteith, 1977; De Pury and Farquhar, 1997; 
Choudhury, 2000). However, determination of green LAI is not simple or is rather arbitrary because 
the green and nongreen threshold is unclear. In addition, the potential Pn is strongly controlled by the 

(a) (b)

(c) (d)

FIGURE 2.13  NDSI maps of predictive ability for quantum efficiency (ϕ) in rice canopies (a,b) and 
relationships of promising spectral indices with the ϕ (c,d). The arrows in NDSI-maps indicate most significant 
positions. These results were derived from off-nadir observations. (After Inoue, Y. et al., 2008b. Remote 
Sensing of Environment, 112, 156–172.)
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chlorophyll (a + b) concentration per unit leaf area LCC (Nobel, 2005). Accordingly, the amount of 
chlorophyll content per unit land surface (CCC) is the major determinant of the fAPARc although 
the spatial distribution of chlorophyll would affect the light absorption to some extent (Pinter et al., 
1985; Jacquemoud et al., 2009). Thus, accurate determination of the total CCC would be the most 
essential and robust basis for ecophysiological modeling.

On the other hand, the chlorophyll content or greenness of crop leaves has been used as a 
diagnostic indicator for fertilizer management owing to the close relationship between nitrogen 
and chlorophyll contents in green leaves (Houlès et al., 2007; Inoue et al., 2012b). In rice leaves, for 
example, 75%–85% of the total nitrogen is included in chloroplast throughout the growing period 
although a part of nitrogen is allocated into nongreen parts such as grain (Morita, 1978).

Therefore, the accurate and timely assessment of ecosystem CCC by remote sensing is vital for 
a wide range of agricultural and ecological applications such as diagnostics for crop management, 
assessment of degradation/exuberance of terrestrial vegetation, and monitoring of ecosystem 
carbon balance. This is why chlorophyll has been one of the major targets of optical remote sensing 
(e.g., Vogelmann et al., 1993; Blackburn, 1998; Daughtry et al., 2000; Dash and Curran, 2004; 
Gitelson et al., 2005). A number of spectral indices have been proposed specifically for assessment 
of chlorophyll content in leaf or canopy scales (e.g., Inada, 1985; Shibayama and Akiyama, 1986; 
Daughtry et al., 2000; Broge and Leblanc, 2000; Richardson et al., 2002; Dash and Curran, 2004; 
Gitelson et al., 2005; Delegido et al., 2008). The pioneering study by Inada (1985) was used as a basis 
for the handheld chlorophyll meter SPAD-502 (Minolta). The critical role of the red edge wavelength 
region for leaf and canopy chlorophyll status has been recognized by many studies (e.g., Vogelmann 
et al., 1993; Gitelson et al., 2005). However, comparative studies on accuracy and robustness of 
various methods using diverse hyperspectral data and in situ measurements are still very few (Martin 
et al. 2008, Inoue et al., 2016).

The study by Inoue et  al. (2016) made a comprehensive comparison of generalized spectral 
index approach (NDSIs and RSIs) and multivariable regression approach (PLSR and iPLSR) for 
assessment of CCC using diverse hyperspectral datasets taken in different locations and species. Their 
comprehensive study revealed the relative advantages and disadvantages of the majority of spectral 
models in the aspects of accuracy, linearity, robustness, simplicity, and versatility (Figure 2.14).

Overall, previous indices proposed for CCC using red edge and green wavebands, such as VOG-3, 
GMI-2, CIred-edge, CIgreen, and MTCI, proved to have moderate to excellent predictive ability. Nevertheless, 
an SI-based model using RSI(R815, R704), that is, the ratio of reflectance values at 815 and 704 nm, was 
found to be superior to all other models in overall predictive ability of CCC (Figures 2.14 and 2.15). 
The λrep model using the red edge position proved to have a limitation because actual wavelength shift 
might be beyond the range assumed by the model. Generally, spectral models proposed for leaf-scale 
variables (e.g., MCARI, PRI, SIPI) did not show good predictive ability for assessment of CCC as 
suggested in preceding studies (le Maire et al. 2008).

It is interesting that PLSR and iPLSR models using much larger number of wavebands proved 
to be inferior to the index-based models, especially in versatility. This may be attributable to the 
over-fitting to the calibration dataset. Their performance was poor, especially in different plant types 
(Figure 2.15). Multivariable regression methods (e.g., PLSR) and machine learning methods (e.g., 
support vector machine and artificial neural network) can be applied to hyperspectral data (Hansen 
and Schjoerring, 2003; Ali et al., 2015). However, the applicability of multivariable regression models 
to different sensors and/or different types of vegetation proved unstable. Accuracy and applicability 
of data-driven models by machine learning methods are highly dependent on the size and quality of 
the training datasets (Doktor et al., 2014; Ali et al., 2015).

The soundness of the SI-based models was inferred by simulation results using a physically 
based reflectance model (PROSAIL) under various canopy conditions including plant types (canopy 
geometry), LCC, LAI, and soil background (Figure 2.16). The generalized SI approach has unique 
advantages in simplicity, interpretability, robustness, and applicability compared to these methods. 
Additionally, the SI contour map approach using hyperspectral data can provide clear overview for 



45Hyperspectral Assessment of Ecophysiological Functioning

selecting optimal wavebands and bandwidths for various sensors. The best RSI model would be 
used as a simple and robust algorithm for the canopy-scale chlorophyll meter and/or remote sensing 
of CCC in ecosystem and regional scales. The model is now applied to the diagnostics for fertilizer 
management in rice and wheat using both satellite and drone-based image data (Inoue, 2017; Inoue 
and Yokoyama, 2017).

2.5.2 N itrogen Content for Fertilizer Management

Nitrogen is essential for higher photosynthetic functioning and productivity in plants. The significant 
increase in crop yield over the past century is nearly proportional to the increase in nitrogen fertilizer 
applied to farmland (e.g., Dobermann and Cassman, 2004; Nishio, 2005). However, nitrogen fertilizer 
is also a significant nonpoint source of water and atmospheric pollution. Groundwater contamination 
with nitrate nitrogen (NO3-N) is a serious problem in many countries (e.g., MAFF-UK, 2000; Nishio, 
2005; Inoue et al., 2012a). Furthermore, Ishijima et al. (2007) demonstrated that nitrogen fertilizer 
is an important source of nitrous oxide (N2O) in the atmosphere.

