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Keywords: Low-cost air quality sensors measuring air quality at fine spatio-temporal resolutions, typically suffer from sensor
Data quality drift and interference. Field calibration is typically performed at one location, while little is known about the
Calibration spatial transferability of correction factors. We evaluated three calibration methods using a year of hourly ni-
Air quality

trogen dioxide (NO,) observations from low-cost sensors, collocated at two sites with a conventional monitor as
reference: (1) an iterative Bayesian approach for daily estimation of the parameters in a multiple linear re-
gression model, (2) a daily updated correction factor and (3) a correction factor updated only when con-
centrations are uniformly low. We compared the performance of the calibration methods in terms of temporal
stability, spatial transferability, and sensor specificity. We documented drift within the 1-year period. The
correction factor updated under uniformly low concentrations performed poorly. The iterative Bayesian ap-
proach and daily correction factor reduced the root mean squared error (RMSE) by 21-46% at the calibration
locations, but did not reduce RMSE at the other location. By examining the posterior distributions of the re-
gression coefficients, we found that the poor spatial transferability is consistent with different responses of
individual sensors to environmental factors. We conclude that the spatial and temporal variability in the cali-
bration parameters requires them to be updated regularly, including sensor-specific recalibrations.

Sensor network
Nitrogen dioxide
INLA

resolution in space and time than conventional monitoring networks
that typically include only one or two monitors per city (Schneider

1. Introduction

The interest in the use of low-cost air quality sensors at the city level
to extend and densify conventional air quality monitoring is increasing
(Jerrett et al., 2017; Snyder et al., 2013). A dense air quality monitoring
network can be used for modelling and mapping air quality on a finer
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et al., 2017). Such models and maps may be of added value e.g., for
health studies and policy making. The data quality of low-cost air
quality sensor networks however is often poor or unknown, potentially
leading to wrong policy decisions or bias when applied in
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Fig. 1. Locations of the airboxes and conventional monitors in Eindhoven.

epidemiological studies (Snyder et al., 2013). In order to adjust, correct
or improve sensor observations, calibration is important in the devel-
opment and maintenance of such networks (Lewis and Edwards, 2016).

Calibration starts in the lab with finding an optimal function to
convert absorbance or conductivity to pollutant concentrations (Neri
et al., 2002). Performance indicators include sensitivity, selectivity,
stability, response time, saturation, sensitivity to humidity, and the
limit of detection (LoD) (Colin et al., 1998; Morales et al., 2002; Penza
et al., 1998; Santos, Serrini, O'Beirn and Manes, 1997). Lab calibration,
however, is not sufficient for field deployment of air quality sensors.
The sensors perform less accurately under changing weather conditions
and when exposed to different mixtures of gases as compared to cali-
bration in the lab (De Vito, Piga, Martinotto and Di Francia, 2009;
Kamionka et al., 2006). For long-term performance in the field, there
are two main challenges: drift and interference effects.

The electrochemical cells typically used in low-cost gas sensors are
more prone to lose sensitivity as compared to conventional monitors.
This leads to sensor drift: an increasing bias in the sensor response.
Xiang et al. (2016) showed that the measurement error due to drift in
nitrogen dioxide (NO,) sensors increased by a factor three within two
months. Low-cost air quality sensors are also sensitive to relative con-
centration distribution changes, for example caused by seasonality or
pollution events (De Vito et al., 2009; Moltchanov et al., 2015). The gas
sensor can show interaction and interference effects: an unwanted re-
sponse to other pollutants, gases, temperature and relative humidity
(Kamionka et al., 2006; Mead et al., 2013). We refer to these unwanted
responses as interference effects. Field calibration is needed to estimate
the parameters which correct the sensor response such that it represents
the true concentrations as good as possible, accounting for drift and
interference.

Much research has already been done to find the best methods for
field calibration of air quality sensors. Multiple linear regression (MLR)
has been used in the past few years to build calibration functions in
which covariates account for environmental and meteorological
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variability (Kizel et al., 2018; Piedrahita et al., 2014; Spinelle et al.,
2015). Feed-forward artificial neural networks (ANNs) have also been
used to adjust for interference effects (De Vito et al., 2009). Xiang et al.
(2016) also accounted for multiple sensors drifting simultaneously.

In air quality sensor networks, one commonly used approach is that
only one sensor is collocated with a reference monitor during regular
operation. Before operation and in regular intervals during operation,
sensors may be collocated to be calibrated or recalibrated. In addition,
some studies report automatic calibration procedures, aiming at redu-
cing calibration costs. When recalibrating the sensors in a sensor net-
work to account for drift and varying meteorological conditions in this
way, it is assumed that all sensors behave similarly, and are influenced
by the same conditions and similar drift. Although there is evidence
that this assumption is not valid (Barakeh et al., 2016), calibration
parameters established at a location with a reference instrument are
often assumed to be transferable to other locations in the network.

