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a b s t r a c t

This paper determines the sequential price of anarchy for Rosenthal congestion games with affine cost
functions and few players. We show that for two players, the sequential price of anarchy equals 1.5, and
for three players it equals 1039/488 ≈ 2.13. While the case with two players is analyzed analytically,
the tight bound for three players is based on the explicit computation of a worst-case instance using
linear programming. The basis for both results are combinatorial arguments to show that finiteworst-case
instances exist.
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1. Introduction

Congestion games, introduced by Rosenthal [25], are among the
most studied classes of games. In a congestion game, we have n
players N = {1, . . . , n} that compete for certain subsets of a set
R = {1, . . . ,m} of m resources, while the congestion (or cost) that
each player experiences per resource, depends on the set of players
using it. Subsets of resources that are feasible for a given player
i ∈ N are given by player specific collectionsAi ⊆ 2R. Applications
of this class of games include many sorts of allocation problems
with scarce resources, and specifically atomic network routing
problems, where the resources are network links and each of the
n players is interested in a least congested path from her origin
to destination. Rosenthal congestion games are also referred to as
atomic congestion games sometimes. This is mainly to distinguish
fromother types of congestion games such as e.g. theWardrop traf-
fic models which are also known as non-atomic network routing
games, as studied e.g. by Roughgarden and Tardos [26].

Rosenthal proved the existence of pure Nash equilibria in any
congestion game, by defining what is known as a (Rosenthal)
potential function [25]. Assuming that one is interested in someob-
jective function on the set of equilibrium outcomes of a game, the
price of anarchy, introduced in 1999 by Koutsoupias and Papadim-
itriou [20,21], relates the cost of a worst-case Nash equilibrium
to the cost of a globally optimal solution. Shortly after the price
of anarchy had been determined for non-atomic network routing
games by Roughgarden and Tardos [26], the price of anarchy for
atomic congestion games was analyzed as well. Christodoulou and
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Koutsoupias [9], and independently Awerbuch et al. [3,4] show that
theprice of anarchy for congestion gameswith affine cost functions
equals 2 for two players, and 5/2 for three or more players.

However, worst-case Nash equilibria can be overly pessimistic
in some situations, and specifically in situations where players
take their decisions sequentially, worst-case Nash equilibria can
often not be realized as equilibrium outcomes. In 2012, Paes Leme
et al. [24] have therefore introduced the idea to study the sequential
price of anarchy. The sequential price of anarchy relates the total
cost of theworst-case outcome of a subgameperfect equilibriumof
a corresponding extensive formgame to the total cost of an optimal
solution. This paper establishes tight bounds for the sequential
price of anarchy for congestion games with affine cost functions
for the case with n = 2 and n = 3 players.

2. Related work and contribution

Also prior to Paes Leme et al. [24], some authors have addressed
the quality of outcomes of network routing games in which play-
ers act sequentially. This includes Olver [23], Harks, Heinz and
Pfetsch [14], Harks and Vegh [15], as well as Farzad, Olver and
Vetta [11]. Without going into details, in these papers the cost of
a player depends only on preceding players on the same resource,
like in traffic situations where players enter resources in sequence,
and a player’s cost only depends on the players that entered the
resource before. Consequently, players experience different costs
on one and the same resource.

We here follow a simpler model where all players experience
the same cost per resource. Hence a rational player, if aiming to be
farsighted, needs to take into account all future players. This indeed
leads to the definition of the sequential price of anarchy as defined
by Paes Leme et al. [24]. Subsequent to [24], various researchers
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studied the sequential price of anarchy for several classes of games,
with mixed results. For a handful of problems it was shown that
the sequential price of anarchy is strictly smaller than the price of
anarchy [16,18,24], while for others this turns out to be exactly
opposite [1,2,6,7,10]. Specifically, Correa et al. [10] show that in
symmetric, atomic network routing games, the sequential price
of anarchy can become as large as Ω(

√
n) for large n, n being the

number of players, while the price of anarchy is known to be at
most 5/2 for all n ≥ 3 [3,4]. This of course implies the same lower
bound for general congestion games with affine cost functions.
Subsequently to [10], work of Groenland and Schäfer [13] suggests
that the presence of ties is pivotal for the existence of such worst-
case instances. This paper shows that when the number of players
is 2 or 3, sequential play and subgame perfect equilibria lead to
outcomes that are strictly better than the worst-case Nash equilib-
ria. More precisely, we show that the sequential price of anarchy
equals 1.5 for two players, and 1039/488 ≈ 2.13 for three players.
Both bounds are shown to be tight. The case with more than three
players will be briefly discussed in Section 6.

