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a b s t r a c t

Background: PM1 might be more hazardous than PM2.5 (particulate matter with an aerodynamic
diameter � 1 mm and �2.5 mm, respectively). However, studies on PM1 concentrations and its health
effects are limited due to a lack of PM1 monitoring data.
Objectives: To estimate spatial and temporal variations of PM1 concentrations in China during 2005
e2014 using satellite remote sensing, meteorology, and land use information.
Methods: Two types of Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 aerosol
optical depth (AOD) data, Dark Target (DT) and Deep Blue (DB), were combined. Generalised additive
model (GAM) was developed to link ground-monitored PM1 data with AOD data and other spatial and
temporal predictors (e.g., urban cover, forest cover and calendar month). A 10-fold cross-validation was
performed to assess the predictive ability.
Results: The results of 10-fold cross-validation showed R2 and Root Mean Squared Error (RMSE) for
monthly prediction were 71% and 13.0 mg/m3, respectively. For seasonal prediction, the R2 and RMSE
were 77% and 11.4 mg/m3, respectively. The predicted annual mean concentration of PM1 across China
was 26.9 mg/m3. The PM1 level was highest in winter while lowest in summer. Generally, the PM1 levels
in entire China did not substantially change during the past decade. Regarding local heavy polluted
regions, PM1 levels increased substantially in the South-Western Hebei and Beijing-Tianjin region.
Conclusions: GAM with satellite-retrieved AOD, meteorology, and land use information has high pre-
dictive ability to estimate ground-level PM1. Ambient PM1 reached high levels in China during the past
decade. The estimated results can be applied to evaluate the health effects of PM1.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

With the rapid growth of the economy and expansion of the
urban population, China is experiencing serious air pollution
e by B. Nowack.
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).
problems causing 1.6 million deaths nationwide annually (Kan
et al., 2009; Rohde and Muller, 2015). Fine particulate matter
with aerodynamic diameter �2.5 mm (PM2.5) has attracted
increasing public concern and its adverse health effects have been
documented by numerous studies (Cao et al., 2012; Dockery and
Stone, 2007; Ma et al., 2011; Yang et al., 2012). Particulate matter
with aerodynamic diameter �1 mm (PM1), a major part of fine
particulate matter mass, has seldom been studied e either to
investigate its spatiotemporal variation or to investigate its asso-
ciations with health outcomes. PM1 accounts for more than 80% of
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ambient PM2.5 mass at some locations, particularly in China
(Cabada et al., 2004; Li et al., 2015; Wang et al., 2015). Due to its
smaller particle size, PM1 might be more harmful than PM2.5 and
more strongly associated with some health outcomes (Chen et al.,
2017; Lin et al., 2016).

To fill in spatial and temporal gaps left by ground-based mea-
surements of air pollution, satellite remote sensing has been used
successfully in recent years to predict concentrations of air pollu-
tion at locations with sparse ground monitoring data, based on the
validated relationships between satellite remote sensing and
ground measurements (Hu et al., 2014b; Just et al., 2015; Kloog
et al., 2012; Koelemeijer et al., 2006). Aerosol optical depth
(AOD), also referred to as aerosol optical thickness (AOT), is the
most widely used satellite-retrieved atmospheric product that has
been used to predict air pollution concentrations. AOD is a measure
of the attenuation of solar radiation by aerosols in the atmosphere
and is correlated with PM concentration at ground level in many
regions (Koelemeijer et al., 2006; Lee et al., 2011). Previous studies
have reported satellite-retrieved concentrations of PM2.5 and PM10
(particulate matter with aerodynamic diameter � 10 mm) in China
using AOD and other predictors with high spatial resolution and
predictive ability (Fang et al., 2016; Ma et al., 2015; Meng et al.,
2015; Zheng et al., 2016), but no study has reported satellite-
retrieved concentrations of PM1.

In this study, we aimed to combine daily ground monitoring
data of PM1 and Moderate Resolution Imaging Spectroradiometer
(MODIS) Collection 6 AOD data with other spatial and temporal
predictors to estimate the concentrations of PM1 across China
during 2005e2014.

