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1. Introduction

The importance of understanding human behavior in crowds is
undisputed. It is required for ensuring that proper support can be
given to crowd managers in preparation and during a crowd event.
The last decades proposals have been put forward to capture the
idiosyncrasies of crowd behavior in a variety of ways to understand
(parts of) crowds. These understandings or models come in differ-
ent forms, ranging from extremely formal (e.g. computational
models) or implicit knowledge (e.g. mental models of experts).
The crowd models that are grounded in science originate from very
different disciplines and practices, including psychology, sociology,
theoretical physics, applied mathematics, artificial intelligence,
and computer science. Despite having helped researchers better
understand crowd behavior, there are only few examples where
these models have actually been used to assist in crowd manage-
ment (with some exceptions, including e.g. Ball, 2007). There is
thus a substantial gap between crowd research and crowd man-
agement practice.

Crowd management practice involves accessing and interpret-
ing a wide variety of information sources, predicting crowd behav-
ior as well as deciding on the use of a range of possible, highly
context-dependent intervention mechanisms. In the context of this
paper, decision-support for crowd managers denotes any
computer-assisted support on each of these tasks. Both crowd
research and crowd management practice have developed and
improved tremendously in their attention for preparing crowd
events. Automated tools are increasingly being offered for particu-
lar aspects of crowd management, but much more is needed
(Challenger et al., 2009b).

We argue that the lack of adequate decision-support is partly
due to the status of the majority of current crowd models. Firstly,
most models are not ready for use: they are (if at all) tested for
acceptability in science, but not for usability in practice. Secondly,
most models reflect a particular discipline and thus target only
one specific element of crowd management, i.e. acting, observing,
interpreting, predicting and deciding. To truly provide decision sup-
port for crowd management, a new approach is needed that inte-
grates data gathering, assessment and prediction of crowd
situations, and evaluating decisions regarding interventions. Crowd
research has the potential to support crowd management in a bet-
ter way by taking an integrated view in the development of models
that are operationally usable. This would allow crowd management
to benefit from the wide variety of existing knowledge and tools
(models) regardless of the different (disciplinary) forms in which
they appear. This can be achieved, for example, by connecting and
using both expert insight and social theory to predict the further
development of a crowd while being fed information from a pattern
detection algorithm to interpret data from cameras at a crowd site.

In particular, we see potential for improving support during an
event, i.e. in real-time. In our view, we should make use of the
strengths of both humans and technology. Human expertise and
experience remains unbeaten in rapidly assessing (complex)
situations. Technology on the other hand, can rapidly acquire,
process and digest large amounts of information, which, in our view,

is under-exploited. We perceive integrated semi-automatic
decision-support as the next step in increasing the safety and suc-
cess of crowd events.

In this paper we aim to give guidance towards integrated crowd
management support by providing a decision-support framework
INCrRowD. INCROWD is an integrated framework for crowd interaction
(actuating and sensing), mining, predicting, and making decisions
to manage the behavior in a crowd, relating to the diverse practices
of crowd management (observing, interpreting, predicting,
decision-making). The framework functions as an architecture for
a decision-support system for crowd management as well as model
development framework towards operational support. Moreover,
in this paper the INCRowp framework is also used for identifying
areas in need of more research by classifying existing literature
on crowd-behavior understanding and management, simultane-
ously allowing us to substantiate our claim that an integrative
approach is needed.

We organize this paper by first providing an overview of crowd
research as communicated in other review papers. We continue by
looking at how crowd management is practiced today in Section 2.
In Section 3 we discuss the means of operational support for crowd
management, concentrating on the core elements of our frame-
work and illustrating how operations can be supported in real-
time, i.e., operations engineering. In Section 5 we focus on the
importance of supporting model development and show that
model development and operational crowd management are actu-
ally closely related. The framework then allows us to provide a sta-
tus report on the status of the current literature in Section 6, where
we assess and categorize 237 papers. Finally, we come to our con-
clusions in Section 7.

1.1. Background: existing reviews

Numerous review papers on understanding crowd behavior are
available in the literature. For instance, Reicher (2001) and
Challenger et al. (2009b) provide a (historical) overview including
different schools of thought in the psychology of crowds (theoret-
ical models). Bryan (1999) studies the maturity of human behavior
in the context of fire. Others consider state-of-the-art techniques,
such as the development of intelligent distributed surveillance sys-
tems and image processing technologies (Valera and Velastin,
2005), recognition and wearable sensors (Atallah and Yang, 2009)
or advocate a particular type of crowd modeling (Hughes, 2003).
A majority of these review papers addresses emergency evacua-
tion, either to highlight the importance of taking a more integrative
approach of the relevant connected research fields (Santos and
Aguirre, 2004; Sime, 1995; Venuti and Bruno, 2009), to reflect on
existing guidelines for facility design (Stanton and Wanless,
1995), or to provide insights into the most often used methods of
modeling (Gwynne et al., 1999; Alsnih and Stopher, 2004).

Each review paper targets its own (disciplinary) crowd niche,
the exception being the report of Challenger et al. (2009b) that cov-
ers a range of mathematical models, theoretical crowd-behavior
models and crowd-simulation tools (i.e., predicting techniques),
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but also a wealth of information regarding crowd behaviors, char-
acteristics, and typologies. Moreover, the report provides an exten-
sive list of guidelines for crowd management and emergency
situations, and identifies challenges in crowd management as well
as existing gaps and makes recommendations for future crowd
research. Despite its broader view, the focus lies on the prediction
aspect of crowd management. This reflects a general tendency of
these review papers focusing on only one or, at the most, two
aspects of crowd management. Bellomo and Dogbe (2011),
Duives et al. (2013), Challenger et al. (2009b), Venuti and Bruno
(2009) and Alsnih and Stopher (2004), for instance, solely focus
on predicting models or techniques. Bellomo and Dogbe (2011)
present a review and critical analysis of existing mathematical
models of vehicular traffic and crowd phenomena, addressing dif-
ferent representation scales (i.e., microscopic, macroscopic, and
statistical) and the corresponding mathematical structures. The
authors critically analyse the presented models, discuss their
limitations and focus on the identification of new research
perspectives which concern both modeling and analytic issues.
Moreover, they include a review of the empirical data that is used
to design and validate models. Similarly, Duives et al. (2013) pro-
vide an overview of a range of crowd simulation models and assess
these models regarding their precision in simulating known crowd
phenomena and their computational load. Their assessment shows
that the models can be roughly divided into two groups: (1) com-
putationally expensive, but highly precise microscopic models, and
(2) computationally inexpensive, but inaccurate macroscopic
models. Their review concludes that since practical applications
actually require both precision and efficiency, e.g. real-time
decision-support for crowd management, the current pedestrian
simulation models are inadequate.

While the above review papers focus solely on predictive mod-
els, others solely focus on the mining aspect. For instance, the
review presented in Valera and Velastin (2005) describes the state
of development of intelligent distributed surveillance systems,
including a review of current image processing techniques that
are used in different modules as part of the surveillance systems.
Surveillance activities addressed involve the recognition of
humans and objects as well as the description of their actions
and interactions. Areas for further research are also identified.
These include data fusion and tracking methods in a cooperative
multi-sensor environment. Their review focuses on techniques
for mining crowd data stemming from visual sensors (e.g. video
cameras), which so far have been the most prevalent type of sen-
sors used in crowd monitoring. Other reviews focus on two distinct
aspects of crowd management (Zhan et al., 2008; Atallah and Yang,
2009; Santos and Aguirre, 2004; Alsnih and Stopher, 2004;
Gwynne et al,, 1999). For instance, Zhan et al. (2008) present a
review of crowd-analysis methods employed in computer vision,
including methods for automatic crowd-feature extraction to pro-
vide crowd-density measurement, object recognition and object
tracking. The review thus focuses on mining and prediction tech-
niques. Moreover, the paper presents a review of computational
crowd models, classifying them into physics-inspired, agent-
based, cellular-automata and nature-based models. The paper also
presents several approaches that combine computational crowd
models with vision-based techniques, pointing out that it is possi-
ble to develop intelligent systems that combine these approaches.
Atallah and Yang (2009) present a review on the use of pervasive
sensing for understanding human activities in general (and not
only crowd behavior). The focus of their review lies on sensing
and mining techniques targeted at measuring, recognizing and
understanding human behavior. Their review includes current
work on activity recognition based on a vast range of ambient
and wearable sensors, as well as methods for modeling human
behavior, such as probabilistic models and approaches for anomaly

detection. Moreover, challenges and new research opportunities
are discussed, which include incorporating temporal information
in behavior modeling and unsupervised anomaly detection.

In existing reviews on understanding crowd behavior, the
aspects of sensing, mining, and predicting are commonly, yet sep-
arately, covered, whereas the practice of decision-making, e.g.
which interventions are effective, is generally addressed to a lesser
extent beyond stressing the importance of a particular study.

In our present review we aim at providing an overview of all
aspects of crowd management by giving an overview of the work
done in each of these stages and notably how they are connected.
Multiple reviews highlight the need for a more multidisciplinary
scientific approach, i.e., adopting the often ignored insights from
social psychology, e.g. (Santos and Aguirre, 2004; Sime, 1995).
Although we second this need wholeheartedly, we stress that this
needs to be carried out in a problem-driven, not discipline-driven
integrative approach. We look at crowd management as a whole
and thus adopt an integrative approach involving actuating and
sensing (crowd interaction), mining, predicting, and decision-
making, which is formalized by means of the iNnCrRowp framework.

2. How crowd management is currently performed

When looking at the wealth of information available on crowd
management (see, for example, Challenger et al., 2009b; Health
and Executive, 2000; Martella et al., submitted for publication), a
majority concentrates on the preparation for potential or expected
situations or events. We refer to this phase of crowd management
as the “event preparation” phase. During an event, crowd manage-
ment goes through an “event execution” phase, for which the
available literature focuses mostly on the monitoring of the crowd.
The crucial processes of situation assessment and decision-making
are however treated superficially in the literature.

In this section, we give an overview of how management of
crowds is currently planned and executed, including the processes
of situation assessment and decision-making. Much of the infor-
mation we present is based on (Challenger et al., 2009c,a; Health
and Executive, 2000; Martella et al., submitted for publication),
as well as work on decision-making in complex, uncertain, and
highly dynamic situations (Klein, 1999). Furthermore, we indicate
existing approaches and technologies from the literature that are
relevant to crowd management at its various stages.

2.1. The event preparation phase

Crowd management typically refers to the systematic planning,
and providing guidance for the safe and orderly development of
events where large numbers of people come together. Event prepa-
ration thus focuses on planning, which is considered to be the lar-
gest part of efforts in crowd management (Martella et al,
submitted for publication). Planning typically involves anticipating
what might happen regarding a crowd in a given context and
preparing for it. As such, preparation includes designing for the
desired behavior of the crowd, but also foreseeing potential issues
and devising contingency and emergency plans to deal with them
(Health and Executive, 2000, p. 33). The resulting plan usually tar-
gets the site design, a supporting technical infrastructure, a num-
ber of assigned personnel, and prescribed operational
interventions for dealing with ‘normal’ as well as anticipated crit-
ical situations (Health and Executive, 2000, p. 27; Challenger et al.,
2009¢, p. 13; Challenger et al., 2009a, p. 250; Martella et al.,
submitted for publication). The quality of the anticipatory analysis
in combination with the effectiveness of the planned or opera-
tionalized measures are particularly critical to effective crowd
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management. Automated support for what-if analyses can play a
crucial role.

Planning is typically carried out in a team using a multidisci-
plinary approach that draws on the perspectives and expertise of
a wide range of individuals. These include the event organizers,
crowd managers, police, stewards, first-aid representatives, local
authorities, transportation operators, and crowd simulation
experts, etc. (Challenger et al.,, 2009¢c, p. 71; Challenger et al,,
2009a, p. 260; Health and Executive, 2000, p. 7). These highly mul-
tidisciplinary efforts required for planning a crowd event may par-
tially explain why it is so difficult to provide an adequate decision-
support system.

Planning involves a wide range of activities, addressing, among
others, the critical moments when people enter and/or exit the
event site, their activities and movements within and around the
site. Also, strategies for improving flows and preventing densities
from reaching critical values at any given location and time need
to be taken into account (Health and Executive, 2000, p. 7;
Martella et al., submitted for publication). The literature points
out several approaches regarding the improvement of crowd flows
(Challenger et al., 2009¢, p. 74). These include the use of separate
doors for entry and exit (Helbing et al., 2002), placing obstacles
to encourage lane formation (Helbing et al., 2002), ensuring that
entry and exit points are wide enough to accommodate groups of
people to pass through (Pan et al., 2007), and making line-of-
sight paths as long as possible to allow individuals to see their des-
tination and choose the most direct route (Davies et al., 1995).
Advanced 3D simulations are increasingly used to assist the
experts in planning (Van Toll et al., 2012).

These approaches represent universally applicable interven-
tions for crowds and should be relatively easy to integrate into a
simulation environment for planning crowd events. However,
crowd management also requires the consideration of aspects that
are not easily formalized into a simulation environment. For exam-
ple, the purpose of a crowd event, the profiles of visitors, visitor’s
knowledge of and experience with the event, the characteristics
of the event site, the effect of the weather, etc. (Challenger et al.,
2009c¢, p. 133; Health and Executive, 2000, p. 7; Martella et al.,
submitted for publication).

Another important part of crowd planning is risk assessment. In
order to identify risks, a common approach involves the generation
of possible what-if scenarios regarding event disruptions and
emergencies (Health and Executive, 2000, p. 19). An automated
example is the work by Schubert and Suzic (2007) who introduce
assistance by means of an evolutionary algorithm that selects
interventions for a given scenario. Nevertheless, devising courses
of action for dealing with a given situation typically relies solely
on expert knowledge.

2.2. The event execution phase

During the event, the situation in a crowd must be continuously
monitored, assessed, and appropriate actions (typically according
to the original plan) need to be selected and implemented. In all
these processes, communication is a key element (Challenger
et al.,, 2009a, p. 263). This includes both communication among
crowd management team members as well as communication
between the crowd management team and the crowd itself. A solid
command and control structure must also be in place, with a cen-
tral control point responsible for the overall event management
across multiple locations (Challenger et al., 2009a, p. 269).

During the event, crowd observation and monitoring enables
the assessment of a situation and the detection of potential prob-
lems at an early stage, ultimately allowing the selection of appro-
priate action. The most common monitoring strategy for large
crowds uses stewards and officers on the ground near or inside a

crowd, as well as surveillance cameras whose output is watched
by (human) agents in a control room (Martella et al., submitted
for publication). Information that is typically monitored includes
counts of people in a small identifiable area, the space between
people, the rate of flow into or out of an area, the overall number
and distribution of people in the crowd, the general crowd mood,
signs of distress, pushing or surging, indications of bad temper or
excitement as well as any signs of other potential crowd problems
(Health and Executive, 2000, p. 47). To what extent such observa-
tions can be carried out in an (semi-)automated fashion is subject
to research as addressed in this paper.

Other monitoring systems and strategies include the deploy-
ment of helicopters and Unmanned Aerial Vehicles equipped with
video cameras, turnstiles linked to automatic counting systems as
well as scanning social media for the usage of certain keywords
(Martella et al., submitted for publication). As monitoring informa-
tion becomes available, experienced stewards and officers combine
and interpret the information in real-time and translate it—by
means of mental models—into a higher-level assessment of the
crowd situation: a state of situational awareness (Klein, 1999).
Therefore, it is crucial that personnel with extensive experience
in understanding and managing crowds (hereinafter referred to
as “crowd experts”) are involved in these assessments
(Challenger et al., 20093, p. 268; Klein, 1999). On a higher abstrac-
tion level, a situation in a crowd may be classified according to, for
example, known crowd behaviors and patterns, or assessed as a
normal, abnormal, dangerous, or emergency situation. Moreover,
once a certain situation has been detected, crowd experts antici-
pate resulting events (Klein, 1999). Here lie considerable chal-
lenges if the goal is to support, enhance or even replace the
human experts by automated means.

As indicated, the use of technology and automation in the pro-
cess described above is still limited. The processing of video data
by means of video-analysis algorithms (Davies et al., 1995) is per-
formed automatically in some simpler cases (e.g. when having rel-
atively low densities) to provide counting, density, and flow
estimations for crowd management (Martella et al., submitted for
publication). However, these algorithms do not address emotional
and psychological aspects of the individuals in a crowd. Insights
into these aspects may be obtained in an automated fashion by
mining social media (Martella et al., submitted for publication) as
well as automated self-reporting applications (Li et al., 2014).
Regarding high-level assessments and interpretations of a crowd
situation, a number of algorithms have been proposed. Examples
include classification into ‘normal’ and ‘abnormal’ behaviors,
mostly based on video data (Rodriguez et al., 2011; Mahadevan
et al., 2010; Mehran et al., 2009; Pathan et al., 2010), but also based
on multiple sensors (Andersson et al., 2009; Drews et al., 2010).
The recognition of crowd-behavioral patterns (Roggen et al.,
2011) and the unveiling of social-network structures (Isella et al.,
2011) based on on-body sensor data have also been addressed.
Of these types of approaches, none have been reported to be used
in real-time crowd management (Martella et al., submitted for
publication; Challenger et al., 2009b), possibly due to performance
issues and due to limitations with regard to the situations that
these solutions can address. Finally, currently available monitoring
and assessment technologies are also limited in that they can pro-
vide only real-time interpretations of a situation, but not predic-
tions, due to the apparent lack of appropriate models. Predictive
models have been proposed in abundance, as we discuss in this
paper, but their use in real-time crowd management is lacking.

Achieving situation awareness is key in any process of decision-
making, most notably in complex, uncertain, and highly dynamic
situations (Klein, 1999; Osinga, 2007). For crowd experts, the
awareness of the current situation allows for selecting a matching
scenario and an appropriate course of action. In case the current
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Fig. 1. The four major components of INCRowD.

situation does not satisfactorily match any of the prepared scenar-
ios, expert knowledge needs to be brought into modify selected
actions or devise completely new ones from scratch (Martella
et al., submitted for publication). The scenario-based approach
described in (Schubert and Suzic, 2007), in contrast, automates
the decision-making process by representing scenarios (as well
as the current situation) in a computer-understandable format.
The proposed representation is, however, quite simplistic and does
not allow for the representation of complex scenarios as found in
typical crowd situations.

Finally, once a course of action has been selected, the actual
action takes place and its consequences must again be monitored
to evaluate whether it had the desired effect. In fact, the processes
of monitoring, interpreting, predicting, deciding as well as acting
takes place continuously. They are part of a continuous decision
cycle which, according to (Osinga, 2007), all intelligent organisms
and organizations undergo. The crowd situation may of course
change while these processes are taking place, therefore it may
be necessary to change or cancel planned actions to accommodate
such changes.

2.3. Beyond preparation - a focus on real-time support

There is no doubt that preparation is key in crowd management.
At the same time, the processes that occur in real-time are just as
crucial. Particularly, support in decision-making would be a major
contribution. Therefore, in this paper we focus our attention on
real-time processes of crowd management: situation monitoring,
interpretation and prediction as well as decision-making. Our focus

does not exclude the use of the framework for preparation pur-
poses through predicting expected scenarios. Furthermore, we
focus on the processes that are relevant for decision support, i.e.,
those leading to a decision, but not on the implementation of the
decision itself. We adopt an integrative approach towards real-
time crowd management support which clearly reflects and
describes decision-making in complex and dynamic situations
(Klein, 1999; Challenger et al., 2009c,a; Osinga, 2007).

