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High-Resolution Remote Sensing Image
Classification Using Associative Hierarchical CRF

Considering Segmentation Quality
Yun Yang , Alfred Stein, Valentyn. A. Tolpekin, and Yang Zhang

Abstract— This letter proposes an associative hierarchical
conditional random field (AHCRF) model to improve the clas-
sification accuracy of high-resolution remote sensing images.
It considers segmentation quality of superpixels, avoids a time-
consuming selection of optimal scale parameters, and alleviates
the problem of classification accuracy sensitive to undersegmenta-
tion errors that is present in traditional object-oriented classifica-
tion methods. The model is built on a graph hierarchy, including
the pixel layer as a base layer and multiple superpixel layers
derived from a mean shift presegmentation. It extracts clustered
features of pixels for superpixels at each layer and then defines
the potentials of the AHCRF model. We suggest a weighted
version of the interlayer potential using the size of a superpixel as
a measure to reflect segmentation quality. In this way, erroneously
labeled pixels of a superpixel are penalized. Experiments are pre-
sented using a part of the downsampled Vaihingen data from the
ISPRS benchmark data set. Results confirm that our model shows
more than 80% overall classification accuracy and is superior to
the original AHCRF model and comparable to other models. It
also alleviates the choosing of suitable segmentation parameters.

Index Terms— Hierarchical systems, higher order statistics,
image classification, image segmentation, remote sensing.

I. INTRODUCTION

LAND cover or land use classification from high spatial
resolution (HSR) remote sensing imagery acquired from

Quickbird, Worldview satellites and so on has been addressed
in the past. A variety of methods have been proposed to
classify reliably and accurately. Common examples are object-
oriented methods as in [1] combining a statistical classifier
with multiscale image analysis, deep learning [2], and the
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hierarchical probabilistic topic model [3]. Their characteristic
is their capability to model multiscale object features and
semantic information, thus reducing classification errors.

Compared with these context-based models, conditional
random field (CRF) [4] models have unique advantages in
modeling a complex spatial context for image labeling. They
have been extensively applied to object detection for land
cover/use classification using remote sensing images from
various sources [5]–[7]. For HSR imagery, those context-based
models could be adopted for object detection and recognition.

Previous research [5]–[7] mainly focused on the second-
order CRF model, with a limited ability in dealing with
the spatial context. To compensate for this, hierarchical CRF
models have been proposed to deal with longer range spatial
dependence of variables for image labeling as in [8]–[12].
Here, we mention the robust P N higher order poten-
tial [13], the harmony potential [14], the co-occurrence poten-
tial [15], and the patch-matching potential [16]. Part of them
have been extended to object extraction and classification
mainly from remote sensing imagery with HSR as in [17]–
[19], showing a potential application of hierarchical CRF
in remote sensing [20], whereas the associative hierarchi-
cal CRF (AHCRF) model [21], [22], as an extension of the
robust P N potential and associative Markov networks, is of
interest. It is able to model object features from multiple
spatial scales and to express the interlayer relationship of
objects. In addition, it is flexible as compared with those non-
CRF models and it is more straightforward to obtain a solution.

Although Senthilnath et al. [23] suggested a novel hierarchi-
cal clustering technique capable of automatically determining
the optimal value of the number of clusters, our goal is
to seek a solution that can correct the class labeling errors
from incorrect clustering or segmentation caused by improper
parameters. The innovation is to improve the classification
accuracy by defining an interlayer higher order potential with
respect to segmentation quality of superpixels.

II. MATERIALS AND METHODS

A. Basic Structure of the AHCRF Framework

Ladický et al. [22] presented the AHCRF model as a general
framework that can be described as a Gibbs energy E(x)

E(x) =
∑
i∈V

ψi (xi )+
∑

i, j∈V , j∈Ni

ψi j (xi , x j )

+ minx(1)E
(1)(x, x(1)). (1)
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Fig. 1. Diagram of the AHCRF model. (a) Nested segmentation.
(b) Nonnested segmentation.

In (1), the set V contains all pixels, with each pixel
representing a node of a probability graph model in an image.
The index i ∈ V indicates a pixel site and j indicates a
pixel site in a neighborhood Ni , Ni ⊂ V of i . The symbols
xi and x j denote the label variable at pixel sites i and j ,
with xi ∈ L where L is a label set. The notation x refers
to the pixel label state of the base layer, and x(1) is the
label state of the first superpixel layer in the image. The
term minx(1)E

(1)(x, x(1)) indicates minimization of the Gibbs
energy E (1)(x, x(1)) in order to reach the optimal x(1), where
E (1)(x,x(1)) is an interlayer higher order potential between
the base layer and the first superpixel layer (here x(0) = x).
It can be defined as a sum of a pairwise term related to
variables of two adjacent superpixels c and d in the nth
layer, an interlayer term related to superpixel c in the nth
layer and its children in the (n − 1)th layer, and a recursive
term minx(n+1)E (n+1)(x(n), x(n+1)) related to variables from
superpixel c in the nth layer and its parent in the (n + 1)th
layer. For more details, see [22].

