ON THE DETERMINATION OF FACTOR SYSTEMS OF PUA - REPRESENTATIONS

P.M. van den Broek

Institute for theoretical physics, University of Nijmegen, the Netherlands

Abstract: A method is developed to obtain a complete set of inequivalent factor systems of PUA - representations of a group with a subgroup of index two from the factor systems of this subgroup.
1. Introduction

Let G be a group which has a subgroup H of index two. A projective unitary-antiunitary (PUA-) representation of G is a mapping D from G into the operators on some Hilbert space \mathcal{H} such that

i) the operator $D(g)$ is unitary if $g \in H$ and antiunitary if $g \notin H$

ii) $D(g) D(g') = \sigma(g,g') D(gg') \forall g, g' \in G$ for some mapping

$$\sigma: G \times G \to U(1).$$

It is customary to choose $D(e) = I$, where e is the identity of G and I is the identity operator on \mathcal{H}. Then σ satisfies

$$\sigma(g,e) = \sigma(e,g) = 1 \quad \forall g \in G \quad (1.1)$$

and

$$\sigma(g_1,g_2) \sigma(g_1,g_2,g_3) = \sigma(g_1,g_2,g_3) \sigma(g_1,g_2,g_3) \forall g_1,g_2,g_3 \in G \quad (1.2)$$

where λ^g is defined by

$$\lambda^g = \begin{cases}
\lambda & \text{if } g \in H \\
\lambda^* & \text{if } g \notin H
\end{cases}$$

the asterisk denoting complex conjugation.

A mapping $\sigma: G \times G \to U(1)$ which satisfies (1.1) and (1.2) is called a factor system of G with respect to H. In the following a factor system of G shall always mean a factor system of G with respect to H. If D is a PUA-representation with factor system σ and c is a mapping from G into $U(1)$ with $c(e) = 1$ then

$$D'(g) = c(g) D(g)$$

is a PUA-representation of G with factor system

$$\sigma'(g_1,g_2) = \frac{c(g_1)c^*(g_2)}{c(g_1)g_2)} \sigma(g_1,g_2) \quad (1.3)$$

Two factor systems σ and σ' are called equivalent if a mapping $c: G \to U(1)$ with $c(e) = 1$ exists such that (1.3) holds. Factor systems of H are defined in an analogous way, the only difference being the absence of the complex conjugation in
(1.2) and (1.3). The theory of PUA-representations and its use in physics is described by Murthy [6], Parthasarathy [7], Janssen [4] and Shaw & Lever [9], [10]. Factor systems of PU-representations are studied quite extensively [1], [2],[5],[8]. This however is not the case for factor systems of PUA-representations.

It is the aim of this paper to determine a complete set of inequivalent factor systems of G when the factor systems of H are known. This problem has already been attacked by Bradley & Wallis [3], but they have not obtained the general solution.

Janssen [4] has given a method to obtain the factor systems of G in the case where G is finite, without using the factor systems of the subgroup.

2. Reduction of the problem

First we choose an element \(a_0 \) from \(G \setminus H \) which remains fixed during the following. We can write all elements of \(G \setminus H \) as \(a_0 h \) or \(h'a_0 \) for some \(h, h' \in H \). Suppose \(\sigma \) is a factor system of G.

The restriction \(\sigma_H \) of \(\sigma \) to \(H \times H \) is then a factor system of H. If \(\sigma_H \) is a factor system of H we may ask the question whether or not there exists a factor system \(\sigma \) of G such that its restriction to \(H \times H \) is \(\sigma_H \). If such \(\sigma \) exists it is called an extension of \(\sigma_H \).

Lemma 1 An extension of a factor system \(\sigma_H \) of H to a factor system \(\sigma \) of G is completely determined by the elements \(\sigma(a_0, a_0) \), \(\sigma(h, a_0) \) and \(\sigma(a_0, h) \) for all \(h \in H \).

Proof The following relations follow immediately from (1.2):

\[
\sigma(a_0 h, h') = \frac{\sigma(a_0, hh') \sigma(h, h')}{\sigma(a_0, h)} \quad (2.1)
\]

\[
\sigma(h, h'a_0) = \frac{\sigma(h, h') \sigma(hh', a_0)}{\sigma(h', a_0)} \quad (2.2)
\]
\[\sigma(ha_o, a_o h') = \frac{\sigma(h, a_o^2) \sigma(a_o, a_o) \sigma(ha_o, h')}{\sigma(h, a_o) \sigma(a_o, h')} \] (2.3)

This proves the lemma.

