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Abstract—This paper studies H∞ almost state and output
synchronizations of homogeneous multi-agent systems (MAS)
with partial-state coupling with general linear agents affected
by external disturbances. We will characterize when static linear
protocols can be designed for state and output synchronization
for a MAS such that the impact of disturbances on the network
disagreement dynamics, expressed in terms of the H∞ norms
of the corresponding closed-loop transfer function, is reduced
to any arbitrarily small value. Meanwhile, the static protocol
only needs rough information on the network graph, that is
a lower bound for the real part and an upper bound for the
modulus of the non-zero eigenvalues of the Laplacian matrix
associated with the network graph. Our study focuses on three
classes of agents which are squared-down passive, squared-down
passifiable via output feedback and squared-down minimum-
phase with relative degree 1.

I. Introduction

The problem of synchronization among agents in a multi-
agent system has received substantial attention in recent
years, because of its potential applications in cooperative
control of autonomous vehicles, distributed sensor network,
swarming and flocking and others. The objective of syn-
chronization is to secure an asymptotic agreement on a
common state or output trajectory through decentralized
control protocols (see [1], [15], [21], [33] and references
therein).

State synchronization basically requires homogeneous
MAS (i.e. agents have identical dynamics). State synchro-
nization based on diffusive partial-state coupling has also
been considered in many papers (e.g. see [11], [12], [24],
[25], [26], [30], [31]). The case where the full state is shared
over the network, will be referred to as full-state coupling.
If only part of the state is shared over the network, we refer
to it as partial-state coupling. For partial-state coupling, the
synchronization can be achieved via a dynamic protocol or a
static protocol. State synchronization via a dynamic protocol
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imposes restrictions on the agent dynamics. Agents are as-
sumed to be at most weakly unstable (all poles in the closed-
left half plane) in e.g. [26], [32] and references therein.
Alternatively, agents are assumed to be at most weakly non-
minimum-phase (all invariant zeros in closed left half plane)
in e.g. [4], [8], [28], [29], [37] and references therein. For
state synchronization via a static protocol, agents are usually
required to be passive or passifiable via output feedback. For
example, [34] considers linear agents which are either passive
or passifiable via output feedback. In that case a certain
set of graphs is identified for which state synchronization
can be achieved. In [5], agents are strictly G-passifiable via
output feedback while [6] deals with linear agents which are
either passive or passifiable via state/output feedback agent.
In [10], [19], [20], input feedforward passivity is studied
in connection with output synchronization. Nonlinear input-
affine passive agents are considered in [3], [27], [35], [39],
[41] while general nonlinear passive agents are studied in
[9], [16], [36]. The main objective is to derive conditions
for synchronization for different classes of network graphs:
undirected, balanced, directed or time-varying graphs.

On the other hand, most research works have focused on
the idealized case where the agents are not affected by exter-
nal disturbances. In the literature where external disturbances
are considered, γ-suboptimal H∞ design is developed for
MAS to achieve an H∞ norm from an external disturbance to
the synchronization error among agents less to a priori given
γ. In particular, [12], [40] considered the H∞ norm from an
external disturbance to the output error among agents. [23]
considered the H∞ norm from an external disturbance to the
state error among agents, whereas [13] and [14] try to obtain
an H∞ norm from a disturbance to the average of the states
in a network of single or double integrators.

By contrast, [17] introduced the notion of H∞ almost
synchronization for homogeneous MAS, where the goal is
to reduce the H∞ norm from an external disturbance to the
synchronization error, to any arbitrary desired level. This
work is extended later in [18], [37], and [38].

In this paper, we study H∞ almost state and output syn-
chronization for a MAS with partial-state coupling via static
protocol design for passifiable agents affected by external
disturbances. We will show that the solvability of these
problems depends on two classifications:
• Input-matched disturbances or not
• Minimum-phase agents or not

Due to space limitation, the proof of the main results are
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omitted, However the proofs are available online in the full
version of this paper.