This general framework can realize an association at dif-
ferent object levels, e.g., at the pixel, segment, supersegment,
and scene levels. It is consistent with human cognition and
image understanding for land cover or land use classification
from HSR remote sensing imagery. To further develop object-
oriented classification technology of an HSR image, we pro-
pose an AHCRF model that considers superpixel segmentation
quality on the basis of [21] and [22]. It aims to improve
classification suffering from undersegmented superpixel errors
caused by traditional object-based methods.

B. Hierarchical Graph Construction
To deal with the large variety of geo-objects with different

spatial scales, a remote sensing image is represented hierar-
chically by means of multiscale segmentation, producing a set
of superpixel (i.e., segment or supersegment). Superpixels in
different layers are either nonnested (here means intersecting)
or nested.

We adopted nonnested segmentation to yield multiple super-
pixel layers as it is favorable to label consistency of seg-
ments [24]. Thus, a given image is represented with a pixel
layer as the base layer and multiple superpixel layers as the
first layer, the second layer, and so on, leading to a hierarchical
graph [see Fig. 1(b)].

For feature extraction from the pixel layer, spectral and
texture features were included, using the local binary pat-
tern (LBP) and Texton operators. Clustering of the feature
vectors was performed in order to quantify dense features
and then to form sparse clustered features, thus defining
unary potentials over segments and supersegments. For the
superpixel layers, statistical features were derived from those.

C. Definition of the AHCRF Model

According to the AHCRF framework [22], the interlayer

higher order term ψ
p
c (x

(n−1)
c , x

(n)
c ) can be decomposed into an

unary potential with respect to superpixel c in the nth layer and
an interlayer potential with respect to superpixel c in the nth
layer and its children in the (n − 1)th layer. We now continue
with redefinition of the higher order term.

The unary potential function ϕc(x
(n)
c ) is defined as

ϕc
(
x (n)c

) =
{
γmax

c if x (n)c ∈ lF

γ l
c if x (n)c ∈ L

(2)

where x (n)c is the label variable of superpixel c of the nth
layer that takes a value from the extended label set L E =
L ∪ {lF }, where lF is a free label different from a given
label l(l ∈ L). The function associates the cost γ l

c with x (n)c

taking a label l in L and the maximum cost γmax
c with x (n)c

taking the free label lF . Therefore, the superpixel c in the nth
layer has no dominant label and satisfies γ l

c ≤ γmax
c . Usually

γ l
c is defined as a probability function of classifiers like a

decision tree [25], a random forest (RF) [26], or a support
vector machine (SVM) [27], [28]. In our model, we selected
RF instead of SVM because of its excellent classification
performance [29] for HSR imagery.

We further propose a weight function of RF probability
using segmentation quality based upon the size of the super-
pixel. Thus, γ l

c is defined as a probability weighed by the
segmentation quality of each superpixel

γ l
c = G(c)min(−logP(xc = l|y), α) (3)

where P(xc = l|y) is the posterior probability of xc having
the label l, given an observed variable y. The weight G(c) as
a measure of superpixel segmentation quality is defined as

G(c) = (|c|)n (4)

where the size of the superpixel is taken as a measure of the
segmentation quality. With this choice, a superpixel becomes
more heterogeneous and the segmentation quality deteriorates
if a superpixel contains more pixels. This will cause a larger
value of the unary potential, that is, a larger penalty will be
imposed upon superpixel c with label l ∈ L. This quality
measure is simple but effective. Although other measures to
evaluate superpixel segmentation quality like the variance [13]
can be adopted, they are less effective for HSR imagery in this
letter. Our model performed well for n = 2 in the following
experiments. In (2), the maximal cost γmax

c was defined as

γmax
c = G(c)α (5)

where α is a parameter that we set as α = − log 0.1. Clearly,
γmax

c varies as the value of G(c) changes.
The interlayer potential function ϕc(x

(n−1)
c , x (n)c ) with

respect to superpixel c of the nth layer and its children of
the (n − 1)th layer can be formulated as a piecewise function
referred to in [22], in which the cost kl

c, as a penalization of
each inconsistent superpixel c for arbitrary label l, is closely
related to the definition of G(c) in (4), that of γ l

c as in (3),
and that of γmax

c as in (5).