We believe that, although considering the cases of two and
three players only, our results are interesting for at least two
reasons. First, from an application’s point of view it seems not
unreasonable to consider (sequential) congestion games with a
small number of players, such as the competition for scarce re-
sources by a small number of corporate players, for example.More-
over, through the lens of computational tractability, sequential
games with few players are also the limiting cases that still appear
practically feasible. However, note that already for two players,
computing the outcome of a subgame perfect equilibrium may be
NP-hard [10]. For an arbitrary number of players, it is PSPACE-
hard [24]. Second, we obtain our results by using a sequence of
combinatorial arguments which yield that the worst-case must be
attained on a finite instance of reasonable size. That leads to a linear
programming (LP) formulation to actually compute an instance
that attains the worst-case for the sequential price of anarchy. In
that sense, our proof can be seen as a computerized proof, and
the correctness of the result depends on the correctness of the
underlying LP; even though we also verify the resulting worst-
case instance. We believe that both the sequence of combinatorial
arguments as well as the LP formulation itself are of independent
interest, also because it is a first example of doing that for sequen-
tial games and subgame perfection.

Inspired by our work, Correa et al. have used another, LP-
based proof to show that for two players, the sequential price of
anarchy for atomic network routing games is even smaller than
that of general two-player congestion games; it equals 7/5 [10].
That said, it should be noted that linear programming techniques,
and specifically linear programming duality has been used before,
e.g. by Nadav and Roughgarden [22] as well as Bilò [5] in order to
obtain new or improved bounds for the price of anarchy in several
settings; see also [8].

We end this section by mentioning that -naturally- also more
general than affine cost functions have been considered in the
context of the price of anarchy for congestion games. A detailed
account of all these results is beyond the scope of this paper, and
we refer, e.g. to thework by Fotakis [12] for price of anarchy results
with general cost functions.

3. Notation and preliminaries

An instance I of a congestion game is defined as follows: There is
a finite set R of resources, a finite setN = {1, . . . , n} of players, and
the action space Ai ⊆ 2R of any player i ∈ N is a set of subsets of
R. We say a player i chooses a resource r ∈ R, if player i chooses an
action Ai ∋ r . Each resource r ∈ R has a cost function cr : N → R+

that is nonnegative and nondecreasing. Given an action profile

A = (A1, . . . , An), each resource r has cost cr (xr ), where xr denotes
the number of players choosing r , xr = |{Ai | r ∈ Ai}|. Each player
i ∈ N pays the cost of each of the resources in her chosen action
Ai, which we denote by C i(A) = C i(A1, . . . , An) =

∑
r∈Ai

cr (xr ). The
total cost of all players in profile A is denoted C(A) =

∑
i∈N Ci(A).

Affine congestion games are congestion games where the cost
functions of all resources r ∈ R are of the form cr (xr ) = αr + βrxr
for αr ≥ 0, βr ≥ 0. Here, αr can be thought of as an activation cost
for resource r . We refer to αr as the constant cost of resource r ,
and to βr as the weight of resource r . We also denote by α(R′) =∑

r∈R′ αr the total constant cost of resources in R′
⊆ R and by

β(R′) =
∑

r∈R′ βr the total weight of resources in R′
⊆ R.

In a sequential congestion game, let us assume that players act
in the order 1, . . . , n. The strategy of player 1 is then one of the
available actions fromA1. The strategy of a player k > 1, however,
is more complex, as it has to prescribe one action Ak ∈ Ak for
each of the possible states that the game can be in, depending on
the actions of all players i = 1, . . . , k − 1. That means that the
strategy of player 2 can be written as a vector of actions of length
|A1|, for player 3 a vector of actions of length |A1| · |A2|, etc. Of
course other, more compact representations of players’ strategies
might be possible, however this is not relevant for what follows.
We will use S = (S1, . . . , Sn) to denote the profile of strategies of
the resulting extensive formgame (for a fixed order of players), and
SSPE to denote a subgame perfect equilibrium in that game.

