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Abstract: A novel feedforward control strategy is presented to isolate precision machinery from
broadband floor vibrations. The control strategy aims at limiting the low-frequency controller
gain, to prevent drift and actuator saturation, while still obtaining optimal vibration isolation
performance at higher frequencies. This is achieved by limiting the low-frequency control
action such that almost no phase shift is introduced at higher frequencies. To minimize model
uncertainties, the feedforward controller is implemented as a self-tuning IIR filter that estimates
the parameters online. Only a few parameters have to be estimated, which makes the algorithm
computationally efficient. An additional feedback controller is designed to make the self-tuning
algorithm more robust. The effects of feedforward and feedback control add up. The control
strategy is successfully validated on an experimental setup of a vibration isolator.
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1. INTRODUCTION

Vibration isolators are widely used in high-precision ma-
chines, e.g. wafer scanners, see Tjepkema et al. (2011).
Passive vibration isolators consist of physical springs and
dampers between the floor and the supported machine.
Such isolators can only attain a limited performance be-
cause a large passive damping of the suspension mode leads
to less vibration isolation at high frequencies (Karnopp
and Trikha (1969)). Active vibration isolators contain an
additional control system with sensors and actuators to
further improve the vibration isolation performance. Feed-
back control is widely used for vibration isolators, exam-
ples are Zuo et al. (2004); Tjepkema et al. (2011). However,
the performance of feedback controllers is limited by the
controller bandwidth and the Bode sensitivity integral.

An alternative approach for active vibration isolation is
causal feedforward control, see for example Van der Poel
(2010); Landau et al. (2011). In contrast with feedback
control, where the measured machine motion is used as
controller input, causal feedforward control uses mea-
surements of external vibrations (e.g. floor vibrations)
as controller input. In general, due to the causal nature
of the disturbance measurement, the performance of the
feedforward control at high frequencies is limited by the
feedforward sensitivity integral, see Heertjes et al. (2013).
Moreover, modeling errors limit the performance, since
the feedforward control force is calculated using a system
model. Furthermore, it is undesired to use feedforward con-
trol for low-frequency disturbances, as this can easily lead
to drift and actuator saturation. However, using regular

high-pass filters to limit low-frequency controller gains,
leads to a phase shift in the controller that deteriorates
the performance.

In this paper, a novel feedforward control strategy is
presented for broadband disturbance rejection. The low-
frequency controller gain is limited without introducing a
large phase shift at higher frequencies, such that at higher
frequencies optimal performance is obtained. To minimize
model uncertainties and compensate for parameter varia-
tions in time, the parameters are estimated online using
a self-tuning IIR filter with nth order basis functions,
resulting in an nth-order roll-off in the transmissibility
function. An IIR filter with first-order basis functions is
proposed in Williamson and Zimmermann (1996); Yuan
(2007). Compared with self-tuning FIR filters (see e.g.
Van der Poel (2010)), IIR filters give the designer more
freedom because poles can be placed at locations other
than z = 0. Therefore, a computationally efficient algo-
rithm is obtained because the system can be accurately
described with only a few coefficients. Fixing the poles
in the basis functions prevents instability due to pole
adaptation. Moreover, it results in a linear formulation of
the estimation problem such that a unique solution exists.
Feedback control is added to make the convergence process
of the self-tuning filter more robust, and to show that the
effects of feedforward and feedback control add up.

The remainder of this paper is organized as follows. A
model for the vibration isolator is given in Section 2 and
a simple feedback control law in Section 3. In Section
4, a fixed-gain feedforward controller is derived, while in
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Section 5 the step to self-tuning controllers is made. In
Section 6, an experimental validation is presented.