Therefore, agricultural management practices should aim for efficient use of nitrogen to achieve 
high-yielding and high-quality crop production with minimal environmental impacts. Site-specific 
farm management, that is, precision agriculture based on remote sensing, is a promising approach 
to attaining such intelligent crop management practices (e.g., Moran et  al., 1997; Inoue, 2003; 

(a) (b)

(c) (d)

FIGURE 2.14  NDSI and RSI maps of predictive ability for canopy chlorophyll content (CCC) in rice canopies 
using reflectance spectra (a,c) and first derivative spectra (b,d). The white arrows indicate the most significant 
spots. (After Inoue, Y. et al., 2016. Plant, Cell and Environment, 39, 2609–2623.)
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Bongiovanni and Lowenberg-Deboer, 2004). Rice (Oryza sativa L.) is an important crop for global 
food security, and the assessment of canopy nitrogen content (CNC) in rice is critical for growth 
diagnosis and precision management to generate higher yield and better grain quality while also 
minimizing adverse environmental impacts. Generally, agricultural applications such as precision 
farming are relatively more demanding than the other applications in terms of accuracy, timeliness, 
and spatial resolution (Moran et al., 1997; Inoue, 2003; Baret et al., 2007; Asner et al., 2011).

A number of remote sensing approaches have been proposed for the assessment of CNC (e.g., 
Takahashi et al., 2000; Lee et al., 2008; Sripada et al., 2008; Zhu et al., 2008), but their accuracy and 
robustness may be inadequate for practical use at regional scales. Previous spectral indices may not 
be optimized using the merits of data richness and continuity of hyperspectra (Inoue et al., 2008a). 
Moreover, chemometric approaches such as a partial least-squares regression (PLSR; e.g., Takahashi 
et al., 2000) may not always be useful.

(a) (b)

(c) (d)

FIGURE 2.15  Applicability of 40 spectral models determined for rice a dataset to the other datasets (rice, 
wheat, corn and soybean) as indicated by coefficient of determination (r2) and root mean-square error (RMSE). 
The best four spectral models obtained for the rice dataset are indicated by symbols with number. Definition 
of the previous models can be found in the references Vogelmann et al. (1993), Gitelson and Merzlyak (1997), 
Gitelson et al. (1997), Zarco-Tejada et al. (2001), Peñuelas et al. (1995), Rouse et al. (1974), Huete (1988), 
Gitelson et al. (2005), Gitelson et al. (2003), Sims and Gamon (2002), Daughtry et al. (2000), Dash and Curran 
(2004), Huete et al. (2002), Jongschaap and Booij (2004), Lee et al. (2008), Inoue et al. (2012b), and Wang et al. 
(2003). (After Inoue, Y. et al., 2016. Plant, Cell and Environment, 39, 2609–2623.)
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(a)

(b)

(c)

(d)

FIGURE 2.16  Reflectance spectra simulated by a physically based canopy reflectance mode PROSAIL 
under a wide range of plant and soil conditions, namely, different leaf angle distribution (a), leaf chlorophyll 
concentration (LCC) (b), leaf area index (LAI) (c), and soil color and water content (d). (After Inoue, Y. et al., 
2016. Plant, Cell and Environment, 39, 2609–2623.)
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The study by Inoue et al. (2012b) on the optimal algorithms for remote sensing of CNC in rice 
(Oryza sativa L.) based on diverse in situ plant measurements and ground-based and airborne 
hyperspectral data represents an interesting case study for hyperspectral remote sensing of CNC. 
Their comprehensive analysis based on the generalized spectral index approach (NDSIs and RSIs) 
and multivariable regression approach (PLSR and iPLSR) revealed a predictive ability for spectral 
methods and found promising new spectral indices (Figure 2.17). Among the 20 indices that use the 
reflectance values at two wavelengths, three indices explored in this study, that is, NDSI(R825, R735), 
RSI(R825, R735), and SAVI(R825, R735), showed significantly high predictive ability (small RMSE). 
Although most indices from the literature used the red edge bands, only one index, the CI red edge 
(Gitelson et al., 2005), showed comparable predictive ability to the three indices. Out of the 12 
indices using three to five wavebands, mSR705, VOG-2, MTCI, and VOG-3 showed relatively high 
predictive ability. Most of these indices also used the red edge wavebands in part, but they were not 
superior to the three indices using R825 and R735. Nevertheless, when derivatives were available, a 

(a) (c)

(b) (d)

FIGURE 2.17  NDSI and RSI maps of predictive ability for canopy nitrogen content (CNC). (a) NDSI 
using reflectance values; (b) RSI using reflectance values, (c) RSI using derivative values, and d) relationship 
between RSI(D740, D522) and CNC for the datasets in China and Japan. ** Indicates the statistical significance 
at 0.001. The white arrows indicate the most significant spots. (After Inoue, Y. et al. 2012b. Remote Sensing 
of Environment, 126, 210–221.)



49Hyperspectral Assessment of Ecophysiological Functioning

simple ratio index RSI(D740, D522) using the first derivative (D) values at 740 and 522 nm, was found 
to be most accurate and robust for the assessment of CNC. It is reasonable that those spectral indices 
designed for canopy chlorophyll content would have great potential in assessment of CNC because 
of the close relationship between nitrogen and chlorophyll contents in green leaves (Morita, 1978). 
However, optimal spectral models for nitrogen and chlorophyll contents would be different because 
their relative relationship changes depending on growth stage and nutritive conditions and because 
the reflectance spectra change differently in response to the ecophysiological changes in nitrogen 
and chlorophyll contents.

The multivariable models showed a high predictive ability; however, iPLSR using selected 
wavebands (24% of all wavebands) was superior to PLSR using all wavebands. The predictive ability 
of iPLSR was comparable to the simple index RSI(R825, R735). The independent validation using the 
airborne dataset also demonstrated the excellent performance of the simple index RSI(D740, D522) in 
diagnostic mapping of CNC at a regional scale.

Since nitrogen is a key element for protein and chlorophyll in green plants and thus important 
for animal nutrition, precise monitoring of CNC would be useful in various applications such as 
crop and grass management and habitat assessment. These results suggest the strong potential 
of the new SIs for the assessment of nitrogen content in various plant canopies. The model is 
now applied to the diagnostics for fertilizer management in rice at regional and farm scales 
using satellite or drone-based multispectral images (Inoue, 2017; Inoue and Yokoyama, 2017; 
see Section 2.7.2).

