
FEERCI: A Package for Fast Non-Parametric
Confidence Intervals for Equal Error Rates in

Amortized O(m log n)
1st Erwin Haasnoot

Faculty o f EEMCS, DMB Group
University o f Twente

Enschede, The Netherlands
e.haasnoot@utwente.nl

4th Luuk Spreeuwers
Faculty o f EEMCS, DMB Group

University o f Twente
Enschede, The Netherlands
l.j.spreeuwers@utwente.nl

2nd Ali Khodabakhsh
Norwegian Biometrics Laboratory

NTNU
Gjovik, Norway

ali.khodabakhsh@ntnu.no

5th Raymond Veldhuis
Faculty o f EEMCS, DMB Group

University o f Twente
Enschede, The Netherlands

r.n.j.veldhuis@utwente.nl

3rd Chris Zeinstra
Faculty o f EEMCS, DMB Group

University o f Twente
Enschede, The Netherlands

c.g.zeinstra@utwente.nl

Abstract—Equal Error Rates (EERs), or other weighted rela-
tions between False Match and Non-Match Rates (FMR/FNMR),
are often used as a performance metric for biometric systems.
Confidence Intervals (CIs) are used to denote the uncertainty
underlying these EERs, with many methods existing to estimate
said CIs in both parametric and non-parametric ways. These
confidence intervals provide, foremost, a method of comparing
scoring/ranking functions. Non-parametric methods often suffer
from high computational costs, but do not make assumptions
as to the shape of the EER- and score distributions. For both
EERs and CIs, contemporary open-source toolkits leave room for
improvement in terms of computational efficiency. In this paper,
we introduce the Fast EER (FEER) algorithm that calculates an
EER in O(log n) on a sorted score list, we show how to adapt
the FEER algorithm to calculate non-parametric, bootstrapped
EER CIs (FEERCI) in O (m log n) given m resamplings, and we
introduce an opinionated open-source package named feerci that
provides implementations of the FEER and FEERCI algorithm.
We provide speed and accuracy benchmarks for the feerci pack-
age, comparing it against the most-used methods of calculating
EERs in Python and show how it is able to calculate EERs and
CIs on very large score lists faster than contemporary toolkits
can calculate a single EER.

Index Terms—Receiver operating characteristic, Equal Error
Rate, Bootstrap Confidence Interval, Open Source

I. INTRODUCTION

An Equal Error Rate (EER) can be defined as the point
where the False Match Rate (FMR) and False Non-match Rate
(FNMR) of a biometric system are equal, and the difference
between decision thresholds to attain said rates is minimized
or is zero. EERs are used to summarize performance of a
biometric system, often in combination with a full report
of the Decision Error Trade-off (DET) and/or the Receiver
Operator Characteristic (ROC) curve, but oftentimes without
such curves. Given the prevalence of reporting EERs without
ROC/DET curves, toolkits/methods currently in use leave

room for improvement, by not accepting pre-sorted score lists,
and only calculating EERs in O (n) after sorting.

Efficiently calculating EERs is relatively easy when given
sorted genuine and impostor score lists. We can imagine the
problem of finding an EER as doing a binary search along the
line where FMR = FNMR, to find the intersection point with
the DET/ROC curve. These algorithms are worth using when
the cost of the O(n log n) initial sorting can be amortized
across enough runs of the algorithm.

Use cases of such an algorithm include 1) calculating mul­
tiple different weighted (EER-like) subtractive1 performance
measures on the same sorted score list and 2) comparing
multiple genuine and impostor score lists to eachother, where
the amount of comparisons outweighs the amount of sorts.
Further, it is possible to adapt such an EER algorithm so that
it can efficiently calculate non-parametric EER confidence in­
tervals (CIs) through a bootstrap-equivalent procedure, which
we show in this paper.