2. Materials

2.1. Ground measurements of PM1 and PM2.5

Hourly ground-level measurements of PM1 and PM2.5 were
obtained from 77 stations of China Atmosphere Watch Network
(CAWNET) from November 2013 to July 2014 and September 2013
to December 2014, respectively (Guo et al., 2009, 2017). We used
this time span because it had contemporaneous measurements of
both particle sizes. Hourly concentrations of PM1 and PM2.5 during
the study period were measured with the GRIMM 180 (Grimm 180
Multi-channel Aerosol Spectrometer) environmental dust monitors
(Grimm and Eatough, 2009). This instrument is an optical particle
counter (OPC) with 31 size channels and operates at a flow rate of
1.2 L/min. The recorded particle size number distribution between
0.25 mm and 32 mm is then calibrated to a particle mass concen-
tration. Details about the measurements and calibration were re-
ported previously (Wang et al., 2015). Daily mean concentrations of
PM1 and PM2.5 were calculated as (Cdaily ¼ P24

1 Chour=24), where C
denotes the PM1 or PM2.5 concentrations. Two approaches were
applied to control the quality of PM1 measurements (Guo et al.,
2009). The locations of 77 monitoring stations are shown in Fig. 1.
More stations were located in Eastern and Central China, especially
for South-Eastern coastal areas, than Western China.

2.2. Aerosol optical depth

Two types of daily MODIS AOD data, Dark Target (DT) and Deep
Blue (DB), from the Aqua Atmosphere Level 2 Product Collection
6 at 10-km resolution and covering China were downloaded from
NASA Level-1 and Atmosphere Archive & Distribution System
Distributed Active Archive Centre for 2005 to 2014 (https://
ladsweb.nascom.nasa.gov/search/index.html). DT and DB AOD
were then combined with an Inverse Variance Weighting Method
after filling the their gaps (Ma et al., 2015). A merged AOD product
of DT AOD and DB AOD was available via NASA (MODIS Aerosols
Merged Dark Target Deep Blue Product) in which DB AOD values
were discarded with Normalized Difference Vegetation Index
(NDVI) values greater than 0.3 (Levy et al., 2013). To increase the
spatial coverage of AOD data, this merged product was not used in
this study, we instead, obtained DTand DB AOD products separately
and used the approach of Ma et al. (2015) to fill the missing values
in both products and combine them (Ma et al., 2015). A model
linking DT and DB AOD data was developed to fill the missing
values. This model was based on simple linear regression:

AODDT ¼ a þ b *AODDB þ ε

where: AODDT is the DT AOD value; AODDB is the DB AOD value; a is
the intercept and b is the slope coefficient and ε is a normally
distributed residual. This model was used to fill the missing values
of DT AOD when values of DB AOD were valid, and vice-versa.
Ground-measured AOD data in China during the study period
were downloaded from the Aerosol Robotic Network (AERONET)
(https://aeronet.gsfc.nasa.gov/) to combine DT and DB AOD data.
The AERONET AOD data at 675 nm and 440 nm were extracted to
interpolate the AOD values at 550 nm, which were then linked with
DT and DB AOD by location and time (Jing-Mei et al., 2010; Sayer
et al., 2013). Details about the interpolation are shown in “Inter-
polation of AOD at 550 nm” in the Supplemental Material. The
differences between DB AOD (or DT AOD) and AERONET AOD were
calculated, and the inverse variances of these differences were used
as weight to combine DB and DT AOD data. The locations of 40
AERONET sites providing ground-measured AOD data are shown in
Fig. S1 in the Supplemental Material. Compared with merged AOD
product available at Aqua MODIS C6, the combined AOD data
derived using methods above showed a substantial improvement
in spatial coverage (Ma et al., 2015).

2.3. Meteorological data

Daily meteorological data were obtained from 824 weather
stations of the China meteorological data sharing service system
during 2005e2014 (http://data.cma.gov.cn). The locations of these
weather stations are shown in Fig. S2 in the Supplemental Material.
Daily mean temperature, relative humidity, barometric pressure
andwind speed were used in this study. Meteorological variables in
areas not covered by weather stations were interpolated using
“Micro krig” in the R package “fields” (Furrer et al., 2009). The de-
tails of this interpolation are shown in “Interpolation of meteoro-
logical variables” in the Supplemental Material.