3. INCrowp

We now turn to detailing our framework, called INCRowp which
we use for two purposes: First, our framework can be seen as a pro-
posal for organizing decision-support systems for crowd manage-
ment, and thereby represents an architecture for such systems.
We deliberately incorporate the human expert into our framework,
since they are, and possibly will remain, the providers of the most
adequate (mental) models used in crowd management. Second,
INCRowD provides a basis for identifying various elements that are
needed to support crowd management. In other words, it is
problem-driven and opens connections to relevant knowledge,
methods, and techniques in other fields relevant to crowd manage-
ment. By subsequently classifying existing research in the context of

INCROWD, We arrive at a proposal for a research agenda in Section 6.

3.1. Overview

At a high level, INCrowp consists of four major subsystems, as
shown in Fig. 1.

Predicting Decision-making

Table 1

Examples of instruments available for crowd management.
Crowd interaction Mining
Sensing Actuating

Computational Simple data, collected by  Feedback through

digital sensor or a smartphones, techniques
human, that can be billboards, traffic
directly fed into a lights, fully

computer computer-controlled

Standard data-mining

Model-based computer
simulations

Analytical decision-making
strategies, e.g. Multi-Criteria
Decision Analysis (MCDA)
(Figueira et al., 2005; Anon.,
2009)

Noncomputational

Advanced data,
purposefully designed
questionnaires or
observations by humans:
visual, auditory

Intervention by
security officers,
manually controlled
traffic lights, mobile
barriers

Mental analyses
(experience based), e.g. a
sense that something is
going on given
observations

Theoretical or mental analysis,
e.g. a (social science) theory or
mental simulations such as
scenario thinking to predict

Naturalistic decision-making
strategies, e.g., the
Recognition-Primed Decision
(RPD) model (Klein, 1989)
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e The crowd-interaction subsystem provides the interface
between the actual crowd and (real-time) support systems for
crowd management. We distinguish two types of interfaces.
Actuators are used to intervene in a crowd. Typical examples
of actuators are mobile barriers, traffic lights, displays, and
tailor-made smartphone applications. Sensors are used for
measuring, or sensing the state of a crowd, and typically include
cameras and microphones, but also smartphones and social
media.

The mining subsystem is responsible for interpreting the raw
data that captures the state of a crowd. Typically, it deploys many
data-mining techniques and various methods for crowd analyt-
ics, along with interpretations provided by human experts.

The predicting subsystem is responsible for predicting the
state of a crowd. It typically contains predictive simulation
models, but also models for generating synthetic data sets that
are subsequently fed into the mining subsystem for further
analysis. Practice shows, however, that human expert knowl-
edge provides a significant contribution to predicting future
crowd states.

Finally, the decision-making subsystem encapsulates the
methods and techniques for arriving at a decision regarding
adequate crowd intervention. It involves selecting or generating
an intervention, which is then implemented by using the actu-
ators available in the crowd-interaction subsystem. The actual
implementation of a decision in crowd management lies
beyond the scope of decision-support (and thus of this paper).

We further draw a distinction between computational and
noncomputational instruments for crowd management support,
visualized as black and gray elements in Fig. 1. Computational
instruments can, in principle, be executed in a fully automated,
mechanized fashion. Noncomputational instruments do not act
automatically, either because that is (still) impossible or impracti-
cal. The distinction is important since effective crowd management
cannot solely rely on automated means: it requires input from both
human experts and noncomputational knowledge. Recognizing
which parts of a decision-support system cannot (or should not)
be automated is key for its design. Examples of computational
and noncomputational crowd management instruments are shown
in Table 1, which considers the four major components in iINCRowD.
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3.2. Continual example: large-scale outdoor event in the city of
Arnhem

In order to illustrate our framework and its components, we use
a continual example of a crowd in a large-scale outdoor event. As a
representative example we choose the World Living Statues Festi-
val, an annual event in the city of Arnhem (The Netherlands) where
over 200 live statues attract more than 300,000 visitors. Arnhem is
situated in the Eastern part of the Netherlands, with a population
of 150,000 and a dense downtown area covering only a few square
miles (where the festival is located). Managing the expected crowd
is essential for reaching the goals of the event organizers (e.g.,
enjoyment, safety, public order). The existing crowd management
in this example uses various methods, including a combination of
computational and noncomputational approaches.

The crowd is observed with some 80 video cameras at various
locations in the festival site. In addition, approximately 50 Wi-Fi
hotspots are deployed to detect smartphones (as anonymized
data). These detections provide additional data on the where-
abouts of crowd members: how fast people are moving through
the area, what their general trajectories are, what the estimated
crowd densities are, to name but a few. Security officers walk
around and act as observers, regulate the streams of visitors, and
intervene in various ways where deemed necessary. Observation
data is gathered in a control room where operational managers
observe the video streams and other incoming data, and where
automated tools estimate the amount of people and densities at
various locations, along with other spatio-temporal metrics. Secu-
rity officers within the crowd send in their reports, again in various
forms: through special smartphone applications, but also by more
traditional means like calls to the control room.

Based on what is visually seen, detected from hotspots, commu-
nicated on-site, own personal experiences, and information auto-
matically computed and retrieved by the decision-support
system, the control room can direct cameras to points of attention
and direct mobile teams of security officers to certain locations.
Having identified a specific situation, be it potentially dangerous
or otherwise, a crowd manager may need to decide on an interven-
tion. Automated support is provided in the form of automatically
deduced scenarios, together with interventions that are most
appropriate for each scenario. A crowd manager will try to select
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Fig. 2. The overall flow associated with the iterative process of crowd management.
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the scenario that best matches the current situation and then
select the corresponding cataloged intervention.

4. Operational support with iINCRowp

INCRowD’s four subsystems together provide the basis for a
crowd management support system. By measuring the state of a
crowd, correctly interpreting that state, and being able to predict
the effects of an (non-) intervention, a crowd manager is able to
use an implementation of iINCRowD as an instrument to manage a
crowd, as reflected in Fig. 2. Crowd management in light of
INCrRowp reflects the integration of many different models. The
aim of this framework is to allow crowd managers to effectively
manage the behavior of crowd members regarding the aspects con-
sidered relevant.

The overall flow of crowd management is as follows. INCRowD
collects information on the state of a crowd in the form of a contin-
uous stream of (heterogeneous and potentially complex and/or
conflicting) raw data. This data stream is fed into the mining sub-
system that provides crowd managers with a meaningful interpre-
tation of unfolding events (arrow 1). Using either the raw crowd
data or its interpreted state, the prediction subsystem is ideally
capable of predicting what may happen in the near future (arrows
2 and 3, respectively). Typically, the interpreted state (arrow 4) is
used for selecting scenarios as well as making suggestions for
crowd interventions in the decision-making subsystem, which
can then be applied to the crowd (arrow 5).

We envision this system as a continuous loop that may include
an evaluation of the effects of interventions as well as an evalua-
tion of the mining and predictive models in the framework. Models
are thus expected to be learned and improved in operation as
increasingly more experience is gained. Here we enter the gray
area between operations engineering and model development.
For reasons of comprehensibility we keep them strictly separated
and will discuss model development in the next section. We will
now elaborate in more detail on the operational use of the frame-
work for each subsystem.

4.1. Operational: crowd interaction subsystem - sensing and actuating

As mentioned above, the crowd interaction subsystem repre-
sents the interface between support tools and the actual crowd.
The interaction includes both actuating (intervening in a crowd)
and sensing (measuring a crowd state).

From an abstract point of view, the state of a crowd can be rep-
resented by a collection of state variables. Typical state variables
include:

« Spatio-temporal variables: density, size, position, movement,
and acceleration of (parts) of the crowd.

o Social variables: purpose, age distribution, gender distribution,
group membership, social structure, leadership, status, and
social identity.

« Psychological-cognitive variables: mood, mindset, intentions,
and beliefs.

There are at least three independent problems with measuring
the state of a crowd. First and foremost, there is definitely a mod-
eling and representation issue, as what exactly comprises the state
of a crowd is difficult to decide. The result is that often a semanti-
cally rich and potentially large dataset is acquired which is
expected to capture what crowd managers are looking for. This
dataset then needs to be further analyzed. Indeed, it is often
unknown in advance whether certain data elements are relevant
at all.

Second, a state variable ¢ may be complex, in the sense that it is
a composition of other, simpler variables a1, 0>,...,0,. Both, the
exact composition, and each constituent element o, may be (par-
tially) unknown, nor is their potential interaction clear.
Psychological-cognitive variables such as the ones mentioned
above are examples of complex state variables.

Third, even if a state variable is well understood, as is the case
with many spatio-temporal variables, it may still be difficult to
measure it, let alone measure accurately. A representative example
is measuring the size of a crowd. Although its semantics are well
defined, in practice it turns out that accurately counting how many
people constitute a specific crowd requires highly advanced tech-
niques and skills. Measuring complex variables such as those for
mood or emotion is even more challenging.

Sensing a crowd is all about acquiring values for state variables.
As mentioned, we distinguish computational from noncomputa-
tional methods for data acquisition. For a crowd management
framework, both types are important. Yet it seems that the digital
sensing of crowd-state variables is still in its infancy, with the
exception of video-based solutions. Capturing and analyzing
social-media data obtained from, e.g. Twitter or Facebook, can
sometimes give an impression of the overall mood of a crowd.
More direct measurements of mood can be supported through
smartphone applications. Arguably, these are hybrid computa-
tional methods of input, as they require explicit actions from users
and combine these with automatically sensed input.

The most commonly used, fully automated sensing of a crowd is
performed by using video cameras, which can be classified as a
computational data acquisition method. A camera is a typical
example of an external sensor (also referred to as an ambient sen-
sor): a sensor that is placed externally to the crowd. Another exam-
ple is that of an ambient microphone. Typically, internal sensors
are worn by crowd participants and include accelerators, proximity
detectors, (wearable) microphones, etc. Smartphones are a com-
mon carrier for these type of sensors, yet it is clear that much work
needs to be done before such sensors can be used for practical
crowd-state measurements.

Referring to our continual Arnhem city example, sensing or
acquiring data about the crowd is performed via video cameras
and the Wi-Fi hotspots (automated sensors) and observations by
security officers (human sensors). Note that in the case of a human
sensor, observing the crowd and interpreting the observations (dis-
cussed in the next section) can happen together, in a seamlessly
coupled manner.

Actuators are tightly coupled to the actual decision-making:
they comprise the instruments that can be used for managing or
intervening in a crowd. For the purposes of this paper, the actua-
tors themselves are less interesting, except with regard to their
effectiveness and efficiency. For example, if a decision is made to
stop people from entering a certain area, different instruments
can be used: security officers, barriers, displays, and so on. Each
of these will most likely have different effects and will attain those
effects at different costs. We expect that effectiveness and (cost)
efficiency of an instrument is taken into account when making a
decision on how to manage a crowd, but we consider it of minor
importance for our further discussion herein.

4.2. Operational: mining subsystem

Sensors deliver what we refer to as raw data: data representing
the uninterpreted observations of various aspects of the current
state of a crowd. This raw data generally requires proper interpre-
tation in order to derive meaningful information about what is
going on in a crowd. The mining subsystem therefore typically con-
tains many data-mining techniques: classifiers, clustering algo-
rithms, techniques for feature extraction, information-fusion
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algorithms etc., all aimed at making (more) sense of raw
observations.

Human analysis plays a key element in the interpretation of
observations. This is clearly the case when dealing with video foo-
tage where humans are generally much better at interpreting a sit-
uation than any automated analysis. However, computational
mining instruments do exist and are important. Consider the fol-
lowing examples:

o Video feature extraction: In their review paper on crowd analysis,
Zhan et al. (2008) describe different techniques for extracting
crowd-related variables from video footage such as density
and acceleration. It is not difficult to imagine that video analysis
alone may easily contribute many different instruments for
interpreting raw crowd data.

e Proximity graphs: In another, recent example, Martella et al.
(2014) discuss how so-called proximity sensors can be used to
represent a crowd as a dynamic graph in which a vertex repre-
sents a person, and a link represents the fact that two people
are in each other’s proximity. This proximity graph can subse-
quently be used to discover patterns in a crowd, like the forma-
tion of lanes, identify if and where clogging occurs, etc.
Extracting data from the sensors is part of the measurement sys-
tem, but the instruments for constructing and subsequently
interpreting the resulting proximity graph are part of the mining
subsystem.

The effect of the mining subsystem is that observations are
brought to a higher level of abstraction by adding a layer of inter-
pretation. The level of abstraction depends on the mining instru-
ment and purpose. Note that the division between a measured
crowd state and the interpreted state is not strict. There are, for
example, collaborative sensing systems that can estimate the size
and density of a crowd (Cattani et al., 2014).

The output of the mining subsystem will often be presented to
human crowd experts through visualizations in order to assist
them in decision-making. However, we do not exclude the situa-
tion in which interpretations can be directly used for crowd inter-
ventions as can be the case for automatically controlling traffic
lights or what is being displayed on a public screen.

In our continual example in Arnhem city, mining happens while
the video images (i.e., the raw observations) are interpreted by
humans at the control room. For instance, the operational manager
may interpret the images to define a clogging situation in a narrow
street. The Wi-Fi hotspot detections of smartphones add auto-
mated support making it possible to identify trajectories of people
moving through streets. In this case, combining hotspot informa-
tion, a city map, and knowledge regarding the location of the living
statues and other attractors, and then mining the hotspot data,
may reveal particularly popular locations (i.e., where many people
stay for a relatively long time), unexpected routes (e.g. related to
local densities), or potentially hazardous situations (when multiple
trajectories are targeting the same location).

4.3. Operational: prediction subsystem

The predicting subsystem contains the instruments that gener-
ate a possible future state of the crowd. It forms a key component
of our framework as predicting possible futures is crucial for mak-
ing intervention decisions. It uses models as instruments.

We distinguish three types of models in this paper to allow for a
meaningful distinction of the level of formalism:

e mental models,
o theoretical models,
e computational models.

Fig. 3 shows the inclusion relation of the model types to each
other. Models with a high degree of formalism are considered com-
putational models. This includes models that are not actually
implemented in a computer system if the level of specification is
high enough that the model could be implemented. A theoretical
model is a noncomputational model that has been formalized
and has scientifically been evaluated, for instance in a social-
science theory on crowd behavior. As an example, the initiation-
escalation model (Adang, 2011) is a theory that explains under
which (social) circumstances the initiation and escalation of vio-
lence is more likely to occur.

A mental model is an image of the world that humans have for
making sense of and be able to engage with the world. It is an
informal model that has not been formalized, scientifically evalu-
ated, (e.g., not communicated, not specified, not written down,
not generalized, not systematically analyzed, not peer-reviewed).
Compared to a computational model, mental models are mostly
tacit, i.e., not precise, but ambiguous and not necessarily conscious
(Forrester, 1971). To illustrate, an expert is often not able to exter-
nalize her knowledge, but still has an internal representation of the
world that allows her to perform her expert task.

The output of the predicting subsystem depends on the type of
model that is used. Both mental and theoretical models produce a
future interpreted state of the crowd. In other words, the state of a
crowd is already formulated in relatively high-level semantic
descriptions.

In the case of computational models, there are essentially two
options. First, a model may generate raw crowd data, similar to
raw observation data coming from original sensors. Typically, this
is done by crowd simulators whose aim is to extrapolate a given
trace of raw input data with new data points. A trace, in this con-
text, is a sequence of timestamped events, comparable to a tradi-
tional event log. By feeding a simulator with a trace, and
subsequently comparing its output (which may again be a trace
of predicted events) to the originally captured data from sensors,
the predictive ability of the simulation model can be evaluated.
The output of such predictors will often need to be processed by
the mining subsystem before it can be further handled.

As an alternative, a predictive model may have integrated the
generation and interpretation of raw data and instantly produce
data at a higher level of abstraction. Its output would then be seen
as interpreted data, meaning that it embeds elements that fall
under the mining subsystem. An example of this is a model that
directly predicts where clogging will take place without first gener-
ating the relatively low-level raw-data traces. Normally, the phe-
nomenon of clogging would have to be derived from interpreting
such raw data.

In our continual example in Arnhem city, a decision-support
system for crowd managers would typically run trace-driven sim-
ulations of crowd movements in the downtown area of Arnhem.
Those simulations, based on models for predicting how people
behave in a crowd, would take recent data from various Wi-Fi hot-
spots as input and allow an operational manager to perform an
analysis given the current situation. In other cases, video footage,
perhaps combined with information from the hotspots as well as
input from security officers, would allow an operational manager

Mental models

Theoretical models

Computational models

Fig. 3. Distinction of model types based on their increasing degree of formalism. An
inclusion relation between computational, theoretical, and mental models.
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to anticipate what might happen through visual inspection, and
take actions accordingly.

4.4. Operational: decision-making subsystem

Finally, the models, tools, and techniques in the crowd manage-
ment framework includes support in the form of recommendations
for interventions in a crowd. Note that this support is different from
providing predictions: the output of this component are recommen-
dations for using(or not using) specific intervention instruments.

The decision-making subsystem focuses on crowd-level goals.
An example is safety which could be expressed in terms of maxi-
mal acceptable densities, lack of violence, entertainment, etc. The
crowd management actions chosen or suggested by the models
in this subsystem thus aim to identify the actions required to pre-
pare for, maintain, prevent, or go back to an overall desired crowd
state. To illustrate, in order to identify what should be done when
clogging could potentially lead to a dangerous situation, a number
of steps must take place before the decision-making subsystem is
involved: data must be gathered on the clogging, the situation at
hand must be recognized as “clogging”, and the context in which
the clogging is taking place must be determined. Then, for this rec-
ognized situation in context, the decision-making subsystem must
identify specific interventions (e.g. opening additional exits) that
could work given the decision-making goals in the context and
be able to assess the effects of these interventions. The more global
view on what is going on in a crowd—which corresponds to the
recognized situation in context in the example above—can be cap-
tured in terms of scenarios. A scenario, as we define it herein, is a
description of the situation which in essence represents the state of
knowledge on the situation (i.e., situation awareness). Ideally, it is
expressed as a formal computational model, so that it can be used
to support decision-making in an automated fashion.

A scenario effectively limits the number of situations that need
to be evaluated for selecting an intervention action. For example, in
the case of clogging in narrow streets, it may be necessary to facil-
itate additional exit routes or prevent two-way pedestrian traffic.
Whereas, when dealing with high-density crowds in front of a
stage, the only alternative may be to close-off entire sections and
allow people only to move away from the stage. We can assume
the decision-making subsystem to consist of a generic rule-based
approach towards such a selection, forming the operational output
of INCrowp. In this generic rule-based approach, each of a number of
possible scenarios is related to one (or more) intervention(s). In
this case, we intend context-rich rules, which means that context
information (which is part of the scenario description) is essential
in triggering the rules (i.e., in determining which interventions are
appropriate for a given scenario). Arriving at an appropriate set of
rules is also part of our framework, namely as a separate case of
model development, to which we return in Section 5. Selecting
the appropriate scenarios becomes an essential element of the
operational framework, and as noted in Fig. 1, this will be carried
out by humans as well as automatically.

Finally, we note that a natural way to come to a final recommen-
dation for crowd intervention is by means of what-if analyses which
here refer to (mental or computational) simulations of how inter-
ventions will play out in context. Such what-if analyses may be per-
formed automatically, but human participation will often be
needed, certainly in complex situations. In the context of operations
engineering, there are multiple objectives in decision-making:

e match the situation at hand to one or more recognizable
scenarios,

e select one or several intervention instruments,

e simulate and subsequently evaluate what happens when those
interventions are exerted,

e possibly modify the selected interventions to fulfill decision-
making goals.