Notations and definitions: Given a matrix A ∈ Rm×n, AT

denotes the transpose of A, and ‖A‖ denotes the induced 2-
norm of A. A square matrix A is said to be Hurwitz stable
if all its eigenvalues are in the open left half complex plane.
A ⊗ B depicts the Kronecker product between A and B. In
denotes the n-dimensional identity matrix and 0n denotes
n × n zero matrix; we will use I or 0 if the dimension is
clear from the context.

A weighted directed graph G is defined by a triple
(V, E,A) where V = {1, . . . , N} is a node set, E is a set
of pairs of nodes indicating connections among nodes, and
A = [ai j] ∈ RN×N is the weighting matrix, where ai j > 0
if ( j, i) ∈ E and ai j = 0 otherwise. We have aii = 0 while
ai j > 0 denotes an edge from node j to node i. A path
from node i1 to ik is a sequence of nodes {i1, . . . , ik} such
that (ij, ij+1 ∈ E for j = 1, . . . , k − 1. A directed tree is a
subgraph (subset of nodes and edges) in which every node
has exactly one parent node except for one node, called the
root, which has no parent node. In this case, the root has
a directed path to every other node in the tree. A directed
spanning tree is a directed tree containing all the nodes of
the graph. For a weighted graph G, a matrix L = [`i j] with

`i j =

{ ∑N
k=1 aik, i = j,
−ai j, i , j,

is called the Laplacian matrix associated with the graph G.
The matrix L has all its eigenvalues in the closed right half
plane and at least one eigenvalue at zero associated with right
eigenvector 1. A specific class of graphs needed in this paper
is presented below:

Definition 1 For any given α > β > 0, let GN
α,β denote the

set of directed graphs with N nodes that contain a directed
spanning tree and for which the corresponding Laplacian
matrix L satisfies ‖L‖ < α while its nonzero eigenvalues
have a real part larger than or equal to β.

II. Review of squared-down passivity and passifiability
Consider a system

Σ :
{
Ûx = Ax + Bu,
y = Cx, (1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp . In this paper, we first
define squared-down passive and squared-down passifiable
via output feedback for a non-square system (1) based on
the idea of squaring down in [22].

A system (1) is called squared-down passive with a pre-
compensator G1 ∈ R

m×q and a post-compensator G2 ∈ R
q×p

if the interconnection with input û and output ŷ is passive
where u = G1û and ŷ = G2y. Assuming G1 and G2 are such
that (A, BG1) is stabilizable, (A,G2C) is detectable while
BG1 and G2C have full column- and row-rank, respectively,
then this is equivalent to the existence of a positive definite
matrix P, such that

PA + ATP 6 0, PBG1 = CTGT
2. (2)

Remark 1 Note that when G1 = I, squared-down passivity is
reduced to G-passivity as used in [7]. For a square system,
we can choose G1 = G2 = I and squared-down passivity
becomes conventional passivity.

G1 Σ G2

H

⊗
−

v û u y ŷ

Fig. 1. A squared-down passive system via output feedback

Similarly, a system (1) is called squared-down passifiable
via output feedback with a pre-compensator G1 ∈ R

m×q

and a post-compensator G2 ∈ R
q×p if there exists an output

feedback
û = −H ŷ + v (3)

which makes the system (1) squared-down passive with
respect to the new input v, as shown in Figure 1.
A system (1) is squared-down passifiable via an output

feedback (3) if there exist a matrix H and a positive definite
matrix P such that

P(A − BG1HG2C) + (A − BG1HG2C)TP 6 0,
PBG1 = CTGT

2.
(4)

This sufficient condition is also necessary for a system to be
squared-down passifiable via output feedback if (A, BG1) is
stabilizable, (A,G2C) is detectable while BG1 and G2C have
full column- and row-rank, respectively.

Finally, we will define a class of agents, which are
squared-down minimum-phase with relative degree 1.

A system (1) is called squared-down minimum-phase
with relative degree 1 with a pre-compensator G1 ∈ R

m×q

and a post-compensator G2 ∈ R
q×p if the square system

(A, BG1,G2C) is minimum-phase with relative degree 1, i.e.
det(G2CBG1) , 0.