2. MODEL DESCRIPTION
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Fig. 1. Model of an active vibration isolator.

Consider the system shown in Fig. 1. Masses m1 = 5.4 kg
andm2 = 3.9 kg, connected by the spring k2 = 1400 kN/m
and the viscous damper d2 = 20 Ns/m, represent a
simplified precision machine with one dominant internal
mode. The machine is suspended by a hybrid mount
having a stiffness of k1 = 160 kN/m and a viscous damping
of d1 = 80 Ns/m. Using these system parameters, a
suspension mode at 20 Hz and an internal mode at 125 Hz
are obtained. These frequencies are representative for an
active hard mount vibration isolator, see Tjepkema et al.
(2011). Actuator force Fa is used for active vibration
isolation. Accelerometers on the floor (a0) and the machine
(a1) are used for measurement and control. Since precision
machines are usually placed on stiff and heavy floors, the
mechanical coupling between Fa and x0 is neglected. To
deal with systems having mechanical coupling, the reader
is referred to Landau et al. (2011).
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Fig. 2. Combined feedforward/feedback control scheme for
active vibration isolation.

Active isolation of floor vibrations is obtained by a com-
bination of feedforward control and feedback control. The
controller scheme is shown in Fig. 2. The input disturbance
signal is denoted by a0 and the error signal is denoted by
a1. The latter is formed by two signals: a signal d that is
caused by the disturbance from the primary path P , i.e.
the passive system, and a component y that is caused by
the control action from the secondary path S. The control
action Fa is the sum of the feedback controller output uFB

and the feedforward controller output uFF , computed by
the controllers K and W , respectively.

The primary path P is described by the transfer function
from floor vibrations to machine vibrations. The Laplace
variable s is used to represent P in the frequency domain,

P (s) = (d1s+ k1)
nr(s)

pr(s)
, (1)

with nr(s) = (m2s
2 + d2s + k2) describing an anti-

resonance at ωAR =
√

k2/m2 due to the internal mode,
and pr(s) describing the poles of the suspension mode and
the internal mode as

pr(s) =(m1s
2 + dtots+ ktot)(m2s

2 + d2s+ k2)

− (d2s+ k2)
2, (2)

with dtot = d1 + d2 and ktot = k1 + k2. Given that
d1, d2 are small and k2 ≫ k1, it can be derived that
the poles described by pr(s) correspond with a suspension

mode at ωsusp =
√

k1/(m1 +m2) and an internal mode

at ωR =
√

(1 +m2/m1)k2/m2.

The secondary path S is described by the transfer function
from control action to machine vibrations. In the frequency
domain, S is given by

S(s) = s2
nr(s)

pr(s)
. (3)

The total machine motion is given by

A1(s) =P (s)A0(s) + S(s)Fa

=P (s)A0(s) + S(s)W (s)A0(s)

− S(s)K(s)A1(s). (4)

From (4), the transmissibility function T is derived:

T (s) =
A1(s)

A0(s)
=
P (s) + S(s)W (s)

1 + S(s)K(s)
. (5)

In the remainder of this paper, T will be used as a per-
formance measure for the vibration isolator. Equation (5)
shows that K and W can be designed independently.
The numerator in (5) describes the reduction obtained by
feedforward control, while the denominator describes the
reduction by feedback control. Without control (K =W =
0), T equals P .

3. FEEDBACK CONTROL

A feedback controller K is used to add skyhook damping,
see Karnopp and Trikha (1969), to the suspension mode
and the internal mode. Using a1 as input, K is given by

K(s) =
Fa(s)

A1(s)
=

Kv

s+ 1
. (6)

This controller integrates the acceleration signal using
the tame integrator 1/(s + 1) to obtain the platform
velocity, needed for skyhook damping. Kv = 2000 Ns/m
is tuned such that both the suspension mode and the
internal mode are sufficiently damped without making
the controller bandwidth unnecessarily high. The effect of
feedback control is shown in Fig. 3.

4. FIXED-GAIN FEEDFORWARD CONTROL

In this section, the fixed-gain feedforward controller is
derived. The controller gain is limited at low frequencies,
to prevent drift and actuator saturation, without intro-
ducing a big phase shift at higher frequencies. Therefore,
optimal vibration isolation performance is obtained at
higher frequencies. In the initial design, perfect knowledge
of the system parameters is assumed. In practice, these
parameters are not known exactly, so the actual perfor-
mance of the fixed-gain controller will deviate. Therefore,
the influence of non-perfect parameter estimations is also
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discussed in this section. The fixed-gain controllers give the
mathematical relations needed to design the self-tuning
controllers in Section 5.

