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Abstract—Equal Error Rates (EERs), or other weighted rela-
tions between False Match and Non-Match Rates (FMR/FNMR), 
are often used as a performance metric for biometric systems. 
Confidence Intervals (CIs) are used to denote the uncertainty 
underlying these EERs, with many methods existing to estimate 
said CIs in both parametric and non-parametric ways. These 
confidence intervals provide, foremost, a method of comparing 
scoring/ranking functions. Non-parametric methods often suffer 
from high computational costs, but do not make assumptions 
as to the shape of the EER- and score distributions. For both 
EERs and CIs, contemporary open-source toolkits leave room for 
improvement in terms of computational efficiency. In this paper, 
we introduce the Fast EER (FEER) algorithm that calculates an 
EER in O(log n) on a sorted score list, we show how to adapt 
the FEER algorithm to calculate non-parametric, bootstrapped 
EER CIs (FEERCI) in O (m  log n) given m  resamplings, and we 
introduce an opinionated open-source package named feerci that 
provides implementations of the FEER and FEERCI algorithm. 
We provide speed and accuracy benchmarks for the feerci pack-
age, comparing it against the most-used methods of calculating 
EERs in Python and show how it is able to calculate EERs and 
CIs on very large score lists faster than contemporary toolkits 
can calculate a single EER.

Index Terms—Receiver operating characteristic, Equal Error 
Rate, Bootstrap Confidence Interval, Open Source

I. INTRODUCTION

An Equal Error Rate (EER) can be defined as the point 
where the False Match Rate (FMR) and False Non-match Rate 
(FNMR) of a biometric system are equal, and the difference 
between decision thresholds to attain said rates is minimized 
or is zero. EERs are used to summarize performance of a 
biometric system, often in combination with a full report 
of the Decision Error Trade-off (DET) and/or the Receiver 
Operator Characteristic (ROC) curve, but oftentimes without 
such curves. Given the prevalence of reporting EERs without 
ROC/DET curves, toolkits/methods currently in use leave

room for improvement, by not accepting pre-sorted score lists, 
and only calculating EERs in O (n) after sorting.

Efficiently calculating EERs is relatively easy when given 
sorted genuine and impostor score lists. We can imagine the 
problem of finding an EER as doing a binary search along the 
line where FMR =  FNMR, to find the intersection point with 
the DET/ROC curve. These algorithms are worth using when 
the cost of the O(n  log n) initial sorting can be amortized 
across enough runs of the algorithm.

Use cases of such an algorithm include 1) calculating mul­
tiple different weighted (EER-like) subtractive1 performance 
measures on the same sorted score list and 2) comparing 
multiple genuine and impostor score lists to eachother, where 
the amount of comparisons outweighs the amount of sorts. 
Further, it is possible to adapt such an EER algorithm so that 
it can efficiently calculate non-parametric EER confidence in­
tervals (CIs) through a bootstrap-equivalent procedure, which 
we show in this paper.

We first explicate an example of a O(log n) algorithm for 
calculating EERs on the empirical ROC, which we have called 
the Fast Equal Error Rate (FEER) algorithm. Second, we show 
how to extend this algorithm to calculate a single bootstrapped 
EER, which allows us to calculate an EER CI in O (m  log n) 
when repeated m  times. This algorithm we named FEERCI, 
for Fast EER CIs. We provide both a speed and accuracy 
benchmark for the algorithms.

Included in this paper is the introduction of the feerci 
package, an opinionated, open source package for the Python 
programming language. This package provides implementa-

'For measures such as Minimal Cost-Decision Function (minDCF) the 
min0<e<i |FMR + FNMRI is calculated, whereas for Ee R the function 
to minimize is min0<e<1 |FMR — FNMR|. The former is not monotonic, 
whereas the latter is.

©2018 Gesellschaft für Informatik e.V., Bonn, Germany



Fig. 1. Fast Equal Error Rates (FEER)
Input: [is, gs] // sort impostors descending, genuines ascend­

ing
Output: EER

Initialize EER point and step, and check for overlap 
1: e=.5, step=.5 
2: if ( is [0] <  gs[0]) then 
3: return 0.0
4: else if (gs[size(gs) — 1] <  is[size(is) — 1]) then 
5: return 1.0
6: end if