2.5.3 P rotein Content of Rice Grain for Production of High-Quality Rice

The protein content of grain (GCP) in rice and wheat is an important quality parameter that affects 
the price of products (Sakaiya and Inoue, 2013). Higher GCP is valuable in wheat, but lower GCP is 
preferable in rice because protein content is inversely related to the taste of cooked rice. For example, 
in rice, GCP is a critical indicator in quality control for regional branding and marketing strategies 
in several countries such as Japan, Korea, and Taiwan.

However, GCP varies considerably between regions and individual paddies because it is affected 
by ecophysiological processes such as translocation of nitrogen as well as environmental and 
management practices during the growing season. Therefore, acquisition of spatial information on 
GPC in each rice paddy before harvesting is quite useful for regional branding strategies. Such 
information is used for optimizing the harvest scheduling for better quality, and as a basis for 
optimizing fertilizer management in the following season. This may be a unique application of remote 
sensing in agriculture, but would provide some insights for extending the application opportunities 
of remotely sensed data.

Since the GCP is not incorporated explicitly in any biophysical or physiological models, 
the generalized spectral index approach using hyperspectral data would be the most feasible 
to create the optimal predictive algorithms (Inoue et al., 2008a). Figure 2.18 shows the NDSI 
map of predictive ability for GCP created from hyperspectral data by an airborne sensor (CASI) 
during the ripening period. The combinations of wavebands in the 530–600 and 710–1050 nm 
regions have high predictive ability and two hot spots are found on the NDSI map. The best 
capability was found around the peak of NDSI(R970, R570) with a spectral width of ±20 nm. 
The significant contribution of R970 nm was due to the apparent relation of water content with 
GCP since water has a specific absorption peak at 970 nm (see Section 2.2). The wavelength 
region for Landsat NDVI with Landsat bands is between the two peaks and showed relatively 
low predictive power. The problem of multicollinearity (over-fitting) in MLR is clearly shown in 
Figure 2.19, where RMSE is smallest in calibration but largest in validation results. It is interesting 
that the best NDSI(R970, R570) has comparable or better predictive ability than PLSR using the 
whole spectra or MLR using four selected bands. Another important result is that the iPLSR 
with band selection had higher ability than PLSR; meaning that the use of whole hyperspectra 
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FIGURE 2.18  A contour map of coefficient of determination (r2) between protein content of rice grain (GPC) 
and NDSIs. The ellipse indicates the spectral region equivalent to the NDVI using Landsat bands (660 ± 30 
and 830 ± 70 nm). (After Inoue, Y. et al., 2008a. Journal of the Remote Sensing Society of Japan, 28, 1–14.)

(a)

(b)

FIGURE 2.19  Comparison of predictive ability in several methods for hyperspectral assessment of grain 
protein content in rice. (a) RMSEs in calibration (left bars) and in validation (right bars) are shown with 
coefficient of determination (R2). The NDSI(R970, R570) was the best NDSI extracted from the NDSI map in 
Figure 2.18. The values with “LV” in the PLS methods indicate the number of latent variables. (b) Selected 12 
wavelengths for the iPLSR model in the average spectra with standard deviation bars for sampled paddy fields. 
(After Inoue, Y. et al., 2008a. Journal of the Remote Sensing Society of Japan, 28, 1–14.)
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does not always provide the best result or may be even worse for prediction, presumably because 
of some erroneous or disturbing spectral bands. The iPLSR method may be useful, but simple 
indices selected by systematic methods such as NDSI maps would also be useful when only 
a small number of wavebands are available. These SI models are now applied successfully to 
the  regional-scale management of high-quality rice production using satellite images (Inoue, 
2017).

2.6 � SPECTRAL ASSESSMENT OF BIOCHEMICAL AND 
BIOPHYSICAL PROPERTIES IN GRASSES AND TREES

Biochemical and biophysical traits provide understanding about the functional strategies of plants 
(Colgan et al., 2015). Due to their role in the photosynthetic process, they have close interactions and 
co-vary across plant functional types (Wright et al., 2004). Many of these traits have been recognized 
as fundamental functional traits for biodiversity monitoring (Pereira et al., 2013; Skidmore et al., 
2015). Biodiversity research from species diversity is moving toward functional diversity (Tilman, 
2001), therefore, accurate assessment of these traits is of prime importance.

Detailed hyperspectral studies have revealed that in natural ecosystems such as forests and 
grasslands, the spectral signature of plants, neglecting the peripheral factors, are mainly altered 
by change in their biochemical and biophysical properties (Ferwerda et al., 2005; Mutanga and 
Skidmore, 2007; Cho et al., 2008; Darvishzadeh et al., 2009; Wang et al., 2015b; Ali et al., 2016b; 
Neinavaz et al., 2016b). These changes are mainly caused by plant growth, health status and stress 
caused by infestation, pest, and diseases (Hinzman et al., 1986; Zarco-Tejada et al., 2002; Abdullah 
et  al., 2018). Confounding effects such as canopy architecture and background soil are among 
the most prominent factors affecting the reflectance of vegetation canopies, and are particularly 
pronounced in sparse canopies. For instance, the effect of soil brightness on the canopy reflectance 
in a sparse canopy is presented in Figure 2.20. As can be observed from this figure, the variation of 
background soil in a vegetative canopy has led to differences in canopy reflectance and has caused 
distinct reflectance offsets in the first derivatives.

A large number of studies have investigated the relationships among the leaf traits. The strengths 
of these relationships vary across ecosystems and functional types and depend on whether they are 
expressed on mass or area basis (Wright et al., 2004; Asner and Martin, 2009; Homolová et al., 2013). 

(a) (b)

FIGURE 2.20  (a) Spectral reflectance for Asplenium nidus canopy with an LAI of 1.5 in dark and light soils; 
(b) first derivative of the reflectance. (From Darvishzadeh, R. et al. 2008a. International Journal of Applied 
Earth Observation and Geoinformation, 10, 358–373.)
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However, it has been observed that area-based leaf traits are generally retrieved with higher accuracy 
from optical remote sensing data (Wang et al., 2015a), which is due to their role in photosynthesis 
and processes such as light interception and transpiration that expressed as flux per unit leaf surface 
area (Hikosaka, 2004; Lloyd et al., 2013).