4.1 The approximate Wiener controller

From (5) it follows that, regardless of the feedback con-
troller K, perfect cancellation of floor vibrations is ob-
tained when using the following feedforward control law,

Wopt(s) = −S−1(s)P (s) = −
1

s

(

d̂1 +
k̂1
s

)

, (7)

with d̂1 = d1 and k̂1 = k1 being perfect estimates
of the suspension damping and stiffness, respectively. In
literature, this controller is referred to as the Wiener
controller. Note that Wopt does not depend on nr(s) or
pr(s), i.e. it needs no prior knowledge of the internal
mode. Physically this makes sense, becausem2 can only be
excited via m1. So if floor vibrations are not transmitted
to m1, they will not be transmitted to m2 either.

Next, the pure integrators in (7) are replaced by tame inte-
grators to prevent drift and actuator saturation. Therefore
the integrating actions are cut off at α rad/s, leading to

W1(s) =−
1

s+ α

(

d̂1 +
k̂1

s+ α

)

(8)

=−
1− α

s+α

s

(

d̂1 +
1− α

s+α

s
k̂1

)

. (9)

Neglecting feedback control (K = 0), and substituting (8)

in (5) with perfect estimates k̂1 = k1 and d̂1 = d1, the
following transmissibility function is obtained:

T (s) ≈ 2
α

s+ α
P (s), for s = jω, ω > α. (10)

Equation (10) shows that if α → 0, then T → 0, resulting
again in perfect cancellation of floor vibrations. If α 6=
0, then a -20 dB/decade roll-off is introduced in T for
ω > α. This roll-off can be increased, i.e. the vibration
isolation properties can be improved, by using higher-order
controllers. Define the controller W3, in which the first-
order low-pass filters in (9) are replaced by third-order
low-pass filters, or

W3(s) =−
1−

(
α

s+α

)3

s




d̂1 +

1−
(

α
s+α

)3

s
k̂1




 .

(11)

Using W3 and assuming again k̂1 = k1 and d̂1 = d1, the
transmissibility is given by

T (s) ≈ 2

(
α

s+ α

)3

P (s), for s = jω, ω > α. (12)

Compared with (10), (12) has two more poles at s = −α.
These poles increase the roll-off of T for frequencies ω > α.
This observation leads to the following proposition.

Proposition 1. Let T be the transmissibility from floor
vibrations to machine vibrations in the context of Fig. 1.
For the Wiener controller given by (7), an approximate
Wiener controller is given by

Wn(s) =−
1− Ln(s)

s

(

d̂1 +
1− Ln(s)

s
k̂1

)

, (13)

in which Ln may be an arbitrary nth-order low-pass filter
with unity gain, and from which follows that

T (s) =Ln(s)(d̂1s+ (2− Ln(s))k̂1)
nr(s)

pr(s)

+ ((d1 − d̂1)s+ (k1 − k̂1))
nr(s)

pr(s)
︸ ︷︷ ︸

Terror(s)

. (14)

In case of perfect estimation, i.e. k̂1 = k1 and d̂1 = d1, the
error term Terror in (14) vanishes, such that T reduces to:

T (s) ≈ 2Ln(s)P (s), for s = jω, ω > α. (15)

Proof. The proof follows from substitution of (13) in (5),
with K(s) = 0.

Equation (15) shows that with (13) and k̂1 = k1, d̂1 = d1,
potentially a transmissibility function with a roll-off of
arbitrary dB/decade can be created. As an example, Fig. 3
shows the transmissibilities when Ln is a 1st-order, 3rd-
order or 5th-order low-pass filter and α = 2 Hz. Note that
for frequencies lower than α the performance is slightly
deteriorated with respect to the passive system. This
performance deterioration can be prevented by choosing
different values of α for both integrators in (13).

Frequency (Hz)

M
a
g
n
it
u
d
e
(d
B
)

Transmissibility

Passive
FB
FB+FF1

FB+FF3

FB+FF5
FB+FF5,np

10−1 100 101 102 103
-120

-100

-80

-60

-40

-20

0

20

Fig. 3. Performance of the passive system, the feedback
(FB) controlled system using (6), and the combined
feedback plus fixed-gain feedforward (FF) controlled
system using (6) and (13) with n = 1, 3, 5. It also
shows the performance for a FB+FF-controlled sys-

tem with n = 5 and non-perfect (np) estimates k̂1 =

0.99k1 and d̂1 = 0.9d1.