If we denote by AOPT the profile of actions of the n players in
an allocation that minimizes the total cost C(A), and by ASPE the
profile of actions in the outcome of a subgame perfect equilibrium
SSPE, the sequential price of anarchy [24] is defined as

SPoA := sup
C(ASPE)
C(AOPT)

,

where the supremum is taken over all possible finite congestion
games, all possible permutations of the players, and all possible
subgame perfect equilibria.

4. Warmup: The case of two players

We start with the sequential price of anarchy for two players.

Theorem1. The sequential price of anarchy SPoA equals 1.5 for linear
and affine atomic congestion games with two players.

The lower bound is based on the following simple example.

Example 2. There are two players 1,2 and three resources 1, 2, 3,
with linear cost functions with weights β1 = β2 = 1, β3 = 2.
Player 1 can choose either resource 1 or resource 2. Player 2 can
choose either resource 2 or resource 3. This example is illustrated
in Fig. 1. ◁

For Example 2 it is clearly optimal when player 1 chooses
resource 1 and player 2 chooses resource 2, giving a total cost
of 1 + 1 = 2. In the outcome of a worst-case subgame perfect
equilibrium, however, first player 1 chooses resource 2 and then
player 2 chooses resource 3, with a total cost of 1 + 2 = 3. The
subgame perfect strategy of player 2 is to choose resource 2 if
player 1 chooses resource 1, and resource 3 if player 1 chooses
resource 2. In fact, player 1 is then indifferent, and the worst-case
happens if she chooses resource 2. Given that player 1 chooses
resource 2, also player 2 is indifferent, and again, the worst-case
happens if she chooses resource 3.

Note that this example rests on the existence of ties. However,
this can be easily avoided, by decreasing the weight of resource 2
by some small constant ϵ and decreasing the weight of resource
3 by 3ϵ. Then the above described subgame perfect equilibrium is
unique.
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Fig. 1. The congestion game from Example 2. Dots represent players, squares
represent resources, numbers in resources denote weights, and edges represent
actions. Fat edges represent chosen actions.

Fig. 2. All relevant actions in the game tree for 2 player congestion games. Fat lines
represent subgame perfect actions.

We next prove a matching upper bound. The idea is to realize
that only a small part of the game tree is relevant, namely the ac-
tions that are played in some optimal solution, and the actions that
are played in equilibrium. That means, we only need to consider
two actions of player 1, namely optimum and equilibrium, and
three actions of player 2, namely optimum and the best responses
to the two relevant actions of player 1; see also Fig. 2.

To formalize this into a proof of the upper bound on the se-
quential price of anarchy, we introduce the following notation.
Denote by AOPT

= (AOPT
1 , AOPT

2 ) the pair of actions of the two
players 1 and 2, respectively, in an optimal allocation. Denote by
ASPE

= (ASPE
1 , ASPE

2 ) the actions in the outcome of a subgameperfect
equilibrium. Finally, denote by ASPE′

2 the subgame perfect action of
player 2, in the subgame induced by AOPT

1 i.e. ASPE′

2 is a best response
of player 2 to AOPT

1 . Note that both players might havemore actions
at their disposal, however these are not relevant for the analysis.
Also note that we do not exclude cases where any two sets from
AOPT
1 , ASPE

1 , AOPT
2 , ASPE′

2 or ASPE
2 overlap. It could even be that they are

equal. The situation is shown in Fig. 2; it displays only the relevant
part of the game tree.

Recall thatα(R′) andβ(R′) respectively denote the total constant
cost and weight of a set R′ of resources. For brevity, we also use the
following notation:

a = α(AOPT
1 ), b = α(AOPT

2 ),
c = β(AOPT

1 \ AOPT
2 ), d = β(AOPT

2 \ AOPT
1 ),

γ = β(AOPT
1 ∩ AOPT

2 ), δ = β(AOPT
1 ∩ ASPE′

2 ) − β(AOPT
1 ∩ AOPT

2 ).

Note that δ denotes the difference in the total weight of shared
resources, when player 1 chooses AOPT

1 and player 2 switches from
AOPT
2 to ASPE′

2 .

Observation 3. C(AOPT) = C1(AOPT) + C2(AOPT) = (a + c) + (b +

d) + 4γ .

We prove the upper bound for Theorem 1 by deriving an upper
bound on C1(ASPE) (Lemma 4) and two upper bounds on C2(ASPE)
(Lemma 5 and Lemma 6).