2.4. Land use information and vegetation data

Annual land cover data (including urban cover, forest cover, and
water cover) from 2004 to 2012 at a spatial resolution of 500 m
were obtained from Global Mosaics of the standard MODIS land
cover type data Collection 5.1 product of Global Land Cover Facility
(http://glcf.umd.edu/) (Friedl et al., 2010). Land cover data in 2012
were used for prediction of study years 2012e2014, as the data
were not available during 2013 and 2014. In total, there are 17 types
of land cover variables in the satellite data sets and the pixel size is
500 m. The percentages of forest cover (or other types of land
cover) were calculated by dividing the count of forest cover pixels
by the count of pixels for all types of land cover within a given
radius buffer. MODIS Level 3 monthly average NDVI products with a
spatial resolution of 0.1� (z10 km) during the study period were
downloaded from the NASA Earth Observatory (http://neo.sci.gsfc.
nasa.gov/). Further information about these data products has been
previously described (Hamm et al., 2015b).

https://ladsweb.nascom.nasa.gov/search/index.html
https://ladsweb.nascom.nasa.gov/search/index.html
https://aeronet.gsfc.nasa.gov/
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Fig. 1. Locations of 77 stations with ground-based measurements of PM1 and PM2.5.
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2.5. Other spatial predictors

Aqua and Terra active fires during the study period were
downloaded from NASA Fire Information for Resource Manage-
ment System (https://earthdata.nasa.gov/data/near-real-time-
data/firms) (Hu et al., 2014a). Daily counts of fire spots within a
buffer of 75 kmwere calculated for each groundmonitoring station
and grid cell created. The global Shuttle Radar Topography Mission
(SRTM) Digital Elevation Model (DEM) has a resolution of 3 arc-
seconds (approximately 90 m) (Hamm et al., 2015b). SRTM
version 4 elevation data for China were downloaded from The
CGIAR Consortium for Spatial Information (http://srtm.csi.cgiar.
org/). The elevation for each monitoring station was extracted
and mean value of all elevation pixels fell in each grid cell was
calculated.
2.6. Model development and validation

A 0.1-degree grid (z10 km) covering China with 96 104 grid
cells was created to integrate spatial and temporal predictors and
develop models. Daily values of meteorological variables were
interpolated for each grid cell based on daily meteorological data
from 824 weather stations. For predictors with a resolution of 0.1�

(e.g., AOD, meteorological variables and NDVI), values were directly
extracted for each grid cells. For predictors with a resolution higher
than 0.1� (e.g., land cover and elevation), mean values of all pixels of
predictors in each grid cell were calculated and used for prediction.
Monthly and annual predictors (e.g., NDVI, urban cover and forest
cover) were linked with daily predictors according to the month or
year they were collected, as the values of those variables are un-
likely to change within one month or year, respectively. All spatial
and temporal predictors were integrated into the grid for each grid
cell by location (longitude and latitude of the centroid) and cal-
endar date. In this study, the ground monitoring data of PM1 was
only available for 9 months from November 2013 to July 2014, and
PM2.5 data covered 15 months from September 2013 to December
2014. Based on the high correlation between PM1 and PM2.5 con-
centrations and their relationships with temperature and relative
humidity (Lee et al., 2006b; Li et al., 2015; Wang et al., 2015), daily
concentrations of PM1 at the 77 stations during the periods from
Sep 2013 to Nov 2013 and from Jul 2014 to Dec 2014 were inter-
polated with the following generalised additive model (GAM):

PM1 ¼ s(PM2.5) þ s(TEMP)þ s(RH)

where: TEMP and RH refer to daily mean temperature and relative
humidity, respectively. The degrees of freedom for smooth terms
were automatically selected by GAM. This interpolation was per-
formed for each of 77 stations separately and together it captured a
large proportion of variability in PM1 (R2 ¼ 93%). The interpolated
PM1 data covering 15 months were more suitable than the original
9-month ground monitoring data to capture temporal trends and
seasonality of PM1 concentrations.