Bode plots of W1, W3 and W5 are compared with Wopt

in Fig. 4. It is observed that increasing n leads to less
phase shift at the higher frequencies, and therefore a better
performance for ω > α. However, increasing n comes at
the cost of a higher controller gain for frequencies lower
than α, which is undesired because of drift and actuator
saturation. For example, the static gain for W1 is k1/α

2 +
d1/α, while the static gain for W3 is 3k1/α

2 + d1/α and
for W5 it is 5k1/α

2 + d1/α, hence a trade-off between the
roll-off rate and the static controller gain.
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Fig. 4. Bode plots of the fixed-gain feedforward controllers.
Increasing n results in a trade-off: (a) a better approx-
imation of the phase with respect to Wopt, but (b) a
higher static controller gain.

4.2 Non-perfect estimates

In practice, the estimates k̂1 and d̂1 will never be per-
fect, due to identification errors, non-linearities and time-
varying behavior (e.g. caused by thermal effects). Having
non-perfect estimates, the performance is limited by the
error term Terror in (14) at the higher frequencies. This
is illustrated in Fig. 3, which shows the transmissibility in

case of a 1% estimation error in the stiffness (k̂1 = 0.99k1)

and a 10% estimation error in the damping (d̂1 = 0.9d1).
For ω < k1/d1 = 2000 rad/s, the performance is limited
by the stiffness error, therefore the maximum vibration
attenuation is 40 dB (1% of the original T ), while for
ω > k1/d1 the maximum vibration attenuation is 20 dB
(10% of the original T ). This example illustrates the need
for accurate parameter estimations.

5. SELF-TUNING FEEDFORWARD CONTROL

To obtain accurate values for k̂1 and d̂1, and thus minimiz-
ing performance limitations due to parameter estimation
errors, the fixed-gain feedforward controller is redesigned
as a self-tuning IIR filter with nth-order basis functions.
The advantage of IIR filters over the widely used FIR
filters, see e.g. Van der Poel (2010), is that filter poles
are allowed at other locations than z = 0. This makes
sense, because from (13) it follows that poles are re-
quired. Moreover, the desired pole locations are known
from (13). Therefore, the IIR filter poles can be fixed
in the basis functions, resulting in a controller that is
inherently stable because the poles cannot shift to unstable
pole locations. Moreover, (13) is linear in the parameters

d̂1 and k̂1. Therefore, minimization of a quadratic cost
criterion to estimate d1 and k1 online leads to a convex
adaptation problem with a unique global minimum. The
preconditioned Filtered-Error LMS algorithm (Wesselink
and Berkhoff (2008)) with residual noise shaping (Kuo and
Tsai (1994)) is used for online parameter estimation.

d

uIIR

ψ1 ψ2 ψn

F1 F2 Fn

w1 w2 wn

+++

Fig. 5. Discrete-time IIR filter with self-tuning weights wi

5.1 Self-tuning IIR filter structure

The IIR filter is depicted in Fig. 5. In the first step, a0 is
filtered by a vector of basis functions F = [F1, ..., Fn], re-
sulting in n signals collected in the vector ψ = [ψ1, ..., ψn].
The signals ψi are multiplied by self-tuning weights wi,
collected in w = [w1, ..., wn]. The sum of all weighted
signals results in the IIR filter output uIIR. Fi, with
i = 1, ..., n, are determined from the fixed-gain controller
Wn, as will be explained in Section 5.3. The weights are
determined using an update law,

w(k + 1) = w(k)−
µ(k)

2

(
∂J(k)

∂w(k)

)T

, (16)

with iteration step k and adaptation rate µ(k). The
gradient in (16) stems from the quadratic cost criterion

J(k) = e′(k)T e′(k). (17)