Lemma 4. C1(ASPE) ≤ a + c + 2γ + δ.

Proof.

C1(ASPE) ≤ C1(AOPT
1 , ASPE′

2 )

= α(AOPT
1 ) + β(AOPT

1 ) + β(AOPT
1 ∩ ASPE′

2 )
= a + (c + γ ) + (γ + δ)

= a + c + 2γ + δ, (1)

where the inequality follows from the Nash inequality (since a
subgame perfect equilibrium induces a Nash equilibrium in every
state). □

Lemma 5. C2(ASPE) ≤ 2(b + d + γ − δ).

Proof.

C2(ASPE) ≤ C2(ASPE
1 , ASPE′

2 )

≤ α(ASPE′

2 ) + 2β(ASPE′

2 )

≤ 2(α(ASPE′

2 ) + β(ASPE′

2 )),

where the first inequality follows from the Nash inequality, and
the second inequality follows from the fact that each resource can
be chosen by at most two players. We now show that α(ASPE′

2 ) +

β(ASPE′

2 ) ≤ b+d+γ −δ, proving the lemma. By theNash inequality,
we obtain

C2(AOPT
1 , ASPE′

2 ) ≤ C2(AOPT)
= b + d + 2γ

= b + d + γ − δ + (γ + δ) . (2)

Since β(AOPT
1 ∩ ASPE′

2 ) = γ + δ, plugging

C2(AOPT
1 , ASPE′

2 ) = α(ASPE′

2 ) + β(ASPE′

2 ) + β(AOPT
1 ∩ ASPE′

2 )

into (2), we obtain

α(ASPE′

2 ) + β(ASPE′

2 ) ≤ b + d + γ − δ . □ (3)

Lemma 6. C2(ASPE) ≤ a + c + b + d + 3γ .

Proof.

β(ASPE
1 ) ≤ C1(ASPE)

≤ a + c + 2γ + δ , (4)

where the second inequality follows from Lemma 4. Now,

C2(ASPE) ≤ C2(ASPE
1 , ASPE′

2 )

≤ α(ASPE′

2 ) + β(ASPE′

2 ) + β(ASPE
1 )

≤ b + d + γ − δ + a + c + 2γ + δ

= a + c + b + d + 3γ .

The first inequality follows from the Nash inequality. The second
inequality follows from the fact that each resource that player 1
chooses adds at most the weight of that resource to the cost of
player 2. The third inequality follows from (3) and (4). □

Lemma 7. SPoA ≤ 1.5 for affine atomic congestion games with two
players.
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Proof.

2(C(ASPE)) = 2(C1(ASPE) + C2(ASPE))
≤ 2a + 2c + 2(2γ + δ) + 2(b + d + γ − δ)

+ a + c + b + d + 3γ
= 3a + 3c + 3b + 3d + 9γ
≤ 3C(AOPT) ,

where the first inequality follows from Lemmas 4–6, and the last
inequality follows from Observation 3. □

Theorem1 now follows from Lemma 7.While the casewith two
players can still bewritten down algebraically, for three playerswe
turn the same proof idea into a linear programming formulation.

5. The case of three players

Along the lines of the proof for the case with two players, we
also settle the case with three players.

Theorem 8. SPoA =
1039
488 ≈ 2.13 for affine and linear congestion

games with three players.

To prove the theorem, we use a linear programming (LP) ap-
proach. We first use a sequence of simple, combinatorial argu-
ments to show that a worst-case instance is moderate in size. This
is done in Lemmas 9–11. These lemmas apply to games with three
players or more. We then compute a worst-case instance for the
case with three players using a standard LP solver.

5.1. Worst-case instances of moderate size

We use the following notation. Define the series

z1 := 2 and zi := 1 +

∏
j<i

zj for all i ≥ 2.

Note that z2 = 3, z3 = 7, z4 = 43, and that zi grows doubly-
exponential.

Lemma 9. For any instance I of a congestion game, there exists an
instance I ′, such that |Ai| ≤ zi for all players i = 1, . . . , n, and
SPoA(I ′) = SPoA(I).