Among the leaf traits, chlorophyll is the most prominent leaf biochemical that an important 
role in verifying vegetation physiological status and health, and has been recognized as an 
indicator for photosynthetic capacity, productivity and detection of vegetation stress (e.g., Carter, 
1994; Boegh et al., 2002; Abdullah et al., 2018) (see Section 2.6.1 and Figure 2.21). A wide 
range of studies have observed moderately strong relationships between chlorophyll and foliar 
nitrogen, for example (Field and Mooney, 1986; Mutanga and Skidmore, 2007; Kokaly et al., 
2009). Therefore, leaf chlorophyll has been suggested as an operational proxy for nitrogen content 
and vice versa (Muñoz-Huerta et al., 2013). Foliar nitrogen is also related to leaf mass per area 
(LMA) across different ecosystems, for example (Rosati et al., 2000; Wright et al., 2004; Wang 
et al., 2015a). LMA is the inverse of specific leaf area (SLA) and provides information on the 
spatial variation of photosynthetic capacity in addition to leaf nitrogen (Pierce et  al., 1994). 
Since LMA is highly related to the amount of leaf water content (Ali et al., 2016c) (see Section 
2.6.2), it can be concluded that leaf water content is linked to other leaf traits such as nitrogen 
and chlorophyll. As such its relation with foliar nitrogen is demonstrated by Wang et al. (2015a). 
However, this relationship is vigorous due to the strong temporal dynamic of leaf water content 
in leaves (Ustin, 2013).

Among canopy biophysical parameters, leaf area index (LAI), in addition to leaf angle distribution 
and canopy gaps, plays a key role in the magnitude of canopy reflectance (Darvishzadeh et al., 2008a) 
(see Section 2.6.3). The interrelationship among canopy biophysical traits in forest stands has been 
documented in several studies. For instance, strong relationships between LAI and biomass, stem 
density, diameter at breast height (DBH), above-ground net primary productivity (NPP) and canopy 
cover fraction have been observed (e.g., Hall et al., 1995; Lefsky et al., 1999; Naesset et al., 2005; 
Schlerf and Atzberger, 2006; Huesca et al., 2016). Moreover, LAI has shown significant correlations 
with a number of leaf traits such as SLA and leaf nitrogen (Pierce et al., 1994), and leaf dry matter 
(Ali et al., 2016a). Although the strengths of these relationships are ecosystem and species dependent, 

FIGURE 2.21  Distribution of measured chlorophyll and nitrogen concentration for healthy needles and 
needles infested by bark beetle at the green attack stage. There is a significant difference (p < 0.05) in 
chlorophyll and foliar nitrogen concentration between healthy and infested samples. Infestation decreased 
mean chlorophyll and nitrogen. (From Abdullah, H. et al., 2018. International Journal of Applied Earth 
Observation and Geoinformation, 64, 199–209.)
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these co-variation relations have a key role in evaluation and understanding of their spectral responses 
(Ollinger et al., 2008).

Studies performed in grasslands and forest (see Section 2.6.2) on leaf traits such as specific leaf 
area (SLA), leaf mass per area (LMA), and water content have shown sensitivity to wavelengths 
in the shortwave infrared (SWIR) region of the electromagnetic spectrum (1200–2500 nm) (Ali 
et al., 2017a,b; Mirzaie et al., 2014; Romero et al., 2012). While the spectral bands sensitive to foliar 
chlorophyll and carotenoids, exist in the visible and red edge region (400–750 nm) (Curran, 1989; 
Dawson et al., 1999), leaf nitrogen has been related to different spectral regions (Curran, 1989; 
Fourty et al., 1996; Kokaly et al., 2009; Ollinger et al., 2008; Knyazikhin et al., 2013; Wang et al., 
2017). This may be explained by the interrelation and interactions of leaf nitrogen with other leaf and 
structural traits. Thus Wang et al. (2017) demonstrated that in spruce stands the sensitive bands for 
estimating foliar nitrogen in the visible region are mainly related to chlorophyll absorption, while in 
the near-infrared (NIR) and SWIR regions, the bands sensitive to foliar nitrogen are explained by 
the existence of protein and dry matter content as well as biological associations between nitrogen 
and structural traits.

Knowledge of biophysical and biochemical traits and their variations in natural ecosystems is 
critical for many management practices such as biodiversity monitoring, climate modeling, and 
carbon cycle assessment. The following subsections present a few scenarios in which, utilizing 
hyperspectral measurements, accurate estimations of these parameters in the forest and grasslands 
have been made.

2.6.1 L eaf Biochemical Properties for Detection of Insect Outbreaks in Forest

European spruce bark beetle (Ips typographus (L.)) is the most aggressive forest insect pest 
in the European forests, and they can destroy many more forested areas than all other natural 
disturbances. The extent of bark beetle damage has been huge, and trees have been killed over 
tens of millions of hectares, causing a great economic loss in timber production. In addition, 
a large amount of public money has been expended in clearing the fallen trees. Further, insect 
outbreaks have resulted in significant ecological changes in terms of the forests’ structure and 
composition, wildlife habitats, and degradation of large areas within these forests. To meet the 
information requirements to minimize economic losses and to preclude further mass outbreaks, 
early detection of insect outbreak is vital (in a period in which trees are yet to show visual signs 
of infestation stress). This information plays a vital role in forest management and is critical when 
developing sustainable forest management policies and conservation strategies. Visual inspections 
during field surveys and pheromone traps traditionally have been used for detection of bark beetle 
infestation in Norway spruce forests. However, these methods are subjective, time-consuming, and 
ineffective for low-level infestation (i.e., not an outbreak). Consequently, acquisition of remote 
sensing data is a proper alternative for developing new techniques for monitoring and detecting 
this forest disturbance.

Physiological studies have indicated that biochemical variables such as leaf water, chlorophyll, 
and nitrogen contents are the main properties of the plants that are sensitive to both environmental 
conditions and insect infestation and have a direct impact on leaf and canopy optical properties 
(Gitelson et al., 2003; Munoz-Huerta et al., 2013). Accordingly, biochemical variables play a key 
role in plant growth and photosynthesis and are considered as indicators of plant health and stress. 
In recent decades, many studies have shown the role of remote sensing, in particular hyperspectral 
imagery, in measuring vegetation biochemical variables such as chlorophyll and nitrogen content 
in different ecosystems (Asner and Martin, 2009; Asner et al., 1998; Darvishzadeh et al., 2008b; 
Wang et al., 2015a). Therefore, hyperspectral measurements integrated with biochemical properties 
have been considered to study the forest insect outbreaks. Abdullah et al. (2018), have used foliar 
reflectance and biochemical propitiates (chlorophyll and nitrogen content) to detect early stage 
of bark beetle infestation in the Norway spruce forests in Central Europe. In their study, partial 
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least-square regression (PLSR) was utilized to assess the impact of infestation stress on the retrieval 
accuracy of foliar biochemical properties. They found that bark beetle infestation at the early, 
so-called green attack, stage (when the leaves are still green and not visibly stressed) affects the 
leaf spectral response as well as leaf biochemical properties and their retrievals from hyperspectral 
measurements (Figure 2.22). They concluded that the assessment of retrieval accuracy of these two 
biochemical components could be used as an indicator for the efficient landscape-wide detection of 
the early stage of bark beetle infestation.