Challenging enough, these objectives must also be met in real-
time.

5. Model development with iINCrowD

Most crowd models are not ready for operational use. To guide
the development for operational models further, it is crucial that
these crowd models capture and connect the various aspects of
crowd management. Consequently, support for models in devel-
opment embeds models that target the diverse stages of crowd
management: crowd-interaction (actuating & sensing), mining,
prediction and decision-making. The inCrowp framework provides
a process structure that embeds model development within the
overall decision support aim of crowd management. INCRowD as a
framework for model development makes a distinction between
(1) models in development and (2) a testing subsystem.

e Crowd-interaction models, relate to both actuation models
and sensing models. An actuation model describes the antici-
pated effect of using a specific actuator on the state of a crowd,
e.g., mobile barriers to affect flow. A sensing model aims at cap-
turing the state of a crowd, and essentially consists of choosing
the variables for representing that state, and subsequently the
sensors and their values for instantiating those variables, e.g.,
determining local density.

e Mining models are developed for analyzing the measured
crowd state and are typically aimed at feature extraction, clas-
sification, etc.

o Predictive models describe the future or anticipated state of a

crowd, given an initial state, a situation and possibly data from

a mining model.

Decision-making models select effective intervention instru-

ments based on a current (high level) description of a (part of

a) crowd.

The testing component’s purpose is to test how well a model
performs by giving feedback and an indication whether the model
is considered to be “accepted”.

Analogous to operations engineering where the goal is to man-
age the behavior of a crowd in a continuous iterative process, we
speak of model development, or model engineering, emphasizing
that development of models is also a continuous iterative process:
a model in development receives input and generates output that
is tested by the testing subsystem. The generated output needs
to be compared against the expected output as shown in Fig. 4.

Although the process of handling input, generating output, and
providing feedback holds for every model in development, the actual
model development may differ per subsystem as we explain next.
The following subsections will elaborate in more detail on model
development related to the mining, predicting and decision-
making subsystem, respectively. We concentrate on explaining
computational models, but note that our observations equally hold
for noncomputational models, such as theory testing using empiri-
cal data (theoretical model) or training stewards and crowd man-
agers (mental models). We exclude actuation and sensing models
for the reasons that these models are often formed in an ad hoc
and often even implicit fashion, and are not easy to generalize.

5.1. Developing a crowd-mining model

The mining model in development as well as the testing subsys-
tem receive data on the crowd state as input (Fig. 4, streams 1a and
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Fig. 4. The overview of model development with iNCrowp. The mining, prediction,
and decision-making subsystems generally develop their models by giving some
input and subsequently test a model’s output against expected output.

1b. Input

1b). This data is considered to be ground truth. Data may come from
actual measurements or be synthetic. The mining model in devel-
opment uses the input data and produces output. Both input data
and model output feed into the testing subsystem (2). The testing
subsystem then produces feedback based on its acceptance proce-
dure (3). Note that the preprocessing of the input data (i.e., an
accepted mining model) for the testing subsystem can also reside
within the testing subsystem. Given the feedback, the mining
model is adapted and the next iteration takes place until the model
in development becomes accepted.

Take, for example, the development of a model M for the iden-
tification of crowd patterns based on smartphone detection
through the Wi-Fi hotspots in our continual Arnhem example. In

this case, model M needs to extract a pedestrian lane within a
crowd from the smartphone movement detections. At the same
time, there may be video footage available for the area in question
that allows an operational manager to detect whether lanes have

formed. Using human (dis)approval, model M can be gradually
refined until it is accepted as a lane extraction technique. Note that
input 1b is not strictly necessary, in which case a modeler will be
dealing with unsupervised learning.

5.2. Developing a crowd-predictive model

The process involved in developing a crowd-predictive model is
very similar to that of a crowd-mining model. Data is received on
the state of a crowd (1a,1b), and is again considered to be ground
truth. The model produces output (2) that needs to be checked
against the original input, leading to feedback (3) for further
fine-tuning. The input-output-feedback cycle typically iterates
until the performance feedback is considered validated and the
model is considered an “accepted” model in the prediction subsys-
tem. Note that the generated output of the prediction subsystem
and the ground truth need to be “comparable”. This means that
either or both types of data may need to be first interpreted by
an accepted mining subsystem model, which takes place inside
the testing subsystem, see e.g. (Antonini et al., 2004a).

In our continual example of the city of Arnhem, sequences of
movement measurements over time, i.e. traces, from smartphone
movement detections could be used as input to models that

simulate crowd movement, i.e., can predict clogging. Assuming a
trace spanning a time interval [0,T]. By using a subtrace
[t1,t,] € [0,T] as input for simulations, a modeler can observe the
state ¢*(7) of (a part of) the crowd at any time 7 € (t;, T] as produced
by the simulator and compare it to the actual observed state g(7).
Such comparisons will allow for refining the simulation model.

5.3. Developing a decision-making model

A model in development as part of the decision-making subsys-
tem aims at developing a generic rule-based decision-making
model that is able to suggest situation-based action for interven-
tion. Typically, such a decision-making model relates each of the
(possible) scenarios it receives, or extrapolates itself, to a matching
intervention.

The process for developing a model in this case is somewhat dif-
ferent than in the previous two cases. First, the input (1ain Fig. 4) is
a “scenario”. As an example, consider the scenario of a crowd in
front of a stage at a festival. Another scenario is that of a crowd wait-
ing to enter a building. Both scenarios describe a situation in which
many people are standing still. However, for each scenario different
density levels should alert a crowd manager but also might involve
suggesting different interventions to lower the density.

Based on the crowd scenario, the decision-making model pro-
vides an intervention as output, which then needs to be evaluated.
The testing subsystem receives a scenario-based goal (1b in Fig. 4)
and the generated intervention to evaluate whether applying the
intervention for the given scenario likely results in the predefined
goal or not. The goal is based on the prescribed standards related to
that particular scenario. Usually these goals revolve around safety,
public order, or fun levels. For example, keeping crowd density in a
given area below a certain value is a typical safety goal. In order for
the testing subsystem to come to an evaluation, the impact of the
suggested intervention first needs to be ‘produced’. This can be
accomplished either by implementing the intervention using an
accepted model from the prediction subsystem (e.g., computation-
ally simulating what happens if the intervention is executed) or by
sensing (and mining) the results of an actual intervention imple-
mentation in a crowd. Given the feedback of the testing subsystem,
the decision-making model is adapted and enters a next iteration
until the scenario-intervention link is considered suitable by the
testing subsystem (Schubert and Suzic, 2007).

For a decision-making model in development to become
accepted, multiple embedded iterations of the scenario-
intervention rule-learning cycle need to take place. This requires
that appropriate rules relating scenarios and interventions should
be learned for all concerned scenarios. Therefore, only when the
appropriateness of the rules for all scenarios has been established,
will the model be considered validated and thus become an
accepted model.

In our continual example, we assume that a potentially danger-
ous situation is encountered, e.g., clogging at a narrow street in the
downtown area. The context, consisting of a narrow street and two
streams of pedestrians moving in each others direction, as well as
several pedestrian movements from side streets, may lead to the
conclusion that barriers need to be placed to direct pedestrians
in a single direction only, corresponding to a possible intervention
for handling the scenario. To predict whether the intervention will
likely produce the expected results for that scenario, the scenario-
intervention pair can be fed to a real-time simulator (an accepted
predictive model) and the simulated results can be analyzed (by
humans or an accepted mining model) against the decision-
making goals. If deemed effective, the barriers could be imple-
mented in a fully automated manner as well as information boards
providing information, traffic lights, or even automated road
blocks. In a practical setting, an operational manager would
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provide instructions to security officers to move to one end of the
street to prevent more people from entering through that end.
Table 2 summarizes the various approaches we have discussed.

6. Research on crowd management: a status report

Crowd management commonly strives for safe and enjoyable
crowd events. We regard crowd management as a chain of inte-
grated stages in which crowd managers (possibly aided by auto-
mated systems) monitor, interpret, anticipate, and act, as
described in Sections 2 and 3. The ways in which crowd research
addresses this objective of crowd management are rather diverse.
We will use the INCrowD framework as a lens to provide an exten-
sive overview of the various foci and practices. Particularly, as we
shall motivate below, we focus on models in development: what
subsystems they focus on, whether they make use of input, and
their testing practices.

This review covers 237 papers, selected as a representative
sample of crowd models. The base set consists of 59 papers and
was mainly derived from several review papers (Challenger et al.,
2009b; Bellomo and Dogbe, 2011; Davies et al., 1995; Wijermans,
2011; Zhan et al., 2008). Each of these review papers had its own
aim and purpose. However all addressed a relevant scope of crowd
models from the perspective of operational support (Challenger
et al., 2009b), sensors (see, for example, Baratchi et al., 2013), or
models in the social sciences (Wijermans, 2011). To ensure that
we capture a representative set, we extracted 142 papers from
the references of the base-set papers and 36 from the Safety
Science journal based on a key-word search (crowd).

The papers included in this review aim to contribute to crowd
management and together represent the modeling diversity in
crowd research. The extended set of papers were extracted from
the papers found in the review paper references (310) and in the
Safety Science journal (144). We excluded a paper when it was
considered off-topic, had an equipment testing focus or was a
reflection on crowd management. More specifically, of the papers
that discussed models, two types of models were typically
excluded. Firstly, we excluded models that do not aim to con-
tribute to crowd management but aim to demonstrate a particular
method (e.g. Epstein, 2002). Secondly, we excluded models that
were already represented by one or more core models. For
instance, there exist many adaptations or specifications of the
social-force model (Helbing and Molnar, 1995). We thus do not
claim completeness in this review, but rather the representative-
ness of the wide range of crowd research and reflect on the foci
and practices in model development.

6.1. Review protocol

Our review uses the INCrowp framework as a lens, which means
that each paper in the review has been classified: the framework

Table 2
Key differences in model development between the different subsystems.

view, the type of model, and subsystems involved were identified.
The framework view (operational or development) was identified
based on whether the model is in use (operational) or in develop-
ment. The type of the model (actuating, sensing, mining, predic-
tion, or decision-making) relates to the subsystem in focus. Any
other subsystem involved in the model was also indicated. For
the set of models in development, we also indicated whether they
had some input and how they were tested, if at all. If a model
reported to make use of an input, we specified whether this input
was used for model design or as input data. Model design input
specifies which type of input the model design choices were based
on, e.g., use of a mental model, theoretical model, computational
model, or data- driven design choices. The data input specifies
the purpose for which data was used besides model design, e.g.,
training, calibration, initial settings, or scenarios. To consider
whether a model was tested, we identified the model aim, the eval-
uation procedure and whether the authors considered their model
tested. For details on the mapping procedure and also the exten-
sive final dataset of mapped papers, please see the supplementary
data. The classification work was carried out as follows. For the
base set, consisting of 59 papers:

Phase 1, parallel classification: The papers were divided into
two subsets (A and B). For each subset of papers, two of the
authors (A1, A2, B1, B2) were assigned to review and classify
the papers independently in parallel. This procedure allowed
us to test the applicability of our framework, while also
reducing the influence of our unavoidable disciplinary biases in
classifying models from other disciplines. We note that the five
authors all have different disciplinary backgrounds: cognitive
science, physics, computer science, and industrial design and
engineering.

Phase 2, preparing the merge: Each subset (A and B) were
then prepared by one reviewer from the respective other subset
(A by B1 and B by A1). The preparation consisted of finalizing a
classification (possible when a paper was put in the same category
by both reviewers), and highlighting differences when a paper was
not unanimously classified.

Phase 3, the merge: In a meeting, with the original reviewers
of each subset, the incongruent categorizations were discussed
and decided together on the papers final classification. In the pro-
cess of discussion, the framework description was reflected upon
and improved. Finally, all classifications were merged into the final
dataset. For the additional 142 +36 papers, we proceeded as
follows:

Phase 1, individual classification: All papers were distributed
among the team of five author-reviewers according to expertise,
and subsequently classified individually. In doubt, a second opin-
ion was sought from within the team.

Phase 2, second opinion: Papers marked for a second-opinion
where evaluated, discussed and decided upon together in a
meeting.

Mining models

Predictive models

Decision-making models

Goal of model Classify, or cluster raw crowd data; extract

specific features from raw data

Input Data Data

Output Data interpretation

Feedback Match output interpretation to expected
interpretation

Learning Process Iterate until accepted

Testing
be expected?

Generate a future
(interpreted) state

Crowd state

Match generated state to
expected next state
Iterate until accepted

Comparison: has the model mined what was to  Validation: how good is the
predicted output?

Select a crowd intervention action for a given interpreted state
(a scenario)

Scenario

Intervention action

Indicator on impact of suggested intervention in the given
scenario, given decision making goals

Iterate until all links between scenario and interventions are
learned and accepted

Sensibility: is the proposed intervention reasonable for the
given scenario?
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6.2. Results

Mapping the 237 papers, at first glance shows a major division
in model types: 89% of the models are computational models, the
remaining 11% are theoretical models. No mental models were
covered. This skewed distribution of models may be attributed to
the different traditions of the natural sciences versus the social
sciences: The use or reference to existing models and a formal level
of description are more present in natural sciences that produce
computational models, compared to the social sciences that, if
any, produce theoretical models. The result of no paper discussing
a mental model was to be expected. Mental models are generally
not described and form part of the tacit expertise of crowd man-
agement practitioners. Regarding the operational versus the devel-
opmental view of the iINCrRowp framework, most models (94%) are in
development. The relatively low presence of operational models in
our literature review is more difficult to explain. It may indicate
that these models are typically developed outside of academia,
hence not reported as publications in academic journals, or that
these models are simply not so abundant. We therefore continue
by concentrating on the models in development (223), see the sup-
plementary data for the dataset and analysis of mapped papers.

6.2.1. Model focus

As shown Fig. 5, most models in development belong to the pre-
diction subsystem, followed by mining subsystem models, while
only a few papers focus on the sensing and decision-making sub-
systems and, in fact, only one single paper addresses the actuating
subsystem. All of the models in development, except for six, indi-
cate the use of design or data input for their models. This concerns
any input for model design or the use of raw or interpreted data
that feeds into the model due to, for example, training, calibration,
initial settings, and scenarios.

The inCrowp framework emphasizes the importance of an inte-
grative view on crowd management: each subsystem is needed
and is dependent on every other subsystem. Without making any
judgments regarding the applicability of current developments
for crowd management, the presence of these interdependencies
embodies a promise for the (future) ability to support crowd man-
agement. As shown in Table 3 most models depend on an
(accepted) model from another subsystem. For example,
Andersson et al., 2009 train their mining model to detect abnormal
behavior using sensing data from a mix of sensors, such as surveil-
lance cameras, thermal infrared cameras, radar, and acoustic

SEensors.

0.00 0.04
(1) (9)
4
0.00 0.05 0.13 0.77 0.0
(1) (12) (30) (171) (9)
DECISION-
ACTUATING SENSING MINING PREDICTING MAKING
0.03
(7)
LEGEND

TESTING

( ) sub-system

(O supporting sub-system
some papers (>0)

:— most papers (>100)

Fig. 5. Overview of the 223 papers describing models in development. Shows the research attention, the input and evaluation of the models per subsystem. Provided in

fractions, with absolute numbers in parentheses.

Table 3

The fraction of models in development that depend on other subsystems. Absolute numbers are in parentheses.

Model in development] Subsystem on which model depends

A S M P DM
Actuating (A) 1.00 (1) 0.00 (0) 0.00 (0) 1.00 (1) 1.00 (1)
Sensing (S) 0.00 (0) 1.00 (12) 0.58 (7) 0.33 (4) 0.00 (0)
Mining (M) 0.00 (0) 0.33 (10) 1.00 (30) 0.20 (6) 0.13 (4)
Predictive (P) 0.01 (2) 0.17 (29) 0.20 (34) 0.99 (170) 0.15 (25)
Decision-making (DM) 0.00 (0) 0.11 (1) 0.33(3) 0.89 (8) 1.00 (9)
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The development of sensing and decision-making models show
a strong dependence on the use of accepted models from the min-
ing and the predicting subsystem. Furthermore, as to be expected,
the development of sensing and mining models depend less on the
predictive and decision-making models than the other way around.
There are, of course, exceptions of sensing and mining models that
make use of predictive models (such as Antonini et al., 2004c) or
decision-making models (such as Andersson et al., 2009; Drews
et al, 2010; Roggen et al., 2011), respectively. The predictive mod-
els vary in their incorporation of other subsystems. Most of them
do not rely on any other subsystem. However, of those that do
relate to other subsystems, we see a variation of combinations.
For instance, combinations with sensing models (Drury and
Reicher, 1999, 2000; Moussaid et al., 2011); with decision-
making models (Helbing, 1992; Helbing et al., 2000); with mining
models (Murakami et al., 2002); with both sensing and mining
models (Lee and Hughes, 2007; Moore et al., 2008); and even com-
binations that relate the predictive model to all other three subsys-
tems (Johansson et al., 2008; Still, 2000).

6.2.2. Context

Crowd management is related to a wide range of crowd con-
texts. Table 4 gives an impression of the range and attention for
different contexts by the models in development. Note that for
each paper number (refID), the corresponding citation and refer-
ence can be obtained using Table A.7 and the references.

The context of a model refers to the situation or phenomenon
the model is supposed to operate within. In our review we discern:

o Extreme context: the models apply to extreme crowd situa-
tions, such as emergencies (panic, danger, evacuation), escala-
tion (violence, aggression, conflict), military context (urban
combat, peacekeeping) and large-scale crowd situations where
density or size are the defining characteristic for the extreme
setting.

e Generic context: the models apply to non-extreme, general
crowd contexts including normal pedestrian situations and
gatherings.

o Context-independent context: the models operate in any con-
text, not restricted to a particular crowd context or crowds.

Table 4
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Table 4 shows our findings regarding the context of models in
development. Most attention is dedicated to the generic, non-
extreme crowd context, of which the majority focuses exclusively
on pedestrian crowds. For example, Moore et al. (2008) aim to gen-
erate walking behavior of pedestrian crowds in city centers while
being under the influence of alcohol. The remaining generic models
do not specifically focus on pedestrians.

The second largest group of models target extreme contexts.
However, what is considered extreme is quite diverse: emergen-
cies, escalation, military context, or the large scale of a crowd
event. Lastly, there are a few context-independent models applied
to a crowd context. For example, Martella et al. (2014) aim to sense
social dynamics of a group of people in the form of a spatio-
temporal social graph from noisy proximity data applicable in
any crowd context (emergencies, riots, etc.). The same holds for
Roggen et al. (2011) who aim for recognizing crowd behavior from
on-body sensors (i.e., from mobile phones). The majority of the
predictive models cluster around the generic-pedestrian and
extreme-emergency contexts, whereas mining models pay atten-
tion to the generic-pedestrian and extreme-large scale contexts.

6.2.3. Behavior target

We now concentrate on the behavior that the models are tar-
geting. In this case, we refer to the behavior the authors claim to
(re)produce, measure, influence, etc. with their model. In our
review we distinguish between the following behavior targets:

e Motion: when authors focus on movement, walking, grouping,
collision avoidance, crowd dynamics, queuing, herding, lane
formation, flow oscillations, competition, density, clogging,
etc. They typically aim at modeling movement from a start posi-
tion to a final goal position, taking into account direction, speed,
and obstacle avoidance (Moussaid et al., 2011).

o Collective violence: when authors focus on fights, riots, rob-
bery, incidents, public order, as well as anomalous behavior
related to violence.

o Conformity: when authors focus on consensus, exemplified by
aligned behaviors, same opinions, and/or emotions, and so on
(see, e.g. Feinberg and Johnson, 1990; Johnson and Feinberg,
1977; Tarnow, 1996).