Proof. Denote by AOPT an optimal outcome for instance I and by
ASPE the outcome of a worst-case subgame perfect equilibrium.
The proof goes by successively eliminating all actions that are not
chosen, neither in AOPT nor in the subgame perfect equilibrium, in
the order of the players 1, 2, . . . , n. For the first player, we thereby
restrictA1 to only two actions:AOPT

1 andASPE
1 . For the secondplayer,

we thereby restrictA2 to atmost z2 = 3 actions, namely the actions
prescribed by the subgameperfect equilibrium for the two relevant
actions of player 1, plus AOPT

2 . More generally, for the kth player,
we restrict Ak to at most 1 +

∏
i<k zi actions, namely the actions

prescribed by the subgame perfect equilibrium in each of the at
most

∏
i<k zi states, plus A

OPT
k . In the so reduced game I ′, SSPE is also

subgame perfect, as the actions that were removed are all actions
with inferior or identical cost for the respective player. □

Lemma 10. For any instance I of a congestion game, there exists
an instance I ′, such that |Ai| ≤ zi for all players i = 1, . . . , n, and
|R| ≤ 2

∑
i∈N |Ai| − 1, and SPoA(I ′) = SPoA(I).

Proof. By Lemma 9, we may restrict to instances I with |Ai| ≤ zi
for all players i. Suppose the claim is false. Then choose among all
instances that falsify the claim an instance I that minimizes the
number of resources |R|. Then each resource r ∈ R is chosen in

at least one of the actions. As we have at most
∑

i∈N |Ai| differ-
ent actions, there are at most 2

∑
i∈N |Ai| − 1 different non-empty

subsets of the set of all actions. Since |R| > 2
∑

i∈N |Ai| − 1, by
the pigeonhole principle the ‘‘incidence matrix’’ of all resources
and actions contains at least two identical rows. In other words,
there must exist two resources r, r ′

∈ R such that every action
either contains both r and r ′, or it contains neither r nor r ′. Now
we can construct an instance I ′ identical to I , except instead of r
and r ′, it contains a new resource r ′′ for which βr ′′ = βr + βr ′ and
αr ′′ = αr + αr ′ . Other than this replacement, instance I ′ has the
same sets of actions as instance I . Now each outcome A in I ′ has
the same costs as A in I . Therefore the same actions are subgame
perfect and SPoA(I ′) = SPoA(I). As I ′ has one resource less, we
obtain a contradiction. □

Recall that AOPT denotes an action profile that minimizes C(A)
for a given instance I . The final lemma bounds the constant cost
and weights in a worst-case instance.

Lemma 11. For any instance I of a congestion game with affine cost
functions, there exists an instance I ′ such that |Ai| ≤ zi for all players
i = 1, . . . , n, |R| ≤ 2

∑
i∈N |Ai| − 1, αr + βr ≤ nC(AOPT) ∀ r ∈ R, and

SPoA(I ′) = SPoA(I).

Proof. We are only left to show the claim on the cost functions.
However resources r with αr + βr > nC(AOPT) can safely be
eliminated, as it cannot be subgame perfect for any player i to
choose resource r: choosing AOPT

i instead, yields a cost at most
nC i(AOPT) ≤ nC(AOPT) < αr + βr . □

Specifically, for congestion games with three players, in order
to find a worst-case instance we only need to consider games of
moderate size. It suffices to let |A1| = 2, |A2| = 3, |A3| = 7, |R| =

22+3+7
− 1 = 4095, and αr + βr ≤ 3C(AOPT) for all resources

r ∈ R. The linear program now works as follows: It maximizes the
sequential price of anarchy over all instances with the properties
described above. We have 212

− 1 = 4095 resources, one for every
(potential) nonempty intersection of actions. The LP decides the
weight βr ≥ 0 and constant cost αr ≥ 0 of each resource. We
define some fixed outcome as the optimum solutionwith total cost
normalized to 1, which yields that αr + βr ≤ 3 for all r ∈ R, and
we maximize the sequential price of anarchy.