Remark 2 It is easy to show that if the system (1) is squared-
down minimum-phase with relative degree 1, one can choose
G1 such that G2CBG1 = I.

In this paper we will use the following lemma which makes
the structure of a system more explicit when it is squared-
down passifiable via static output feedback.

Lemma 1 Consider system (1) and assume it is squared-
down passifiable via static output feedback with compensator
G1 and G2 and output feedback gain H as in Figure 1, then
for the system (A, BG1,G2C), with input û, with u = G1û,
and output ŷ = G2y, there exist non-singular transformation
matrices Tx , Tû and Tŷ with

x̃ =
(
x̃1
x̃2

)
= Tx x, ũ = Tû û, ỹ = Tŷ ŷ
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where Tŷ = (T−1
û
)T, such that the dynamics of x̃ is represented

by
Û̃x1 = A11 x̃1 + A12 x̃2,
Û̃x2 = A21 x̃1 + A22 x̃2 + ũ,
ỹ = x̃2,

(5)

where x̃1 ∈ R
n−q and x̃2 ∈ R

q . To be more specific, we have:

A11 =

(
A11s 0

0 A110

)
, A12 =

(
A121
A122

)
, A21 =

(
A211 A212

)
(6)

with:

A11s + AT
11s < 0, A110 + AT

110 = 0, A212 = −AT
122

Remark 3 If the system is squared-down passive, i.e. H = 0
in Figure 1, then we can additionally guarantee that

A22 + AT
22 6 0 (7)

Proof: Obviously the system (A, BG1,G2C) is at most weakly
non-minimum phase with relative degree 1. Note that there
exists P > 0 such that (4) is satisfied. Choose a unitary
matrix U such that

UP1/2BG1 = B̄ =
(

0
B̄2

)
with B̄2 invertible which is possible since BG1 is injective.
We first apply a state space transformation x̌ = Tx1x with

Tx1 = UP1/2 and we get:

Σ :
{
Û̌x = Āx̌ + B̄û,
ŷ = C̄ x̌,

where

(Ā − B̄HC̄) + (Ā − B̄HC̄)T 6 0 (8)
B̄ = C̄T

We decompose Ā compatibly with B̄:

Ā =
(
Ā11 Ā12
Ā21 Ā22

)
Next, (8) implies that

Ā11 + ĀT
11 6 0

Choose a unitary matrix U1 such that:

U1 Ā11UT
1 = A11 =

(
A11s 0

0 A110

)
with A11s + AT

11s < 0 and A110 + AT
110 = 0. Then, it is easily

verified that

Tx =

(
U1 0
0 I

)
Tx1, Tu = B̄2

yields (5) and (6). Remains to verify that A212 = −AT
122. If

we look at (8) then we get:(
A11 A12
A21 A22 − Ĥ

)
+

(
A11 A12
A21 A22 − Ĥ

)T

=

©«
A11s + AT

11s 0 A121 + AT
211

0 0 A122 + AT
212

AT
121 + A211 AT

122 + A212 A22 + AT
22 − Ĥ − ĤT

ª®®¬ 6 0

(9)

where Ĥ = B̄2HB̄T
2 from which it is immediately clear that

we must have A212 = −AT
122.

III. Problem formulation
Consider a MAS composed of N identical linear time-

invariant agents of the form,

Ûxi = Axi + Bui + Eωi,
yi = Cxi,

(i = 1, . . . , N) (10)

where xi ∈ Rn, ui ∈ Rm, yi ∈ Rp are respectively the state,
input, and output vectors of agent i, and ωi ∈ R

r is the
external disturbance.

The communication network provides each agent with a
linear combination of its own outputs relative to that of other
neighboring agents. In particular, each agent i ∈ {1, . . . , N}
has access to the quantity,

ζi =

N∑
j=1

ai j(yi − yj) =

N∑
j=1

`i j yj . (11)

The communication topology of the network can be de-
scribed by a weighted and directed graph G with correspond-
ing Laplacian matrix L. We will primarily focus on partial-
state coupling where C does not have full-column rank.