Models in development categorized based on context. Context refers to the situation in which the model is supposed to actuate (A), sense (S), mine (M), predict (P) or decide (DM).

Provided in fractions, with absolute numbers in parentheses.

Context Sum A S M P DM refID

Extreme: Emergency 0.36 (81) 0.00 (1) 0.01 (3) 0.01 (3) 0.31 (69) 0.02 (5) 1,3,8,10, 16, 17, 18, 20, 26, 28, 32, 33, 34, 35, 41, 42, 48,
50, 55, 56, 57, 61, 65, 66, 70, 71, 73, 75, 79, 80, 93, 94, 99,
102,114,115,116, 118,119, 120, 121, 122, 123, 124, 125,
139, 140, 150, 151, 152, 153, 155, 156, 157, 159, 160, 162,
165, 166, 179, 180, 181, 186, 187, 190, 191, 192, 198, 199,
200, 213, 215, 216, 218, 219, 221, 222, 228, 231, 235, 238

Extreme: Escalation 0.05 (11) 0.00 (0) 0.00 (0) 0.01 (2) 0.03 (7) 0.01 (2) 2,37, 44, 45, 53, 89, 98, 169, 176, 193, 194

Extreme: Large scale 0.07 (16) 0.00 (0) 0.00 (1) 0.03 (7) 0.03 (7) 0.00 (1) 5,6,7,9,27,87,90,91, 108, 110, 134, 147, 161, 168, 171,
223

Extreme: military 0.01 (3) 0.00 (0) 0.00 (0) 0.00 (0) 0.01 (3) 0.00 (0) 149,177, 184

Generic: pedestrian 0.41 (92) 0.00 (0) 0.03 (7) 0.07 (16) 0.31 (69) 0.00 (0) 4,13, 14, 15, 19, 21, 24, 25, 29, 30, 36, 38, 39, 40, 51, 58,
59, 60, 62, 63, 64, 67, 68, 69, 72, 76, 77, 81, 82, 83, 84, 85,
86, 95, 100, 101, 103, 106, 107, 109, 111, 112, 113, 126,
127,128,130, 131, 133, 135, 136, 137, 138, 141, 142, 143,
145, 146, 148, 154, 158, 163, 164, 167, 170, 173, 174, 175,
178,182, 183, 188, 189, 202, 203, 205, 206, 207, 209, 211,
212,220, 224, 225, 226, 227, 230, 232, 233, 234, 236, 237

Generic: Other 0.04 (10) 0.00 (0) 0.00 (0) 0.00 (0) 0.04 (10) 0.00 (0) 23, 46, 47, 52, 54, 92, 196, 201, 208, 214

Context-independent 0.04 (8) 0.00 (0) 0.00 (1) 0.01 (2) 0.02 (4) 0.00 (1) 12, 49, 132, 172, 185, 195, 204, 210

(neutral)
Not fitting 0.01 (2) 0.00 (0) 0.00 (0) 0.00 (0) 0.01 (2) 0.00 (0) 22,144
Total 1.00 (223)  0.00(1) 0.04 (12) 0.13 (30) 0.76 (171)  0.03 (9)
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o Psychological change: when authors focus on internal, mental
processes. For example, there are various papers that describe
the process in which behaviors change based on individuals
identifying themselves as part of a social group (Drury and
Reicher, 2000; Drury et al., 2009).
Diversity of crowd behaviors: in case the authors target a mul-
tiplicity of behaviors. For example, Nguyen et al. (2005) aim to
simulate a large repertoire of behaviors in a crowd relevant to
modern military operations, such as wandering, standing,
climbing, pushing, and shooting.
« No behavior target: when authors do not focus on any specific
behavior type, but more on e.g. measuring proximity or tracking
people in a crowd.

We summarize our findings in Table 5. Models with motion as
the behavior target form by far the largest group. This group is
often also referred to as crowd dynamics models. The group largely
intersects with the groups with a generic-pedestrian context and
an extreme-emergency context. In addition, the motion-model
group is mainly populated by predictive and mining models. Mod-
els that target a diversity of crowd behaviors and collective vio-
lence reflect the next biggest behavior target focus. Like the
motion models, they are both dominated by predictive models.
The models target at no specific behavior and the motion models
are relatively diverse in terms of focal subsystem, but mostly they
involve sensing and mining models.

Table 5

6.2.4. Model input

Almost without exception, the investigated models in
development make use of inputs for their design or use input data
to train, calibrate, or initialize their model (recall Fig. 5). In this
subsection we highlight what is communicated about the design
of models as well as the use of (interpreted) data in model
development.

Model design is one of the most important—and at the same
time the least communicated—stages of modeling. Therefore, we
provide an impression of the sources of crowd models, at least
for the cases in which these were mentioned, and summarized in
Fig. 6. The design of computational models is often based on other
computational models, and to a lesser extent on theoretical mod-
els, or on data. Often a combination of sources was used to develop
computational models. For example, for the Legion model of crowd
dynamics during emergencies, Still (2000) uses data for calibration
as well as theoretical models to derive psychology-based rules to
design his agents. In the CROSS model, both theoretical and compu-
tational models are used to model crowd behavior (Wijermans
et al., 2013). In CROSS, the theoretical model adopts psychology-
based variables and rules for model design, similar to Legion. The
computational model used in CROSS refers to the model design
choice to adopt the structure of cognitive architectures. When we
look at the design of theoretical models, they are based on other
theoretical models, on data, on computational models, or on a
combination of them.

Models in development categorized based on the behavior they target. The behavior target refers to the behavior the model targets to affect (actuate - A, or sense - S), to interpret

(mine - M), to (re)produce (predict — P), to decide on (DM).

Behavior target Sum A S M P DM refID
Collective violence 0.05 (11) 0.00 (0) 0.00 (0) 0.01 (2) 0.03 (7) 0.01 (2) 2,37, 44, 45, 53, 89, 98, 169, 176, 193, 194
Conformity 0.03 (6) 0.00 (0) 0.00 (0) 0.00 (0) 0.03(6) 0.00 (0) 23, 54, 92, 186, 195, 196
Diversity of crowd 0.07 (16) 0.00 (0) 0.00 (0) 0.00 (1) 0.06 (14) 0.00 (1) 3,9,21,26,49,52,57,149, 177,184, 187, 200, 204, 214, 225, 228
behaviors
Motion 0.75(167)  0.00 (0) 0.03 (6) 0.10(22) 0.61 (135) 0.02 (4) 1,4,5,6,7,8,10,13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 28, 29, 30,
32,33, 34, 35, 36, 38, 39, 40, 41, 50, 51, 55, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 82, 83,
84, 85, 86, 91, 93, 94, 95, 99, 100, 102, 103, 106, 107, 109, 110,
111, 112, 113, 114, 115, 118, 119, 120, 121, 122, 123, 124, 125,
126, 128, 130, 131, 133, 134, 136, 137, 138, 139, 140, 141, 142,
143, 145, 146, 147, 148, 150, 151, 152, 153, 154, 155, 156, 157,
158, 159, 160, 161, 162, 163, 164, 165, 167, 170, 172, 173, 174,
175,178, 179, 180, 181, 182, 183, 188, 189, 190, 191, 192, 198,
199, 201, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
215, 216, 218, 219, 220, 221, 222, 224, 226, 227, 230, 231, 232,
233, 234, 235, 236, 237
Psychological change  0.02 (5) 0.00 (0) 0.00 (1) 0.00 (0) 0.01 (2) 0.01 (2) 46, 47, 48, 166, 185
No behavior target 0.06 (13) 0.00 (0) 0.02 (4) 0.01 (3) 0.03 (6) 0.00 (0) 22, 56, 87,90, 101, 108, 116, 127, 132, 135, 144, 168, 171
Not fitting 0.02 (5) 0.00 (1) 0.00 (1) 0.01 (2) 0.00 (1) 0.00 (0) 12, 27, 42, 223, 238
Total 1.00 (223) 0.00 (1) 0.05(12) 0.13(30) 0.77 (171) 0.04 (9)
Computational models Theoretical models
4 3% designinput
designinput
(Interpreted) raw/generated data
17% (Interpreted) raw/generated data
Combination
Combination
Computational model
Computational model
Mental model
Not mentioned
66% Not mentioned

Theoretical model

Theoretical model

Fig. 6. Design input used by models in development, specified for computational (left) and theoretical (right) models.
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Table 6

Models in development categorized based on the evaluation procedure of those models for which the authors consider the models tested. Provided in fractions, with absolute

numbers in parentheses.

Eval. Sum A S M P DM refID

I 0.32 (53) 0.01 (1) 0.01 (1) 0.02 (4) 0.28 (47) 0.00 (0) 7,10, 14, 16, 19, 24, 28, 29, 42, 52, 56, 58, 59, 63, 68, 69, 70, 71, 73, 89, 91, 92,
100, 106, 107, 109, 113, 133, 146, 161, 162, 163, 173, 175, 180, 181, 188, 189,
191, 193, 201, 202, 203, 208, 209, 210, 213, 215, 223, 225, 226, 236, 237

1l 0.13 (21) 0.00 (0) 0.00 (0) 0.02 (4) 0.09 (15) 0.01 (2) 13, 36, 39, 45, 46, 60, 72, 79, 81, 90, 99, 114, 122, 131, 166, 183, 194, 220,
227,233, 238

il 0.34 (57) 0.00 (0) 0.05 (8) 0.10 (17) 0.17 (29) 0.02 (3) 3,9, 15, 25, 27, 37, 38, 44, 48, 50, 51, 61, 64, 75, 87, 95, 101, 102, 108, 110,
112,115,118,119, 120, 126, 127,128, 132, 134, 135, 137, 138, 139, 140, 145,
156,157,167,168,170,171,172,174, 176, 179, 182, 186, 192, 195, 199, 206,
222,224,231, 232,234

v 0.10 (16) 0.00 (0) 0.00 (0) 0.01 (1) 0.08 (13) 0.01 (2) 12, 49, 57, 65, 66, 116, 143, 144, 147, 151, 153, 160, 185, 187, 204, 218

\ 0.05 (9) 0.00 (0) 0.00 (0) 0.01 (1) 0.05 (8) 0.00 (0) 33, 53, 54, 80, 93, 94, 136, 164, 198

VI 0.06 (10) 0.00 (0) 0.02 (3) 0.00 (0) 0.04 (7) 0.00 (0) 4,8,17, 26, 41, 76, 125, 154, 178, 216

Total 1.00 (166) 0.01 (1) 0.08 (12) 0.16 (27) 0.71 (119) 0.04 (7)

: Link to real phenomenon: nonsystematic.

II: Link to real phenomenon: systematic, descriptive.

[II: Link to real phenomenon: systematic, numerical.

IV: No link to real phenomenon: computational performance.
V: No link to real phenomenon: theory testing.

VI: Not fitting.

6.2.5. Model testing

To assess the quality of a model and its application domain,
model testing plays a crucial role in model development. Most
models were considered ‘tested’ by their authors. Among the
tested models, a striking diversity in evaluation procedures
appeared (see Table 6). If the goal is to develop accepted models
for crowd management, model validation must be part of the eval-
uation procedure. However, model validation means different
things for each model type in our framework, as it involves deter-
mining whether the model can accurately:

e capture relevant data for the target behavior (sensing model),

e detect or recognize the target behavior (mining model),

e represent or anticipate the target behavior (predictive model)
(Law, 2015; Balci, 1995),

e suggest the adequate intervention for handling the target
behavior (decision-making model), or

e handle or deal with the target behavior (actuating model).

Departing from the models that were considered tested by their
authors, we consider further classifying models based on whether
or not they include a reference to an empirical crowd phenomenon.
The evaluation of the models that exclude an empirical phenomena
include tests of computational performance, e.g. tests of computa-
tional speed (Narain et al., 2009), and theory testing, i.e., model
explorations as an evaluation of their model. The theory testing
group thus use their models as an accepted model, i.e., a model
that has been tested positively in relation to the empirical phe-
nomenon. For instance, Moore et al. (2008) test the influence of
alcohol on gait, whereas Feinberg and Johnson (1990) test the
influence of the presence of social bonds on the emergence and
speed of consensus.

The majority of the tested models incorporate a reference to an
empirical crowd phenomenon in their evaluation. Mostly used is
output validation, i.e., the evaluation of the model based on the
link between the behavioral target and the empirical phenomenon.
The papers performing output validation are grouped into nonsys-
tematic and systematic evaluation procedures. Of the models refer-
ring to an empirical crowd phenomenon, about half have a
nonsystematic evaluation procedure. This concerns papers that
make loose referrals to reality, for instance, tests based on visual
inspection by the model designer, use of stylized or general
observed empirical patterns, references to common knowledge,

anecdotal evidence, etc. Of these papers in the nonsystematic
group, most are both predictive and computational models. Non-
systematic evaluation usually involves no external source of eval-
uation other than the modeler in person. The focus lies on
finding evidence to support the model, not on explicitly testing
them in a way that could lead to a negative evaluation.

The other half of the models evaluated with a reference to real-
world phenomena are categorized as systematically evaluated. A
systematic testing procedure includes comparisons following a
method, such as measuring a goodness-of-fit using statistical anal-
ysis or a comparison with other accepted models. In contrast to the
nonsystematic group, which is dominant among predictive models,
the systematic group includes models from all subsystems. Inter-
estingly, the predictive and mining models in our review dominate
in the group using a systematic evaluation procedure. Zooming in a
bit further, systematic evaluation making use of qualitative
(descriptive) data is done to a lesser extent than systematic evalu-
ation using quantitative (numerical) data.

These results indicate that there is not one “common rigor”
when it comes to model evaluation. This diversity concerns partic-
ularly the predictive models, whereas all the mining models seem
to have a higher demand for evaluation as well as a common way
to perform and communicate their model evaluation. In the con-
clusions, we will further reflect on these results and propose a
research agenda for crowd management.

7. Conclusions

In this paper, we proposed the decision-support framework
INCRowD guiding towards more integrated support in operational
crowd management. Managing crowds is important, if only for pur-
poses of general safety. As explained, current practice is such that
much effort is spent on preparing events so that no or minimal
intervention is needed during an event. However, it is generally
accepted that preparation alone is not sufficient, meaning that
monitoring crowds during an event and anticipating interventions
remains essential. To do so, it is important to accurately measure
what is going on, properly interpret what is being measured, pre-
dict what may happen and select suitable interventions by making
optimal use of expertise, knowledge, data and tools, i.e. integrating
different crowd models. INCrRowD reflects and integrates these dif-
ferent aspects needed to support crowd management: crowd
interaction (actuating and sensing), mining, predicting, and
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decision-making. In other words, (semi-)automated support for
decision-making during crowd events, if only for the sake of safety,
is important.

Our framework functions as an architecture for supporting
decision-making in crowd management as well as for the develop-
ment of accompanying models. In particular, for real-time support
during a crowd event, we regard crowd management as a continu-
ous process in which operations are continuously refined by mak-
ing use of new information, feedback on earlier interventions, etc.
This is the reason why we speak of operations engineering:
INCRowD assists in engineering and developing the operations of
managing a crowd. Developing such models is an integral part in
our framework, an integration we consider to be important, reflect-
ing the same continuous development until a model is acceptable
for use, where it can be further refined.

The iNCrowp framework thus provides guidance towards inte-
grated support by making crowd management explicit as subsys-
tems in a decision-support system; how these connect and
depend on each other towards an actual decision; and how the
sequence of iterations through the subsystems reflect a continuous
process for decision support. In particular, we firmly believe in the
integration of the strength of both human expertise (assessing
complex situations) and computational power (obtaining, process-
ing and filtering huge amounts of information in little time).

The direct use of the iINCrRowp framework for crowd practitioners
and crowd researchers is to enable reflection and actually seek and
connect to relevant crowd models. The framework provides con-
cepts to identify the main focus of their work within the chain of
crowd management tasks; helps identify which relevant connec-
tions can be made to other subsystems; and provides a common
language to address these connections irrespective of the type of
model (be it a mental, a theoretical or a computational model).
The literature review thus also serves as a set of examples to facil-
itate the search for relevant models beyond task or disciplinary
scope.

In particular, for crowd research we used our integrative
INCrowD framework as a lens to reflect on the current state of crowd
research. In this reflection, we firstly consider the way research is
actually (close to) providing operational support; and secondly,
what future crowd research should focus on.

7.1. Actual operational support

In our review we find only few models that can be considered
operational, i.e., usable for actual crowd management. Our
research suggests several reasons for this lack of operational sup-
port. Model development is still mainly work in progress and there
is a mismatch between, on the one hand, the need for data, testing,
and making models fit for operation, and on the other hand, the
relatively little attention these issues receive in research. Most
scholarly attention is dedicated to model development.

The diversity of existing models reflects the diverse reality of
crowd behavior and events. It comes as no surprise that there is
no definitive model that captures all necessary knowledge about
crowd behavior; it might even be impossible to strive for one.
Somewhat troublesome is the fact that almost a quarter of the
models under development seem not to have been tested or sys-
tematically validated, which obviously hinders their acceptance
in actual crowd management support systems.

Although predictive models receive relatively much attention,
the opposite can be said for research on how to sense a crowd.
Apart from a study on ways to monitor wildlife (Baratchi et al.,
2013), which also refers to the applicability in the case of monitor-
ing human mobility, there is, to the best of our knowledge, no sys-
tematic study on how to gather information on crowd movements.

In addition, although there are by now datasets on mobility (see,
for example, the CRAWDAD collection Kotz and Henderson,
2005), few datasets are available on massive crowd movements.
Effectively, the lack of a systematic study on how to best measure
crowd movements, combined with few available datasets, puts
model developers in a challenging position: it becomes difficult
to develop models that have been scientifically validated,
let alone develop models that can justifiably be put to operational
use. Similar conclusions can be drawn for the relatively few papers
on the decision-making subsystem. In light of our discussion, we
see two reasons for this. First, crowd management support is still
in a phase of developing appropriate models, and before research
can even focus on the decision-making phase, it is essential that
those predictions can be trusted. Second, (semi-)automated
decision-making support requires more than just computational
models: there is also a need to include context information and
involvement from human operators. In other words, (semi-)
automated decision-making is an inherently difficult task. Never-
theless, we would have expected to see more scientific work in this
area as there is so much need for proper support (Challenger et al.,
2009b).

To summarize, although much research on crowds is currently
undertaken, actual operational support is provided only scarcely.
We expect that an operational decision-support system for crowd
management would incorporate a multitude of models, each oper-
ating at different scales (a person, a group, the crowd as a whole),
and validated through proper data sets and testing. Besides the
need for sensing, mining, prediction and decision-making research,
a rather necessary improvement lies in validation. Moreover, much
work is still needed to put developed models to work: how can
predictions be used effectively? Do scientists actually study the
crowd behaviors that would support crowd managers? Is there a
dialogue between researchers and crowd managers to align needs
and focus?

7.2. Points of attention for crowd research

Taking this review as our starting point, it is now possible to
identify several areas of crowd research that deserve more atten-
tion to move closer to operational crowd management support.
We distinguish between improvements that involve aspects of
model development, i.e., validation, multi-scale techniques and
interaction between disciplines (within and outside of science),
as well as particular needs to sense and mine data for decision-
making tools to bring it all together and move towards more actual
support.