We first explicate an example of a O(log n) algorithm for
calculating EERs on the empirical ROC, which we have called
the Fast Equal Error Rate (FEER) algorithm. Second, we show
how to extend this algorithm to calculate a single bootstrapped
EER, which allows us to calculate an EER CI in O (m log n)
when repeated m times. This algorithm we named FEERCI,
for Fast EER CIs. We provide both a speed and accuracy
benchmark for the algorithms.

Included in this paper is the introduction of the feerci
package, an opinionated, open source package for the Python
programming language. This package provides implementa-

'For measures such as Minimal Cost-Decision Function (minDCF) the
min0<e<i |FMR + FNMRI is calculated, whereas for Ee R the function
to minimize is min0<e<1 |FMR — FNMR|. The former is not monotonic,
whereas the latter is.

©2018 Gesellschaft für Informatik e.V., Bonn, Germany

Fig. 1. Fast Equal Error Rates (FEER)
Input: [is, gs] // sort impostors descending, genuines ascend­

ing
Output: EER

Initialize EER point and step, and check for overlap
1: e=.5, step=.5
2: if (is [0] < gs[0]) then
3: return 0.0
4: else if (gs[size(gs) — 1] < is[size(is) — 1]) then
5: return 1.0
6: end if

Loop to find overlap point, or point where overlap is as
close as possible

7: for i = 0; i < 2 x ceil(max(log2(size(is),log2(size(gs)));
i = i + 1 do

8: gmin, gmax = gs[[floor(e*size(gs)),ceil(e*size(gs))]]
9: imax, imin = is[[floor(e*size(is)),ceil(e*size(is))]]
10: step /= 2
11: if (gm in > im ax) then
12: e += step
13: else if (im in > gm ax) then
14: e -= step
15: end if
16: end for
17: return EERPostProcessing(gmin,gmax,imax,imin)

tions for both the FEER and FEERCI algorithms, and we
use it as the basis of our benchmark code, which we also
release for inspection. In the feerci package’s current state, it
can calculate non-parametric CIs (and EERs) on large score
lists (of millions of scores) in only seconds on a mid-range
laptop, for large enough score lists CIs are calculated faster
than the commonly used toolkit BOB can calculate a single
EER .

II. Fa s t E q u a l E r r o r Ra t e s (FEER)

The Fast Equal Error Rate (FEER) algorithm works as
follows: We want to find a point e G [0,1] on the EER
line where thresholds t EER = t G = t / , given a list of
genuine similarity scores G, and impostor similarity scores
I . Functions Gt and I t are defined such that both map a given
e to the minimum interval of empirical genuine and impostor
scores surrounding the ”real” threshold for e. t G G G t (e) and
t / G I t (e), an optimal e would be the point where t G G I t (e)
and t / G G t (e). This is the case when G t (e) n I t (e) = ^. Both
Gt and It are monotonic, so that it becomes a binary search
problem and logarithmic in G t and I t . Given sorted G and
I , G t and I t can be performed in constant time. As such this
algorithm has a running time of O(log n). See Algorithm 1
for a pseudocode implementation of the algorithm.

The EERPostProcessing step in Algorithm 1 consists of two
binary searches to expand a genuine score interval around
m in(G t (e)) bounded by I t (e) if G t (e) c I t (e) and vice­
versa if I t (e) c G t (e). The bounding box defined by
(m in(tG),m a x (t/)) and (m ax(tG), m in (t/)) allows us to

calculate where the EER-line intersects the empirical ROC
curve. This results in a an algorithm that can calculate pes­
simistic, expected and optimistic EERs on empirical ROCs.
A visual representation of the algorithm can be seen at
Figure 2, including the post-processing, with the intersec­
tion between the EER line and the ROC depicting the pes­
simistic estimate of EER, as well as what constitutes expected
and optimistic. Full implementation details can be found at
https://github.com/feerci/feerci .

The EER calculated by FEER differs from that one deter­
mined through the ROC Convex Hull (ROCCH), which can
be defined as that subset of points on the empirical ROC
that maximizes the convexity of the ROC. Bob makes use
of this to calculate EERs [2]. If provided this set of maximum
convexity, the FEER algorithm can calculate the ROCCH
EERs. Unfortunately, given a sorted score list, it is not obvious
how one can efficiently determine the points closest to the
intersection of the ROCCH with the EER line.