If the graph G describing the communication topology of
the network contains a directed spanning tree, then it follows
from [2] that the Laplacian matrix L has a simple eigenvalue
at the origin, with the corresponding right eigenvector 1 and
all the other eigenvalues are in the open right-half complex
plane. Let λ1, . . . , λN denote the eigenvalues of L such that
λ1 = 0 and Re(λi) > 0, i = 2, . . . , N .
Let N be any agent and define

x̄i = xN − xi, ūi = uN − ui and ȳi = yN − yi

and

x̄ =
©«

x̄1
...

x̄N−1

ª®®¬ , ū =
©«

ū1
...

ūN−1

ª®®¬ , ȳ =
©«

ȳ1
...

ȳN−1

ª®®¬ and ω =
©«
ω1
...
ωN

ª®®¬ .
Obviously, output synchronization is achieved if ȳ = 0. In
other words one of the prime objectives is to achieve:

lim
t→∞
(xi(t) − xN (t)) = 0, ∀i ∈ {1, . . . , N − 1}, (12)

lim
t→∞
(yi(t) − yN (t)) = 0, ∀i ∈ {1, . . . , N − 1}. (13)

Remark 4 The agent N is not necessarily a root agent.
Obviously, (12) is equivalent to the condition that

lim
t→∞
(xi(t) − xj(t)) = 0

for all i, j ∈ {1, . . . , N} and a similar connection holds for
(13).

In this paper we focus on static protocols parameterized
in a parameter ε:

ui = Fεζi, i = 1, . . . N (14)
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We formulate below two H∞ almost state/output synchro-
nization problems.

Problem 1 Consider a MAS described by (10) and (11). Let
G be a given set of graphs such that G ⊆ GN . The H∞
almost state synchronization problem via static protocol
with a set of network graphs G is to find, if possible, a linear
static protocol parameterized in terms of a parameter ε, of
the form (14) such that, for any given real number δ > 0,
there exists an ε∗ such that for any ε ∈ (0, ε∗] and for any
graph G ∈ G, (12) is satisfied for all initial conditions in the
absence of disturbances and the closed loop transfer matrix
Tω x̄ satisfies

‖Tω x̄ ‖∞ < δ. (15)

Problem 2 Consider a MAS described by (10) and (11). Let
G be a given set of graphs such that G ⊆ GN . The H∞
almost output synchronization problem with bounded state
errors via static protocol with a set of network graphs G
is to find, if possible, a linear static protocol parameterized
in terms of a parameter ε, of the form (14) and a constant
M (independent of ε) such that, for any given real number
δ > 0, there exists an ε∗ such that for any ε ∈ (0, ε∗] and for
any graph G ∈ G, (13) is satisfied for all initial conditions
in the absence of disturbances and the closed loop transfer
matrices Tω x̄ and Tωȳ satisfy

‖Tω x̄ ‖∞ < M, and ‖Tωȳ ‖∞ < δ. (16)

IV. H∞ almost disturbance decoupling

In this section, we establish a connection between H∞
almost state/output synchronization among agents in the net-
work via static protocol and a robust H∞ almost state/output
disturbance decoupling problem via static output feedback
with internal stability.

Preliminary results: The MAS system described by (10)
and (11) after implementing the linear static protocol (14) is
described by

Ûxi = Axi + BFεζi + Eωi,
yi = Cxi

for i = 1, . . . , N . Let

x =
©«

x1
...

xN

ª®®¬ , ω =
©«
ω1
...
ωN

ª®®¬ .
Then, the overall dynamics of the N agents can be written
as

Ûx = (IN ⊗ A + L ⊗ BFεC)x + (IN ⊗ E)ω. (17)

Firstly, we define the robust H∞ almost output distur-
bance decoupling problem with bounded input via static
output feedback as follows. Given Λ ⊂ C, there should exist
a parameterized controller

u = Fε y (18)

and M > 0 such that, for any given δ > 0, there exists ε∗ > 0
for which the interconnection of (18) and the system,