AOD, meteorological variables, and elevation were determined
at each measurement point, while land use variables were deter-
mined at a range of buffers from 100 m to 10 km (Knibbs et al.,
2014). The total number of active fires within 75 km of each site
was counted (Hu et al., 2014c).

Our approach to model development was informed by recent
PM2.5 studies in China that described predictor variables were also
potentially associated with PM1 (Fang et al., 2016; Ma et al., 2014,
2015). We used a GAM and began by including AOD and then
incrementally included other predictors until we reached a parsi-
monious model that explained the most variability in PM1. For land
use variables calculated at different buffers that were associated
with PM1, we included the buffer distance that offered greatest
ability to explain PM1.We arrived at the following GAM as being the
best model for predicting daily concentrations of PM1:

PM1 ¼ AODc � province þ s(TEMP) � province þ s(RH) � province
þ s(WS) � province þ s(BP) þ firesmoke � province þ NDVI
� province þ Forest_cover þ Urban_cover

https://earthdata.nasa.gov/data/near-real-time-data/firms
https://earthdata.nasa.gov/data/near-real-time-data/firms
http://srtm.csi.cgiar.org/
http://srtm.csi.cgiar.org/
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þ Water_areas þ month þ Dayofweek þ log(elev)

where: AODc is the combined AOD; province is the province where
the station was located and it is an interaction term to account for
the regional variations of PM1-AOD association; TEMP is daily mean
temperature (�C); RH is daily mean relative humidity (%); WS is
daily mean wind speed (km/h); BP is daily mean barometric pres-
sure (kPa); firesmoke is the count of fire smoke spots; NDVI is the
monthly average NDVI value; Forest_cover is the percentage of
forest cover (3-km radius buffer); Urban_cover is the percentage of
urban cover (10-km radius buffer);Water_areas is the percentage of
water areas (10-km radius buffer); log(elev) is the log transformed
elevation (m). The degrees of freedom for smoothed terms were
automatically selected by GAM.

Although our dependent variable was daily PM1 in the period
from September 2013 to December 2014, we also wanted to
demonstrate the feasibility of longer-term (i.e., decadal) estimation
of PM1. We thus used our final GAM to predict daily concentrations
of PM1 for each grid cell created from 2005 to 2014 by capitalizing
on historical predictor data, including AOD and meteorological
observations. We also averaged our daily predictions to obtain
monthly and seasonal estimates of PM1.

To assess the validity of our predictions, a 10-fold cross-
validation (CV) process was performed using data from 48 days
(of the 478 days total) randomly selected as test set and the rest of
the data as the training set. This process was repeated 500 times.
The overall adjusted R2 and Root Mean Square Error (RMSE) were
calculated. Sensitivity analyses were also performed to test the
model's robustness. For example, we added daily hours of sunshine
and population density in the final model to check whether they
improved model performance. We also included other temporal
predictions (e.g., day of year, season) in the model replacing cal-
endar month.

3. Results

In total, 32,675 records of ground-monitored PM1 data from
September 2013 through December 2014 were included in the
model development. The mean concentration of ground-measured
PM1 was 39.1 mg/m3. The lowest level of PM1 was observed in
Shangri-La (5.0 mg/m3), Yunnan Province, while the highest was in
Shijiazhuang (82.1 mg/m3), Heibei Province. Summaries of ground-
based measurements of PM1 and weather conditions at the 77 PM1
monitoring stations are shown in Tables S2eS6 in the Supple-
mental Material.

Table 1 shows the improvement in performance of the best daily
GAMwith the addition of each successive predictor. The daily AOD-
only model for PM1 showed an R2 of 24%. In other models, mete-
orological variables, especially temperature and relative humidity,
made the greatest contribution to the model performance. The
model with AOD, and meteorological predictors (temperature and
relative humidity) had an R2 of 40%. Fig. 2 shows the performance
of final model for predicting PM1 concentrations (step 13 in
Table 1), which explained 58% of the variability in daily PM1

(RMSE ¼ 21.7 mg/m3). The 10-fold cross-validation showed modest
prediction errors with little bias (Fig. 3). The CV R2 for daily esti-
mation was 59% (RMSE ¼ 22.5 mg/m3, slope ¼ 1.01).