Loop to find overlap point, or point where overlap is as 
close as possible

7: for i =  0; i <  2 x ceil(max(log2(size(is),log2(size(gs)));
i =  i +  1 do

8: gmin, gmax = gs[[floor(e*size(gs)),ceil(e*size(gs))]]
9: imax, imin = is[[floor(e*size(is)),ceil(e*size(is))]]
10: step /= 2
11: if (gm in > im ax) then
12: e += step
13: else if (im in  > gm ax ) then
14: e -= step
15: end if
16: end for
17: return EERPostProcessing(gmin,gmax,imax,imin)

tions for both the FEER and FEERCI algorithms, and we 
use it as the basis of our benchmark code, which we also 
release for inspection. In the feerci package’s current state, it 
can calculate non-parametric CIs (and EERs) on large score 
lists (of millions of scores) in only seconds on a mid-range 
laptop, for large enough score lists CIs are calculated faster 
than the commonly used toolkit BOB can calculate a single 
EER .

II. Fa s t  E q u a l  E r r o r  Ra t e s  (FEER)

The Fast Equal Error Rate (FEER) algorithm works as 
follows: We want to find a point e G [0,1] on the EER 
line where thresholds t EER =  t G =  t / , given a list of 
genuine similarity scores G, and impostor similarity scores 
I . Functions Gt and I t are defined such that both map a given 
e to the minimum interval of empirical genuine and impostor 
scores surrounding the ”real” threshold for e. t G G G t (e) and 
t /  G I t (e), an optimal e would be the point where t G G I t (e) 
and t /  G G t (e). This is the case when G t (e) n I t (e) =  ^. Both 
Gt and It are monotonic, so that it becomes a binary search 
problem and logarithmic in G t and I t . Given sorted G and 
I , G t and I t can be performed in constant time. As such this 
algorithm has a running time of O(log n). See Algorithm 1 
for a pseudocode implementation of the algorithm.

The EERPostProcessing step in Algorithm 1 consists of two 
binary searches to expand a genuine score interval around 
m in(G t (e)) bounded by I t (e) if G t (e) c  I t (e) and vice­
versa if I t (e) c  G t (e). The bounding box defined by 
(m in(tG),m a x (t/ )) and (m ax(tG), m in (t/ )) allows us to

calculate where the EER-line intersects the empirical ROC 
curve. This results in a an algorithm that can calculate pes­
simistic, expected and optimistic EERs on empirical ROCs. 
A visual representation of the algorithm can be seen at 
Figure 2, including the post-processing, with the intersec­
tion between the EER line and the ROC depicting the pes­
simistic estimate of EER, as well as what constitutes expected 
and optimistic. Full implementation details can be found at 
https://github.com/feerci/feerci .

The EER calculated by FEER differs from that one deter­
mined through the ROC Convex Hull (ROCCH), which can 
be defined as that subset of points on the empirical ROC 
that maximizes the convexity of the ROC. Bob makes use 
of this to calculate EERs [2]. If provided this set of maximum 
convexity, the FEER algorithm can calculate the ROCCH 
EERs. Unfortunately, given a sorted score list, it is not obvious 
how one can efficiently determine the points closest to the 
intersection of the ROCCH with the EER line.

Fig. 2. Visual representation of FEER algorithm. 1) Search on the line 
FMR==(1-TMR) a point e in the EER Bounding box. It checks the cases 
e = .5, e = .25 and e = .375. 2) Project the found point e on the horizontal 
axis or vertical axis and expand within the bounds of the given genuine (or 
impostor if vertical projection) scores. 3) Find where the line FMR==(1- 
TMR) intersects the EER Bounding Box (diagonal) and report the pessimistic, 
expected or optimistic point.

III. Fa s t  EER C o n f id e n c e  In t e r v a l s  (FEERCI)

Confidence bands (CB) of ROC/DET curves, and confi­
dence intervals (CIs) of EERs provide, foremost, a method of 
comparing scoring/ranking functions, e.g. biometric classifiers, 
against each other. Where CBs overlap, one scoring function 
can not be said to be better than the other. Of all methods 
that exist to estimate CBs, bootstrapped re-sampling based 
methods are generally preferable over others that assume some 
limiting (likely Gaussian) distribution [3]. Although naive 
bootstrapping methods, where a raw empirical distribution 
is re-sampled, are sub-optimal for estimating CBs compared 
to smoothed bootstraps, where independent (Gaussian) noise 
is added to each bootstrapped sample [5], the only point 
on ROC CBs where there usually is no difference between 
bootstrapping methods is at the EER point [6]. Therefore a



good case can be made for naively bootstrapped CIs for EERs 
on empirical ROCs. We refer to [3] for a more thorough 
discussion of EERs on empirical ROCs vs EERs on ROCCH.

smoothed bootstraps are computationally (more) expensive 
than naive bootstraps, but this does not mean that naive 
bootstraps are computationally cheap. A naive algorithm for 
it would look like below.