Not only chlorophyll and nitrogen content but also leaf water content can be used as a proxy 
to detect bark beetle infestation. Cheng et al. (2010) used leaf water content to detect pre-visible 
mountain pine beetle damage in lodgepole pine needles using hyperspectral measurements. They 
concluded that the measurable water deficit of infested tree samples was detectable from a narrow 
spectral region (1318–1322 nm) and could be used to distinguish between healthy and infested trees 
by mountain pine beetle.

Although detecting the early phase of insect outbreak in the Norway spruce forests is challenging 
using remote sensing data, due to the lack of apparent visual symptoms on the affected trees, 
quantifying biochemical variables from hyperspectral measurements is promising and presents a 
powerful tool to determine the damage caused by bark beetle green attack at the leaf level. In other 
words, the information obtained about biochemical variables using hyperspectral measurements is 
sufficient to detect insect outbreaks in the forest at an early phase.

2.6.2 A ssessment of Leaf Functional Traits in Forest (SLA and LDMC)

Quantifying functional traits in natural communities is pivotal to understanding the spatial and 
temporal distribution of biodiversity, ecosystem services, and plant community productivity (Cadotte 
et al., 2011; Lavorel et al., 2011). Since human survival relies on economic benefits and services 
provided by ecosystems, it is evident that ecosystem functions are a top conservation priority. Scientists 
believe that better conservation and restoration decisions can be made by measuring and understanding 
functional traits (Cadotte et al., 2011). Remotely sensed data can play a critical role in acquiring such 
functional traits data over broad spatial scales nondestructively and repeatedly. Ali et al. (2016a,b, 
2017a,b) elucidated the potential of remotely sensed data to quantify two fundamental leaf functional 

FIGURE 2.22  Mean reflectance spectra of healthy and infested leaves of European spruce at the green 
attack stage (see Fig. 2.22). Tinted areas depict the location of wavebands displaying is a significant difference 
between healthy and infested spectra. (From Abdullah, H. et al., 2018. International Journal of Applied Earth 
Observation and Geoinformation, 64, 199–209.)
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traits (i.e., leaf dry matter content [LDMC] and specific leaf area [SLA]) in a mixed forest at leaf, 
canopy, and landscape scales by using statistically and physically based predictive models.

The leaf-level study by Ali et al. (2016b) through inversion of the most commonly used leaf 
radiative transfer model PROSPECT (Jacquemoud and Baret, 1990) revealed accurate estimation 
of the two leaf traits in a wide range of samples collected from broadleaf and conifer forest stands. 
Validation of the two leaf trait estimations showed the high coefficient of determination (R2) between 
the predicted and ground measured values (R2 = 0.83 for LDMC and R2 = 0.89 for SLA). The results 
showed that the PROSPECT_4 leaf model accurately simulates spectral information of samples 
from mixed mountain forest and can be used to retrieve the biochemical content of leaves/needles 
directly and indirectly through inversion over a range of vegetation types. It highlighted the fact that 
LDMC and SLA are quantitatively represented by leaf spectra. This leaf-level result sheds light on 
extending or upscaling the application of remotely sensed data in order to accurately estimate the 
two functional traits at canopy and landscape scales.

There are no well-developed methods for fast and accurate retrieval of LDMC and SLA at canopy 
or larger scales. Hence, both the statistical and physical approaches were investigated in order to map 
the two leaf traits in a mixed mountain forest, using the hyperspectral HySpex airborne images and 
the multispectral Landsat-8 Operational Land Imager (OLI) data (Ali et al., 2017b). The spectral 
features that have high correlations with LDMC and SLA were identified by applying continuous 
wavelet analysis to INFORM-simulated canopy spectra (Atzberger, 2000). The application of 
continuous wavelet analysis resulted in six sensitive wavelet features for LDMC and four for SLA 
being in the top 1% strongly correlated wavelet features. The results indicated the capability of the 
wavelet transformation to identify the most sensitive spectral features from a large hyperspectral 
dataset and the robustness of wavelet transformation in creating a higher correlation of wavelet 
features to vegetation variables compared to use of nontransformed original spectra (Figure 2.23). 
This may be attributed to the effectiveness of wavelet analysis in decomposing the trait’s absorption 
features into various scales of narrow- and broad-band absorption features and identifying those that 
correlate best with the variation in the traits’ concentration.

The suitability of indices for SLA retrieval at leaf and canopy levels for heterogeneous mountain 
forest has been evaluated by Ali et al. (2017b). The correlation tended to be lower at the canopy 
level, and many of band combinations that showed a high correlation to SLA at leaf level became 

(a) (b)

(c) (d)

FIGURE 2.23  Correlation scalograms for the identification of wavelet features that significantly correlate 
with (a) leaf dry matter content (LDMC) and (b) specific leaf area (SLA). Scalograms are derived from 
continuous wavelet analysis of simulated spectra. Brightness represents the coefficient of determination (R2) 
relating wavelet power to LDMC and SLA. Colored regions in scalograms (c) and (d) depict the wavelet 
features with the top 1% greatest R2 values for LDMC and SLA. (From Ali, A.M. et al., 2016c. ISPRS Journal 
of Photogrammetry and Remote Sensing, 122, 68–80.)
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insensitive at canopy scale. Although only narrow-band indices were examined, our findings suggest 
that bands with a wider wavelength range (broad bands) can be utilized. This implies that remote 
sensing data from coarse spectral resolution sensors may suffice for SLA estimation.

In the study by Ali et  al. (2017b), SLA was retrieved from the recently launched Landsat-8 
imagery by empirical methods (individual bands and vegetation indices) and the inversion of the 
INFORM radiative transfer model through wavelet transformation and lookup table approaches in 
order to explore the potential of medium-resolution multispectral satellite images to predict SLA 
for a mixed mountain forest (Ali et al., 2017b). It was evaluated whether the methods earlier studied 
at leaf and canopy scale using hyperspectral field and airborne data can be utilized at a larger scale 
using medium-resolution satellite data. Both the statistical and INFORM inversion predicted SLA 
with satisfactory accuracy.