The aim of this study is to evaluate the spatio-temporal variability
and sensor specificity of calibration parameters. To do so, we evaluate
three different calibration methods that account for interference effects
and drift. The methodology is applied to the city of Eindhoven, where a
low-cost sensor network was set up with NO, measurements at 25 lo-
cations (Hamm et al., 2016). At two locations the low-cost sensors were
co-located with reference monitors, allowing us to assess spatial and
temporal variability of correction factors. The focus of this study is on
NO,, because earlier passive sampler measurements have documented
large spatial variation in European cities related especially to road
traffic (Cyrys et al., 2012).

2. Methods

We evaluated the performance of (1) an iterative Bayesian approach
for daily estimation of the parameters in a multiple linear regression
model, (2) a daily updated simple correction factor and (3) a uniform
concentration correction similar to the method suggested in Tsujita
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et al. (2005). For Bayesian inference we used Integrated Nested Laplace
Approximations (INLA). We evaluated the methods in terms of the
stability of the correction factors or calibration parameters in time, the
usability of the correction factors or calibration parameters at other
locations within the same urban area, and the transferability of the
calibration parameters to different sensors of the same type.

2.1. Data

The air quality sensor network in Eindhoven (Fig. 1) was established
by the AIiREAS civil initiative (Close, 2016) in November 2013 and has
continuously been operating since. The sensor network consists of 35
fixed airboxes, manufactured by the Energy Research Centre of the
Netherlands. The airboxes contain an array of sensors measuring par-
ticulate matter (PM), temperature and relative humidity (RH). Some
airboxes also measure ozone (O3), NO, or both. The focus of this study
is on NO,, which is measured in 25 airboxes since 2016, after an initial
calibration at the end of 2015 (Hamm et al., 2016). NO, is measured
using the electrochemical cell Citytech Sensoric NO, 3E50 in a differ-
ential measurement setup. A switching valve and reagent cartridges are
used in front of the electrochemical cell to dry the air. Observations are
discarded when temperature and humidity are outside acceptable
ranges. All airboxes are installed at 2.5-3 m height and at the roadside,
as lamp posts were used to supply electricity. Sites were purposely se-
lected reflecting background and traffic sites (Fig. 1). Background sites
were located in minor residential roads; traffic sites in roads with ty-
pically more than 10,000 vehicles/day. The two conventional monitors
sites are also designated as traffic sites in the Dutch national air quality
measurement network. Further details are described elsewhere (Van
Zoest et al., 2018).

Two conventional chemiluminescence monitors of the Dutch na-
tional air quality measurement network (Buijsman, 2013), operated by
the National Institute for Public Health and the Environment, are both
located in similar urban traffic locations in Eindhoven and are used as
reference instruments. With each conventional monitor, an airbox is
collocated. Airbox NO, measurements are averaged to hourly values for
analysis of the calibration methods, similar to the temporal resolution
of the conventional monitors. Data cleaning and outlier detection were
performed as described in Van Zoest et al. (2018). We refer to
S = {s1,..,555} as the collection of airboxes measuring NO, and
Z = {z1, 7o} as the collection of conventional monitors, where Z C S.

In this study we use covariates c €C = {NO2, 03, RH, T, WS, WD}.
Nitrogen dioxide (NO2), relative humidity (RH) and temperature (T)
are measured within the airbox. Ozone (03) data in the airboxes at z;
and z, were missing for most of the year due to sensor failure. Therefore
we used the O3 data available at the conventional monitor at location z;
(O3 not measured at z,). Wind speed (WS) and wind direction (WD)
were obtained from the Royal Netherlands Meteorological Institute
weather station in Eindhoven (KNMI, 2016). NO, concentrations were
square root transformed to approximate a normal distribution. Where
needed, the covariates were also transformed to obtain distributions
closer to the normal distribution and to obtain a more linear relation-
ship between the covariate and square root transformed NO, con-
centrations. An overview of the potential covariates, their sources and
transformations is given in Table S1 in the supplementary materials.

2.2. Sensor drift

Sensor drift is caused by the loss of sensitivity of the electrochemical
cell measuring NO,. We examine the average drift of the sensor network
by plotting a time series of the difference 4,, between the mean NO,
concentration of the two conventional monitors and the mean NO,
concentration observed by all airboxes deployed in the city, for all
hourly observations in 2016:
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where Xyo2.4,t.s is the hourly NO2 concentration measured at day d and
hour¢ =1, ..,,24 at airbox location s for |S| number of airboxes, Yy, 4.
is the hourly NO2 concentration measured at day d and hour
t=1, ..,24 at conventional monitor location z for |Z| number of con-
ventional monitors. For calculation of A;, we use the actual NO, ob-
servations before square root transformation. We take a smoothed line
through the time series of A, to largely separate the effect of drift from
temporally varying spatial variability.

2.3. Multiple linear regression model

2.3.1. Calibration

The term calibration refers to two processes. First, it establishes a
relationship between indicative measurements and standard (reference)
measurements, i.e., estimating the parameters of the calibration func-
tion; second, it uses an established relationship, i.e., the calibration
function, for obtaining a measurement result from an indicative mea-
surement (Rasch et al., 1994). In this paper, our focus is on the first
process, and we will use the term correction for the second process.