5.2. Details LP formulation

In violation to our earlier nomenclature, we here choose to
denote actions by lowercase letters a, a′, b, b′, c , c ′, µ and ν,
because they appear as index to the decision variables. We use
binary parameters δµr to specify whether resource r is chosen
in action µ. For each resource r , we have decision variables αr
and βr , the constant cost and weight of r , respectively. We fix a
subgame perfect equilibrium SSPE with subgame perfect outcome
ASPE and we use binary parameters z1a , z

2
ab and z3abc to prescribe

which actions are part of the subgame perfect equilibrium SSPE for
players 1, 2, 3 respectively. To clarify these, for example z2ab = 1
means that action b is the subgameperfect action by player 2, given
player 1 plays a. We denote by i.x the xth action of player i. We
define the actionprofile (1.1, 2.1, 3.1) as the optimal outcomewith
total cost normalized to 1. The subgame perfect equilibrium is also
fixed, namely for player 1 it is action 1.2, for player 2 it is action
2.2 (given 1.1) and action 2.3 (given 1.2). For player 3, in branch
a ≥ 1 of the game tree, we let action 3.(a + 1) be the subgame
perfect action. This implies that action profile (1.2, 2.3, 3.7) is the
outcome of the worst-case subgame perfect equilibrium.

We denote by vµ =
∑

r∈R δµr (βr + αr ) the cost of a player who
chooses action µ, assuming no other players would be there. Next,
we denote by oµν =

∑
r∈R δµrδνrβr the additional costs that two
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players with actions µ and ν incur due to overlap in resources.
We will use these auxiliary variables to determine the total cost
of player i when players 1, 2 and 3 choose actions a, b and c ,
respectively. This we denote by C i(abc).

Since we have to be able to describe a subgame perfect equilib-
rium, we need a bit more of notation: C1(a) and C2(ab) denote the
cost of actions of players 1 and2 respectively,when successors play
subgame perfect. For instance, C2(ab) denotes the cost of action
b for player 2, when player 1 chooses action a and player 3 plays
subgame perfect. Finally C(ASPE) will denote the total costs for all
players in the subgame perfect outcome.

For each of the following parameters, variables, and constraints,
we assume the following conventions on nomenclature:

a, a′
∈ A1, b, b′

∈ A2, c, c ′
∈ A3, µ, ν ∈ ∪i∈NAi, r ∈ R, i ∈ N.

In writing, a and a′ denote actions of player 1, b and b′ denote
actions of player 2, c and c ′ denote actions of player 3, µ and ν are
arbitrary actions, r is a resource, and i is a player. Also, let us denote
by SSPE the worst-case subgame perfect equilibrium that we seek
to compute, so that SSPE

i is the strategy of player i = 1, 2, 3. Also
recall that ASPE

= (1.2, 2.3, 3.7) is the resulting action profile. The
linear program is now as follows.

Binary parameters

δµr ∀r, µ
{
1 if r ∈ µ

0 otherwise

z1a ∀a
{
1 if a is prescribed by SSPE

1
0 otherwise

z2ab ∀a, b
{
1 if b is prescribed by SSPE

2 in state a
0 otherwise

z3abc ∀a, b, c
{
1 if c is prescribed by SSPE

3 in state ab
0 otherwise

Variables

αr ∀r constant cost of r
βr ∀r weight of r
vµ ∀µ constant cost plus weight of

resources in µ

oµν ∀µ, ν|µ ̸= ν weight of resources in µ ∩ ν

C i(abc) ∀a, b, c, i cost of player i when players
1,2,3 choose a, b, c respectively

C(ASPE) costs in subgame perfect
outcome ASPE

C1(a) ∀a cost of player 1 when she
chooses a and 2,3 choose
as prescribed by SSPE

C2(ab) ∀a, b costs of player 2 when players
1,2 choose a, b and 3 chooses
as prescribed by SSPE

Constraints

0 ≤ αr + βr ≤ 3 ∀r (5)

vµ =

∑
r∈R

δµr (βr + αr ) ∀µ (6)

oµν =

∑
r∈R

δµrδνrβr ∀µ, ∀ν|µ ̸= ν (7)

C1(abc) = va + oab + oac ∀a, b, c (8)

C2(abc) = vb + oab + obc ∀a, b, c (9)

C3(abc) = vc + oac + obc ∀a, b, c (10)

C3(abc) ≤ C3(abc ′) ∀a, b, c|z3abc = 1, c ′ (11)

C2(ab) ≤ C2(ab′) ∀a, b|z2ab = 1, b′ (12)

C1(a) ≤ C1(a′) ∀a|z1a = 1, a′ (13)

C1(a) = C1(abc) ∀a, b|z2ab = 1, c|z3abc = 1 (14)