Fig. 2. Visual representation of FEER algorithm. 1) Search on the line
FMR==(1-TMR) a point e in the EER Bounding box. It checks the cases
e = .5, e = .25 and e = .375. 2) Project the found point e on the horizontal
axis or vertical axis and expand within the bounds of the given genuine (or
impostor if vertical projection) scores. 3) Find where the line FMR==(1-
TMR) intersects the EER Bounding Box (diagonal) and report the pessimistic,
expected or optimistic point.

III. Fa s t EER C o n f id e n c e In t e r v a l s (FEERCI)

Confidence bands (CB) of ROC/DET curves, and confi­
dence intervals (CIs) of EERs provide, foremost, a method of
comparing scoring/ranking functions, e.g. biometric classifiers,
against each other. Where CBs overlap, one scoring function
can not be said to be better than the other. Of all methods
that exist to estimate CBs, bootstrapped re-sampling based
methods are generally preferable over others that assume some
limiting (likely Gaussian) distribution [3]. Although naive
bootstrapping methods, where a raw empirical distribution
is re-sampled, are sub-optimal for estimating CBs compared
to smoothed bootstraps, where independent (Gaussian) noise
is added to each bootstrapped sample [5], the only point
on ROC CBs where there usually is no difference between
bootstrapping methods is at the EER point [6]. Therefore a

good case can be made for naively bootstrapped CIs for EERs
on empirical ROCs. We refer to [3] for a more thorough
discussion of EERs on empirical ROCs vs EERs on ROCCH.

smoothed bootstraps are computationally (more) expensive
than naive bootstraps, but this does not mean that naive
bootstraps are computationally cheap. A naive algorithm for
it would look like below.

1 Bootstrap both genuine and imposter lists.
2 so rt bootstrapped genuine and impostor lists.
3 Calculate bootstrapped EER
4 Repeat previous two steps m times and store each gen­

erated EER.
5 so rt re-sampled EERs and determine confidence interval.

With the O (n log n) sort at step 2 dominating the algorith­
mic complexity, and making the full algorithm for a naive CI
cost O (m * n log n). Given a sorted sampling2, this could be
brought down to O (m * n). In this section, we show to adapt
the FEER algorithm, so that it can draw bootstrapped EERs
in amortized O(log n), resulting in an efficient O (m log n)
algorithm for EER confidence intervals.

A. Algorithm

A bootstrap sampling is equivalent to repeatedly 1) draw­
ing from the discrete uniform distribution U niform (0,1), 2)
transforming this to an index over the range [0, n) and 3)
indexing the original score list with said index. The kth order
statistic in case of n repeated draws U niform (0,1) is well
known to be B eta(k ,n — k + 1) distributed [4]. In practice,
a draw z ~ Beta(a,) = x / (x + y), where x ~ Gamma(a)
and y ~ Gamma(fi).

The FEER algorithm as exposed in the previous section
repeatedly draws kth-order statistics from the original score
lists using the functions G t and I t . If we correctly administrate
the ranges over which we’re drawing, one for the re-sampled
set, one for the original set, we can calculate an equivalent of
a bootstrapped EER in effectively only O(log n). Sampling a
gamma distribution results in a ”pseudo-constant” operation,
as it depends on the average amount of accept-reject trials
[1] and is inversely dependent on n (becomes lower as
n is increased). Please see Algorithm 3 for a pseudocode
implementation of the FEERCI algorithm.

We omit details from the pseudocode of Algorithm 3,
e.g. how to handle cases so that ks are not accidentally
resampled. For details on this part of the algorithm, please
refer to the source code of FEERCI implementation at
https://github.com/feerci/feerci .

IV. Be n c h m a r k s

In this section, we present the result of our benchmark
tests, testing the implementation of the FEER and FEERCI
algorithm as is available in our Python feerci package.