The findings and methods of these studies have the potential to produce useful information from 
hyperspectral and multispectral remote sensing data about leaf functional traits at local, regional, and 
global scales. The results further confirmed the applicability of remote sensing to elucidate variation 
in general ecological leaf functional traits across relevant spatial and temporal scales. This will 
facilitate regular monitoring of biodiversity, particularly with respect to natural or anthropogenic 
changes in ecosystem functioning.

2.6.3 A nalysis of Biophysical and Biochemical Traits in Grasslands

In natural heterogeneous canopies such as grasslands, where the species diversity is high, the 
reflectance is often a mixture of different species; hence, remote sensing applications are challenging. 
A detailed investigation is required to assess the aptitude of remote sensing models when it comes to 
the combination of different plant species in varying proportions. The utility of hyperspectral remote 
sensing in predicting leaf and canopy characteristics such as LAI and canopy and leaf chlorophyll 
content in a heterogeneous Mediterranean grassland by different modeling approaches (statistical 
and radiative transfer models) at laboratory, field, and airborne levels was studied by Darvishzadeh 
et al. (2008a,b).

A number of key observations about the effects of canopy heterogeneity on retrieval of traits were 
made for analysis using statistical models. It was observed that unlike most common vegetation 
indices where the near-infrared (NIR) region is the keystone, wavebands from the short-wave 
infrared (SWIR) region contained most relevant information about canopy LAI, and the “hot spots” 
(regions where the sensitive band combinations exist) mostly occurred in this spectral region at 
laboratory, field, and airborne levels. This emphasized that the vegetation indices that do not include 
the SWIR spectral region may be less satisfactory for LAI estimation (Darvishzadeh et al., 2008b). 
Moreover, the results suggested that not only the choice of vegetation index but also prior knowledge 
of plant structural components and the background soil are important when using vegetation indices 
for LAI estimation (see Figure 2.20). Accordingly, landscape stratification is required when using 
hyperspectral imagery for large-scale mapping of vegetation biophysical variables.

Radiative transfer models have rarely been used for studying heterogeneous grassland canopies. 
The widely used PROSAIL (Verhoef, 1984, 1985; Jacquemoud and Baret, 1990; Kuusk, 1991) model 
by means of a lookup table (LUT) was utilized by Darvishzadeh et al. (2008b) with a number of 
stratifications to overcome the ill-posed nature of the model inversion and improve the retrievals 
of LAI, and leaf and canopy chlorophyll content. Their results showed that canopy chlorophyll 
content was predicted with the highest accuracy (R2 = 0.70, normalized RMSE = 0.18), while 
LAI was estimated with moderate accuracy (R2 = 0.59, normalized RMSE = 0.18). Heterogeneity 
had a pronounced effect on inversion algorithm and the retrieval of these parameters. Hence, the 
stratification of data based on the number of species increased the estimation accuracies of these 
parameters. The accuracy systematically fell each time sample plots with more (up to four) species 
were included in the inversion process. This demonstrated the limitations of the PROSAIL radiative 
transfer model when the spectral reflectance stems from a rather heterogeneous vegetation canopy 
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condition. When a limited number of wavelengths corresponding to various vegetation parameters 
and bands showing low average absolute errors were used for model inversion, the relationships 
between estimated and measured grass variables were comparable to those obtained from all 
wavebands. This indicated that a carefully chosen spectral subset contains sufficient information 
for a successful model inversion and can improve the ill-posed nature of the model inversion.

Utilizing canopy reflectance, leaf chlorophyll content could not be estimated with an acceptable 
accuracy exploiting either of the modelling approaches. Leaf biochemical variables suffer from 
poor signal propagation from leaf to canopy scale (Yoder and Pettigrew-Crosby, 1995; Jacquemoud 
et al., 1996; Asner et al., 1998), with only few exceptions (Jacquemoud et al., 2009; Xiao et al., 
2014). Therefore, their retrieval from canopy reflectance is challenging (Darvishzadeh et al., 2008b). 
At the canopy level, biophysical variables such as leaf area index (LAI) and canopy architecture 
(e.g., leaf angle distribution) presented major contributions to the canopy reflectance, mainly in 
near-infrared (NIR) and SWIR regions (Darvishzadeh et al., 2009; Ali et al., 2016a). Among these 
parameters, perhaps LAI has the most prominent role in defining the magnitude of the canopy 
reflectance, such that increase in LAI values increased the canopy reflectance in NIR and SWIR 
regions (Figure 2.24a).

The above findings illustrate some possibilities for estimating and mapping LAI and chlorophyll 
in a rather heterogeneous grassland. However, the application of the methods developed to other 
heterogeneous biomass and parameters needs to be evaluated using different hyperspectral data sets 
to explore the scale and sensor effects as well as phenological influences. It was observed that the 
heterogeneity (species diversity) almost disappeared at the airborne level, as using airborne data the 
retrieval accuracy of the studied variables increased using either the statistical or the physical model. 
However, heterogeneity is strongly scale dependent and relative.

2.6.4 R esponse of LAI to Thermal Hyperspectral Data

The thermal infrared region (TIR 8–14 µm) has traditionally been treated differently from the 
other parts of the electromagnetic spectrum due to the differences in acquisition, calibration, and 
processing of the data over this region. Despite the recent advances in the field of thermal remote 
sensing, this domain has hardly been used for vegetation studies. Consequently, there still is limited 
and insufficient information regarding the responses of plant traits over TIR domain. The existing 

(a) (b)

FIGURE 2.24  (a) Canopy spectral reflectance of Asplenium nidus in visible, near infrared, and short-wave 
infrared regions corresponding to LAI values between 0.87 and 6.11. (b) The canopy emissivity spectra in Ficus 
benjamina. Changes in canopy emissivity spectra become smaller when LAI values exceed 4.0 (m2 m−2). ([a] 
From Darvishzadeh, R. et al., 2009. International Journal of Remote Sensing, 30, 6199–6218; [b] Neinavaz, 
E. et al., 2016a. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 390–401.)
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misconceptions over the TIR data are related to relatively inaccessible instruments with high signal-
to-noise ratio, and subtle emissivity spectral variations in plants (Ribeiro da Luz and Crowley, 2010). 
Further, little is known by the ecological and remote sensing communities about plant physiology in 
association with plant spectral features in the TIR domain (Quattrochi and Luvall, 1999). However, 
none of these difficulties has reduced the importance of the TIR region, which benefits from a wide 
atmospheric window with large transparency offering high potential for remote sensing vegetation 
studies (Clerbaux et al., 2011).