Equation (17) describes the instantaneous squared filtered-
error rather than the mean squared filtered-error over
a time interval. The filtered error e′ = N(MŜ)−1e(k)
is obtained by filtering the measured error e(k) by the

inverse of the estimated secondary path Ŝ−1 and the
preconditioning filter M (to obtain the filtered-error LMS
structure), and N (to apply residual noise shaping). The
filtered error is given by

e′(k) =N(ŜM)−1(Pd(k) + SM [wT (k)ψ(k)]), (18)

with input disturbance d, and P , S as given in Fig. 2, ψ,
w as given in Fig. 5, and M , N filters to be designed. It is
generally not possible to find a closed-form expression for
the gradient with respect to w. Therefore, slow adaptation
of w is assumed, such that the gradient in (16) can be
written as

∂J(k)

∂w(k)
=
∂J(k)

∂e′(k)
·
∂e′(k)

∂w(k)
(19)

≈ 2e′(k) ·N(ŜM)−1SMψ(k) (20)

≈ 2e′(k) ·Nψ(k). (21)

In (21), it is assumed that Ŝ = S. Recall from (3) that S is

assumed to have as many zeros as poles, such that Ŝ−1 is
proper; modeling errors in Ŝ are discussed in section 5.3.
Substitution of (21) in (16) gives the update law:

w(k + 1) = w(k)− µ(k)ψ′(k)e′(k), (22)

with ψ′(k) = Nψ(k). Using a normalized step size, see Van
der Poel (2010), we have

µ(k) =
µ̄

ǫ+ |ψ′(k)|22
. (23)

In (23), the adaptation rate is dependent on ψ′(k), such
that instability of the adaptation process due to large
input signals is prevented; ǫ > 0 is a small positive
constant to prevent division by zero. The normalized
adaptation rate 0 < µ̄ < 2, which is set by the user,
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must not be too large to prevent instability due to the
approximations in (21).

+
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Fig. 6. Implementation of the self-tuning IIR filter.

Fig. 6 shows the implementation of the self-tuning IIR
filter. The update block uses (22) to update the weights.

5.2 Controller design

The fixed-gain controllerWn as given in (13) is redesigned

as a self-tuning IIR filter, see (24). The parameters d̂1 and

k̂1 in (13) have to be estimated online, so w1 = d̂1 and

w2 = k̂1. The filters M and Fi, with i = 1, 2, are discrete-
time equivalents of M(s), F1(s) and F2(s) as defined in

Wn,IIR(s) =−
1− Ln(s)

s
︸ ︷︷ ︸

M(s)







1
︸︷︷︸

F1(s)

w1 +
1− Ln(s)

s
︸ ︷︷ ︸

F2(s)

w2






.

(24)

For use in a digital environment, all filters are discretized
using the Tustin method with sampling frequency 6400 Hz.

For the noise shaping filter N , the following design is used:

N(s) =

(
s

s+ 500

)(
5000

s+ 5000

)(
s

s+ 5α

)4

. (25)

The first-order high-pass filter with its pole at s =
500 rad/s improves the convergence rate by making the
frequency spectrum of F2(s)w2 flat. This makes sense,
because the vibration isolator is a light-damped system,
so d1 (represented by w1) will be small compared to k1
(represented by w2) and therefore the term F2(s)w2 is
dominant at low frequencies ω < k1/d1. The second term
is a low-pass filter with a pole at s = 5000 rad/s, this filter

makes N(MŜ)−1 proper. The fourth-order high-pass filter
at s = −5α rad/s removes the low-frequency content from
the update signals. The low-frequency content is removed
to prevent that the algorithm tries to compensate for
low-frequency errors, which is not possible because of the
tame integrators in (24). Without high-pass filtering, the
estimations will be biased.

5.3 Simulation results

Simulation studies are performed for n = 1, 3, 5, µ̄ = 10−4,
and ǫ such that its value is 0.1% of the RMS input power.
The weights, all having an initial value of zero, are updated
at every time step. Input d is a floor acceleration with a
white noise frequency spectrum. Fig. 7 shows the learning
curves of the self-tuning algorithm. From the figure, it is
clear that the algorithm converges to the minimum cost
solution in all three cases where Ŝ = S.