756 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 15, NO. 5, MAY 2018

Fig. 2. Two test images (the first column) and their ground truth (the second
column).

The proposed definition of segmentation quality is critical
to the unary potential function ϕc(x

(n)
c ) and the interlayer

potential function ϕc(x
(n−1)
c , x (n)c ). Also it is favorable to

penalize inhomogeneous superpixels that are valued at an
arbitrary label l ∈ L. Finally, the unary potential function
ψi (xi ) is defined over the pixel i using a probability RF
classifier, whereas the pairwise potential function ψi j (xi , x j )
is defined over adjacent pixels i , j and the pairwise function
ψc,d (x

(n)
c , x (n)d ) over the adjacent superpixels c and d in the

nth layer [22].
The redefined AHCRF model was implemented using our

improved version of Automatic Labeling Environment (ALE)
code1 for HSR image classification.

III. EXPERIMENTS AND ANALYSIS

A. Experiments

We tested the procedures on the airborne image data set
of Vaihingen, Germany, for 2-D semantic labeling, published
by ISPRS WG III/4. The area covers an urban scene of
a small village with many detached buildings and small
multistory buildings. The data set consists of very high res-
olution orthophotos with corresponding digital surface mod-
els (DSMs). The original images were of a 9-cm resolution
with the near infrared, red and green bands. In the experiment,
a subset of the original data set, including the former four
images, was downsampled to a 0.3-m resolution in order to
reduce the computation time. Each image of the downsampled
subset has more than 444 000 pixels. The five classes were
defined as impervious surfaces, building, low vegetation, tree,
and car. An RGB show of two test images and ground truth
are in Fig. 2.

First, a multiscale segmentation using the mean shift
algorithm [30] was performed to yield superpixel layers.
In this way, an automatic implementation of our method
was obtained by setting the segmentation parameters’ size
of spatial window (hs), size of color window (hr), and

1http://www.inf.ethz.ch/personal/ladickyl/

Fig. 3. Labeled results of the first test image (top row) and the second test
image (bottom row) using the superpixel-based non-CRF method (the first
column), the original AHCRF model (the second column), and our model (the
third column).

minimum region (MinR). We used parameter values equal
to (3.5, 5.5, 10), (5.5, 3.5, 10), and (5.5, 5.5, 10) for the three
superpixel layers of the test images, respectively. Here, the first
value refers to the planar distance between points, the second
to the Euclidian distance in the LUV color space, and the
third denotes a minimum of the number of pixels among all
superpixels in image segmentation.

Second, for extracting features, we realized that spectral fea-
tures include three spectral channels. Texture features derived
from the LBP operator with an 11-size window and the Texton
operator with a scale value equal to 0.7 were incorporated.
These dense pixel features were clustered into 50 clusters
using a standard K -means algorithm, where the values of the
parameters were chosen using trial and error, taking the time-
cost and classification accuracy into consideration.

Four images from Vaihingen data set with 0.3-m resolution
were randomly divided into two training images and two test
images. All the pixels from the two training images as training
samples were used to train the parameters of our model. All
the pixels from the two test images were labeled using our
model. Labeled results of both test images with our model
and two others (i.e., M3 and M6 in the following) are shown
in Fig. 3.

B. Evaluation and Analysis

Six representative models were chosen to compare with
the proposed AHCRF model (see Table I). These models
are M1: the pixel-based RF model, M2: the pixel-based
RF-CRF model, M3: a superpixel-based non-CRF method,
M4: the superpixel-based CRF model implemented using
STAIR Library, M5: the robust P N HoCRF model [13], and
M6: the original AHCRF model. The last two are hierarchical
CRF models closely related to our model (called as M7).

All models except M3 and M4 were implemented under
the same condition. They were tested using the same training
samples and evaluated using ground truth data. For M3,
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TABLE I

COMPARISONS OF CLASSIFICATION PERFORMANCE
AMONG THE SEVEN MODELS

TABLE II

COMPARISON OF RECALL OF INDIVIDUAL CLASSES

AMONG THE SEVEN MODELS

the edge-based watershed segmentation algorithm [31] at scale
50 with the iteratively merging of adjacent segments based
on a full λ-schedule algorithm with level 50 followed by
maximum likelihood classification based on incorporation of
spectral, spatial, and texture features was carried out. Trials at
five different but representative segmentation scales were done.
The optimal classification accuracy is listed in Table I. For M4,
a mean shift algorithm with parameters hs = 4, hr = 6, and
MinR = 10 yielded the superpixels.