MLR functions have been widely used to build calibration functions
accounting for environmental and meteorological variables (Piedrahita
et al., 2014; Spinelle et al., 2015). We adapted the method, (1) to allow
for transformations of the response variable and covariates to obtain
better linear relationships, (2) to estimate the calibration parameters
including their uncertainty using Bayesian inference, and (3) to itera-
tively update the calibration parameters on a daily basis using ob-
servations of the previous 30 days.

The calibration function resembles a generalized additive model
(GAM):

Yarz = Poaz + Z B8 ediz) + Edie

¢ (2)
where y, , . is the square root transformed reference NO, level at day d,
hour t =1, ..,24 and location z, g.(x.q4:;) are covariate-dependent
known functions or transformations applied to covariate x4z, 5 4, i
the intercept and 3, ; , are the unknown coefficients for covariates c for
day d at location z and the error is assumed eq,, ~ N (0, 0%). The
coefficients 3, ;, have a posterior distribution with mean B, and
precision 73, , .. The covariate-dependent transformations g.(Xc,q,:,;) are
chosen such that x4, approximates a normal distribution, and
g.(Xc.d,1,2) has an approximately linear relation with y;, ..

We used hierarchical Bayesian estimation and inference. Bayesian
inference provides a posterior distribution for each §, , , rather than a
single estimate, and therefore allows for the comparison of estimates of
different airboxes, including their uncertainty. The parameters of the
posterior distributions were estimated using Integrated Nested Laplace
Approximation (INLA). INLA provides fast and accurate Bayesian
parameter estimates through Laplace approximations. The advantage of
INLA over Markov Chain Monte Carlo (MCMC) simulations is that the
computation time is significantly shorter, while INLA gives an ap-
proximation which is as good or better (Rue et al., 2009).

We built a set of multiple linear regression models including com-
binations of covariates which are often used in calibration of NO,
sensors, as they are known for causing interference effects or sensor
bias. All covariates are scaled and centered to zero before running
INLA. The calibration equation is updated every day d to account for
gradual drift and meteorological variability using all non-missing ob-
servations in the previous 30 days, adding up to maximum 720 hourly
observations. Moltchanov et al. (2015) found variability in calibration
parameters over shorter periods of time, e.g. 4 days, using 30-min
averages. We chose a period of 30 days based on prior analyses (Table
S2), aiming to include enough variation in air pollutant concentrations
while minimizing the longer term effects of drift and seasonality. We
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further note that our calibration parameters change daily in a smooth
manner. Our method does not distinguish between day and night per-
iods in calibration parameters. Using R-INLA (Martins et al., 2013), we
built a model on the calibration set to estimate the parameters of the

posterior distribution 6, 4, = (,u Boay Pedz of the coefficients 8, ; ,. The

models are built at the two locations z; and z, where a conventional
monitor is collocated with an airbox. The model is rebuilt for every day
in 2016, such that there is an overlap of 29 days between the data used
for calibration on day d and for calibration on the next day d;.

2.3.2. Calibration performance measures

The fit of a Bayesian model is commonly evaluated using posterior
predictive checks or leave-one-out cross-validation. For the first check
the posterior predictive p-values,

PO < i) )

for replicate observations y} ,, are evaluated to be uniformly distributed.
For none of the models explored in this study the distribution of the
posterior predictive p-values was uniformly distributed. Wang et al.
(2018) however argue that in some cases the posterior predictive p-
values can be affected by the nature of the data in such a way that they
would never be uniformly distributed even in the case of a perfect
model. Therefore they suggest using the probability integral transform
(PIT) instead:

PITye = pOy, < pWas) 4

where y ; , are all observations except for the observation at time stamp
t on day d. The performance of the different calibration models is
evaluated based on the Deviance Information Criterion (DIC), a gen-
eralization of the Akaike Information Criterion (AIC), accounting for
both model complexity and fit in a Bayesian model (Spiegelhalter et al.,
2002):

)

where D is the posterior mean of the deviance and p;, is the effective
number of parameters. A smaller DIC denotes a better fit.

DIC = D + p,

2.3.3. Validation
For temporal validation, we use the calibration function from Eq.
(2) and replace the unknown § by § to predict y,,

Ytz = léo,d,z + z /;’c,d,zgc(xc.d,t.z) + €y

c (6)
for which we now know the posterior distributions of ﬁO, 4 and BC’ 4z On
every day d, Eq. (6) is applied on t = 1...24 using the parameters of /§0’ dz
and 3c,d,z estimated during the calibration phase. The calibration and
validation are repeated daily, so each 24 h period is validated with a
new set of calibrated parameters based on the hourly data available in
the previous 30 days.