Time (s)

co
st

J

Learning curves

FF, W1,IIR Ŝ = S

FF, W3,IIR Ŝ = S
FF, W5,IIR Ŝ = S
FF, W5,IIR Ŝerror

0 10 20 30 40 50
10−2

100

102

104

106

108

Fig. 7. Learning Curves, showing the convergence behavior
of the IIR filter. The red lines indicate the minimum
costs, corresponding to fixed-gain controllers with
estimations w1 = d1 and w2 = k1. The black lines
indicate the costs during the convergence process.

To investigate the sensitivity of the convergence algorithm
for non-modeled high-frequency dynamics in Ŝ, a fourth
case is simulated in which an 800 Hz resonance with
relative damping 0.07 is added to S, but not to Ŝ. It
appears that the self-tuning algorithm becomes unstable
without modifying N . To re-stabilize the system in the
presence of the 800 Hz resonance, a second-order low-
pass filter at s = 500 rad/s is added to N , such that
high-frequency content is filtered from the sensor signals.
According to Bao and Panahi (2010), this is equivalent
to virtually removing high-frequency content from a0. As
a result, excitation of the dynamics that destabilizes the
converge process is not seen by the self-tuning controller.
Note that the steady-state residual error is higher, because
the resonance at 800 Hz is not compensated for by the
controller.

When including feedback control, in addition to feedfor-
ward control, Ŝ is the estimate of the closed-loop secondary
path, see Van der Poel (2010). Therefore, feedback control
can be used to reduce modeling errors.

6. EXPERIMENTAL RESULTS

VCM

Piezo stack

Flexible body

Platform

Floor plate

Fig. 8. Experimental setup.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5615



Fig. 8 shows the experimental setup used for validation
purposes. The setup consists of a Stewart platform con-
nected to six voice coil motors (VCMs) by wire springs.
The VCMs are guided by circular leaf springs, which in-
troduce six suspension modes into the system. The Stewart
platform carries a flexible body that introduces three ad-
ditional modes in the setup. The VCMs are controlled by
a dSpace DSP system running at sampling frequency fs =
6400 Hz. Both the floor plate and the Stewart platform
contain six accelerometers. The floor plate can be excited
in vertical direction by three piezo stacks providing ran-
dom vibrations (white noise). The setup is designed such
that the platform motion in vertical direction is almost
decoupled from the other directions. In vertical direction,
the passive system contains one suspension mode and one
internal mode, see the measurements in Fig. 9.

The self-tuning feedforward controller from Section 5.3 is
implemented on the DSP with n ∈ {1, 3, 5} and α = 2 Hz,
together with the feedback controller from (6). During
the convergence process, a rigid-body estimation for S
including feedback controller (6) is used. To filter non-
modeled high-frequency dynamics, (25) is extended with a
fourth-order low-pass filter at 500 rad/s. From Fig. 9 it is
observed that attenuation levels up to 40 dB are obtained
with respect to the feedback-controlled system. At higher
frequencies, active vibration isolation even deteriorates
the performance due to the causal nature of the input
disturbance measurement, see Heertjes et al. (2013). For
frequencies higher than 400 Hz, sensor noise dominates
the error response. Furthermore, suspension modes show
up at 18 Hz and 29 Hz due to non-perfect decoupling of the
system. It is expected that a full Multiple-Input Multiple-
Output (MIMO) feedforward controller would suppress
these modes, this will be a topic for future research.

Transmissibility
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Passive
FB
FB + FF, W1,IIR

FB + FF, W3,IIR

FB + FF, W5,IIR

100 101 102 103
-120

-100

-80

-60

-40
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0

20

Fig. 9. Measured frequency response functions.

7. CONCLUSIONS

An effective self-tuning feedforward control strategy for
the active vibration isolation of precision machinery from
floor vibrations is presented and experimentally validated.

To prevent problems with drift and actuator saturation,
the controller gain is limited for frequencies below 2 Hz,
while obtaining a good performance for higher frequencies.
To reduce estimation errors, the feedforward controller is
implemented as a self-tuning IIR filter. Simulations show
that the self-tuning IIR filter converges to the optimal
fixed-gain controller. An experimental validation of the
self-tuning feedforward control strategy, combined with a
skyhook feedback controller, shows that floor vibrations
are suppressed up to 40 dB in a broad frequency range.
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