Ûx = Ax + λBu + Eω,
y = Cx, (19)

has the property that for any λ ∈ Λ and for any 0 < ε < ε∗

we have:
1) The interconnection of the systems (18) and (19) and

is internally stable;
2) The resulting closed-loop transfer function

Tλωy = C(sI − A − λBFεC)−1E (20)

from ω to y has an H∞ norm less than δ.
3) The resulting closed-loop transfer function

Tλuy = C(sI − A − λBFεC)−1B (21)

has an H∞ norm less than δ.
4) The resulting closed-loop transfer function

Tλωu = FεC(sI − A − λBFεC)−1E (22)

from ω to u has an H∞ norm less than M .
5) The resulting closed-loop transfer function

Tλuu = FεC(sI − A − λBFεC)−1B (23)

has an H∞ norm less than M .
In the above, Λ denotes all possible locations for the nonzero
eigenvalues of the Laplacian matrix L when the graph varies
over the set G. It is also important to note that M is
independent of the choice for δ and independent of λ ∈ Λ.
The robust H∞ almost state disturbance decoupling

problem with bounded input via static output feedback is
equivalent to the above with the only modification being that
instead of (20) and (21), the closed-loop transfer functions

Tλωx = (sI − A − λBFεC)−1E (24)
Tλux = (sI − A − λBFεC)−1B (25)

both have an H∞ norm less than δ.
The connection of the above problem with the H∞ almost

output synchronization problem via static protocol as defined
in Problem 2 is given below.

Lemma 2 Let G be a set of graphs such that the associated
Laplacian matrices are uniformly bounded and let Λ consist
of all possible nonzero eigenvalues of Laplacian matrices
associated with graphs in G. The H∞ almost output synchro-
nization problem via static protocol for the MAS described by
(10) and (11) given G is solved by a parameterized protocol
ui = Fεζi if the robust H∞ almost output disturbance
decoupling problem with bounded input via static output
feedback for the system (19) with λ ∈ Λ is solved by the
parameterized controller u = Fε y.

The next lemma establishes the similar connection be-
tween the H∞ almost state disturbance decoupling problem
with H∞ almost state synchronization problem.
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Lemma 3 Let G be a set of graphs such that the associated
Laplacian matrices are uniformly bounded and let Λ consists
of all possible nonzero eigenvalues of Laplacian matrices
associated with graphs in G. The H∞ almost state synchro-
nization problem via static protocol for the MAS described
by (10) and (11) given G is solved by a parameterized
protocol ui = Fεζi if the robust H∞ almost state disturbance
decoupling problem with bounded input via static output
feedback for the system (19) with λ ∈ Λ is solved by the
parameterized controller u = Fε y.

V. H∞ almost synchronization
In this section, we will consider a static protocol design

to achieve H∞ almost output synchronization. We consider a
MAS described by (10) and (11).

We split the analysis in two cases. The first case considers
agents which are squared-down passifiable given G1, G2 and
H. Clearly this included squared-down passive agents as a
special case. A squared-down passifiable agent given G1, G2
and H is such that (A, BG1,G2C) is weakly minimum-phase
with relative degree 1. However, if the system is actually
minimum-phase instead of only weakly minimum-phase then
we actually obtain stronger results. Therefore, this case is
analyzed separately. The problems formulated earlier in this
paper were in terms of an arbitrary set of graphs G. The
results in this section are obtained for specific classes of
graphs where:

G = GN
α,β

for some α, β > 0 which has been defined in Definition 1.
For all the problems in this paper we consider the same
parameterized protocol

ui = − 1
εG1G2ζi, (26)

The first result regarding H∞ almost output synchroniza-
tion problem via static protocol is stated as follows.