1 Bootstrap both genuine and imposter lists.
2 so rt bootstrapped genuine and impostor lists.
3 Calculate bootstrapped EER
4 Repeat previous two steps m times and store each gen­

erated EER.
5 so rt re-sampled EERs and determine confidence interval.

With the O (n  log n) sort at step 2 dominating the algorith­
mic complexity, and making the full algorithm for a naive CI 
cost O (m  * n  log n). Given a sorted sampling2, this could be 
brought down to O (m  * n). In this section, we show to adapt 
the FEER algorithm, so that it can draw bootstrapped EERs 
in amortized O(log n), resulting in an efficient O (m  log n) 
algorithm for EER confidence intervals.

A. Algorithm

A bootstrap sampling is equivalent to repeatedly 1) draw­
ing from the discrete uniform distribution U niform (0,1), 2) 
transforming this to an index over the range [0, n) and 3) 
indexing the original score list with said index. The kth order 
statistic in case of n  repeated draws U niform (0,1) is well 
known to be B eta(k ,n  — k +  1) distributed [4]. In practice, 
a draw z ~  Beta(a, ) =  x / ( x  +  y), where x ~  Gamma(a) 
and y ~  Gamma(fi).

The FEER algorithm as exposed in the previous section 
repeatedly draws kth-order statistics from the original score 
lists using the functions G t and I t . If we correctly administrate 
the ranges over which we’re drawing, one for the re-sampled 
set, one for the original set, we can calculate an equivalent of 
a bootstrapped EER in effectively only O(log n). Sampling a 
gamma distribution results in a ”pseudo-constant” operation, 
as it depends on the average amount of accept-reject trials 
[1] and is inversely dependent on n  (becomes lower as 
n  is increased). Please see Algorithm 3 for a pseudocode 
implementation of the FEERCI algorithm.

We omit details from the pseudocode of Algorithm 3, 
e.g. how to handle cases so that ks are not accidentally 
resampled. For details on this part of the algorithm, please 
refer to the source code of FEERCI implementation at 
https://github.com/feerci/feerci .

IV. Be n c h m a r k s

In this section, we present the result of our benchmark 
tests, testing the implementation of the FEER and FEERCI 
algorithm as is available in our Python feerci package.

2 We can draw a sorted sample from a sorted list by first drawing a histogram 
of index counts (which are sorted), then iteratively building the sample list 
from this histogram

Fig. 3. Fast EER Confidence Intervals (FEERCI)
Input: is, gs, m //both is & gs sorted, m is amount of bootstrap 

samples
Output: EERs
1: EE R s = new list[m]
2: for in d  =  0; in d  <  m; in d +  =  1 do 
3: iomin,iomax = ibmin,ibmax = 0,size(is)-1
4: gomin,gomax = gbmin,gbmax = 0,size(gs)-1
5: while gbm ax — gbm in >  1 or ibm ax — ibm in >  1 do
6: kg1, ki1 = (gbmax + gbmin) / 2, (ibmax + ibmin) /

2
7: kg2, ki2 = kg1 + 1, ki1 + 1
8: ig1 = round(gomin + Beta(kg1 - gbmin + 1, gbmax

- kg1 + 1) * (gomax - gomin))
9: ii1 = round(iomin + Beta(ki1 - ibmin + 1, ibmax -

ki1 + 1) * (iomax - iomin))
10: ig2 = round(gomin + Beta(1, gbmax - kg1 + 1) *

(gomax - gs[ig1]))
11: ii2 = round(iomin + Beta(1, ibmax - ki1 + 1) * (iomax

- is[ii1]))
12:
13: if gs[ig1] >  is[ii 1] then
14: gbmax, gomax = kg1, ig1
15: ibmax, iomax = ki1, ii1
16: end if
17: if is[ii2] >  gs[ig2] then
18: gbmin, gomin = kg1, ig1
19: gomin, iomin = ki1, ii1
20: end if
21: EERS[ind] = EERPostProcessing(kg1,kg2,ki1,ki2)
22: break
23: end while
24: end for
25: return EERs

A. Speed Benchmark

Our speed benchmark consisted of calculating CIs (or single 
EERs) in six different cases in Python, see below.