2 We can draw a sorted sample from a sorted list by first drawing a histogram
of index counts (which are sorted), then iteratively building the sample list
from this histogram

Fig. 3. Fast EER Confidence Intervals (FEERCI)
Input: is, gs, m //both is & gs sorted, m is amount of bootstrap

samples
Output: EERs
1: EE R s = new list[m]
2: for in d = 0; in d < m; in d + = 1 do
3: iomin,iomax = ibmin,ibmax = 0,size(is)-1
4: gomin,gomax = gbmin,gbmax = 0,size(gs)-1
5: while gbm ax — gbm in > 1 or ibm ax — ibm in > 1 do
6: kg1, ki1 = (gbmax + gbmin) / 2, (ibmax + ibmin) /

2
7: kg2, ki2 = kg1 + 1, ki1 + 1
8: ig1 = round(gomin + Beta(kg1 - gbmin + 1, gbmax

- kg1 + 1) * (gomax - gomin))
9: ii1 = round(iomin + Beta(ki1 - ibmin + 1, ibmax -

ki1 + 1) * (iomax - iomin))
10: ig2 = round(gomin + Beta(1, gbmax - kg1 + 1) *

(gomax - gs[ig1]))
11: ii2 = round(iomin + Beta(1, ibmax - ki1 + 1) * (iomax

- is[ii1]))
12:
13: if gs[ig1] > is[ii 1] then
14: gbmax, gomax = kg1, ig1
15: ibmax, iomax = ki1, ii1
16: end if
17: if is[ii2] > gs[ig2] then
18: gbmin, gomin = kg1, ig1
19: gomin, iomin = ki1, ii1
20: end if
21: EERS[ind] = EERPostProcessing(kg1,kg2,ki1,ki2)
22: break
23: end while
24: end for
25: return EERs

A. Speed Benchmark

Our speed benchmark consisted of calculating CIs (or single
EERs) in six different cases in Python, see below.

1 Naive sampling using bob.measure.eerrocch
2 Naive sorted sampling using bob.measure.eerrocch
3 Naive sorted sampling using FEER
4 Single EER on unsorted list with bob.measure.eerrocch
5 FEERCI on unsorted list
6 FEERCI on pre-sorted list

We ran each benchmark case 10 times on set sizes ranging
from 1,000 to 50,000,000, as long as a run could be finished
within 10 minutes for a case. We set this limit because
we expected all non-FEERCI algorithms to take days rather
than seconds on large enough sets (of >500,000 scores). We
generated artificial scores by drawing impostor and genuine
scores from a normal distribution parameterized such that the
EER should be around 20%, drawn using [7].

(a) Speed Benchmark (b) Accuracy Benchmark

Fig. 4. a) Speed benchmark on 6 cases. b) Accuracy benchmark, histogram plotted of errors between naive bootstrap + feer CI and FEERCI CIs, for both
the upper and lower CI bound

B. Accuracy Benchmark

Our accuracy benchmark consisted of testing how the CIs
of our FEERCI algorithm compared to calculating a naive
bootstrap using FEER. We drew samples from two normal
distributions parameterized in such a way that the resulting
EER would be around 2%, 5%, 10% and 20%. We repeated
this procedure 1,000 times for each EER. We reported on
errors between the lower and upper bounds of CIs calculated
through both algorithms.

C. System

Both benchmarks ran on a Lenovo W550s laptop running
Ubuntu 16.04 with 16 GB of RAM and a 2.6 GHz quad-core
Intel i7 processor. We used Python 3.5.2. We pinned the bob
library to version 4.0.1, and bob.measure to 3.0.0. For full
code and version information, please look at our repository
here: https://github.com/feerci/benchmark .