As a result, Neinavaz et  al. (2016a,c) explored the potential of hyperspectral TIR canopy 
measurements to measure and quantify the canopy LAI as the key canopy biophysical property. LAI is 
strongly associated with numerous ecosystem processes (e.g., water balance and evapotranspiration) 
and plays a vital role in climate and terrestrial ecosystem models. Additionally, LAI has recently 
been proposed as one of the essential biodiversity variables (EBVs) that are potentially suitable for 
satellite monitoring of biodiversity and progress toward the Aichi Biodiversity Targets (Pereira 
et al., 2013; Skidmore et al., 2015). Moreover, the demand for LAI monitoring over large areas has 
increased in recent decades due to rising concern over habitat degradation and climate change.

The effect of changing LAI values on canopy reflectance has been investigated and confirmed in 
a number of studies (Asner et al., 1998; Darvishzadeh et al., 2009) in which it was demonstrated that 
with increasing LAI the canopy reflectance spectra increases noticeably in the NIR and SWIR regions 
(Figure 2.24a). The effect of LAI on plant emissivity spectra has only recently been investigated 
using TIR hyperspectral data by Neinavaz et al. (2016a). In their study the response of vegetation 
canopies with various LAI values to canopy emissivity spectra was investigated. It was observed that 
there is a positive relationship between canopy emissivity spectra and LAI and that the emissivity 
rises with increasing LAI values. This increment was more pronounced beyond the wavelength 
region of 9 µm (Figure 2.24b). Further, their results revealed that the species with similar LAI values 
could have distinct canopy emissivity spectra, suggesting that LAI is not the sole parameter that 
affects the canopy emissivity spectra and that other traits also contribute to these spectra.

The potential of TIR hyperspectral data for estimation of LAI was further explored for four 
structurally different species in Neinavaz et al. (2016c). The results of their study revealed that LAI 
and emissivity relations are only statistically significant in some wavebands. Vegetation indices, 
partial least-square regression (PLSR) and artificial neural networks (ANN) were applied for LAI 
retrieval in different species; their retrieval accuracies were comparable and the predicted accuracies 
were highly species dependent and varied among species. The most sensitive wavebands across 
species were in the 10–12 µm range in combination with the bands in the 8–11 µm range. The 
predicted LAI from the pooled dataset had lower accuracy than the ones obtained for individual 
species resulting from variation of biochemical and structural parameters across the species studied.

It is expected that other parameters, particularly those modulated from biochemical and 
biophysical variables, are likely to have more contribution to canopy emissivity spectra. Recent 
studies performed in mixed forest stands using TIR remotely sensed data demonstrated that canopy 
emissivity is a meaningful measure for retrieving vegetation modulated properties, particularly at 
the canopy level (Neinavaz, 2016a,b,c).

2.7 � GENERIC ROLE OF HYPERSPECTRAL DATA FOR ESTIMATION 
OF ECOPHYSIOLOGICAL FUNCTIONING

2.7.1  Generic Use of Hyperspectral Data for Present, Future, and Past Sensors

In general, calibration and validation of predictive models are essential for higher accuracy and 
applicability in assessment of biophysical and ecophysiological variables from remotely sensed data. 
In past decades, a large number of papers have reported predictive algorithms and models using 
various sensors having different numbers of spectral bands, central wavelength, and bandwidth 
(Thenkabail et al., 2012). However, their predictive accuracy and applicability are often inconsistent 
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between datasets because of the differences in sensor specifications. A predictive model based on 
a dataset using a sensor cannot be applied directly to the other sensors. For example, the widely 
used spectral index NDVI (normalized difference vegetation index) derived from different sensors 
would not be equivalent to each other because of the differences in position and width of the red 
and near-infrared wavebands. Some sensors have the red edge band but the others do not, while the 
band is most useful for assessment of chlorophyll content. Accordingly, calibration and validation 
procedures are required for individual sensors based on sufficient number of spectral data and 
reliable in situ measurements of biophysical or ecophysiological variables. Such datasets usually have 
to be acquired by laborious and careful procedures, which would hamper the wide and generalized 
application of remote sensing. Furthermore, acquisition of such datasets is impossible from the 
various sensors used in the past even if a large volume of images are available in open archives.

However, precise hyperspectral data of sufficient spectral resolution (1–3 nm) acquired together 
with the diverse range of target variables would play a generic role in deriving the optimal algorithms 
and predictive models for various types of sensors of the past, present, and future. Hyperspectral 
datasets obtained in close range can especially be an accurate basis for various applications because 
uncertainties due to atmospheric conditions and spatial heterogeneity within a pixel are negligible. 
Optimal algorithms and predictive models can be derived as default from such datasets for various 
sensor specifications of satellite-, aircraft-, and drone-based multispectral sensors of the past, present, 
and future. This hyperspectral approach would be realized through three methods: (1) generalized 
spectral index method, (2) advanced use of physically based reflectance models, and (3) data-driven 
machine learning methods. The second and third methods have several constraints as discussed in 
Section 2.3. Therefore, the first method would be the simplest and most flexible approach.

Figure 2.25 shows a schematic of the generic use of hyperspectral datasets for assessment of 
ecophysiological functioning of crops and vegetation based on the generalized spectral index method. 
The generalized spectral index approach, such as NDSI(Ri, Rj), RSI(Ri, Rj) and/or their derivatives 
using the whole spectral wavebands (see Section 2.3.1), allows one to choose optimal sensors and 
wavebands from available satellite or drone sensors. In addition, most suitable algorithms and 
predictive models (formulas and parameters) can be determined for any sensors, even those used in 
the past. Note that spectral data for this approach have to be precise reflectance data at the target 
surfaces, so that appropriate radiometric and atmospheric collections are needed.

2.7.2 � Strategic Application of Hyperspectral Data to Drone-, 
Airborne-, and Satellite-Based Multispectral Image Sensors

The number of earth observation satellites with high spatial resolution (under 10 m) has been 
increasing consistently during the past decade, and is further increasing at a rapid pace. A constellation 
of hundreds of small satellites is already realized (e.g., Dove satellites by Planet) and many similar 
programs are planned (Lal et al., 2017). Accordingly, global land surfaces can be observed once a 
day at high spatial resolution. On the other hand, the availability of small unmanned aerial vehicles 
(termed drones, UAVs, or UASs) is expanding rapidly worldwide (Zhang and Kovacs, 2012; Stöcker 
et al., 2017). This platform environment favors the advanced operational applications of remote 
sensing to assessment of ecophysiological functioning of crops and vegetation. The high spatial 
resolution and timely data acquisition are the unique advantages of drone-based remote sensing.