Daily concentrations of PM1 were estimated and the results
were averaged to monthly and seasonal mean concentrations.
Monthly and seasonal estimations were improved (R2 ¼ 0.74 and
0.82, respectively, RMSE ¼ 12.0 mg/m3 and 9.0 mg/m3, respectively)
(Fig. 2). The 10-fold cross-validation shows that higher predictive
ability was observed for monthly estimation (R2 ¼ 71%,
RMSE ¼ 13.0 mg/m3, slope ¼ 0.96) and seasonal estimation
(R2 ¼ 77%, RMSE ¼ 11.4 mg/m3, slope ¼ 1.02) (Fig. 3).
Sensitivity analyses showed that our results were robust; adding
hours of sunshine and population density did not improve the
model performance, and calendar month is more suitable than day
of year or season to account for the long-term trend in PM1. Results
of the sensitivity analyses are shown in Table S8 in the Supple-
mental Material.

Fig. 4 shows the estimated mean concentrations of PM1 during
2005 through 2014. The mean concentration of PM1 predicted
across Chinawas 26.9 mg/m3. The highest levels of PM1 (�70 mg/m3)
were predicted in South-Western Hebei, Beijing and Tianjin. Rela-
tively high levels of PM1 (�50 mg/m3 and <70 mg/m3) were present
in Sichuan, Chongqing, Henan and Liaoning. The lowest levels of
PM1 (<20 mg/m3) were shown in South-Western and Northern
remote areas of China including Xizang, Yunnan and Northern In-
ner Mongolia.

Fig. 5 shows the estimated seasonal concentrations of PM1
across China with the highest levels predicted in winter
(mean ¼ 45.3 mg/m3) and the lowest in summer (mean ¼ 15.7 mg/
m3). The levels of PM1 we estimated were similar in spring and in
autumn (26.4 mg/m3 and 25.9 mg/m3, respectively). Areas in North-
Eastern China and South-Western Hebei exhibited a substantial
increase from summer to winter.

Fig. 6 shows the 10-year trends (2005e2014) in PM1 concen-
trations estimated in both heavily polluted regions and across the
entire country. The estimated PM1 levels in China as a whole
exhibited slight increases, with an increase of 2.1 mg/m3 from 2005
to 2014. Modest changes of PM1 levels were observed in Guang-
dong, Yangtze River Delta and North-Eastern China. Increased
trends of PM1 during the past decade were present in South-
Western Hebei (increased by 8.9 mg/m3), Beijing and Tianjin
(increased by 8.6 mg/m3) and Chongqing and Eastern Sichuan
(increased by 6.5 mg/m3). Locations of these heavy polluted regions
are shown in Fig. S3 in the Supplementary Material.

4. Discussion

Despite China's well-publicized air pollution problems, studies
on the long-term effects of fine particulate matter on health are
limited due to the lack of ground-level monitoring data, especially
prior to 2013. Statistical models using satellite-retrieved AOD have
the potential to estimate historical and current exposures to par-
ticulate matter with good accuracy and spatial resolution by
exploiting the relatively strong relationship between PM2.5 and
AOD over China, as demonstrated by previous studies (Lee et al.,
2011; Wang and Christopher, 2003; Zhang et al., 2009). To the
best of our knowledge, this is the first study to estimate PM1 in
China using satellite remote sensing. Using a combination of MODIS
AOD data and other spatiotemporal predictors, we estimated daily,
monthly and seasonal levels of PM1 from 2005 through 2014 at a
resolution of 0.1� across China. We captured 59%, 71%, and 77% of
variability in daily, seasonal and monthly PM1 during 2013e14,
which we then applied to estimate historical levels during the
preceding decade.