Model development — general points for improvement. It is clear
from our review that much scholarly attention is already dedicated
to model development. We explained that model validation is an
important issue that needs improvement. This is crucial if research
wants to take the next step toward practical crowd management
support. Apart from validation issues, crowds remain difficult phe-
nomena to model, and it can be expected that models are needed at
different crowd scales: a person, a group, a whole crowd. The need
for multiple scales brings us to a general observation that has also
been made in other fields, namely that there is a need for develop-
ing multi-scaling techniques. In essence, such techniques allow for
linking micro-level models to models that comprise the collective
behavior of a crowd (see, e.g. Bellomo et al., 2013; Tosin, 2014).
Although research is already being conducted in this area, we
anticipate that much more is needed for arriving at crowd manage-
ment support systems.

Lastly, we want to stress the importance of more interaction
within crowd research (i.e., connecting to other disciplines and
fields) and between crowd research and practice. Conducting
interdisciplinary integration can help make use of and focus on
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necessary knowledge and tools accumulated in relevant disci-
plines. It can also contribute to working with a relevant focus that
aligns crowd research with the needs of crowd managers. In partic-
ular, within (crowd) research it seems quite common to stay
within ones own discipline or niche. Particularly, the connection
between computer science and the social sciences is not well
developed. Hence, our paper also serves to point out relevant exist-
ing models, valuable for crowd researcher in any discipline. Igno-
rance of former research, even if stemming from other domains,
holds the danger of using outdated ideas i.e., perpetuating myths
and thus potentially cause (or not prevent) harmful operational
consequences (Wijermans et al., 2013).

The need for more data - more focus on crowd sensing and mining.
As noted, there is relatively little research on how to automatically
sense what is happening in a crowd. Data sets are gradually
becoming available, but little systematic thought has been given
to the data that scientists would need, and subsequently how such
data could be automatically obtained through various sensing
mechanisms, exceptions are, for instance (Bernardini et al., 2016;
Siddiqui and Gwynne, 2012). Related, we also observe that mining
crowd data is still in its infancy; not surprisingly, since crowd
research is still dealing with the lack of sufficient data. It appears
to us that there is a lot to gain here, if only for the reason that min-
ing crowd data sets will help researchers validate predictive mod-
els. The use of sensing data may lead to an impulse towards
developing and validating adequate models and tools for crowd
management (Gwynne et al., 1999; Bryan, 1999).

The need to move to actual operational support — a prominent role
for decision-making. Another conclusion from our review is that
research needs to come to more reliable predictions on which sub-
sequent intervention decisions can be based. In essence, what is
needed in our opinion, is research on the semi-automated selection
of possible scenario-intervention pairs: Once data sensed from a
crowd has been analyzed (mined) and predictions on its future
have been made, it should, at least theoretically, be possible to sug-
gest interventions for managing the crowd toward a desirable
state. However, such suggestions are highly dependent on the con-
text in which an observed crowd is considered. Subsequently, data
is needed for studying similar situations on which new decisions
could then be based. Such situations need to be recognized, i.e.,
described, searchable, and identifiable in an automated fashion. It
is clear that much more research is needed to advance especially
this part of the field.

To conclude, in order to address the shortcomings in research
identified, our iINCrowp framework makes two valuable contribu-
tions. First, it describes a high-level architecture for decision-
support in crowd management. Second, by integrating the diverse
crowd management tasks and stages with the necessary model
development steps, we structure the field in a way that it becomes
easier to identify where to focus scholarly attention.
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Appendix A. Review references

This appendix contains an overview of the 237 papers used in
the survey. Each paper is referred to by a number throughout our
status report on crowd research in Section 6. For each paper num-
ber, the corresponding citation and reference can be obtained using
Table A.7 and the references.

Table A.7
Overview of the 237 papers included in our review: Number and reference.
Nr Reference
1: Abolghasemzadeh (2013)
2: Adang (2011)
3: Aguirre et al. (1998)
4: Ahn et al. (2005)
5: Algadhi and Mahmassani (1990)
6: AlGadhi et al. (2002)
7: Ali and Shah (2007)
8: Alizadeh (2011)
9: Andersson et al. (2009)
10: Andrade and Fisher (2005)
11: Andrade et al. (2006a)
12: Andrade et al. (2006b)
13: Antonini et al. (2004b)
14: Antonini et al. (2004c¢)
15: Antonini et al. (2004d)
16: Aubé and Schield (2004)
17: Bae and Ryou (2015)
18: Banarjee et al. (2005)
19: Bandini et al. (2009)
20: Batty et al. (2003b)
21: Batty et al. (2003a)
22: Bellomo and Dogbe (2008)
23: Berk (1974)
24: Blue and Adler (1999)
25: Blue and Adler (2001)
26: Bo et al. (2007)
27: Boghossian and Velastin (1999)
28: Borrmann et al. (2012)
29: Braun et al. (2003)
30: Brostow and Cipolla (2006)
31: Camillen et al. (2009)
32: Cepolina (2005)
33: Chow and Ng (2008)
34: Colombo and Rosini (2005)
35: Courty and Raupp Musse (2005)
36: Courty and Corpetti (2007)
37: Cupillard et al. (2002)
38: Davidich and Késter (2012)
39: Davies et al. (1995)
40: Dijkstra et al. (2001)
41: Ding (2011)
42: Dombroski et al. (2006)
43: Dong et al. (2007)
44: Drews et al. (2010)
45: Drury and Reicher (1999)
46: Drury and Reicher (2000)
47: Drury and Reicher (2005)
48: Drury et al. (2009)
49: Durupinar et al. (2008)
50: Dyer et al. (2008)
51: Fang et al. (2003)
52: Farenc et al. (2000)
53: Feinberg and Johnson (1988)
54: Feinberg and Johnson (1990)
55: Feinberg and Johnson (1995)
56: Feinberg and Johnson (2001)
57: Fraser-Mitchell (1999)
58: Fridman and Kaminka (2007)
59: Fridman and Kaminka (2010)
60: Fukamachi and Nagatani (2007)
61: Galea and Galparsoro (1994)
62: Goldenstein et al. (2001)
63: Gotoh et al. (2012)
64: Graat et al. (1999)
65: Gupta and Yadav (2004)
66: Harada et al. (2015)
67: Helbing (1991)
68: Helbing (1992)
69: Helbing and Molnar (1995)
70: Helbing and Molnar (1998)
71: Helbing et al. (2000)
72: Helbing et al. (2002)
73: Helbing et al. (2005)
74: Helbing et al. (2007)
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Nr Reference Nr Reference
75: Helidvaara et al. (2012) 150: Nishinari et al. (2006)
76: Henderson (1971) 151: Notake et al. (2001)
77: Henderson (1974) 152: Ozel (2001)
78: Henderson and Jenkins (1974) 153: Pan et al. (2007)
79: Henein and White (2005) 154: Paris et al. (2006)
80: Henein and White (2007) 155: Parisi and Dorso (2005)
81: Hoogendoorn and HL Bovy (2003) 156: Parisi et al. (2015)
82: Hoogendoorn and Bovy (2004) 157: Pathan et al. (2010)
83: Huang et al. (2009) 158: Pauls (1984)
84: Hughes (2000) 159: Pelechano et al. (2005)
85: Hughes (2002) 160: Pelechano and Badler (2006)
86: Hughes (2003) 161: Pelechano et al. (2007)
87: Hussain et al. (2011) 162: Pereira et al. (2013)
88: Isobe et al. (2004) 163: Piccoli and Tosin (2009)
89: Jager et al. (2001) 164: Piccoli and Tosin (2011)
90: Jiang et al. (2009) 165: Pires (2005)
91: Johansson et al. (2008) 166: Proulx (1993)
92: Johnson and Feinberg (1977) 167: Qu et al. (2014)
93: Johnson and Feinberg (1997) 168: Rahmalan et al. (2006)
94: Kady (2012) 169: Reicher (1996)
95: Kang and Kim (2005) 170: Reisman et al. (2004)
96: Kang (2007) 171: Rodriguez et al. (2011)
97: Khan and Shah (2006) 172: Roggen et al. (2011)
98: King and Waddington (2005) 173: Saiwaki et al. (1999)
99: Kirchner and Schadschneider (2002) 174: Sakuma et al. (2005)
100: Kirchner et al. (2004) 175: Schadschneider et al. (2002)
101: Kong et al. (2006) 176: Schubert and Suzic (2007)
102: Kretz and Schreckenberg (2006) 177: Schwarz and Mosler (2005)
103: Kretz et al. (2006¢) 178: Seyfried et al. (2005)
104: Kretz et al. (2006a) 179: Shen (2006)
105: Kretz et al. (2006b) 180: Shi et al. (2012)
106: Lakoba et al. (2005) 181: Shiwakoti et al. (2014)
107: Langston et al. (2006) 182: Shiwakoti et al. (2015)
108: Lee and Hughes (2006) 183: Siebel and Maybank (2002)
109: Lee et al. (2007) 184: Silverman et al. (2002)
110: Lee and Hughes (2007) 185: Silverman et al. (2006)
111: Leggett (2004) 186: Sime (1983)
112: Leibe et al. (2005) 187: Simonovic and Ahmad (2005)
113: Lerner et al. (2007) 188: Smith et al. (2005)
114: Li et al. (2015) 189: Smith et al. (2009)
115: Li and Han (2015) 190: Song et al. (2006)
116: Liao et al. (2014) 191: Song et al. (2013)
117: - 192: Still (2000)
118: Lin et al. (2007) 193: Stott and Reicher (1998)
119: Lo and Fang (2000) 194: Stott et al. (2008)
120: Lo et al. (2004) 195: Strogatz et al. (2005)
121: Lo et al. (2006) 196: Tarnow (1996)
122: Lovas (1994) 197: Tavares and Marshall (2012)
123: Lovreglio et al. (2014) 198: Teknomo and Fernandez (2012)
124: Luo et al. (2008) 199: Thompson and Marchant (1995b)
125: Ma et al. (2012) 200: Thompson and Marchant (1995a)
126: Mahadevan et al. (2010) 201: Toner and Tu (1998)
127: Marana et al. (1998b) 202: Treuille et al. (2006)
128: Marana et al. (1998a) 203: Tucker et al. (1999)
129: Marana et al. (1999) 204: Ulicny and Thalmann (2002)
130: Marconi and Chopard (2002) 205: Varas et al. (2007)
131: Marques et al. (2003) 206: Venuti and Bruno (2007)
132: Martella et al. (submitted for publication) 207: Venuti et al. (2007)
133: McKenna et al. (2000) 208: Villamil et al. (2003)
134: Mehran et al. (2009) 209: Vu et al. (2002)
135: Mittal and Davis (2002) 210: Wang et al. (2015)
136: Moore et al. (2008) 211: Was (2005)
137: Moussaid et al. (2009) 212: Weifeng et al. (2003)
138: Moussaid et al. (2011) 213: Weifeng and Hai (2007)
139: Muhdi et al. (2009) 214: Wijermans et al. (2013)
140: Murakami et al. (2002) 215: Wong and Luo (2005)
141: Muramatsu et al. (1999) 216: Wong and Cheung (2006)
142: Muramatsu and Nagatani (2000) 217: Wu and Huang (2015)
143: Musse and Thalmann (1997) 218: Xiong et al. (2007)
144: Musse et al. (1999) 219: Georgoudas et al. (2006)
145: Musse et al. (2007) 220: Yamamoto et al. (2007)
146: Nakayama et al. (2005) 221: Yang et al. (2005)
147: Narain et al. (2009) 222: Yang et al. (2012)
148: Narimatsu et al. (2004) 223: Yaseen et al. (2013)
149: Nguyen et al. (2005) 224: Yin et al. (1996)

(continued on next page)
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Table A.7 (continued)

Nr Reference

225: Yu et al. (2005)

226: Yu and Johansson (2007)

227: Yuen and Lee (2012)

228: Zarboutis and Marmaras (2007)

229: Zhan et al. (2005b)

230: Zhan et al. (2005a)

231: Zhang et al. (2007a)

232: Zhang et al. (2007b)

233: Zhao and Nevatia (2004a)

234: Zhao and Nevatia (2004b)

235: Zhao et al. (2006)

236: Zhao et al. (2008)

237: Zheng et al. (2010)

238: Zou et al. (2005)
References

Abolghasemzadeh, P., 2013. A comprehensive method for environmentally sensitive
and behavioral microscopic egress analysis in case of fire in buildings. Saf. Sci. 59,
1-9, <http://www.sciencedirect.com/science/article/pii/S0925753513001033>.

Adang, O., 2011. Initiation and Escalation of Collective Violence: A Comparative
Observational Study of Protest and Football Events. Lynne Rienner Publishers,
pp. 47-68.

Aguirre, B.E., Wenger, D., Vigo, G., 1998. A test of the emergent norm theory of
collective behavior. Sociol. Forum 13, 301-311.

Ahn, E.-Y., Kim, J.-W., Kwak, N.-Y., Han, S.-H., 2005. Emotion-based crowd
simulation using fuzzy algorithm. In: AI 2005: Advances in Artificial
Intelligence. Springer, pp. 330-338.

AlGadhi, S.A., Mahmassani, H.S., Herman, R., 2002. A speed-concentration relation
for bi-directional crowd movements with strong interaction. Pedestrian
Evacuat. Dynam., 3-20

Algadhi, S.AH. Mahmassani, H.S. 1990. Modelling crowd behaviour and
movement: application to Makkah pilgrimage. In: Koshi, M. (Ed.), Proceedings
11th International Symposium on Transportation and Traffic Theory. New York,
pp. 59-78.

Ali, S., Shah, M., 2007. A lagrangian particle dynamics approach for crowd flow
segmentation and stability analysis. In: Proceedings Conference on Computer
Vision and Pattern Recognition. IEEE, pp. 1-6.

Alizadeh, R., 2011. A dynamic cellular automaton model for evacuation process with
obstacles. Saf. Sci. 49 (2), 315-323, <http://www.sciencedirect.com/science/
article/pii/S0925753510002262>.

Alsnih, R., Stopher, P.R,, 2004. Review of procedures associated with devising
emergency evacuation plans. Transp. Res. Rec. 1865 (1), 89-97.

Andersson, M., Rydell, ]J., Ahlberg, J., 2009. Estimation of crowd behavior using
sensor networks and sensor fusion. In: Proceedings 12th International
Conference on Information Fusion. IEEE, pp. 396-403.

Andrade, E.L., Blunsden, S., Fisher, R.B., 2006a. Hidden markov models for optical
flow analysis in crowds. In: Proceedings 18th International Conference on
Pattern Recognition. IEEE, pp. 460-463.

Andrade, E.L., Blunsden, S., Fisher, R.B., 2006b. Modelling crowd scenes for event
detection. In: Proceedings 18th International Conference on Pattern
Recognition. IEEE, pp. 175-178.

Andrade, E.L., Fisher, R.B., 2005. Simulation of crowd problems for computer vision.
In: Proceedings First International Workshop on Crowd Simulation, vol. 3. pp.
71-80.

Anon. , January 2009. Multi-criteria Analysis: A Manual. Tech. Rep. Department for
Communities and Local Government, London, UK.

Antonini, G., Bierlaire, M., Weber, M., September 2004a. Discrete Choice Models of
Pedestrian Behavior. Tech. Rep. ROSO Report 040916. Swiss Federal Institute of
Technology Lausanne (EPFL).

Antonini, G., Bierlaire, M., Weber, M., 2004b. Simulation of pedestrian behaviour
using a discrete choice model calibrated on actual motion data. In: Proceedings
4th STRC Swiss Transport Research Conference, vol. 7. pp. 249-258.

Antonini, G., Venegas, S., Thiran, ]J., Bierlaire, M., 2004c. Behavioral Filtering of
Human Trajectories for Automatic-multi-track Initiation. Tech. Rep. EPFL-
REPORT-87040. EPFL. Signal Processing Institute.

Antonini, G., Venegas, S., Thiran, ].-P., Bierlaire, M., 2004d. A discrete choice
pedestrian behavior model for pedestrian detection in visual tracking systems.
In: Advanced Concepts for Intelligent Vision Systems. IEEE.

Atallah, L., Yang, G.-Z., 2009. The use of pervasive sensing for behaviour profiling, a
survey. Pervasive Mob. Comput. 5 (5), 447-464.

Aubé, F., Schield, R., 2004. Modeling the effect of leadership on crowd flow
dynamics. In: Proceedings 7th International Conference on Cellular Automata
for Research and Industry. Springer, pp. 601-611.

Bae, S., Ryou, H.S., 2015. Development of a smoke effect model for representing the
psychological pressure from the smoke. Saf. Sci. 77, 57-65, <http://
www.sciencedirect.com/science/article/pii/S0925753515000776>.

Balci, O., 1995. Principles and techniques of simulation validation, verification, and
testing. In: Proceedings 27th Winter Simulation Conference. IEEE, pp. 147-154.

Ball, P., 2007. Crowd researchers make pilgrimage safer: the science of pedestrian
motion meets the annual Hajj in Mecca. Nature.

Banarjee, S., Grosan, C., Abraham, A., 2005. Emotional ant based modeling of crowd
dynamics. In: Proceedings 7th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing. IEEE, pp. 279-286.

Bandini, S., Manzoni, S., Vizzari, G., 2009. Crowd behaviour modeling: from cellular
automata to multi-agent systems. Multi-Agent Syst.: Simul. Appl., 204-230
Baratchi, M., Meratnia, N., Havinga, P.J., Skidmore, A.K., Toxopeus, B.A., 2013.
Sensing solutions for collecting spatio-temporal data for wildlife monitoring

applications: a review. Sensors 13 (5), 6054-6088.

Batty, M., Desyllas, J., Duxbury, E., 2003a. The discrete dynamics of small-scale
spatial events: agent-based models of mobility in carnivals and street parades.
Int. J. Geograph. Inform. Sci. 17 (7), 673-697.

Batty, M., Desyllas, J., Duxbury, E., 2003b. Safety in numbers? Modelling crowds and
designing control for the Notting Hill carnival. Urban Stud. 40 (8), 1573-1590.

Bellomo, N., Bellouquid, A., Knopoff, D., 2013. From the microscale to collective
crowd dynamics. Multiscale Model. Simul. 11 (3), 943-963.

Bellomo, N., Dogbe, C., 2008. On the modelling crowd dynamics from scaling to
hyperbolic macroscopic models. Math. Model. Methods Appl. Sci. 18 (supp01),
1317-1345.

Bellomo, N., Dogbe, C., 2011. On the modeling of traffic and crowds: a survey of
models, speculations, and perspectives. SIAM Rev. 53 (3), 409-463.

Berk, R.A., 1974. A gaming approach to crowd behavior. Am. Sociol. Rev., 355-373

Bernardini, G., Quagliarini, E., D’Orazio, M., 2016. Towards creating a combined
database for earthquake pedestrians’ evacuation models. Saf. Sci. 82, 77-94,
<http://www.sciencedirect.com/science/article/pii/S0925753515002301>.

Blue, V.., Adler, J.L, 1999. Cellular automata microsimulation of bidirectional
pedestrian flows. Transp. Res. Rec. 1678 (1), 135-141.

Blue, V.J., Adler, J.L., 2001. Cellular automata microsimulation for modeling bi-
directional pedestrian walkways. Transp. Res. Part B: Methodol. 35 (3),293-312.

Bo, Y., Cheng, W., Hua, H., Lijun, L., 2007. A multi-agent and PSO based simulation
for human behavior in emergency evacuation. In: Proceedings International
Conference on Computational Intelligence and Security. IEEE, pp. 296-300.

Boghossian, B., Velastin, S., 1999. Motion-based machine vision techniques for the
management of large crowds. Proceedings 6th International Conference on
Electronics, Circuits and Systems, vol. 2. IEEE, pp. 961-964.