The number of locations with a collocated reference monitor is al-
ways sparse in low-cost air quality sensor networks. If the drift and the
influence of external variables are similar for each airbox and location,
a calibration model built at one location can be transferred to the other
locations. To test this, we apply spatiotemporal validation by adjusting
Eq. (6) to predict ¥, , at a different location (z;) from where the model
is built (z;):

yd,[,zi = ﬁo,d.zj + z 5c,d,zj gc(xﬁvdvt-zj) + €d,t,z;

c @)
for the two locations where a conventional monitor is located. Note the
different subscripts of z to denote the different locations used in spa-
tiotemporal validation. Similar to the temporal validation, Eq. (7) is
applied on ¢ = 1..24 on the current day d using the parameters of §, ; ,
and ﬁmz estimated during the calibration phase, but now at a different
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2.3.4. Validation performance measures

Prediction performance is based on the Root Mean Squared Error
(RMSE). We consider two RMSE values: the RMSE before calibration
(RMSE),) and the RMSE after calibration (RMSEp.s). RMSE,, is ob-
tained as:

RMSEpre = \jzzl (y[,d - xNOthvd)Z

Ta 8)
where y, ; is the observed reference NO2 concentration (NO2,s) and
Xnoa2r.d iS the observed airbox NO2 concentration (NO2,) for time
stamp ¢ in 1, ..., Ty where T; is the total number of non-missing hours in
validation day d. RMSE,, is obtained as:

—
RMSEp,s = \/“7221 (y[’d — y[’d)z

Ta )
where 3, ; is the predicted NO, concentration. A smaller RMSE denotes
better prediction.

The calibration approach using INLA is compared to two other
techniques that are often used for correction of low-cost air quality
sensor networks: (1) a simple daily updated correction factor and (2) a
correction factor which is updated when the concentrations are low and
uniform across the sensor network.

2.4. Daily correction factor

Miskell et al. (2018) calibrated low-cost O3 sensors using a con-
ventional monitor in the vicinity with similar land use type. This
method assumes that the drift between the airboxes is similar and that
high peaks missed by the airboxes are due to meteorological factors
which are the same across the sensor network. We apply a similar
method to NO2, distinguishing between an absolute correction factor
and a relative correction factor. On each day d we find the relative
difference correction factor y, 4,

Td

Mdz 1

y _ 2t I x —
rel,d,z ; (xNoz,t,d,Z Ta

(10)

and the absolute difference correction factor y,, 4

T
2t Ohag — Xno2.cd.z)
yabs,d,z = T
d

11

The correction factors are computed on a location z where an airbox
is collocated with a conventional monitor. On a daily basis, ¥, 4, or
Yabs.d,. corrects all hourly airbox measurements of that day, for all air-
boxes located at a similar site type (urban traffic or urban background).
The spatial transferability of the correction factor is evaluated by ap-
plying it at the other airbox location in Z and comparing the corrected
airbox NO, concentrations with the observations of the conventional
monitor at that location. Since both conventional monitors are located
at urban traffic locations, we could only evaluate the method for this
site type. The RMSE is calculated before and after correction.

2.5. Uniform concentration correction

Tsujita et al. (2005) proposed a method for automatic calibration of
low-cost air quality sensor networks. The method differs from the
previously mentioned correction factor, in the sense that the correction
factor is only updated under conditions of uniform low NO2 con-
centrations. We tested a similar method. When NO, concentrations are
uniform and low for any hourly timestamp, the baseline of the low-cost
sensors is adjusted to the mean of the conventional monitors. All hourly
NO,, observations are corrected using a fixed correction factor y,,; which
is the same for all airboxes. This correction factor is based on the ratio
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Fig. 2. Difference between mean airboxes and mean conventional monitors over time (light gray line) and fitted smooth curves before and after May 10th (dark gray
solid lines). Vertical solid black line: May 10th, after which we observe a sudden decrease in Aq;. Black dashed and dot-dashed lines: fitted smooth curves of
difference between conventional monitor and airbox at location z; and location z,, respectively. The line at z, has been drawn until September. Missing values in
December would otherwise influence the line up towards the high levels in November, making comparison with z; and the mean of all airboxes impossible.

between the mean of the two conventional monitors and the mean of all
low-cost sensors. The correction factor is applied to all future ob-
servations of the low-cost sensors, until it is updated at time stamp d, ¢
when standard deviations of the NO2 concentrations drop below a
threshold 6;; and the mean NO2 concentrations drops below a
threshold 7, :

Zs XNO2,s,d,t
IS|

< éd,[ A

| 205 Cenozs.de — Fnozd.)
\/ Na¢

IS =1 12)

We evaluated different values of 6z, = {4, 5, 6} ug m~> and values
Ny, = {10, 12, 15} pg m~>,

Following Moltchanov et al. (2015) we also applied night-time ca-
librations. Every night the concentrations are assumed to be uniform,
and a new airbox-specific correction factor ¥, 4 ; is retrieved from the
ratio between each individual airbox and the average between the two
conventional monitors between 1:00-4:00 a.m. The correction factor is
used to correct the airbox values during the next day.

2.6. Sensitivity of individual airboxes to environmental factors

We evaluated whether individual airboxes reacted similarly to in-
terfering gases, temperature and humidity. First, using INLA we ex-
amined the relationship between NO2,, and the other variables RH and
T measured in the airbox. For the 25 airboxes the posterior mean es-
timates were compared based on slope direction and strength. The
differences in posterior mean estimates between the 25 non-collocated
airboxes reflect both spatial variability in the calibration parameters, as
well as inter-sensor variability (Broday (2017)). Second, for a com-
parison independent of the airbox location, we compared the posterior
mean estimates of ten airboxes which were simultaneously collocated
with a conventional monitor for ten days (n = 240 hourly observations
per airbox). A separate model, with NO2,,; as the response variable, was
built using INLA for each covariate measured in the airbox: NO2,,, RH,
and T. The posterior mean estimates in this case solely reflect inter-
sensor variability.