Although only 77 ground monitoring sites were included in this
study because PM1 is not routinely monitored, the results of cross-
validation indicated the predictive ability of our model is compa-
rable to that reported in previous study of PM2.5 in China based on
much larger set of groundmonitoring data (Ma et al., 2015). Studies
have demonstrated satellite-retrieved AOD is strongly linked with
particles between 0.1 and 2.0 mm (Diner et al., 1998; Kahn et al.,
2001), and the particle size of PM1 is right within that range.
Additionally, ground monitoring data indicated ambient PM1
accounted for 66%e91% of PM2.5 in China, and with PM1 and
meteorological factors, most variations of PM2.5 concentrations can
be explained (Lee et al., 2006a; Wang et al., 2015).



Table 1
Steps for selecting the best model for predicting daily PM1.

Step Variable in model R2

(adj)
GCV

1 AOD* 25% 914.3
2 AOD*þTemperature* 36% 778.8
3 AOD*þTemperature*þRelative humidity* 40% 731.2
4 AOD*þTemperature*þRelative humidity*þWind speed* 43% 697.0
5 AOD*þTemperature*þRelative humidity*þWind speed*þBarometric pressure 43% 696.9
6 AOD*þTemperature*þRelative humidity*þWind speed*þBarometric pressure þ Month 49% 628.8
7 AOD*þTemperature*þRelative humidity*þWind speed*þBarometric pressure þ Month þ Forest Cover 49% 623.6
8 AOD*þTemperature*þRelative humidity*þWind speed*þBarometric pressure þ Month þ Forest Cover þ Urban Cover 49% 622.4
9 AOD*þTemperature*þRelative humidity*þWind speed*þBarometric pressure þ Month þ Forest Cover þ Urban Cover þ Water Cover 49% 622.3
10 AOD*þTemperature*þRelative humidity*þWind speed*þBarometric pressure þ Month þ Forest Cover þ Urban Cover þ Water Cover þ Fire smoke* 50% 619.2
11 AOD*þTemperature*þRelative humidity*þWind speed*þBarometric pressure þ Month þ Forest Cover þ Urban Cover þ Water Cover þ Fire

smoke*þNDVI*
52% 587.4

12 AOD*þTemperature*þRelative humidity*þWind speed*þBarometric pressure þ Month þ Forest Cover þ Urban Cover þ Water Cover þ Fire
smoke*þNDVI*þDay of week

53% 585.0

13 AOD*þTemperature*þRelative humidity*þWind speed*þBarometric pressure þ Month þ Forest Cover þ Urban Cover þ Water Cover þ Fire
smoke*þNDVI*þDay of week þ Elevation

58% 522.5

*Refers to variables with “province” as an interaction term in the model.

Fig. 2. Scatterplots of model fitting for daily, monthly and seasonal estimation of PM1 concentrations (mg/m3).

Fig. 3. Scatterplots of 10-fold cross-validation for daily, monthly and seasonal estimation of PM1 concentrations (mg/m3).
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The overall temporal trends and seasonality of PM1 in China in
our study were also consistent with previous studies on PM2.5,
although we observed with minor differences in the locations of
more and less polluted areas. For example, estimated levels of PM1
in some heavily-polluted regions were relatively high but not the
highest observed in our study including the Yangtze River Delta
Region and Pearl River Delta Region. These are the locations where
the highest levels of PM2.5 were estimated in previous studies (Ma



Fig. 4. Annual mean concentrations of PM1 (mg/m3) in China from 2005 to 2014.

Fig. 5. Mean concentrations of PM1 (mg/m3) in four seasons in China from 2005 to 2014.
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et al., 2015; Zheng et al., 2016). This difference could be due to the
fact the major sources of PM1 and PM2.5 do not necessarily
contribute to the same extent for both size fractions (Cabada et al.,
2004; Vecchi et al., 2004). For example, combustion process
including biomass burning can make a relatively greater contri-
bution to ambient PM1 than PM2.5 (Perrone et al., 2013), and the
contributions can be seasonally-dependent (Lee et al., 2006a).
Although, to our knowledge, no national studies on estimating

PM1 in other countries have been reported, the predicted PM1 level
of China in this study was much higher than those reported by
some regional studies inwestern countries (P�erez et al., 2008, 2010;
Viana et al., 2003). The often severe particulate matter air pollution