Borrmann, A., Kneidl, A., Koster, G., Ruzika, S., Thiemann, M., 2012. Bidirectional
coupling of macroscopic and microscopic pedestrian evacuation models. Saf.
Sci. 50 (8), 1695-1703, evacuation and Pedestrian Dynamics. <http://
www.sciencedirect.com/science/article/pii/S0925753511003407>.

Braun, A., Musse, S.R., de Oliveira, L.P.L., Bodmann, B.E., 2003. Modeling individual
behaviors in crowd simulation. In: Proceedings International Conference on
Computer Animation and Social Agents. IEEE, pp. 143-148.

Brostow, G.J., Cipolla, R., 2006. Unsupervised bayesian detection of independent
motion in crowds. Proceedings International Conference on Computer Vision
and Pattern Recognition, vol. 1. IEEE, pp. 594-601.

Bryan, J.L, 1999. Human behaviour in fire: the development and maturity of a
scholarly study are. Fire Mater. 123, 249-253.

Camillen, F., Capr, S., Garofalo, C., Ignaccolo, M., Inturri, G., Pluchino, A., Rapisarda,
A., Tudisco, S., 2009. Multi agent simulation of pedestrian behavior in closed
spatial environments. In: Proceedings International Conference Science and
Technology for Humanity. IEEE, pp. 375-380.

Cattani, M., Zuniga, M., Loukas, A., Langendoen, K., 2014. Lightweight neighborhood
cardinality estimation in dynamic wireless networks. In: Proceedings of the
13th International Symposium on Information Processing in Sensor Networks.
IEEE Press, pp. 179-189.

Cepolina, E.M., 2005. A methodology for defining building evacuation routes. Civ.
Eng. Environ. Syst. 22 (1), 29-47.

Challenger, R., Clegg, C., Robinson, M., 2009a. Understanding Crowd Behaviours:
Supporting Evidence.

Challenger, R., Clegg, C., Robinson, M., 2009b. Understanding Crowd Behaviours.
Tech. Rep. UK Cabinet Office.

Challenger, R., Clegg, C., Robinson, M., 2009c. Understanding Crowd Behaviours:
Guidance and Lessons Identified. Tech. Rep. UK Cabinet Office.

Chow, W., Ng, C.M., 2008. Waiting time in emergency evacuation of crowded public
transport terminals. Saf. Sci. 46 (5), 844-857, <http://
www.sciencedirect.com/science/article/pii/S092575350700046X>.

Colombo, R.M., Rosini, M.D., 2005. Pedestrian flows and non-classical shocks. Math.
Methods Appl. Sci. 28 (13), 1553-1567.

Courty, N., Corpetti, T., 2007. Crowd motion capture. Comput. Anim. Virt. Worlds 18
(4-5), 361-370.

Courty, N., Raupp Musse, S., 2005. Simulation of large crowds in emergency
situations including gaseous phenomena. In: Proceedings of Computer Graphics
International. IEEE, pp. 206-212.

Cupillard, F., Brémond, F., Thonnat, M., 2002. Group behavior recognition with
multiple cameras. In: Proceedings 6th Workshop on Applications of Computer
Vision. IEEE, pp. 177-183.

Davidich, M., Késter, G., 2012. Towards automatic and robust adjustment of human
behavioral parameters in a pedestrian stream model to measured data. Saf. Sci.
50 (5), 1253-1260, <http://[www.sciencedirect.com/science/article/pii/
S0925753511003432>.

Davies, A.C., Yin, J.H., Velastin, S.A., 1995. Crowd monitoring using image
processing. Electron. Commun. Eng. J. 7 (1), 37-47.

Dijkstra, J., Jessurun, A., Timmermans, H., 2001. A multi-agent cellular automata
model of pedestrian movement. In: Schreckenberg, M., Sharma, S. (Eds.),
Pedestrian and Evacuation Dynamics. Springer, Berlin, pp. 173-181.


http://www.sciencedirect.com/science/article/pii/S0925753513001033
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0010
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0010
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0010
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0015
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0015
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0020
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0020
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0020
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0025
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0025
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0025
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0035
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0035
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0035
http://www.sciencedirect.com/science/article/pii/S0925753510002262
http://www.sciencedirect.com/science/article/pii/S0925753510002262
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0045
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0045
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0050
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0050
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0050
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0055
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0055
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0055
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0060
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0060
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0060
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0090
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0090
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0090
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0095
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0095
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0100
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0100
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0100
http://www.sciencedirect.com/science/article/pii/S0925753515000776
http://www.sciencedirect.com/science/article/pii/S0925753515000776
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0110
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0110
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0115
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0115
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0120
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0120
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0120
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0125
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0125
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0130
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0130
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0130
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0135
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0135
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0135
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0140
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0140
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0145
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0145
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0150
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0150
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0150
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0155
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0155
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0160
http://www.sciencedirect.com/science/article/pii/S0925753515002301
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0170
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0170
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0175
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0175
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0180
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0180
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0180
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0185
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0185
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0185
http://www.sciencedirect.com/science/article/pii/S0925753511003407
http://www.sciencedirect.com/science/article/pii/S0925753511003407
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0195
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0195
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0195
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0200
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0200
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0200
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0205
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0205
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0210
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0210
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0210
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0210
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0210
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0215
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0215
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0215
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0215
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0220
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0220
http://www.sciencedirect.com/science/article/pii/S092575350700046X
http://www.sciencedirect.com/science/article/pii/S092575350700046X
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0245
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0245
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0250
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0250
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0255
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0255
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0255
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0260
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0260
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0260
http://www.sciencedirect.com/science/article/pii/S0925753511003432
http://www.sciencedirect.com/science/article/pii/S0925753511003432
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0270
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0270
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0275
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0275
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0275

N. Wijermans et al./Safety Science 86 (2016) 142-164 161

Ding, AW., 2011. Implementing real-time grouping for fast egress in emergency.
Saf. Sci. 49 (10), 1404-1411, <http://www.sciencedirect.com/science/article/pii/
S0925753511001433>,

Dombroski, M., Fischhoff, B., Fischbeck, P., 2006. Predicting emergency evacuation
and sheltering behavior: a structured analytical approach. Risk Anal. 26 (6),
1675-1688.

Dong, L., Parameswaran, V., Ramesh, V., Zoghlami, 1., 2007. Fast crowd segmentation
using shape indexing. In: Proceedings 11th International Conference on
Computer Vision. IEEE, pp. 1-8.

Drews, P., Quintas, ]., Dias, J., Andersson, M., Nygards, ]., Rydell, J., 2010. Crowd
behavior analysis under cameras network fusion using probabilistic methods.
In: Proceedings 13th Conference on Information Fusion. IEEE, pp. 1-8.

Drury, J., Cocking, C., Reicher, S., Burton, A., Schofield, D., Hardwick, A., Graham, D.,
Langston, P., 2009. Cooperation versus competition in a mass emergency
evacuation: a new laboratory simulation and a new theoretical model. Behav.
Res. Methods 41 (3), 957-970.

Drury, J., Reicher, S., 1999. The intergroup dynamics of collective empowerment:
substantiating the social identity model of crowd behavior. Group Process.
Intergroup Relat. 2 (4), 381-402.

Drury, J., Reicher, S., 2000. Collective action and psychological change: the
emergence of new social identities. Br. J. Soc. Psychol. 39 (4), 579-604.

Drury, J., Reicher, S., 2005. Explaining enduring empowerment: a comparative study
of collective action and psychological outcomes. Eur. J. Soc. Psychol. 35(1),35-58.

Duives, D.C., Daamen, W., Hoogendoorn, S.P., 2013. State-of-the-art crowd motion
simulation models. Transp. Res. Part C: Emerg. Technol. 37, 193-209.

Durupinar, F., Allbeck, J., Pelechano, N., Badler, N., 2008. Creating crowd variation
with the ocean personality model. Proceedings of 7th International
Confonference on Autonomous Agents and Multiagent Systems, vol. 3.
International Foundation for Autonomous Agents and Multiagent Systems,
Estoril, Portugal, pp. 1217-1220.

Dyer, J.R.G., loannou, C.C., Morrell, L., Croft, D.P., Couzin, I.D., Waters, D.A., Krause,
J., 2008. Consensus decision making in human crowds. Anim. Behav. 75 (2),
461-470.

Epstein, ]J.M., 2002. Modeling civil violence: an agent-based computational
approach. Proc. Natl. Acad. Sci. 99 (Suppl 3), 7243-7250.

Fang, Z., Lo, S. Lu, ], 2003. On the relationship between crowd density and
movement velocity. Fire Saf. J. 38 (3), 271-283.

Farenc, N., Musse, S.R., Schweiss, E., Kallmann, M., Aune, O., Boulic, R., Thalmann, D.,
2000. A paradigm for controlling virtual humans in urban environment
simulations. Appl. Artif. Intell. J. 14 (1), 69-91.

Feinberg, W.E., Johnson, N.R., 1988. outside agitators and crowds: results from a
computer simulation model. Soc. Forces 67 (2), 398-423.

Feinberg, W.E., Johnson, N.R., 1990. Elementary social structure and the resolution
of ambiguity: some results from a computer simulation model. Sociol. Focus 23
(4), 315-331.

Feinberg, W.E., Johnson, N.R., 1995. Firescap: a computer simulation model of
reaction to a fire alarm. J. Math. Sociol. 20 (2-3), 247-269.

Feinberg, W.E., Johnson, N.R., 2001. The ties that bind: a macro-level approach to
panic. Int. J. Mass Emergencies Disasters 19 (3), 269-295.

Figueira, J., Creta, S., Ehrgott, M. (Eds.), 2005. Multple Criteria Decision Analysis,
State of the Art surveys. Springer.

Forrester, J.W., 1971. Counterintuitive behavior of social systems. Technol. Rev. 73,
52-68.

Fraser-Mitchell, J.,, 1999. Modelling human behaviour within the fire risk
assessment tool crisp. Fire Mater. 23, 349-355.

Fridman, N., Kaminka, G.A., 2007. Towards a cognitive model of crowd behavior
based on social comparison theory, vol. 22, no. 1, pp. 731.

Fridman, N., Kaminka, G.A., 2010. Modeling pedestrian crowd behavior based on a
cognitive model of social comparison theory. Comput. Math. Organiz. Theory 16
(4), 348-372.

Fukamachi, M., Nagatani, T., 2007. Sidle effect on pedestrian counter flow. Physica A
377 (1), 269-278.

Galea, E., Galparsoro, J.P., 1994. A computer-based simulation model for the
prediction of evacuation from mass-transport vehicles. Fire Saf. J. 22, 341-366.

Georgoudas, 1.G., Sirakoulis, G.C., Andreadis, I.T., 2006. A cellular automaton crowd
tracking system for modelling evacuation processes. In: Proceedings
International Conference on Cellular Automata for Research and Industry.
Springer, pp. 699-702.

Goldenstein, S., Karavelas, M., Metaxas, D., Guibas, L., Aaron, E., Goswami, A., 2001.
Scalable nonlinear dynamical systems for agent steering and crowd simulation.
Comput. Graph. 25 (6), 983-998.

Gotoh, H., Harada, E., Andoh, E., 2012. Simulation of pedestrian contra-flow by
multi-agent {DEM} model with self-evasive action model. Saf. Sci. 50 (2), 326-
332, <http://www.sciencedirect.com/science/article/pii/S0925753511002463>.

Graat, E., Midden, C., Bockholts, P., 1999. Complex evacuation: effects of motivation
level and slope of stairs on emergency egress time in a sports stadium. Saf. Sci.
31 (2), 127-141.

Gupta, A., Yadav, P., 2004. SAFE-R: a new model to study the evacuation profile of a
building. Fire Saf. J. 39, 539-556.

Gwynne, S., Galea, E., Owen, M., Lawrence, P.J., Filippidis, L., et al., 1999. A review of
the methodologies used in evacuation modelling. Fire Mater. 23 (6), 383-388.

Harada, E., Gotoh, H., Rahman, N.B.A., 2015. A switching action model for DEM-
based multi-agent crowded behavior simulator. Saf. Sci. 79, 105-115, <http://
www.sciencedirect.com/science/article/pii/S0925753515001435>.

Health, Executive, S., 2000. Managing Crowds Safely: A Guide for Organisers at
Events and Venues, second ed. HSE Books.

Helbing, D., 1991. A mathematical model for the behavior of pedestrians. Behav. Sci.
36 (4), 298-310.

Helbing, D., 1992. A fluid dynamic model for the movement of pedestrians. Complex
Syst. 6, 391-415.

Helbing, D., Buzna, L., Johansson, A., Werner, T., 2005. Self-organized pedestrian
crowd dynamics: experiments, simulations, and design solutions. Transp. Sci.
39 (1), 1-24.

Helbing, D., Farkas, 1., Vicsek, T., 2000. Simulating dynamical features of escape
panic. Nature 407 (6803), 487-490.

Helbing, D., Farkas, LJ., Molnar, P., Vicsek, T., 2002. Simulation of pedestrian crowds
in normal and evacuation situations. Pedestrian Evacuat. Dynam. 21 (2), 21-58.

Helbing, D., Johansson, A., Al-Abideen, H.Z., 2007. Dynamics of crowd disasters: an
empirical study. Phys. Rev. E 75 (4), 046109.

Helbing, D., Molnar, P., 1995. Social force model for pedestrian dynamics. Phys. Rev.
E 51 (5), 4282.

Helbing, D., Molnar, P., 1998. Self-organization Phenomena in Pedestrian Crowds.
Available from: cond-mat/9806152.

Heli6vaara, S., Kuusinen, J.-M., Rinne, T., Korhonen, T., Ehtamo, H., 2012. Pedestrian
behavior and exit selection in evacuation of a corridor - an experimental study.
Saf. Sci. 50 (2), 221-227, <http://www.sciencedirect.com/science/article/pii/
S0925753511001913>.

Henderson, L., 1971. The statistics of crowd fluids. Nature 229, 381-383.

Henderson, L., 1974. On the fluid mechanics of human crowd motion. Transp. Res. 8
(6), 509-515.

Henderson, L., Jenkins, D., 1974. Response of pedestrians to traffic challenge. Transp.
Res. 8 (1), 71-74.

Henein, C.M., White, T., 2005. Agent-based modelling of forces in crowds. In: Multi-
agent and Multi-agent-based Simulation. Springer, pp. 173-184.

Henein, C.M., White, T., 2007. Macroscopic effects of microscopic forces between
agents in crowd models. Physica A 373, 694-712.

Hoogendoorn, S., HL Bovy, P., 2003. Simulation of pedestrian flows by optimal
control and differential games. Optim. Control Appl. Methods 24 (3), 153-172.

Hoogendoorn, S.P., Bovy, P.H., 2004. Pedestrian route-choice and activity scheduling
theory and models. Transp. Res. Part B: Methodol. 38 (2), 169-190.

Huang, L., Wong, S., Zhang, M., Shu, C.-W., Lam, W.H., 2009. Revisiting Hughes’
dynamic continuum model for pedestrian flow and the development of an
efficient solution algorithm. Transp. Res. Part B: Methodol. 43 (1), 127-141.

Hughes, R., 2000. The flow of large crowds of pedestrians. Math. Comput. Simul. 53
(4), 367-370.

Hughes, R.L., 2002. A continuum theory for the flow of pedestrians. Transp. Res. Part
B: Methodol. 36 (6), 507-535.

Hughes, R.L.,, 2003. The flow of human crowds. Annu. Rev. Fluid Mech. 35 (1), 169-
182.

Hussain, N., Yatim, H.S.M., Hussain, N.L,, Yan, J.L.S., Haron, F., 2011. CDES: a
pixel-based crowd density estimation system for Masjid al-Haram. Saf.
Sci. 49 (6), 824-833, <http://www.sciencedirect.com/science/article/pii/
S0925753511000075>.

Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., den Broeck, W.V., 2011. What's
in a crowd? analysis of face-to-face behavioral networks. J. Theor. Biol. 271 (1),
166-180.

Isobe, M., Helbing, D., Nagatani, T., 2004. Experiment, theory, and simulation of the
evacuation of a room without visibility. Phys. Rev. E 69 (6), 066132.

Jager, W., Popping, R., van de Sande, H., 2001. Clustering and fighting in two-party
crowds: simulating the approach-avoidance conflict. J. Artif. Soc. Soc. Simul. 4
(3).

Jiang, C.,, Deng, Y., Hy, C., Ding, H., Chow, W., 2009. Crowding in platform staircases
of a subway station in China during rush hours. Saf. Sci. 47 (7), 931-938,
<http://www.sciencedirect.com/science/article/pii/S0925753508001665>.

Johansson, A., Helbing, D., Shukla, P.K., 2008. Specification of a microscopic
pedestrian model by evolutionary adjustment to video tracking data. Adv.
Complex Syst. 10, 271.

Johnson, N.R., Feinberg, W.E., 1977. A computer simulation of the emergence of
consensus in crowds. Am. Sociol. Rev., 505-521

Johnson, N.R., Feinberg, W.E., 1997. The impact of exit instructions and number of
exits in fire emergencies: a computer simulation investigation. J. Environ.
Psychol. 17 (2), 123-133.

Kady, R.A., 2012. The development of a movement-density relationship for people
going on four in evacuation. Saf. Sci. 50 (2), 253-258, <http://
www.sciencedirect.com/science/article/pii/S0925753511002293>.

Kang, H.-G., Kim, D., 2005. Real-time multiple people tracking using competitive
condensation. Pattern Recogn. 38 (7), 1045-1058.

Kang, K., 2007. Application of code approach for emergency evacuation in a rail
station. Fire Technol. 43, 331-346.

Khan, S.M., Shah, M., 2006. A multiview approach to tracking people in crowded
scenes using a planar homography constraint. Proceedings 9th European
Conference on Computer Vision, vol. IV. Springer, pp. 133-146.

King, M., Waddington, D., 2005. Flashpoints revisited: a critical application to the
policing of anti-globalization protest. Policing Soc. 15 (3), 255-282.

Kirchner, A., Kliipfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M., 2004.
Discretization effects and the influence of walking speed in cellular automata
models for pedestrian dynamics. J. Stat. Mech: Theory Exp. (10), P10011

Kirchner, A., Schadschneider, A., 2002. Simulation of evacuation processes using a
bionics-inspired cellular automaton model for pedestrian dynamics. Physica A
312 (1), 260-276.