2.7. Temporal autocorrelation

A first-order random walk model is added to Eq. (2) to account for
possible temporal autocorrelation, as suggested in Blangiardo and
Cameletti (2015):
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where rwy(d, t) is a first-order random walk function on the time series
of d, t. For both locations z; and z,, and for both the model with and
without random walk component, the RMSE,,, and RMSE,,,; are ob-
tained. A lower RMSE), for the model with random walk component
compared to the model without random walk component suggests the
presence of temporal autocorrelation. The models in Egs. (2) and (13)
are also compared using a full year of data, for which 80% of all hourly
observations in 2016 are randomly selected for calibration and the re-
maining 20% of the observations is used for validation.

3. Results
3.1. Descriptive statistics

Based on the initial calibration, the airbox showed good agreement
with the conventional monitors. The correlation coefficient for the full
year 2016 for hourly NO2 concentrations is 0.75at z; and 0.83 at z,.
Scatterplots for both locations nevertheless showed substantial differ-
ences of individual observations (supplementary materials, Fig. S1).

The percentage of missing values in the dataset of 2016 was 23.1%
for the airboxes, of which 4.4% was removed during data cleaning and
outlier detection (Van Zoest et al., 2018). The remainder is caused by
sensor malfunctioning (6.6%) or displacement during maintenance
periods (12.1%). To reduce the service costs of the sensor network,
maintenance periods were long. The airbox located at z; was removed
for maintenance from the 22nd of March until the 3rd of May 2016. The
airbox at z, was removed from the 22nd of February until the 3rd of
May 2016. In future development of the network, maintenance time
clearly needs to be reduced. For the two conventional monitors, 2.8% of
the hourly NO, observations was missing in 2016.

3.2. Sensor drift

Fig. 2 shows the time series of 4,4, the difference between the mean
NO2 concentration of the two conventional monitors and the mean
NO2 concentration observed by all airboxes. Since all airboxes are at
different locations and their mean concentrations are not necessarily
equal to the mean of the conventional monitors which are both located
at a traffic location, we do not require 44, to be zero. Neither do we
require Ay, to be stable throughout the year, as it could possibly vary
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with the seasonality of NO2, meteorological conditions or interfering
gases. However, the downward trend in 4,, in Fig. 2 suggests sensor
drift. After four months of deployment, there is a sudden decrease in
Agy, which leads to a systematic decrease of ~10pug m™3. This is re-
lated to a change in the initial calibration factor around the 10th of
May. The bias further increases with time. Compared to the average
drift of all airboxes in the sensor network, the two collocated airboxes
do not show the same decreasing trend. At z; the fitted smooth curve of
the difference is around zero after the 10th of May, showing no signs of
drift. At z,, the fitted smooth curve follows that of the average drift
after the 10th of May until the end of August. Due to malfunctioning of
the sensor there are no data available for the last month of the year. The
high values at the end of November would therefore strongly influence
the fitted curve to increase from September onwards. For a better
comparison with z; and the mean of all airboxes, the line of z, is drawn
until September.

3.3. Multiple linear regression model

3.3.1. Calibration

The histogram and Uniform Q-Q plot of the PIT values (Eq. (4)) are
created for every daily iteration of the models. A sample is visually
inspected to check for uniformity; an example is shown in Fig. S2. The
PIT values show uniformity for all models, which means that the
models suitably fit the data. The model performance, based on the DIC,
can thus be evaluated for the models. In Table 1 we present the DIC
values for different models. Since the INLA model is iteratively rebuilt,
giving a new DIC value every day, we report the mean DIC and median
DIC for 2016. The lowest DIC, indicating the best model fit, is found for
model 9 including all covariates. Model 8 (excluding wind direction)
has the next lowest DIC, only slightly higher than model 9. All models
show a better fit at z, compared to z;.

Fig. 3 shows the change of the coefficients of covariates over time
when the model parameters are recalibrated on a daily basis for model
8. We show model 8 (without wind direction) because DIC values are
similar to model 9 and wind direction is represented by 9 slopes, in-
creasing the complexity of the figure. The intercept §, for the daily
INLA models is positive between 3 and 7 pgm 3. At z;, o, < 1 and at
22, Byop > 1. Transferring the coefficients to another location where the
bias is in a different direction will lead to an increase in bias rather than
a decrease. Coefficient ), is negative throughout the year, and G is
close to zero. Coefficient 8, is mostly positive for both locations.
Coefficient 8,4 shows a pattern close to zero but mostly negative. The
month of hourly data used in each calibration iteration should contain
enough temporal variability in the covariates to avoid overfitting.
However, both locations show a large temporal variability in the

Table 1
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coefficients. This is probably due to seasonal variation, as the temporal
variability at the two locations is very similar over time. The patterns
are smoothened by the overlap of the calibration datasets. When the
direction of the slopes would be the same for each location, this would
be beneficial for the transferability of the model from one location to
the other. However, when coefficients tend to have a different direction
at different locations at any point in time, correction may lead to a
deterioration.