Fig. 6. Trends of PM1 concentrations (mg/m3) in heavily polluted regions and the entire China from 2005 to 2014.
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in China is mainly caused by coal combustion, traffic and industrial
emissions which are associated with the rapid economic develop-
ment and expansion of the urban population, especially for mega
cities including Beijing, Shanghai, Guangzhou and Shenzhen (Chan
and Yao, 2008; Xu et al., 2013). In this study, the highest estimated
levels of PM1 occurred in the South-Western Hebei, Chongqing and
Sichuan. The heavy air pollution in South-Western Hebei could be
originated from dense local population and industries of steel and
power (Wang et al., 2014). The high levels of PM1 estimated in
Sichuan and Chongqing might be due to the local landscape. The
basin-like topography is also characterized by low wind speed
which slow down the dilution of airborne pollutants due to
frequent temperature inversions (Li et al., 2015). In addition, rapid
industrial and economic growth are apparent in the Sichuan Basin.
High levels of PM1 were also present in North-Eastern China during
winter season, which might be linked with the cold climate where
local coal-based heating is used for more than 6 months each year
(Ma et al., 2010). Furthermore, this area is highly industrialized part
of China which contributes to poor air quality (Sun et al., 2010).

The satellite-retrieved AOD was used to demonstrate the po-
tential to predict recent and historical levels of PM1. Other studies
have reported the predicted PM2.5 levels across China using MODIS
AOD data with CV R2 values ranging from 73% to 82% (Fang et al.,
2016; Ma et al., 2015; You et al., 2016; Zhang et al., 2016).
Although the predictive ability of our PM1 models did not exceed
those studies, it could plausibly be improved by greater numbers of
PM1 monitors, similar to the PM2.5 monitoring network (Hamm
et al., 2016). Apart from ground-level measurements of air pollut-
ants, the predictive ability could be improved by adding traffic and
road information in the model, considering traffic emissions are
main sources of outdoor air pollution (Hamra et al., 2015; Künzli
et al., 2000). Further improvements may also be found by
including the outputs from chemical transport models (CTMs) in
statistical models. The benefit of this has been demonstrated for
PM10, PM2.5 and NO2 (de Hoogh et al., 2016; Hamm et al., 2015a).

With the use of satellite-retrieved AOD data, this study esti-
mated the temporal and spatial variations of ambient PM1 con-
centrations across China during past decade. We hope it will
provide information for policy makers to allocate resources for the
prevention and control of severe particulate matter air pollution in
China, especially for some heavy-polluted regions. Moreover, the
results of this study have the potential to link with a range of health
data to further explore the adverse health effects of PM1.

However, this study has some limitations. We had limited
ground monitoring data from 77 stations included in this study and
sparse data for Western China especially, including Xinjiang,
Xizang, Qinghai and Gansu Province. The prediction of PM1 during
2005e14 in this study is based on an assumption that the rela-
tionship between PM1 and its predictor variables remained
consistent over this time. However, this assumption cannot be
verified in China due to unavailability of ground monitoring data
prior to 2013. Also, although DTand DB AOD datawere downloaded
separately and combined to fill in the missing values, a high pro-
portion of missing AOD values still existed which limits the ability
to detect the daily patterns of PM1 concentrations in China. Finally,
to improve predictive ability, we included province as a fixed-effect
term in the models for prediction. The disadvantage of this
approach is that it produces discontinuity at boundaries in some
provinces. PM1, with its smaller particle size than PM2.5, might be
more harmful on human health than PM2.5 (Lin et al., 2016).
Considering the importance of PM1 and its potential strong asso-
ciations with health in China, more exposure data should be
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obtained and future studies should further explore its spatial and
temporal distributions.

5. Conclusion

Statistical models using satellite-retrieved AOD, land use infor-
mation and meteorology could capture the spatial and temporal
variability in ground-level PM1 concentrations in China. This is the
first study to estimate historical levels of PM1 with satellite remote
sensing. It provides important quantitative information regarding
the distribution of PM1 across China. The results have the potential
to link with awide range of health data and help understand health
outcomes in a high pollution country. Given greater ground-based
measurements of PM1 as well as environmental data and the
output of chemical transport models (CTMs), the predictive ability
of our models could be extended and improved.
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