Theorem 1 Consider a MAS described by (10) and (11).
Assume (A, B,C) is squared-down passifiable with respect to
G1, G2 and H such that (A, BG1) is stabilizable, (A,G2C)
is detectable while BG1 and G2C have full column- and
row-rank, respectively. Let any real numbers α, β > 0 and
a positive integer N be given, and hence a set of network
graphs GN

α,β be defined. The H∞ almost output synchro-
nization problem via static protocol problem as defined in
Problem 2 with respect to fictitious output ŷ = G2y where
G = GN

α,β is solvable if

Im E ⊆ Im BG1. (27)

In particular, there exists an M such that for any given
real number δ > 0, there exists an ε∗, such that for any
ε ∈ (0, ε∗), the protocol (26) achieves state synchronization
(without disturbances), an H∞ norm from ω to ŷi − ŷj less
than δ and an H∞ norm from ω to xi − xj less than M for
any i, j ∈ 1, . . . , N and for any graph G ∈ GN

α,β .

The above shows that for squared-down passifiable agents
we can achieve almost output synchronization with respect to

the fictitious output ŷ = G2y if (27). The following example
illustrates that this result is no longer valid if we consider
almost state synchronization, if we use the original output y
or if the condition (27) is not satisfied.

Example 1 Consider the system:

Ûx =
(

0 1
−1 0

)
x + λ

(
1 0
0 1

)
u +

(
e1 0
0 e2

)
ω

y =

(
1 0
0 1

)
x

(28)

It is easily verified that this system is squared-down passive
with respect to

G1 =

(
0
1

)
, G2 =

(
0 1

)
.

The transfer matrix from ω to x when u = −ρG1G2y is given
by:

Gλ
ωx(s) =

1
s2 + λρs + 1

(
(s + λρ)e1 e2
−e1 se2

)
Given that:

Gλ
ωx(0) =

(
λρe1 e2
−e1 0

)
,

we note that the second condition of the robust H∞ almost
state disturbance decoupling problem with bounded input via
static output feedback is not satisfied unless we are in the
trivial case e1 = e2 = 0.

Next, consider the transfer matrix from ω to ŷ = G2y when
u = −ρG1G2y. We obtain:

Gλ
ωŷ(s) =

1
s2 + λρs + 1

(
−e1 se2

)
Given that:

Gλ
ωŷ(0) =

(
−e1 0

)
,

we note that the second condition of the robust H∞ almost
state disturbance decoupling problem with bounded input via
static output feedback is not satisfied unless e1 = 0. The latter
is equivalent to the condition Im E ⊆ Im BG1.

By Lemma 2, robust H∞ almost output disturbance decou-
pling is equivalent to H∞ almost output synchronization of a
MAS whose agents have the dynamics given in (28). Hence,
if H∞ almost output disturbance decoupling is not solvable,
then robust H∞ output synchronization is clearly not solvable
either.

The next theorem shows that if the system is minimum-
phase instead of only weakly minimum-phase then we can
achieve almost state synchronization if condition (27) is
satisfied. Moreover, if condition (27) is not satisfied then
we still achieve almost output synchronization.

Theorem 2 Consider a MAS described by (10) and (11). As-
sume (A, B,C) is squared-down minimum-phase with relative
degree 1 with G1 and G2 such that (A, BG1) is controllable
and (A,G2C) is observable. Assume that without loss of
generality G1 is chosen such that Remark 2 is satisfied. Let
any real numbers α, β > 0 and a positive integer N be given,
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and hence a set of network graphs GN
α,β be defined. The

H∞ almost state synchronization problem via static protocol,
as defined in 1 where G = GN

α,β , is solvable if (27) is
satisfied. If (27) is not satisfied then the H∞ almost output
synchronization via static protocol, as defined in 2 with
respect to the fictitious output ŷ = G2y where G = GN

α,β ,
is solvable. In particular, for any given real number δ > 0,
there exists an ε∗, such that for any ε ∈ (0, ε∗), the protocol
(26) achieves output synchronization and an H∞ norm from
ω to ŷi − ŷj less than δ for any i, j ∈ 1, . . . , N and for any
graph G ∈ GN

α,β . If (27) is satisfied then the protocol (26)
achieves almost state synchronization and an H∞ norm from
ω to xi − xj less than δ for any i, j ∈ 1, . . . , N and for any
graph G ∈ GN

α,β .
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