3.3.2. Validation

A model with only NO, improved the RMSE modestly at both lo-
cations (Table 2). Adding additional covariates substantially further
reduced RMSE. Model 8, with all covariates except wind direction,
performed best at location z;. At z,, model 9 with all covariates per-
formed best. At both locations, no improvement in RMSE was achieved
by correcting the observations using the calibration models built at the
other location.

3.4. Daily correction factor

The relative correction factor y,, ,, shows a higher RMSE, than
the absolute correction factor y,, ;,, even exceeding RMSE,. at z
(Table 3). Since this method could be applied to all non-missing NO5
observations at each location, while the Bayesian models could only be
applied to observations non-missing for all covariates at each location,
the RMSE,,, and RMSE,, are not directly comparable to those retrieved
using INLA (Table 2).

Table 3 also shows the RMSE,,, and RMSE,,,;; when we tested the
correction factor determined at the other airbox location collocated
with a conventional monitor. At z;, RMSE is higher after correction; at
2z a modest decrease was found using ¥, 4.,- The RMSE values can be
influenced by a few extremes in the corrected values, especially when
an extreme correction factor is established at one location and is
transferred to another location. This led to a high RMSE,, of
120.86ugm™~> at z,. Removing extreme correction factors led to a
decrease of this value, however not decreasing below RMSE,.. A time
series plot of the correction factors illustrates its variability and the
extremes (Fig. S3).

3.5. Uniform concentration correction

The results of correction factor y,,, updated under conditions of
uniform and low concentrations are shown in Table S3. Depending on
the threshold values of standard deviation §;, and mean 7,,, the
number of updates of y,,; in the year ranged between 1 and 39 for the
chosen thresholds. For none of the threshold combinations, the

DIC performance statistics for different models. A lower DIC denotes better model fit. In each model, the dependent variable is the square root of hourly average
reference monitor concentrations of NO,, ,/NO2,,s . NO2,;, is NO, measured by the low-cost airbox sensor; O3 is ozone measured by one reference monitor (z;). RH is

relative humidity and T is temperature, both measured by the airbox. WS is wind speed and WD is wind direction, both measured by the Royal Netherlands

Meteorological Institute (KNMI).

# Covariates Location z; Location z;
DIC mean DIC median DIC mean DIC median

1 Bo + BnoaVNO2ap 1459 1630 1352 1464
2 Bo + Broa NO2ap + Boslog(03) 1291 1319 1328 1446
3 Bo + BroaNOZap + P RE? 1444 1619 1312 1439
4 Bo + Bnoz/NO2gp + BrT 1406 1506 1136 1242
5 Bo + Brno2VNO2ab + BrysWS 1306 1348 1320 1421
6 Bo + Brno2vNO2ap + Byypfactor(WD) 1403 1589 1292 1410
7 Bo + Bi1/NO2gp + B,WS + flog(03) 1221 1243 1297 1409
8 Bo + Bno2VNO2ap + Bo3108(03) + Pryy RH? + BT + By VWS 1134 1208 828 877
9 1104 1161 778 815

Bo + BnozVNO2gp + Bo3log(03) + Bry RH? + Br T + Bys VWS + Bypfactor(WD)
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Fig. 3. Time series of the coefficients of the daily INLA models, using model 8. Light gray: location z;, dark gray: location z,.

correction method improved the RMSE value. Instead, the RMSE,,,;; was
27-145% higher than the RMSE),., making the method not suitable for
NO, in this sensor network. Fig. S3 shows the time series of the cor-
rection factor for d;, = 5 ug m~> and 7,, = 12 pg m™~>. As Fig. 2 sug-
gested, a change occurred in May. This is reflected in an update of the
correction factor in Fig. S4. Before May the correction factor remains at
1.

Table S4 shows the results of the night-time calibration. At z; the
RMSE is almost doubled after night-time calibration, while at z, there is
a slight improvement in RMSE. The increase in RMSE at z; is mainly due
to some extreme values for ¥, 4, in May (Fig. S5).
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3.6. Sensitivity of individual airboxes to environmental factors

Fig. 4 shows a boxplot of the posterior mean estimates for relative
humidity and temperature for a model with airbox NO, as response
variable. When using a full year of data at once, the posterior mean
estimate for temperature is negative for each airbox, varying between
—0.1 and —0.7 for different airboxes. The posterior mean of relative
humidity differed between the different airboxes from —0.5 to +0.3. A
difference in slope direction can have large influence on the transfer-
ability of calibration models to other airboxes.

Fig. S6 shows the posterior distributions of By,, Bz and 5 for ten
collocated airboxes for a shorter period of time with NO, from the
conventional monitor as the response (240 h). The posterior distribu-
tions of By, are around 1. For some of the NO, sensors, however, the
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Table 2
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RMSE before and after temporal and spatiotemporal calibration using different models. In each model, the dependent variable is ,/NO2, .