D. FEERCI package

The python feerci package is an easy to install package
that allows one to easily calculate both the EER and its CI
in one command. The package can be found by following the
link here: https://github.com/feerci/feerci3. It provides a single
method with the signature:

feerci.feerci(impostors, genuines,
is_sorted = False,n_iterations=10000,
ci=.95) ->

(eer, bootstrapped_eers, ci)
We use this package as-is throughout the benchmark. The

default parameters were chosen so that a valid CI is calculated
by default on the score lists.

3NOTE: This is for the review paper only, we will change this to the real
repository link for a possible camera-ready paper.

V. RESULTS & DISCUSSION

The results of our speed benchmark can be found in Fig­
ure 4a. We show how the average run-time of all 6 benchmark
cases change as the set size is increased. Running times
quickly pass the 10 minute threshold for the two bob-based
algorithms. It is also apparent bob is not able to handle pre­
sorted sets efficiently, as bob with a sorted bootstrap procedure
can only handle sets twice as large. The FEER algorithm is
able to handle set sizes up to 10x larger than bob’s within
10 minutes of running-time, showing that it is able to handle
sorted sets significantly faster than the bob cases.

We also note that for set sizes larger than 1 million, a
full FEERCI run is faster than a single run of the bob EER
function on unsorted lists. Similarly, there is only a slight
difference between running times for FEERCI on pre-sorted
and unsorted lists if n is not large enough. This is due to the
final O (m log m) sort on the bootstrapped EERs contributing
significantly to the running time if m « n. If n ^ m, the
initial score list sort becomes dominant, and we see running
times increase significantly for FEERCI on unsorted lists.

The results of our accuracy benchmark can be found in
Figure 4b. We show a histogram of differences between
bounds the lower and upper bounds of our calculated and show
a normal distribution of errors, indicating no bias between our
naive bootstrapping based on the FEER algorithm, and the
results from the FEERCI algorithm.

VI. Co n c l u s io n

We have presented two efficient algorithms for calculating
EERs and their confidence intervals. We have benchmarked the
performance of these algorithms as they are implemented in
the python feerci package, against other major contemporary
biometrics toolkits in Python, of which there is currently only
one: bob and found significant speed-ups for both the FEER

and FEERCI algorithm. We introduced the feerci package,
an opinionated, open source Python package that gives an
implementation of both previously mentioned algorithms. We
believe the combination of speed, accuracy and ease-of-use of
the FEERCI algorithm as implemented in the feerci package
takes away many barriers holding back wide-spread adoption
of CIs across the field of biometrics, and hope to see them
employed more often.

Re f e r e n c e s

[1] Ah r e n s , J. H., a n d Die t e r , U. Computer methods for sampling from
gamma, beta, poisson and bionomial distributions. Computing 12, 3
(1974), 223-246.

[2] An j o s , A., El -Sh a f e y , L., Wa l l a c e , R., GUn t h e r , M., Mc Co o l ,
C., a n d Ma r c e l , S. Bob: a free signal processing and machine learning
toolbox for researchers. In Proceedings o f the 20th ACM international
conference on Multimedia (2012), ACM, pp. 1449-1452.

[3] Be r t a il , P., Cl e m e n c c o n , S. J., a n d Va y a t is , N. On bootstrapping
the roc curve. In Advances in Neural Information Processing Systems
(2009), pp. 137-144.

[4] De h l in g , H. G., AND Ka l m a , J. N. Kansrekening: het zekere voor het
onzekere. Epsilon Uitgaven, 2005. p. 186:189.

[5] Fa l k , M., a n d Re is s , R.-D. Weak convergence of smoothed and
nonsmoothed bootstrap quantile estimates. The Annals o f Probability
(1989), 362-371.

[6] Sc h u c k e r s , M. E., Min e v , Y., a n d Ad l e r , A. Curvewise det
confidence regions and pointwise eer confidence intervals using radial
sweep methodology. In International Conference on Biometrics (2007),
Springer, pp. 376-385.

[7] v a n d e r Wa l t , S., Co l b e r t , S. C., a n d Va r o q u a u x , G. The numpy
array: a structure for efficient numerical computation. Computing in
Science & Engineering 13, 2 (2011), 22-30.