Under such a platform environment, the hyperspectral datasets would play a critical role for 
generating predictive models for any sensors with different specifications, regardless of the availability 
of satellite hyperspectral sensors (see Section 2.7.1). The generalized spectral index approach would 
greatly reduce the laborious and careful tasks for creation and validation of predictive models 
required for advanced use of various sensors with diverse specifications (number of spectral bands, 
central wavelength, and bandwidth).

Figure 2.26 shows application examples of the generic hyperspectral approach to diagnostic 
mapping of canopy nitrogen contents by satellite- and drone-based multispectral sensors. The optimal 
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algorithms and predictive models for each sensor were created and validated based on hyperspectral 
datasets and applied to each sensor for mapping. The scatterplot with each map indicates the results 
of simple validation with independent in situ datasets. These results confirm the robust applicability 
of the generic approach based on hyperspectral datasets for creation of optimal algorithms and 
predictive models for individual band specifications. For example, in prediction of chlorophyll 
content, different optimal (best, second-best, etc.) models can be created in accordance with sensor 
specifications even with or without the red edge bands. Nevertheless, we should be careful about 
the quality of multispectral images since all algorithms and predictive models are affected by the 
accuracy of spectral reflectance. Appropriate radiometric and atmospheric corrections are required 
for satellite images, and precise radiometric correction and ortho-mosaic processing are needed for 
drone-based images (Inoue, 2017; Inoue and Yokoyama, 2017).

2.8 � CONCLUSIONS AND PERSPECTIVES: DIAGNOSTIC INFORMATION 
FOR SMART AGRICULTURE AND ENVIRONMENTAL MANAGEMENT

So-called “precision agriculture” (PA) has emerged as one of the advanced technologies in recent 
decades (Stafford, 2000). GPS and agricultural machines equipped with sensors and variable-rate 
apparatus are essential for PA. In addition, georeferenced information from remote sensing can play 
a significant role in PA (Moran et al., 1997; Zhang and Kovacs, 2012) since site-specific management 
based on the spatial heterogeneity within each field is the central issue for PA. “Smart agriculture” 
(SA) is a new trend following PA, which is more advanced style of agriculture based on sensing and 
robotics technologies as well as information and communication technologies (ICT) including big 

FIGURE 2.25  Schematic representation of the generic role of a hyperspectral dataset for assessment of 
biophysical and ecophysiological functioning of vegetation. (After Inoue, Y. 2017. Journal of the Remote 
Sensing Society of Japan, 37, 213–223.)
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data and artificial intelligence (Inoue, 2017; Figure 2.27). By making the most of these technologies, 
SA seeks higher yield and quality with less labor and inputs. Geoinformation from remote sensing 
will be even more critical in SA as a unique source of spatial data and diagnostic information 
for optimization of planning and management practices. Accordingly, in SA, ecophysiological 
information on crop growth such as chlorophyll and nitrogen contents, water stress index, maturity 
stage, and photosynthetic productivity and/or on soil fertility is needed for optimization of fertilizer 
application, irrigation management, and harvest scheduling as well as for yield prediction.

On the other hand, remotely sensed information plays an important role in various aspects of 
environmental policy making (de Leeuw et al., 2010; IPCC, 2014). Especially under conditions of 
climate change such as increasing atmospheric CO2 and global warming, mitigation and adaptation 
strategies are of great concern worldwide. The dynamics of terrestrial vegetation is strongly related to 
exchange of CO2, energy, and water between atmosphere and land surface, in which ecophysiological 
functioning of vegetation plays a critical role. Accordingly, the diagnostic geoinformation on 

FIGURE 2.26  Application of a generic model generator based on hyperspectral datasets. Examples shows 
the diagnostic maps of canopy nitrogen content at regional scale by WorldView-2 (left) and drone-based 
multispectral sensors (right). Optimal predictive models for each sensor were derived from the hyperspectral 
dataset and calibrated and validated before application to each multispectral sensor. Scatterplots show the 
independent validation of multispectral estimates using in situ data. (After Inoue, Y. 2017. Journal of the 
Remote Sensing Society of Japan, 37, 213–223; Inoue, Y. and Yokoyama, M. 2017. Journal of the Remote 
Sensing Society of Japan, 37, 224–235.)
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ecophysiological functioning of vegetation at regional or global scales is an essential basis for 
environmental sciences and policy making. Remotely sensed data are prerequisite for spatiotemporal 
assessment of carbon cycle in terrestrial ecosystems (Inoue et al., 2010; Thapa et al., 2015; Vadrevu 
et al., 2018; Figure 2.28). Assessment of biodiversity is also one of the important application areas 
for hyperspectral remote sensing (e.g., Nagendra et al., 2013; Feilhauer et al., 2017).

FIGURE 2.27  Innovative technologies needed for transformation from traditional agriculture to smart 
agriculture, and the role of diagnostic information from remote sensing in smart agriculture. (After Inoue, Y. 
2017. Journal of the Remote Sensing Society of Japan, 37, 213–223.)

FIGURE 2.28  Hyperspectral assessment of ecophysiological functioning at ecosystem scales for vegetation 
and carbon cycle sciences as a basis for policy making for land use and environmental conservation. HRS: 
Hyperspectral remote sensing; GPP, gross primary production; NPP, net primary production; NBP, net biome 
production; NEP, net ecosystem production. (After Inoue, Y. et al., 2010. International Journal of Applied 
Earth Observation and Geoinformation, 12, 287–297.)
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Hyperspectral data enables plant functional information to be acquired that is impossible to 
acquire with other types of sensors. Further studies on hyperspectral remote sensing of vegetation 
functioning are needed not only for hyperspectral satellite sensors such as EnMAP and HyspIRI 
(Staenz and Held, 2012), but also for advanced use of a wide range of multispectral sensors.

Hyperspectral remote sensing using spaceborne, airborne, drone-based, and ground-based 
sensors will play significant roles in these agricultural, ecological, and biogeological sciences and 
applications. Interdisciplinary research studies between the disciplines of physics, ecophysiology, 
and computing technologies can be productive.
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