Covariates Temporal calibration Spatiotemporal calibration
#
Location z; (N = 5684) Location z; (N = 4816) Model z; validated Model z; validated at
atz (N = 4751) z2 (N = 4885)
RMSEpy, RMSEpos RMSEpre RMSEpost RMSEpre RMSEposy RMSEpe  RMSEpog
1 g, + B, NO2a 9.91 9.44 10.67 8.54 10.00 11.35 10.64 11.39
2 By + ,NO2gp + Brlog(03) 9.91 8.43 10.67 8.43 10.00 10.81 10.64 11.68
3 By + BiYNO2ap + B,RE? 9.91 9.52 10.67 8.22 10.00 11.86 10.64 12.70
4 By + By NO2gp + BT 9.91 8.83 10.67 7.26 10.00 12.70 10.64 11.62
5 By + By/NO2gpy + By WS 9.91 8.05 10.67 8.28 10.00 10.29 10.64 11.10
6 By + By\/NO2gp + fyfactor(WD) 9.91 9.47 10.67 8.62 10.00 11.55 10.64 11.56
7 By + ByNO2gy + By WS + Balog(03) 9.91 7.97 10.67 8.23 10.00 10.27 10.64 11.42
8 By + By NO2ab + B,10g(03) + fsREE + B, + fsyWS 9.91 7.62 10.67 5.80 10.00 11.28 10.64 11.55
9 By + B1YNO2gp + Brl0g(03) + B5RE? + B, T + /WS + ffactor(WD) 9:91 7.80 10.67 5.74 10.00 11.66 10.64 11.58
beta coefficient was below 1 while for other airboxes the beta coeffi- < |
cient was above 1. The NO, concentrations would thus be corrected in ° _
the wrong direction when using the estimated coefficients of another
airbox. By, and B, have posterior distributions around zero, indicating N
different slope directions for different airboxes. We note that the short ° ]
duration may have contributed to some uncertainty in the estimates.
- :
3.7. Temporal autocorrelation &
—
In the iterative calibration procedure, the dataset for calibration was K - :
not large enough to model the temporal autocorrelation in the NO, é s ‘
data. Inclusion of the random walk component (Eq. (13)) did not lead to g
improvements in RMSE,,,;. When applying the model in Eq. (2) to the 2
full year dataset, however, there were clear signs of temporal auto- 3
correlation in the residuals. Including random effects in the model using ‘
Eq. (13) led to a significant decrease in RMSE), from 8.30 to 3.12 at z;, °
and from 6.76 to 3.71 at z,. A complete overview is given in Table S5. o
Inclusion of random effects narrowed the scatterplot closer to the 1:1 ‘ b
line (Fig. S7). A substantial decrease in residuals and removal of the
temporal pattern is visible in the residual plot (Fig. S8). -
2 |
K T T
4. Discussion and conclusions B tomp

After approximately two to six months after the initial calibration,
the airbox NO, sensors showed signs of drift. We have evaluated three
different methods for regular calibration: daily updated correction
factors, corrections based on uniform low concentrations, and a
Bayesian regression model. The Bayesian regression model and the
daily correction factors both worked very well on the airbox for which
they were created, accounting for both systematic bias due to drift and
non-systematic errors due to interference effects. However, we found
that the transferability of the correction parameters and coefficients to
another airbox was limited, though the other airbox was within a short
distance and in a similar traffic situation. The poor spatial

Table 3

Covariate

Fig. 4. Posterior mean estimates of different airboxes, for airbox NO, vs. cov-
ariates RH and temperature measured in the same airbox, full year 2016.

transferability is consistent with the different sensitivity of individual
airboxes to environmental factors including temperature and relative
humidity, in agreement with Broday (2017).

The sensitivity of electrochemical cell NO, sensors to temperature
and relative humidity has already been evaluated for different types of
sensors (Mead et al., 2013; Neri et al., 2002; Phala et al., 2016). With a
set of collocated sensors, we found that the interference effects might be

RMSE values before and after applying a daily correction factor on hourly values at the same location (temporal calibration) and at the other location (spatiotemporal

calibration).

Correction factor Temporal calibration

Spatiotemporal calibration

Location z; Location z;

Model z; validated at z; Model z; validated at z;

RMSEpre RMSEpost RMSEpre RMSEpost RMSEpy, RMSEpos RMSEpre RMSEpoy
Vreld.z 9.94 19.57 10.55 7.34 9.46 13.53 10.68 120.86
Yabs,d,z 9.94 6.54 10.55 5.78 9.46 10.17 10.68 9.75
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different for individual sensors of the same type when deployed in an
outdoor environment. We also showed, in line with Kizel et al. (2018),
that for each airbox the coefficients strongly vary over time, empha-
sizing the need for regular recalibration. These results may be different
for other pollutants or sensors. Zalel et al. (2015), for example, found a
good temporal stability and spatial transferability for benzo(a)pyrene.

