## UNIVERSITY OF TWENTE.

3 July 2018, Nuremberg, Germany

## MIMICKING THE NATURE: HOOK-AND-LOOP ADHESION SYSTEMS FOR ELASTOMERS

### RAFAŁ ANYSZKA<sup>1,2)</sup>, WILMA DIERKES<sup>1)</sup>, ANKE BLUME<sup>1)</sup>, DARIUSZ M. BIELINSKI<sup>2)</sup>, ESSI SARLIN<sup>3)</sup>



<sup>1)</sup> Chair of Elastomer Technology and Engineering, University of Twente, The Netherlands
<sup>2)</sup> Institute of Polymer and Dye Technology, Lodz University of Technology, Poland
<sup>3)</sup> Department of Materials Calapse, Terraneous University of Technology, Poland

<sup>3)</sup> Department of Materials Science, Tampere University of Technology, Finland





## ORIGIN OF CONCEPTS

WHERE DO IDEAS COME FROM? – BIOMIMICRY: CASE STUDY

Gecko Feet Adhesives

Shark skin

Velcro



#### Annoying feature of weeds





https://www.bloomberg.com/news/photo-essays/2015-02-23/14-smart-inventionsinspired-by-nature-biomimicry

Useful technical solutions



## INTRODUCTION

CHARACTERISTICS OF MICROSCOPIC VS. MOLECULAR VELCRO SYSTEMS

VS.

Microscopic Velcro system

- Superior fatigue resistence
- Superior reconnectability performance
- Good mechanical properties
- Good ageing resistance
- Stiff hooks, elastic loops
- Hooks and loops materials chemical compatibility – not relevant
- Molecular mobility not relevant

Molecular Velcro system

- Superior fatigue resistence
- Superior reconectability performance
- Good mechanical properties
- Good ageing resistance
- Stiff/elastic hooks, stiff/elastic loops
- Hooks and loops materials chemical compatibility – very relevant (mutual solubility/miscibility)
- Molecular mobility very relevant



## **INTRODUCTION** FOCUS ON PHYSICAL INTERACTIONS

#### Chemical interactions:

- Covalent bonds
- Ionic bonds
- Coordinate bonds

#### Strong physical interactions:

- Hydrogen bonds
- Ion/dipole and ion-induced/dipole interactions
- Dipole/dipole interactions



#### Physical interactions:

- Dispersion interactions
- Steric hindrance
- Macromolecular entanglements
- Chemical affinity (miscibility/solubility)

**Velcro-like approach** – grafting of relatively large molecules onto the silica surface of good chemical affinity to the rubber, enhancing interactions *via* physical entanglements and steric hindrance.



Molecular weight of the o-BR: **4691 g/mol** Length of straightened molecule: ~**30 nm** Number of vinyl mers: ~**60 per molecule** 

Telechelic mono-hydroxy polybutadiene oligomer (o-BR) was used as a backbone for the modifier.



## INTRODUCTION

SCHEME OF SILICA-SURFACE MODIFICATION





## **INTRODUCTION** SCHEME OF SILICA-SURFACE MODIFICATION



#### SYNTHESIS OF OLIGOMER-BACKBONE REACTION PROGRESS TRACKING BY FTIR



#### SYNTHESIS OF OLIGOMER-BACKBONE REACTION PROGRESS TRACKING BY FTIR



# SYNTHESIS OF OLIGOMER-BACKBONE

REACTION PROGRESS TRACKING BY FTIR

#### Reaction rate at 50 °C

| Time<br>[h] | Isocyanate group<br>intensity (Isocy <sub>i</sub> ) | Urethane group intensity (Ure <sub>i</sub> ) | (Ure <sub>i</sub> )/<br>(Isocy <sub>i</sub> ) |
|-------------|-----------------------------------------------------|----------------------------------------------|-----------------------------------------------|
| 24          | 3.0999                                              | 1.1704                                       | 0.3775                                        |
| 48          | 2.7610                                              | 1.6400                                       | 0.5940                                        |
| 72          | 2.5133                                              | 1.9654                                       | 0.7820                                        |

Reaction rate at 80 °C

| Time<br>[h] | Isocyanate group intensity (Isocy <sub>i</sub> ) | Urethane group<br>intensity (Ure <sub>i</sub> ) | (Ure <sub>i</sub> )/<br>(Isocy <sub>i</sub> ) |
|-------------|--------------------------------------------------|-------------------------------------------------|-----------------------------------------------|
| 24          | 2.3247                                           | 2.1735                                          | 0.9350                                        |
| 48          | 1.5761                                           | 2.7515                                          | 1.7458                                        |
| 72          | 0.9432                                           | 3.0720                                          | 3.2569                                        |



The reaction rate increases significantly with the increase of temperature from 50 °C to 80 °C

### **OLIGOMER-BACKBONE GRAFTING ON SILICA SURFACE** PROCEDURE CHARACTERISTICS

#### **Composition of the samples**

|      | Sample description               | Weight<br>ratio | Precipitated silica (MP) | IsocySilane/o-BR |
|------|----------------------------------|-----------------|--------------------------|------------------|
| 1111 | Silica + 20 silane_o-BR_extr20h  | 1/5             | 100 g                    | 20 g             |
| 1    | Silica + 50 silane_o-BR_extr20h  | 1/2             | 100 g                    | 50 g             |
|      | Silica + 100 silane_o-BR_extr20h | 1/1             | 50 g                     | 50 g             |