Fig. 3 and also Table I show that our proposed model
is better suited to correctly discriminate details of objects
like cars from their background, e.g., roads, as compared
with the original AHCRF model. This is because our model
can partly alleviate incorrectly classified pixels caused by
undersegmentation error of objects. In addition, DSM data
were incorporated into the model that showed an increase of
the overall accuracy to 82.96%.

Table I shows that the AHCRF models are superior to
traditional pixel-based CRF and a two-layer higher order CRF
model. More importantly, our proposed AHCRF model with
varying weights considering segmentation quality of superpix-
els performed better than the original AHCRF model, showing
a 3.71% improvement in overall accuracy. Our model, how-
ever, has the highest time-cost due to more time-consuming
image segmentation steps.

Considering the similarity and relevance of our model
to some popular classification methods, the M3–M6 meth-
ods/models were compared with our model. The comparison
of recall [21] (obtained as Nii /� j∈L Ni j ) for individual class
is presented in Table II (in percentage terms).

From Table II, we observe that the seven models performed
best for larger objects like buildings and trees, but they were

TABLE III

COMPARISONS OF OUR MODEL WITH DIFFERENT SUPERPIXEL LAYERS

TABLE IV

COMPARISONS AT DIFFERENT SEGMENTATION PARAMETERS

FOR OUR MODEL

less efficient for small objects like cars leading to lower overall
accuracy and average accuracy, especially for M1 and M2. The
explanation mainly is that less training samples were chosen
for this class by using automatic sample selection. Further
experiments showed that both the individual accuracy of the
class car and the average accuracy would greatly improve if
more training samples containing the class car were chosen,
making the model more time-consuming. Additionally, cars
are small objects and they are easily undersegmented and
merged into roads or buildings. However, Table II also shows
that individual efficiency of the class car improved using
M5 and M7. Furthermore, our proposed model shows a better
improvement in the recall of the class car than M5 and others.

To analyze the effect of the number of layers on classifica-
tion results, Table III compares the classification accuracy and
time-cost at different cases with one to four superpixel layers
in our model.

Table III shows that the highest accuracy occurs for the
proposed AHCRF model with three superpixel layers. Clearly,
use of more superpixel layers does not lead to a higher
classification accuracy. The time-cost also increases with the
number of superpixel layers.

To analyze the effect of segmentation parameters on clas-
sification, Table IV compares the classification accuracy and
time-cost using our model by setting four different groups of
segmentation parameters of the mean shift algorithm according
to the nested relationship between current superpixel and
its children in a multiscale segmentation. As stated in [21],
nonnested segmentation is better suited to enhance the label
consistency of those pixels actually belonging to the same
category in a superpixel. Those pixels, therefore, have a higher
probability to be labeled as the same class.

Table IV leads to the following conclusions. The AHCRF
model is superior in classification to the CRF model without
higher order potentials and to the traditional pixel-based CRF
model under the same test conditions. This is irrespective of
the group of parameters used for segmentation. Classification
accuracy, however, is different. Usually, a higher accuracy
is achieved if the hierarchy graph is built upon superpixels
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in a nonnested segmentation way like the use of parameter
group I or IV instead of a nested segmentation way like
parameter group II or III (see Table IV). Otherwise, the
classification accuracy decreases mainly because of less
overlapping pixels between superpixels using parameter
group II or III in a nested segmentation way.

Additionally, we find that the time-cost for image segmen-
tation with parameter sets I and IV is usually larger than that
with parameter sets II and III (see Table IV). For this reason,
an implementation of superpixel segmentation in a nested
segmentation way is only possible with a region growing
segmentation based upon its children.

IV. CONCLUSION

In this letter, we presented a specific AHCRF model with an
innovative interlayer higher order potential based upon the size
of superpixels under the original AHCRF framework. Its aim
was to improve land cover classification from high-resolution
remote sensing imagery. Experiments showed that our model
improves the classification accuracy as compared with the
original AHCRF model. Its main merit is that it addresses
the undersegmentation error, which usually heavily reduces
classification accuracy, as compared with traditional object-
oriented classification methods for remote sensing imagery
with an HSR. Thus, users are no longer required to put
much care on choosing the parameters for image segmentation.
In addition, our AHCRF model has a higher classification
accuracy if the nonnested image segmentation way is adopted.
The reason is that overlapping superpixels at different layers
strengthens the label consistency of neighboring pixels.

Our AHCRF model with the proposed segmentation quality
measure did not completely avoid the classification error
caused by undersegmentation of superpixels. Further improv-
ing these aspects still needs to be done.
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