Wind speed data was only available at a single location in
Eindhoven. In the model we could therefore only include the temporal
variation in wind speed but not its spatial variation. Lerner et al. (2015)
found that local wind speed affects the NO, concentrations. The NO,
sensors in our study are covered by the airbox to minimize the influence
of direct wind. The regression model may be improved by adding
measurements of wind speed and wind direction on each airbox loca-
tion. Ozone data are measured by the airboxes, but were only available
for two months in 2016 for the two airboxes collocated with a con-
ventional monitor, due to sensor failure. Therefore we used Oz data
available at one of the conventional monitor sites. This limited the O3
data to only one location, but the relation between NO, and Oj is strong
and the temporal variability in O3 is typically higher than the spatial
variability. This solution was therefore preferred over using no O; data
or using only two months of data for analysis. Due to a change in initial
calibration factor, there is a sudden change in NO, concentrations
around the 10th of May. This has affected the models based on 30-day
periods including May 10th, but not other periods. The change thus
does not affect our general conclusions.

We evaluated the performance of the calibration models, their
temporal stability and spatial transferability by comparing the RMSE
values before and after calibration. This measure is widely used to
evaluate sensor performance, but can be influenced by extreme values
(Fishbain et al., 2017). We cleaned the data from outliers before the
analysis to minimize the influence of extreme values on calibration
parameters and their performance (Van Zoest et al., 2018). Besides the
RMSE, other performance measures can be used to assess the quality
and usability of low-cost air quality sensors. For example, Fishbain et al.
(2017) developed a tool kit to evaluate the performance of air quality
micro-sensing units. Here, our focus is on calibration performance only.

Miskell et al. (2018) suggested to calibrate low-cost sensors using a
conventional monitor in the vicinity with similar land use type. They
successfully applied the method on O; with an averaging time of 72 h.
We applied a similar method on NO, using daily absolute and relative
correction factors and an averaging time of 24 h. This method accounts
for drift and daily variability in interference effects. Despite similar
traffic conditions at both locations, and traffic being the major con-
tributor to NO, levels in Eindhoven, the correction factors could not
successfully be transferred from one location to the other. This is
probably due to variability between individual airboxes in the strength
of drift or interference.

The uniform concentration correction method was proposed by
Tsujita et al. (2005) and only adjusts the correction factor when con-
centrations of pollutants are uniform over the city. This method ac-
counts mostly for drift but also for long-term variability in interference
effects. Moltchanov et al. (2015) applied this method using nighttime
calibrations (1:00-4:00) when O3 concentrations are uniformly negli-
gible. For NO, they could not apply the method because they did not
find periods of sufficiently long duration with negligible spatial varia-
tion in NO, concentrations. We faced the same issue for NO,.

We evaluated the presence of temporal autocorrelation in the re-
siduals by adding a first-order random walk component to the model, as
described in Blangiardo and Cameletti (2015). In our case the addition
of this random effect only led to an improvement in RMSE when ap-
plied on 80% of the full dataset (2279 hourly non-missing observations)
rather than iteratively using the hourly observations of the previous 30
days (maximum 720 hourly non-missing observations).

The need for regular recalibration of parameters is clear. The time
series plots of the daily correction factors, the correction factors based
on uniform low concentrations, and 8 coefficients of the INLA model
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show that independent of the method used, there is significant varia-
bility in the correction factors and parameters over time. Also, the
parameters are dependent on the individual sensor. Hasenfratz et al.
(2012) proposed an on-the-fly calibration procedure for gas sensors
mounted on public transport vehicles, calibrating the sensors when in
each other's vicinity or when in the vicinity of a conventional monitor.
In static sensor networks, a moving reference sensor could be used for
regular calibration and data quality evaluation of the sensors in the
network as suggested by Kizel et al. (2018). A moving reference sensor
takes the different response of individual sensors into account, and
would be a suitable solution to account for the spatio-temporal varia-
bility in the calibration parameters. A disadvantage is the added
workload. Besides a moving reference sensor, it would still be of added
value to collocate the sensors once a year to compare performance
differences.

Low-cost air quality networks provide data of a fine spatial and
temporal resolution. They provide valuable opportunities for spatio-
temporal modelling and health risk mapping. It can be debated whether
one should use modelled values, as derived from the calibration model,
as an input for spatiotemporal modelling purposes and health studies,
in which the same covariates are likely to be used again as potential
confounders in for example time series studies. The purpose of this
model is however different, the calibration parameters are optimized
for the calibration of NO,, and the covariates have been transformed
and scaled. Therefore we do not expect major issues regarding the use
of calibrated values in future modelling.

Calibration procedures are important to correct air pollution data
before online publishing, to avoid misinterpretation of the results. This
study has highlighted the need for such calibration procedure to not just
account for drift and interference effects, but also for the variability in
drift and interference effects in space, time and between sensors. The
strength of this variability may differ between locations, pollutants and
sensors used. Transferability of calibration parameters from one sensor
to the other and similarities in drift are often assumed, but this as-
sumption is not always justified. Regular calibration should therefore
be performed at the location of the low-cost sensor, for example using a
moving reference sensor.

Low-cost air quality sensors are valuable instruments to increase the
spatial and temporal resolution of air quality sensor networks. When
aware of their limitations, sensor-specific differences and when com-
municating the uncertainties related to their measurements, they could
prove useful in various settings.
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