#### Procedure:

- Duration 24 hours
- ➤ Air atmosphere
- ➤ Temperature 100 °C
- Mechanical stirring 150 rpm
- Extraction in toluene after the reaction 20 hours



## OLIGOMER-BACKBONE GRAFTING ON SILICA SURFACE GRAFTING RESULTS ANALYSED BY FTIR

FTIR spectra of silica modified with various amounts of the oligomer-backbone (indicated bands from unsaturated groups)



## OLIGOMER-BACKBONE GRAFTING ON SILICA SURFACE GRAFTING RESULTS ANALYSED BY XPS

XPS analysis of the silica sample modified with 50 parts of the o-BR per 100 parts of the silica



## OLIGOMER-BACKBONE GRAFTING ON SILICA SURFACE GRAFTING RESULTS ANALYSED BY TGA



L. T. Zhuravlev (2000): The surface chemistry of amorphous silica. Zhuravlev model, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 173:1-3, 1-38, DOI: 10.1016/S0927-7757(00)00556-2

## **ADDITIONAL SILANIZATION** SILANIZATION RESULTS ANALYSED BY **FTIR**





## **PROGRESS OF THE MODIFICATION**

SCHEME OF SILICA-SURFACE MODIFICATION



# PROGRESS OF

## **PROGRESS OF THE MODIFICATION**

SCHEME OF SILICA-SURFACE MODIFICATION



## BRANCHING OF OLIGOMER-BACKBONE

TELECHELIC BUTADIENE OLIGOMER REACTIONS WITH THE THIOLES



## **BRANCHING OF OLIGOMER-BACKBONE**

OLIGOMER BRANCHING RESULTS ANALYSED BY LS-NMR



UNIVERSITY OF TWENTE. X. Liu, T. Zhou, Y. Liu, A. Zhang, C. Yuan & W. Zhang (2015) Cross-linking process of cis-polybutadiene rubber with peroxides studied by two-dimansional infrared correlation spectroscopy: a detailed tracking, *RSC Advances*, 5, 10231-10242, DOI: 10.1039/c4ra13502d









Presence of aromatic groups seems to influence negatively the effectiveness of the reaction.

| Sample                       | Integration ratio<br>(d/a+b) |
|------------------------------|------------------------------|
| o-BR                         | 1.351                        |
| o-BR + tert-Dodecanethiol    | 0.287                        |
| o-BR + Cyclohexanethiol      | 0.427                        |
| o-BR + 1-Hexadecanethiol     | 0.319                        |
| o-BR + 2-Thionaphthol        | 1.099                        |
| o-BR + Triphenylmethanethiol | 1.316                        |

Possibly presence of electron-donor alkyl group is necessary for effective grafting to vinyl groups.

Side reaction – **recombination** of thiole radicals?



# BRANCHING OF OLIGOMER-BACKBONE

PROCEDURE CHARACTERISTICS



#### BRANCHING OF OLIGOMER-BACKBONE GRAFTED-OLIGOMER BRANCHING ANALYSED BY FTIR



#### BRANCHING OF OLIGOMER-BACKBONE GRAFTED-OLIGOMER BRANCHING ANALYSED BY FTIR



## **BRANCHING OF OLIGOMER-BACKBONE**

GRAFTED VS NON-GRAFTED OLIGOMER BRANCHING ANALYSED BY HR-MAS NMR



## BRANCHING OF OLIGOMER-BACKBONE

BRANCHED VS NON-BRANCHED OLIGOMER ON SILICA ANALYSED BY EFTEM

Non-branched o-BR on silica surface



O-BR branched with tert-dodecanethiol on silica surface





PREPARATION OF SILICA FILLED SSBR GREEN MIXES





PROPERTIES OF THE MIXES





PROPERTIES OF THE MIXES



**UNIVERSITY OF TWENTE.** 



**PROPERTIES OF THE MIXES** 





**PROPERTIES OF THE MIXES** 





## SUMMARY NEXT STEPS



# O-BR modified with small-molecular thioles:

- $\succ$  TGA analysis of silica modified with the variuos compounds
- Enchancing efficiency and analysis of thioles reaction with vinyl groups of the oligomer backbone grafted and not-grafted on silica surface

# Green mixes filled with the modified silica:

- Preparation of rubber samples filled with silica covered with o-BR and Cyclohexanethiol modified o-BR
- > DMA analysis of the samples
- SEM and DisperGrader analysis of the samples



## SUMMARY CONCLUSIONS





- Reaction between telechelic monohydroxy-butadiene oligomer (o-BR) and isocyanate silane allows grafting of relatively large organic chains on silica surface with high efficiency.
- Utilization of polybutadiene backbone containing vinyl groups enables effective branching of the macromolecule with various thioles.
- Developed procedure provides a simple and effective method of long branched-molecules grafting on silica surface.
- Addition of modified silica to SSBR rubber results in interesting dynamic properties, especially at elevated temperature when macromolecular mobility is high.

## UNIVERSITY OF TWENTE.

3 July 2018, Nuremberg, Germany

# Thank you for your kind attention!

**J<T** 2**0**18

Deutsche Kautschuk-Tagung