1 Naive sampling using bob.measure.eerrocch
2 Naive sorted sampling using bob.measure.eerrocch
3 Naive sorted sampling using FEER
4 Single EER on unsorted list with bob.measure.eerrocch
5 FEERCI on unsorted list
6 FEERCI on pre-sorted list

We ran each benchmark case 10 times on set sizes ranging 
from 1,000 to 50,000,000, as long as a run could be finished 
within 10 minutes for a case. We set this limit because 
we expected all non-FEERCI algorithms to take days rather 
than seconds on large enough sets (of >500,000 scores). We 
generated artificial scores by drawing impostor and genuine 
scores from a normal distribution parameterized such that the 
EER should be around 20%, drawn using [7].



(a) Speed Benchmark (b) Accuracy Benchmark

Fig. 4. a) Speed benchmark on 6 cases. b) Accuracy benchmark, histogram plotted of errors between naive bootstrap + feer CI and FEERCI CIs, for both 
the upper and lower CI bound

B. Accuracy Benchmark

Our accuracy benchmark consisted of testing how the CIs 
of our FEERCI algorithm compared to calculating a naive 
bootstrap using FEER. We drew samples from two normal 
distributions parameterized in such a way that the resulting 
EER would be around 2%, 5%, 10% and 20%. We repeated 
this procedure 1,000 times for each EER. We reported on 
errors between the lower and upper bounds of CIs calculated 
through both algorithms.

C. System

Both benchmarks ran on a Lenovo W550s laptop running 
Ubuntu 16.04 with 16 GB of RAM and a 2.6 GHz quad-core 
Intel i7 processor. We used Python 3.5.2. We pinned the bob 
library to version 4.0.1, and bob.measure to 3.0.0. For full 
code and version information, please look at our repository 
here: https://github.com/feerci/benchmark .

D. FEERCI package

The python feerci package is an easy to install package 
that allows one to easily calculate both the EER and its CI 
in one command. The package can be found by following the 
link here: https://github.com/feerci/feerci3. It provides a single 
method with the signature:

feerci.feerci(impostors, genuines,
is_sorted = False,n_iterations=10000, 
ci=.95) ->

(eer, bootstrapped_eers, ci)
We use this package as-is throughout the benchmark. The 

default parameters were chosen so that a valid CI is calculated 
by default on the score lists.

3NOTE: This is for the review paper only, we will change this to the real 
repository link for a possible camera-ready paper.

V. RESULTS & DISCUSSION

The results of our speed benchmark can be found in Fig­
ure 4a. We show how the average run-time of all 6 benchmark 
cases change as the set size is increased. Running times 
quickly pass the 10 minute threshold for the two bob-based 
algorithms. It is also apparent bob is not able to handle pre­
sorted sets efficiently, as bob with a sorted bootstrap procedure 
can only handle sets twice as large. The FEER algorithm is 
able to handle set sizes up to 10x larger than bob’s within 
10 minutes of running-time, showing that it is able to handle 
sorted sets significantly faster than the bob cases.

We also note that for set sizes larger than 1 million, a 
full FEERCI run is faster than a single run of the bob EER 
function on unsorted lists. Similarly, there is only a slight 
difference between running times for FEERCI on pre-sorted 
and unsorted lists if n  is not large enough. This is due to the 
final O (m  log m) sort on the bootstrapped EERs contributing 
significantly to the running time if m  «  n. If n  ^  m, the 
initial score list sort becomes dominant, and we see running 
times increase significantly for FEERCI on unsorted lists.

The results of our accuracy benchmark can be found in 
Figure 4b. We show a histogram of differences between 
bounds the lower and upper bounds of our calculated and show 
a normal distribution of errors, indicating no bias between our 
naive bootstrapping based on the FEER algorithm, and the 
results from the FEERCI algorithm.

VI. Co n c l u s io n

We have presented two efficient algorithms for calculating 
EERs and their confidence intervals. We have benchmarked the 
performance of these algorithms as they are implemented in 
the python feerci package, against other major contemporary 
biometrics toolkits in Python, of which there is currently only 
one: bob and found significant speed-ups for both the FEER



and FEERCI algorithm. We introduced the feerci package, 
an opinionated, open source Python package that gives an 
implementation of both previously mentioned algorithms. We 
believe the combination of speed, accuracy and ease-of-use of 
the FEERCI algorithm as implemented in the feerci package 
takes away many barriers holding back wide-spread adoption 
of CIs across the field of biometrics, and hope to see them 
employed more often.
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