If these relations are substituted in (1.2) we obtain after laborious manipulation the following three equations for \(\sigma(a_o, a_o) \), \(\sigma(a_o, h) \) and \(\sigma(h, a_o) \):

\[\sigma'(h, a_o) \sigma'(a_o, a_o^{-1} hh'a_o) \sigma(a_o^{-1} ha_o, a_o^{-1} h'a_o) \sigma'(h'o, a_o) \sigma(a_o, a_o^{-1} ha_o) \]

\[\sigma(hh', a_o) \sigma(h, h') \sigma(a_o, a_o^{-1} h'a_o) = 1 \quad \forall h, h' \in H \] (2.4)

\[\sigma'(a_o ha_o^{-1}, a_o^2) \sigma(a_o^2, a_o^{-1} ha_o) \sigma'(h, a_o) \sigma(a_o, a_o^{-1} ha_o) \]

\[\sigma(a_o ha_o^{-1}, a_o) \sigma'(h, a_o) = 1 \quad \forall h \in H \] (2.5)

\[\sigma(a_o, a_o) \sigma(a_o, a_o) \sigma(a_o^2, a_o) \sigma'(a_o, a_o^2) = 1 \] (2.6)

Note that for each solution \(\sigma(h, a_o) \) and \(\sigma(a_o, h) \) of (2.4) and (2.5) we obtain two values of \(\sigma(a_o, a_o) \) from (2.6).

The following theorem has now been derived:

Theorem 1 All extensions of a given factor system \(\sigma \) of \(H \) to factor systems of \(G \) are obtained from the solutions \(\sigma(h, a_o) \) and \(\sigma(a_o, h) \) of the equations (2.4) and (2.5).

For each solution of (2.4) and (2.5) there are two extensions which are given by the equations (2.6), (2.1), (2.2) and (2.3).

To obtain a complete set of inequivalent factor systems of \(G \) it is only necessary to consider extensions of inequivalent factor systems of \(H \). This follows from the fact that if \(\sigma'_H \) and \(\sigma''_H \) are two equivalent factor systems of \(H \) and \(\sigma \) is an extension of \(\sigma'_H \) then \(\sigma''_H \) has an extension \(\sigma' \) which is equivalent with \(\sigma \).

On the other hand inequivalent factor systems of \(H \) have inequivalent extensions. So in order to obtain a complete set of inequivalent factor systems of \(G \) we have
to find all inequivalent extensions of one representative of each class of equivalent factor systems of \(H \).

3. Solution of the problem

In this section we present without proof a method to obtain a complete set of inequivalent extensions of a factor system of \(H \). First we give a criterion to decide whether there exist extensions or not. Then we give for the case where extensions do exist a set of extensions which contains a complete set of inequivalent ones. Finally we obtain this complete set.

Define an equivalence relation in \(H \): \(h \) and \(h' \) are called equivalent if there is a \(n \in \mathbb{Z} \) such that \(a_o^n h a_o^{-n} = h' \). In this way \(H \) is divided into classes. Let \(H_0 \) be a set of elements of \(H \) which contains exactly one element from each class with an even number of elements and none from each other class. Let \(\sigma \) be a factor system of \(H \) and define the mapping \(D_\sigma \) from \(H \) into the complex numbers of modulus unity by

\[
D_\sigma(h) = \begin{cases}
\prod_{n=0}^{p-2} \left[\sigma(a_o^{n+1} h a_o^{-n+1}, a_o^{2n} \sigma(a_o, a_o h a_o^{-n}) \right] & \text{if } h \in H_0 \\
1 & \text{if } h \notin H_0
\end{cases}
\]

where \(p \) is the number of elements in the class containing \(h \). If \(\sigma' \) is a factor system of \(H' \) which is equivalent with \(\sigma \) then \(D_\sigma = D_{\sigma'} \).

Theorem 2. \(\sigma \) can be extended to a factor system of \(G \) if and only if there is a factor system \(\sigma' \) of \(H \) which is equivalent with \(\sigma \) and obeys

\[
\sigma'(h, h') \sigma'(a_o^{-1} h a_o, a_o^{-1} h' a_o) = D_\sigma(h) D_\sigma(h') D_\sigma(h h')
\]

and

\[
\sigma'(a_o h a_o^{-1}, a_o^2 \sigma(a_o, a_o h a_o^{-1})) = D_\sigma(a_o h a_o^{-1}) D_\sigma(h)
\]

Let \(R(H) \) be the set of all unitary one-dimensional representations \(\Delta \) of \(H \) with the property \(\Delta(h) = \Delta(a_o h a_o^{-1}) \).
Theorem 3 If σ satisfies (3.1) and (3.2) then a complete set of inequivalent extensions of σ is contained in the set extensions given by $\sigma(a_0, h) = 1$ and $\sigma(h, a_0) = \Delta(h) D_0(h)$ where $\Delta \in \mathbb{R}(H)$.

The only thing we still need is a criterion to decide when two extensions of this set are equivalent.

Theorem 4 Let σ_1 and σ_2 be two extensions of the set defined above. Then there exists a $\Delta \in \mathbb{R}(H)$ with
\[
\frac{\sigma_1(h, a_0)}{\sigma_2(h, a_0)} = \Delta(h).
\]

σ_1 and σ_2 are equivalent if and only if there exists a one-dimensional unitary representation Δ_0 of H with the properties
\[
\Delta_0(h a_0^{-1} h a_0) = \Delta(h) \quad \forall h \in H \quad \text{and} \quad \Delta_0^*(a_0^2) = \frac{\sigma_1(a_0, a_0)}{\sigma_2(a_0, a_0)}.
\]

References