C2(ab) = C2(abc) ∀a, b, c|z3abc = 1 (15)

∑
i∈N

C i(1.1, 2.1, 3.1) = 1 (16)

C(ASPE) =

∑
i∈N

C i(1.2, 2.3, 3.7) (17)

Constraints (6) and (7) define costs of actions vµ and intersec-
tion costs oµν for all actions µ, ν. Constraints (8), (9), and (10)
define the costs in each outcome for each player. Constraints (11),
(12), and (13) guarantee that no player can improve from the sub-
game perfect equilibrium SSPE. Constraints (14) define C1(a), and
constraints (15) define C2(ab), as explained earlier. The optimal
solution is the action profile (1.1, 2.1, 3.1) and has total cost equal
to 1, encoded into constraint (16). Constraint (17) defines C(ASPE).
Finally, constraints (5) are not necessary, but bound the variables
αr and βr .

The objective is to maximize C(ASPE), since, due to the nor-
malization, this value equals the sequential price of anarchy. This
allows us to give the LP-based proof of the main theorem of this
paper. This result is particularly interesting in comparison to the
tight bound 2.5 for the price of anarchy for non-sequential three
player congestion games [3,4,9].

Proof of Theorem 8. We have solved the above described linear
program using the AIMMS modeling framework with CPLEX 12.5
as LP solver.We obtain an optimal solutionwith value 1039

488 ≈ 2.13,
which proves Theorem 8. □

5.3. Tight lower bound instance

We have used a mixed integer linear program (MIP) in order to
model situations with smaller action spaces and fewer resources.
Here, we use integer variables (instead of parameters) to decide
which actions are subgame perfect for the third player. Naturally,
such a MIP only yields lower bounds on the sequential price of
anarchy, but no upper bounds. Nevertheless, after inspection of the
solution of the linear program, using the MIP we have been able to
compute a lower bound example that matches the upper bound
of Theorem 8, so that player 3 only uses four different actions. We
here give this instance, scaled to integers such that the cost in the
optimum solution equals 488.

Example 12. There are three players. Player 1 has two actions
1.1, 1.2. Player 2 has three actions 2.1, 2.2, 2.3. Player 3 has 4
actions 3.1, 3.2, 3.3, 3.4. There are 13 resources R = {1, . . . , 13}
with constant costs αr = 0 for all r ∈ R. Table 1 shows for each
resource, its weight and the actions that contain it. This instance is
also illustrated in a more intuitive way in Fig. 3. ◁

Backward induction on the game tree yields a subgame perfect
outcome where player 1 chooses 1.2, player 2 chooses 2.3, and
player 3 chooses 3.4, yielding a total cost of C(ASPE) = 1039. The
game tree is shown in Fig. 4.
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Fig. 3. Illustration of Example 12. Squares represent resources. The number in each resource denotes its weight. Encircled resources depict the actions.

Fig. 4. The game tree of Example 12. The number at each action denotes the cost of the corresponding player when all successors play subgame perfect. Fat lines are actions
of the subgame perfect equilibrium.

Table 1
The weights and actions of each resource. ✓denotes that the corresponding action
contains the corresponding resource.
r βr 1.1 1.2 2.1 2.2 2.3 3.1 3.2 3.3 3.4

1 84 ✓ ✓ ✓
2 52 ✓ ✓ ✓ ✓
3 3 ✓ ✓ ✓ ✓
4 4 ✓ ✓ ✓ ✓ ✓
5 31 ✓ ✓ ✓ ✓
6 52 ✓ ✓ ✓
7 54 ✓ ✓ ✓
8 92 ✓ ✓ ✓ ✓
9 51 ✓ ✓ ✓
10 28 ✓ ✓
11 4 ✓ ✓ ✓ ✓
12 33 ✓ ✓ ✓
13 374 ✓

6. Conclusions

The linear program that we proposed here for the case of three
players, is no longer practically feasible for the case with four
players, as the number of actions of the fourth player would be 43,
and the number of resources would become 255

− 1. Yet we have
experimented with a reduced size MIP in order to compute lower
bounds on the sequential price of anarchy for congestion games
with four ormore players. Even though the correspondingMIPwas
large andposed some computational challenges,wehave been able
to show that SPoA > 2.55 for four players [19], so specifically it is
larger than 5/2 (which is the price of anarchy for Nash equilibria).
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