Klein, G., 1989. Recognition-primed decisions. In: Rouse, W. (Ed.), Advances in Man-
machine Systems Research. JAI Press, Greenwich, CT, pp. 47-92.


http://www.sciencedirect.com/science/article/pii/S0925753511001433
http://www.sciencedirect.com/science/article/pii/S0925753511001433
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0285
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0285
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0285
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0290
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0290
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0290
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0295
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0295
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0295
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0300
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0300
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0300
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0300
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0305
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0305
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0305
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0310
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0310
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0315
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0315
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0320
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0320
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0325
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0325
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0325
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0325
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0325
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0330
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0330
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0330
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0335
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0335
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0340
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0340
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0345
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0345
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0345
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0350
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0350
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0355
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0355
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0355
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0360
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0360
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0365
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0365
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0370
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0370
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0375
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0375
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0380
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0380
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0390
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0390
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0390
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0395
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0395
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0400
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0400
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0405
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0405
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0405
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0405
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0410
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0410
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0410
http://www.sciencedirect.com/science/article/pii/S0925753511002463
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0420
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0420
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0420
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0425
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0425
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0430
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0430
http://www.sciencedirect.com/science/article/pii/S0925753515001435
http://www.sciencedirect.com/science/article/pii/S0925753515001435
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0445
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0445
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0450
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0450
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0455
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0455
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0455
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0460
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0460
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0465
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0465
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0470
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0470
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0475
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0475
http://www.sciencedirect.com/science/article/pii/S0925753511001913
http://www.sciencedirect.com/science/article/pii/S0925753511001913
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0490
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0495
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0495
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0500
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0500
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0505
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0505
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0510
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0510
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0515
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0515
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0520
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0520
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0525
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0525
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0525
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0530
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0530
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0535
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0535
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0540
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0540
http://www.sciencedirect.com/science/article/pii/S0925753511000075
http://www.sciencedirect.com/science/article/pii/S0925753511000075
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0550
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0550
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0550
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0555
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0555
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0560
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0560
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0560
http://www.sciencedirect.com/science/article/pii/S0925753508001665
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0570
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0570
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0570
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0575
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0575
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0580
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0580
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0580
http://www.sciencedirect.com/science/article/pii/S0925753511002293
http://www.sciencedirect.com/science/article/pii/S0925753511002293
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0590
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0590
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0595
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0595
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0600
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0600
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0600
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0605
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0605
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0610
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0610
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0610
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0615
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0615
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0615
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0620
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0620

162 N. Wijermans et al./Safety Science 86 (2016) 142-164

Klein, G., 1999. Sources of Power: How People Make Decisions. MIT Press.

Kong, D., Gray, D., Tao, H., 2006. A viewpoint invariant approach for crowd counting.
Proceedings 18th International Conference on Pattern Recognition, vol. 3. IEEE,
pp. 1187-1190.

Kotz, D., Henderson, T. 2005. Crawdad: a community resource for archiving
wireless data at dartmouth. IEEE Pervasive Comput. 4 (4), 12-14.

Kretz, T., Griinebohm, A., Kaufman, M. Mazur, F. Schreckenberg, M., 2006a.
Experimental study of pedestrian counterflow in a corridor. J. Stat. Mech:
Theory Exp. (10), P10001

Kretz, T. Griinebohm, A., Schreckenberg, M., 2006b. Experimental study of
pedestrian flow through a bottleneck. J. Stat. Mech: Theory Exp. (10), P10014

Kretz, T., Schreckenberg, M., 2006. FAST - Floor field- and Agent-based Simulation
Tool. ArXiv Physics e-prints.

Kretz, T., Wolki, M., Schreckenberg, M., 2006¢. Characterizing correlations of flow
oscillations at bottlenecks. ]. Stat. Mech: Theory Exp. (02), P02005

Lakoba, T.I., Kaup, D.J., Finkelstein, N.M., 2005. Modifications of the Helbing-Molnar-
Farkas-Vicsek social force model for pedestrian evolution. Simulation 81 (5),
339-352.

Langston, P.A., Masling, R., Asmar, B.N., 2006. Crowd dynamics discrete element
multi-circle model. Saf. Sci. 44 (5), 395-417.

Law, A.M., 2015. Simulation Modeling and Analysis, fifth ed. McGraw-Hill.

Lee, K.H., Choi, M.G., Hong, Q., Lee, ]., 2007. Group behavior from video: a data-
driven approach to crowd simulation. In: Proceedings ACM SIGGRAPH/
Eurographics Symposium on Computer Animation. ACM, pp. 109-118.

Lee, R.S., Hughes, R.L., 2006. Prediction of human crowd pressures. Accid. Anal.
Prevent. 38 (4), 712-722.

Lee, R.S., Hughes, R.L., 2007. Minimisation of the risk of trampling in a crowd. Math.
Comput. Simul. 74, 29-37.

Leggett, R., 2004. Real-time Crowd Simulation: A Review. <http://www.leggettnet.
org.uk/docs/crowdsimulation.pdf> (accessed 19.01.15).

Leibe, B., Seemann, E., Schiele, B., 2005. Pedestrian detection in crowded scenes.
Proceedings Conference on Computer Vision and Pattern Recognition, vol. 1.
IEEE, pp. 878-885.

Lerner, A., Chrysanthou, Y., Lischinski, D., 2007. Crowds by example. Computer
Graphics Forum, vol. 26. Wiley, pp. 655-664.

Li, D., Han, B, 2015. Behavioral effect on pedestrian evacuation simulation using
cellular automata. Saf. Sci. 80, 41-55, <http://www.sciencedirect.com/science/
article/pii/S0925753515001678>.

Li, J., Cai, R,, de Ridder, H., Vermeeren, A.P., van Egmond, R., 2014. A study on the
relation between crowd emotional feelings and action tendencies. In:
Proceedings of the 8th Nordic Conference on Human-Computer Interaction:
Fun, Fast, Foundational. ACM, pp. 775-784.

Li, M., Zhao, Y., He, L, Chen, W, Xu, X, 2015. The parameter calibration
and optimization of social force model for the real-life 2013 Ya'an
earthquake evacuation in China. Saf. Sci. 79, 243-253, <http://
www.sciencedirect.com/science/article/pii/S0925753515001605>.

Liao, W., Zheng, X., Cheng, L., Zhao, Y., Cheng, Y., Wang, Y., 2014. Layout effects of
multi-exit ticket-inspectors on pedestrian evacuation. Saf. Sci. 70, 1-8, <http://
www.sciencedirect.com/science/article/pii/S0925753514001003>.

Lin, P., Lo, S.M., Yuen, K., Huang, H.-C,, Liang, J., 2007. A granular dynamic method
for modelling the egress pattern at an exit. Fire Saf. J. 42 (5), 377-383.

Lo, S., Fang, Z., 2000. A spatial-grid evacuation model for buildings. J. Fire Sci. 18 (5),
376-394.

Lo, S., Fang, Z., Lin, P., Zhi, G., 2004. An evacuation model: the SGEM package. Fire
Saf. J. 39 (3), 169-190.

Lo, S.M,, Huang, H.-C., Wang, P., Yuen, K., 2006. A game theory based exit selection
model for evacuation. Fire Saf. . 41 (5), 364-369.

Lovas, G.G., 1994. Modeling and simulation of pedestrian traffic flow. Transp. Res.
Part B: Methodol. 28 (6), 429-443.

Lovreglio, R., Borri, D., dell'Olio, L., Ibeas, A., 2014. A discrete choice model based on
random utilities for exit choice in emergency evacuations. Saf. Sci. 62, 418-426,
<http://www.sciencedirect.com/science/article/pii/S0925753513002294>.

Luo, L., Zhou, S., Cai, W., Low, M.Y.H., Tian, F., Wang, Y., Xiao, X., Chen, D., 2008.
Agent-based human behavior modeling for crowd simulation. Comput. Anim.
Virt. Worlds 19 (3-4), 271-281.

Ma, J., Song, W., Tian, W., Lo, S., Liao, G., 2012. Experimental study on an ultra high-
rise building evacuation in China. Saf. Sci. 50 (8), 1665-1674, evacuation and
Pedestrian ~ Dynamics.  <http://www.sciencedirect.com/science/article/pii/
S0925753511003377>.

Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N., 2010. Anomaly detection in
crowded scenes. In: Proceedings Conference on Computer Vision and Pattern
Recognition. IEEE, pp. 1975-1981.

Marana, A., Costa, L.d.F.,, Lotufo, R., Velastin, S., 1998a. On the efficacy of texture
analysis for crowd monitoring. In: Proceedings International Symposium on
Computer Graphics, Image Processing, and Vision. IEEE, pp. 354-361.

Marana, A., Velastin, S.A., Costa, L.d.F., Lotufo, R., 1998b. Automatic estimation of
crowd density using texture. Saf. Sci. 28 (3), 165-175.

Marana, A.N., da Fontoura Costa, L., Lotufo, R., Velastin, S.A., 1999. Estimating crowd
density with Minkowski fractal dimension. Proceedings International Conference
on Acoustics, Speech, and Signal Processing, vol. 6. IEEE, pp. 3521-3524.

Marconi, S., Chopard, B., 2002. A multiparticle lattice gas automata model for a
crowd. In: Proceedings 5th International Conference on Cellular Automata for
Research and Industry. Springer-Verlag, pp. 231-238.

Marques, J.S., Jorge, P.M., Abrantes, AJ., Lemos, J., 2003. Tracking groups of
pedestrians in video sequences. Proceedings Computer Vision and Pattern
Recognition Workshops, vol. 9. IEEE, pp. 101-101.

Martella, C., Li, J., Conrado, C., Vermeeren, A., submitted for publication. On current
crowd management practices and the need for increased situation awareness,
prediction, and intervention. Safety Sci.

Martella, C., van Halteren, A., van Steen, M., Conrado, C., Li, J., 2014. Crowd textures
as proximity graphs. IEEE Commun. Mag. 52 (1).

McKenna, S.J., Jabri, S., Duric, Z., Rosenfeld, A., Wechsler, H., 2000. Tracking groups of
people. Comput. Vis. Image Underst. 80 (1), 42-56.

Mehran, R., Oyama, A., Shah, M., 2009. Abnormal crowd behavior detection using
social force model. In: Proceedings Conference on Computer Vision and Pattern
Recognition. IEEE, pp. 935-942.

Mittal, A., Davis, L.S., 2002. M2tracker: a multi-view approach to segmenting and
tracking people in a cluttered scene using region-based stereo. Int. ]. Comput.
Vision, 189-203.

Moore, S.C., Flaj8lik, M., Rosin, P.L., Marshall, D., 2008. A particle model of crowd
behavior: exploring the relationship between alcohol, crowd dynamics and
violence. Aggress. Violent Behav. 13 (6), 413-422.

Moussaid, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., Theraulaz, G., 2009.
Experimental study of the behavioural mechanisms underlying self-
organization in human crowds. Proc. Roy. Soc. B: Biol. Sci., rspb-2009

Moussaid, M., Helbing, D., Theraulaz, G., 2011. How simple rules determine
pedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. 108 (17), 6884-
6888.

Muhdi, R., Gwynne, S., Davis, J., 2009. The incorporation and validation of empirical
crawling data into the buildingEXODUS model. Saf. Sci. 47 (1), 97-104, <http://
www.sciencedirect.com/science/article/pii/S0925753507001889>.

Murakami, Y., Minami, K., Kawasoe, T., Ishida, T., 2002. Multi-agent simulation for
crisis management. In: Proceedings Workshop on Knowledge Media
Networking. IEEE, pp. 135-139.

Muramatsu, M., Irie, T., Nagatani, T., 1999. Jamming transition in pedestrian counter
flow. Physica A 267 (3), 487-498.

Muramatsu, M., Nagatani, T., 2000. Jamming transition in two-dimensional
pedestrian traffic. Physica A 275 (1), 281-291.

Musse, S., Thalmann, D., 1997. A model of human crowd behavior: group inter-
relationship and collision detection analysis. In: Proc. Workshop of Computer
Animation and Simulation of Eurographics’ 97. Springer, pp. 39-51.

Musse, S.R., Garat, F., Thalmann, D., 1999. Guiding and interacting with virtual
crowds. In: Proceedings of Eurographics Workshop on Animation and
Simulation. Springer, Milano, Italy, pp. 23-33.

Musse, S.R.,, Jung, C.R,, Jacques, J., Braun, A., 2007. Using computer vision to simulate
the motion of virtual agents. Comput. Anim. Virt. Worlds 18 (2), 83-93.

Nakayama, A., Hasebe, K., Sugiyama, Y., 2005. Instability of pedestrian flow and
phase structure in a two-dimensional optimal velocity model. Phys. Rev. E 71
(3), 036121.

Narain, R, Golas, A., Curtis, S., Lin, M.C., 2009. Aggregate dynamics for dense crowd
simulation. ACM Trans. Graph. 28 (5), 122.

Narimatsu, K., Shiraishi, T., Morishita, S., 2004. Acquisition of local neighbor rules in
the simulation of pedestrian flow by cellular automata. In: Proceedings 7th
International Conference on Cellular Automata for Research and Industry.
Springer, pp. 211-219.

Nguyen, Q., McKenzie, F.D., Petty, M.D., 2005. Crowd behavior cognitive model
architecture design. In: Proceedings Conference on Behavior Representation in
Modeling and Simulation. pp. 55-64.

Nishinari, K., Sugawara, K., Kazama, T., Schadschneider, A., Chowdhury, D., 2006.
Modelling of self-driven particles: foraging ants and pedestrians. Physica A 372
(1), 132-141.

Notake, H., Ebihara, M., Yashiro, Y., 2001. Assessment of legibility of egress route in
a building from the viewpoint of evacuation behavior. Saf. Sci. 38, 127-138.

Osinga, F., 2007. Science, Strategy and War: The Strategic Theory of John Boyd.
Routledge.

Ozel, F., 2001. Time pressure and stress as a factor during emergency egress.
Saf. Sci. 38 (2), 95-107, <http://www.sciencedirect.com/science/article/pii/
$0925753500000618>.

Pan, X., Han, C.S., Dauber, K., Law, K.H., 2007. A multi-agent based framework for the
simulation of human and social behaviors during emergency evacuations. Al
Soc. 22 (2), 113-132.

Paris, S., Donikian, S., Bonvalet, N., 2006. Environmental abstraction and path
planning techniques for realistic crowd simulation. Comput. Anim. Virt. Worlds
17 (3-4), 325-335.

Parisi, D., Dorso, C., 2005. Microscopic dynamics of pedestrian evacuation. Physica A
354, 606-618.

Parisi, D., Soria, S., Josens, R., 2015. Faster-is-slower effect in escaping ants revisited:
ants do not behave like humans. Saf. Sci. 72, 274-282, <http://
www.sciencedirect.com/science/article/pii/S0925753514002240>.

Pathan, S.S., Al-Hamadi, A., Michaelis, B., 2010. Crowd behavior detection by
statistical modeling of motion patterns. In: Proceedings International
Conference on Soft Computing and Pattern Recognition. IEEE, pp. 81-86.

Pauls, ., 1984. The movement of people in buildings and design solutions for means
of egress. Fire Technol. 20 (1), 27-47.

Pelechano, N., Allbeck, J.M., Badler, N.I., 2007. Controlling individual agents in high-
density crowd simulation. In: Proceedings ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. ACM, pp. 99-108.

Pelechano, N., Badler, N.I, 2006. Modeling crowd and trained leader behavior
during building evacuation. IEEE Comput. Graphics Appl. 26 (6), 80-86.

Pelechano, N., O'Brien, K., Silverman, B., Badler, N., 2005. Crowd Simulation
Incorporating Agent Psychological Models, Roles and Communication. Tech.
Rep. DTIC Document.


http://refhub.elsevier.com/S0925-7535(16)30003-0/h0625
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0630
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0630
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0630
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0635
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0635
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0640
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0640
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0640
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0645
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0645
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0655
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0655
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0660
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0660
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0660
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0665
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0665
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0670
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0675
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0675
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0675
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0680
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0680
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0685
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0685
http://www.leggettnet.org.uk/docs/crowdsimulation.pdf
http://www.leggettnet.org.uk/docs/crowdsimulation.pdf
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0695
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0695
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0695
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0700
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0700
http://www.sciencedirect.com/science/article/pii/S0925753515001678
http://www.sciencedirect.com/science/article/pii/S0925753515001678
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0710
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0710
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0710
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0710
http://www.sciencedirect.com/science/article/pii/S0925753515001605
http://www.sciencedirect.com/science/article/pii/S0925753515001605
http://www.sciencedirect.com/science/article/pii/S0925753514001003
http://www.sciencedirect.com/science/article/pii/S0925753514001003
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0725
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0725
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0730
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0730
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0735
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0735
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0740
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0740
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0745
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0745
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0745
http://www.sciencedirect.com/science/article/pii/S0925753513002294
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0755
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0755
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0755
http://www.sciencedirect.com/science/article/pii/S0925753511003377
http://www.sciencedirect.com/science/article/pii/S0925753511003377
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0765
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0765
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0765
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0770
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0770
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0770
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0775
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0775
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0780
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0780
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0780
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0785
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0785
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0785
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0790
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0790
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0790
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0800
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0800
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0805
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0805
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0810
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0810
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0810
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0815
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0815
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0815
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0820
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0820
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0820
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0825
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0825
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0825
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0830
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0830
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0830
http://www.sciencedirect.com/science/article/pii/S0925753507001889
http://www.sciencedirect.com/science/article/pii/S0925753507001889
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0840
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0840
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0840
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0845
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0845
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0850
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0850
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0855
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0855
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0855
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0860
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0860
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0860
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0865
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0865
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0870
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0870
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0870
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0875
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0875
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0880
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0880
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0880
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0880
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0890
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0890
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0890
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0895
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0895
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0900
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0900
http://www.sciencedirect.com/science/article/pii/S0925753500000618
http://www.sciencedirect.com/science/article/pii/S0925753500000618
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0910
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0910
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0910
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0915
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0915
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0915
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0920
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0920
http://www.sciencedirect.com/science/article/pii/S0925753514002240
http://www.sciencedirect.com/science/article/pii/S0925753514002240
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0930
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0930
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0930
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0935
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0935
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0940
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0940
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0940
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0945
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0945

N. Wijermans et al. /Safety Science 86 (2016) 142-164 163

Pereira, L., Duczmal, L., Cruz, F., 2013. Congested emergency evacuation of a
population using a finite automata approach. Saf. Sci. 51 (1), 267-272, <http://
www.sciencedirect.com/science/article/pii/S0925753512001993>.

Piccoli, B., Tosin, A., 2009. Pedestrian flows in bounded domains with obstacles.
Continuum Mech. Thermodyn. 21 (2), 85-107.

Piccoli, B., Tosin, A., 2011. Time-evolving measures and macroscopic modeling of
pedestrian flow. Arch. Ration. Mech. Anal. 199 (3), 707-738.

Pires, T.T., 2005. An approach for modeling human cognitive behavior in evacuation
models. Fire Saf. J. 40 (2), 177-189.

Proulx, G., 1993. A stress model for people facing a fire. ]. Environ. Psychol. 13, 137~
147.

Qu, Y., Gao, Z., Xiao, Y., Li, X, 2014. Modeling the pedestrian’s movement and
simulating evacuation dynamics on stairs. Saf. Sci. 70, 189-201, <http://
www.sciencedirect.com/science/article/pii/S0925753514001210>.

Rahmalan, H., Nixon, M., Carter, J.,, 2006. On crowd density estimation for
surveillance. In: Proceedings Conference on Crime and Security. Institution of
Engineering and Technology, pp. 540-545.

Reicher, S., 2001. The psychology of crowd dynamics. In: Hogg, M.A,, Tindale, R.S.
(Eds.), Handbook of Social Psychology: Group Processes. Blackwell, pp. 182-
208.

Reicher, S.D., 1996. ‘the battle of westminster’: developing the social identity model
of crowd behaviour in order to explain the initiation and development of
collective conflict. Eur. J. Soc. Psychol. 26 (1), 115-134.

Reisman, P., Mano, O., Avidan, S., Shashua, A., 2004. Crowd detection in video
sequences. In: Proceedings IEEE Intelligent Vehicles Symposium. IEEE, pp. 66—
71.

Rodriguez, M., Sivic, J., Laptev, 1., Audibert, ].-Y., 2011. Data-driven crowd analysis in
videos. In: Proceedings International Conference on Computer Vision. IEEE, pp.
1235-1242.

Roggen, D., Wirz, M., Troster, G., Helbing, D., 2011. Recognition of crowd behavior
from mobile sensors with pattern analysis and graph clustering methods. Netw.
Heterogen. Media 6 (3), 821-844.

Saiwaki, N., Komatsu, T., Nishida, S., 1999. Automatic generation of moving crowds
in the virtual environment. In: Advanced Multimedia Content Processing.
Springer, pp. 422-432.

Sakuma, T., Mukai, T., Kuriyama, S., 2005. Psychological model for animating
crowded pedestrians. Comput. Anim. Virt. Worlds 16 (3-4), 343-351.

Santos, G., Aguirre, B.E., 2004. A critical review of emergency evacuation simulation
models. In: Proceedings Workshop on Building Occupant Movement during Fire
Emergencies. NIST, pp. 1-26.

Schadschneider, A., Kirchner, A., Nishinari, K., 2002. CA approach to collective
phenomena in pedestrian dynamics. In: Proceedings 2nd International
Conference on Cellular Automata for Research and Industry. Springer, pp.
239-248.

Schubert, J., Suzic, R., 2007. Decision support for crowd control: using genetic
algorithms with simulation to learn control strategies. In: Proceedings Military
Communications Conference. IEEE, pp. 1-7.

Schwarz, G., Mosler, H., 2005. Investigating escalation processes in peace support
operations: an agent-based model about collective aggression. In: Proceedings
3rd Annual Conference of the European Social Simulation Association. ESSA, pp.
191-197.

Seyfried, A., Steffen, B., Klingsch, W., Boltes, M., 2005. The fundamental diagram of
pedestrian movement revisited. J. Stat. Mech: Theory Exp. 2005 (10), P10002.

Shen, T.-S., 2006. Building egress analysis. ]. Fire Sci. 24, 7-25.

Shi, C., Zhong, M., Nong, X., He, L., Shi, J., Feng, G., 2012. Modeling and safety strategy
of passenger evacuation in a metro station in China. Saf. Sci. 50 (5), 1319-1332,
<http://www.sciencedirect.com/science/article/pii/S0925753510002055>.

Shiwakoti, N., Gong, Y., Shi, X, Ye, Z., 2015. Examining influence of merging
architectural features on pedestrian crowd movement. Saf. Sci. 75, 15-22,
<http://www.sciencedirect.com/science/article/pii/S0925753515000107>.

Shiwakoti, N., Sarvi, M., Burd, M., 2014. Using non-human biological entities to
understand pedestrian crowd behaviour under emergency conditions. Saf. Sci.
66, 1-8, <http://www.sciencedirect.com/science/article/pii/
S0925753514000186>.

Siddiqui, A., Gwynne, S., 2012. Employing pedestrian observations in engineering
analysis. Saf. Sci. 50 (3), 478-493, <http://www.sciencedirect.com/science/
article/pii/S0925753511002827>.

Siebel, N.T., Maybank, S., 2002. Fusion of multiple tracking algorithms for robust
people tracking. Proceedings European Conference on Computer Vision, vol. IV.
Springer, pp. 373-387.

Silverman, B.G., Johns, M., Cornwell, J., O'Brien, K., 2006. Human behavior models for
agents in simulators and games. Part I: enabling science with PMFserv.
Presence: Teleop. Virt. Environ. 15 (2), 139-162.

Silverman, B.G., Johns, M., Weaver, R., O'Brien, K., Silverman, R., 2002. Human
behavior models for game-theoretic agents: case of crowd tipping. Center Hum.
Model. Simul., 11

Sime, ].D., 1983. Affiliative behaviour during escape to building exits. ]. Environ.
Psychol. 3, 21-41.

Sime, J.D., 1995. Crowd psychology and engineering. Saf. Sci. 21 (1), 1-14.

Simonovic, S.P., Ahmad, S., 2005. Computer-based model for flood evacuation
emergency planning. Nat. Hazards 34 (1), 25-51.

Smith, A., James, C., Jones, R., Langston, P., Lester, E., Drury, ]., 2009. Modelling
contra-flow in crowd dynamics DEM simulation. Saf. Sci. 47 (3), 395-404.
Smith, K., Gatica-Perez, D., Odobez, ].-M., 2005. Using particles to track varying
numbers of interacting people. Proceedings Conference on Computer Vision and

Pattern Recognition, vol. 1. IEEE, pp. 962-969.

Song, W., Xu, X., Wang, B.-H., Ni, S., 2006. Simulation of evacuation processes using
a multi-grid model for pedestrian dynamics. Physica A 363 (2), 492-500.

Song, Y., Gong, J., Li, Y., Cui, T., Fang, L., Cao, W., 2013. Crowd evacuation simulation
for bioterrorism in micro-spatial environments based on virtual geographic
environments. Saf. Sci. 53, 105-113, <http://www.sciencedirect.com/science/
article/pii/S0925753512002159>.

Stanton, R., Wanless, G., 1995. Pedestrian movement. Saf. Sci. 18, 291-300.

Still, G.K., 2000. Crowd Dynamics. Ph.D. Thesis. University of Warwick.

Stott, C., Adang, O., Livingstone, A., Schreiber, M., 2008. Tackling football
hooliganism: a quantitative study of public order, policing and crowd
psychology. Psychol. Public Policy Law 14 (2), 115.

Stott, C., Reicher, S., 1998. How conflict escalates: the inter-group dynamics of
collective football crowd violence. Sociology 32 (2), 353-377.

Strogatz, S.H., Abrams, D.M., McRobie, A., Eckhardt, B., Ott, E., 2005. Crowd
synchrony on the Millennium Bridge. Nature 438, 43-44.

Tarnow, E., 1996. Like water and vapor—conformity and independence in the large
group. Behav. Sci. 41 (2), 136-150.

Tavares, R.M., Marshall, S., 2012. The development of a real performance-based
solution through the use of people movement modelling analysis (PeMMA)
combined with fire modelling analysis. Saf. Sci. 50 (7), 1485-1489, <http://
www.sciencedirect.com/science/article/pii/S0925753512000355>.

Teknomo, K., Fernandez, P., 2012. Simulating optimum egress time. Saf. Sci. 50 (5),
1228-1236, <http://www.sciencedirect.com/science/article/pii/
S0925753511003444>.

Thompson, P.A., Marchant, EW.,, 1995a. Computer and fluid modelling of
evacuation. Saf. Sci. 18 (4), 277-289.

Thompson, P.A., Marchant, EW., 1995b. A computer model for the evacuation of
large building populations. Fire Saf. J. 24, 131-148.

Toner, J., Tu, Y., 1998. Flocks, herds, and schools: a quantitative theory of flocking.
Phys. Rev. E 58 (4), 4828.

Tosin, A., 2014. Multiscale crowd dynamics modeling and theory. In: Collective
Dynamics from Bacteria to Crowds. Springer, pp. 157-177.

Treuille, A., Cooper, S., Popovi¢, Z., 2006. Continuum crowds. ACM Transactions on
Graphics, vol. 25. ACM, pp. 1160-1168.

Tucker, CW., Schweingruber, D., McPhail, C., 1999. Simulating arcs and rings in
gatherings. Int. J. Hum. Comput. Stud. 50 (6), 581-588.

Ulicny, B., Thalmann, D., 2002. Towards interactive real-time crowd behavior
simulation. Comput. Graph. Forum 21 (4), 767-775.

Valera, M., Velastin, S.A., 2005. Intelligent distributed surveillance systems: a
review. IEE Proceedings- Vision, Image and Signal Processing, vol. 152. IET, pp.
192-204.

Van Toll, W.G., Cook, AF.,, Geraerts, R, 2012. Real-time density-based crowd
simulation. Comput. Anim. Virt. Worlds 23 (1), 59-69.

Varas, A., Cornejo, M., Mainemer, D., Toledo, B., Rogan, ]., Munoz, V., Valdivia, J.,
2007. Cellular automaton model for evacuation process with obstacles. Physica
A 382 (2), 631-642.

Venuti, F., Bruno, L., 2007. An interpretative model of the pedestrian fundamental
relation. CR Mech. 335, 252-2609.

Venuti, F., Bruno, L., 2009. Crowd-structure interaction in lively footbridges under
synchronous lateral excitation: a literature review. Phys. Life Rev. 6 (3), 176-
206.

Venuti, F., Bruno, L., Bellomo, N., 2007. Crowd dynamics on a moving platform:
mathematical modelling and application to lively footbridges. Math. Comput.
Modell. 45 (3), 252-269.

Villamil, M.B., Musse, S.R., de Oliveira, L.P.L., 2003. A model for generating and
animating groups of virtual agents. In: Proceedings 4th International Workshop
on Intelligent Virtual Agents. Springer, pp. 164-169.

Vu, V.T., Brémond, F., Thonnat, M., 2002. Human Behaviour Visualization and
Simulation for Automatic Video Understanding.

Wang, X., Guo, W., Cheng, Y., Zheng, X., 2015. Understanding the centripetal effect
and evacuation efficiency of evacuation assistants: using the extended dynamic
communication field model. Saf. Sci. 74, 150-159, <http://
www.sciencedirect.com/science/article/pii/S0925753514003221>.

Was, J., 2005. Cellular automata model of pedestrian dynamics for normal and
evacuation conditions. In: Proceedings 5th International Conference on
Intelligent Systems Design and Applications. IEEE, pp. 154-159.

Weifeng, F., Lizhong, Y., Weicheng, F., 2003. Simulation of bi-direction pedestrian
movement using a cellular automata model. Physica A 321 (3), 633-640.

Weifeng, Y., Hai, T.K, 2007. A novel algorithm of simulating multi-velocity
evacuation based on cellular automata modeling and tenability condition.
Physica A 379 (1), 250-262.

Wijermans, N., 2011. Understanding Crowd Behaviour. Ph.D. Thesis. University of
Groningen, The Netherlands.

Wijermans, N., Jorna, R., Jager, W., van Vliet, T., Adang, O., 2013. CROSS: modelling
crowd behaviour with social-cognitive agents. J. Artif. Soc. Soc. Simul. 16 (4), 1.

Wong, K.H., Luo, M., 2005. Computational tool in infrastructure emergency total
evacuation analysis. In: Intelligence and Security Informatics. Springer, pp.
536-542.

Wong, L., Cheung, T., 2006. Evaluating probable risk of evacuees in institutional
buildings. Saf. Sci. 44 (2), 169-181, <http://www.sciencedirect.com/science/
article/pii/S0925753505000895>.

Wau, G.-Y., Huang, H.-C., 2015. Modeling the emergency evacuation of the high rise
building based on the control volume model. Saf. Sci. 73, 62-72, <http://
www.sciencedirect.com/science/article/pii/S0925753514002938>.

Xiong, B., Luh, P.B,, Chang, S.-C., Miche, L., See, A., 2007. Coherent modeling and
effective coordination for building emergency evacuation. In: Proceedings 3rd


http://www.sciencedirect.com/science/article/pii/S0925753512001993
http://www.sciencedirect.com/science/article/pii/S0925753512001993
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0960
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0960
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0965
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0965
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0970
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0970
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0975
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0975
http://www.sciencedirect.com/science/article/pii/S0925753514001210
http://www.sciencedirect.com/science/article/pii/S0925753514001210
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0990
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0990
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0990
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0995
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0995
http://refhub.elsevier.com/S0925-7535(16)30003-0/h0995
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1000
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1000
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1000
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1005
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1005
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1005
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1010
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1010
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1010
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1015
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1015
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1015
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1020
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1020
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1025
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1025
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1025
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1030
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1030
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1030
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1030
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1035
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1035
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1035
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1040
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1040
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1040
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1040
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1045
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1045
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1050
http://www.sciencedirect.com/science/article/pii/S0925753510002055
http://www.sciencedirect.com/science/article/pii/S0925753515000107
http://www.sciencedirect.com/science/article/pii/S0925753514000186
http://www.sciencedirect.com/science/article/pii/S0925753514000186
http://www.sciencedirect.com/science/article/pii/S0925753511002827
http://www.sciencedirect.com/science/article/pii/S0925753511002827
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1075
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1075
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1075
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1080
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1080
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1080
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1085
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1085
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1085
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1090
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1090
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1095
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1100
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1100
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1105
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1105
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1110
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1110
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1110
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1115
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1115
http://www.sciencedirect.com/science/article/pii/S0925753512002159
http://www.sciencedirect.com/science/article/pii/S0925753512002159
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1125
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1135
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1135
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1135
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1140
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1140
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1145
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1145
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1150
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1150
http://www.sciencedirect.com/science/article/pii/S0925753512000355
http://www.sciencedirect.com/science/article/pii/S0925753512000355
http://www.sciencedirect.com/science/article/pii/S0925753511003444
http://www.sciencedirect.com/science/article/pii/S0925753511003444
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1165
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1165
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1170
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1170
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1175
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1175
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1180
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1180
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1185
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1185
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1190
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1190
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1195
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1195
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1200
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1200
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1200
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1205
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1205
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1210
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1210
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1210
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1215
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1215
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1220
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1220
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1220
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1225
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1225
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1225
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1230
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1230
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1230
http://www.sciencedirect.com/science/article/pii/S0925753514003221
http://www.sciencedirect.com/science/article/pii/S0925753514003221
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1245
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1245
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1245
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1250
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1250
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1255
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1255
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1255
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1265
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1265
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1270
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1270
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1270
http://www.sciencedirect.com/science/article/pii/S0925753505000895
http://www.sciencedirect.com/science/article/pii/S0925753505000895
http://www.sciencedirect.com/science/article/pii/S0925753514002938
http://www.sciencedirect.com/science/article/pii/S0925753514002938
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1285
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1285

164 N. Wijermans et al./Safety Science 86 (2016) 142-164

Annual IEEE Conference on Automation Science and Engineering. IEEE, pp. 670-
677.

Yamamoto, K., Kokubo, S. Nishinari, K., 2007. Simulation for pedestrian
dynamics by real-coded cellular automata (RCA). Physica A 379 (2),
654-660.

Yang, L., Rao, P., Zhu, K., Liy, S., Zhan, X., 2012. Observation study of pedestrian flow on
staircases with different dimensions under normal and emergency conditions.
Saf. Sci. 50 (5), 1173-1179, <http://www.sciencedirect.com/science/article/pii/
S0925753511003456>.

Yang, L.Z., Zhao, D.L, Li, J., Fang, T.Y., 2005. Simulation of the kin behavior in
building occupant evacuation based on cellular automaton. Build. Environ. 40
(3),411-415.

Yaseen, S., Al-Habaibeh, A., Su, D., Otham, F., 2013. Real-time crowd density
mapping using a novel sensory fusion model of infrared and visual systems.
Saf. Sci. 57, 313-325, <http://[www.sciencedirect.com/science/article/pii/
S0925753513000696>.

Yin, J., Velastin, S., Davies, A., 1996. Image processing techniques for crowd density
estimation using a reference image. Recent Develop. Comput. Vision, 489-498.

Yu, W., Chen, R, Dong, L., Dai, S., 2005. Centrifugal force model for pedestrian
dynamics. Phys. Rev. E 72 (2), 026112.

Yu, W., Johansson, A., 2007. Modeling crowd turbulence by many-particle
simulations. Phys. Rev. E 76 (4), 046105.

Yuen, J., Lee, E., 2012. The effect of overtaking behavior on unidirectional pedestrian
flow. Saf. Sci. 50 (8), 1704-1714, evacuation and Pedestrian Dynamics. <http://
www.sciencedirect.com/science/article/pii/S0925753511003390>.

Zarboutis, N., Marmaras, N., 2007. Design of formative evacuation plans using
agent-based simulation. Saf. Sci. 45 (9), 920-940.

Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L.-Q., 2008. Crowd
analysis: a survey. Mach. Vis. Appl. 19 (5-6), 345-357.

Zhan, B., Remagnino, P., Velastin, S., 2005a. Visual analysis of crowded pedestrain
scenes. In: Proceedings 43rd Annual AICA Conference. AICA, pp. 549-555.
Zhan, B., Remagnino, P., Velastin, S.A., 2005b. Mining paths of complex crowd
scenes. In: Proceedings First International Conference on Advances in Visual

Computing. Springer, pp. 126-133.

Zhang, Q., Liu, M., Liu, ], Zhao, G., 2007a. Modification of evacuation time
computational model for stadium crowd risk analysis. Process Saf. Environ.
Prot. 85 (6), 541-548.

Zhang, Q., Liu, M., Wu, C,, Zhao, G., 2007b. A stranded-crowd model (SCM) for
performance-based design of stadium egress. Build. Environ. 42 (7), 2630-2636.

Zhao, D., Yang, L. Li, ], 2006. Exit dynamics of occupant evacuation in an
emergency. Physica A 363 (2), 501-511.

Zhao, D., Yang, L., Li, ]., 2008. Occupants’ behavior of going with the crowd based on
cellular automata occupant evacuation model. Physica A 387 (14), 3708-3718.

Zhao, T., Nevatia, R., 2004a. Tracking multiple humans in complex situations. IEEE
Trans. Pattern Anal. Mach. Intell. 26 (9), 1208-1221.

Zhao, T., Nevatia, R., 2004b. Tracking multiple humans in crowded environment.
Proceedings Conference on Computer Vision and Pattern Recognition, vol. 2.
IEEE, p. 406.

Zheng, X., Sun, J., Zhong, T., 2010. Study on mechanics of crowd jam based on the
cusp-catastrophe model. Saf. Sci. 48 (10), 1236-1241, <http://
www.sciencedirect.com/science/article/pii/S0925753510001700>.

Zou, N., Yeh, S.-T., Chang, G.-L., Marquess, A., Zezeski, M., 2005. Simulation-based
emergency evacuation system for Ocean City, Maryland, during hurricanes.
Transp. Res. Rec. (1922), 138-148


http://refhub.elsevier.com/S0925-7535(16)30003-0/h1285
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1285
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1290
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1290
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1290
http://www.sciencedirect.com/science/article/pii/S0925753511003456
http://www.sciencedirect.com/science/article/pii/S0925753511003456
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1300
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1300
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1300
http://www.sciencedirect.com/science/article/pii/S0925753513000696
http://www.sciencedirect.com/science/article/pii/S0925753513000696
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1310
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1310
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1315
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1315
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1320
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1320
http://www.sciencedirect.com/science/article/pii/S0925753511003390
http://www.sciencedirect.com/science/article/pii/S0925753511003390
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1330
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1330
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1335
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1335
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1340
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1340
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1345
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1345
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1345
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1350
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1350
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1350
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1355
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1355
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1360
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1360
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1365
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1365
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1370
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1370
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1375
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1375
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1375
http://www.sciencedirect.com/science/article/pii/S0925753510001700
http://www.sciencedirect.com/science/article/pii/S0925753510001700
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1385
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1385
http://refhub.elsevier.com/S0925-7535(16)30003-0/h1385

	A landscape of crowd-management support: An integrative approach
	1 Introduction
	1.1 Background: existing reviews

	2 How crowd management is currently performed
	2.1 The event preparation phase
	2.2 The event execution phase
	2.3 Beyond preparation – a focus on real-time support

	3 inCrowd
	3.1 Overview
	3.2 Continual example: large-scale outdoor event in the city of Arnhem

	4 Operational support with inCrowd
	4.1 Operational: crowd interaction subsystem – sensing and actuating
	4.2 Operational: mining subsystem
	4.3 Operational: prediction subsystem
	4.4 Operational: decision-making subsystem

	5 Model development with inCrowd
	5.1 Developing a crowd-mining model
	5.2 Developing a crowd-predictive model
	5.3 Developing a decision-making model

	6 Research on crowd management: a status report
	6.1 Review protocol
	6.2 Results
	6.2.1 Model focus
	6.2.2 Context
	6.2.3 Behavior target
	6.2.4 Model input
	6.2.5 Model testing


	7 Conclusions
	7.1 Actual operational support
	7.2 Points of attention for crowd research

	Acknowledgments
	Appendix A Review references
	References


